JP2015137352A - オレフィン重合体の製造方法 - Google Patents

オレフィン重合体の製造方法 Download PDF

Info

Publication number
JP2015137352A
JP2015137352A JP2014011309A JP2014011309A JP2015137352A JP 2015137352 A JP2015137352 A JP 2015137352A JP 2014011309 A JP2014011309 A JP 2014011309A JP 2014011309 A JP2014011309 A JP 2014011309A JP 2015137352 A JP2015137352 A JP 2015137352A
Authority
JP
Japan
Prior art keywords
group
olefin polymer
olefin
compound
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014011309A
Other languages
English (en)
Inventor
崇史 雪田
Takashi Yukita
崇史 雪田
正洋 山下
Masahiro Yamashita
正洋 山下
郁子 恵比澤
Ikuko Ebisawa
郁子 恵比澤
寛矛 兼吉
Hiromu Kaneyoshi
寛矛 兼吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2014011309A priority Critical patent/JP2015137352A/ja
Publication of JP2015137352A publication Critical patent/JP2015137352A/ja
Pending legal-status Critical Current

Links

Abstract

【課題】高温条件下においてもオレフィン重合体を効率よく製造する製造方法の提供。【解決手段】下式で表される架橋メタロセン化合物(式中、R8とR9とが異なる原子または基である。)を含む触媒存在下に、α−オレフィンを重合することを特徴とする。【選択図】なし

Description

本発明は、オレフィン重合体の製造方法に関する。
近年、オレフィン重合用の均一系触媒として、メタロセン化合物がよく知られている。メタロセン化合物を用いてオレフィンを重合する方法(特に、α−オレフィンを重合する方法)に関しては、W.Kaminskyらによってアイソタクチック重合が報告されて以来、立体規則性や重合活性の更なる向上という視点から、多くの改良研究が行なわれている(非特許文献1)。
メタロセン化合物を用いたα−オレフィンの重合では、メタロセン化合物の配位子であるシクロペンタジエニル環に置換基を導入したり、2個のシクロペンタジエニル環を架橋させることにより、得られるオレフィン重合体の立体規則性や分子量が大きく変化することが知られている。
例えば、シクロペンタジエニル環とフルオレニル環が架橋された配位子を有するメタロセン化合物をプロピレンの重合触媒に用いた場合、重合体の立体規則性の観点からみると、ジメチルメチレン(シクロペンタジエニル)(フルオレニル)ジルコニウムジクロリドではシンジオタクチックポリプロピレンが(非特許文献2)、シクロペンタジエニル環の3位にメチル基を導入したジメチルメチレン(3−メチルシクロペンタジエニル)(フルオレニル)ジルコニウムジクロリドではヘミアイソタクチックポリプロピレンが(特許文献1)、同様に、シクロペンタジエニル環の3位にtert−ブチル基を導入したジメチルメチレン(3−tert−ブチルシクロペンタジエニル)(フルオレニル)ジルコニウムジクロリドではアイソタクチックポリプロピレンが得られる(特許文献2)。
これらのメタロセン化合物の改良の試みから、重合体の立体規則性の指標である融点について、比較的高いのもが得られるようになっており、また重合体の分子量についても充分に高いものが得られるようになっている。さらには充分に高い分子量をもち、かつ高い融点をもつ重合体も得られるようになっている。
特開平3−193796号公報 特開平6−122718号公報
Angew. Chem. Int. Ed. Engl., 24, 507 (1985) J. Am. Chem. Soc.,110,6255(1988)
しかしながら、必要充分に高い分子量をもち、かつ広い分子量分布をもつ重合体を生成する重合触媒の開発は未だ充分とはいえない。そのため分子量が高く、広い分子量分布を高い生産性で得る製造方法が強く望まれてきた。
さらに、これらのオレフィン重合体の工業的な製造を可能とするには、常温以上の温度、好ましくは常温を超える高い温度で、前記特徴を有するオレフィン重合体が製造できることが望まれているが、それらが可能な重合触媒はこれまでは存在しなかった。
本発明は、上記課題を解決するためになされたものであって、その目的は、工業的製法において有利な高温条件下においても高分子量かつ広い分子量分布のオレフィン重合体を効率よく製造することが可能な、オレフィン重合体の製造方法を提供することにある。
本発明者は、上記課題を解決すべく鋭意検討を行った結果、特定の構造を有する新規なメタロセン化合物を含むオレフィン重合用触媒を用いたオレフィン重合体の製造方法により上記課題を解決できることを見出し、本発明を完成させた。
上記課題を解決するための本発明に係るオレフィン重合体の製造方法は、
(A)下記一般式[1]で表される架橋メタロセン化合物と、
(B)(b−1)有機アルミニウムオキシ化合物、(b−2)架橋メタロセン化合物(A)と反応してイオン対を形成する化合物、(b−3)有機アルミニウム化合物から選択される少なくとも1種の化合物とを含むオレフィン重合用触媒存在下に、
50℃以上200℃以下の重合温度条件下において、
炭素数2以上20以下のα−オレフィンから選択される少なくとも1種のモノマーを重合することを特徴とするオレフィン重合体の製造方法である。
Figure 2015137352
(式中、R1は3級炭化水素基であり、
2、R3、R4、R5、R6およびR7は水素原子、炭化水素基、ケイ素含有基、ハロゲン原子、ハロゲン含有炭化水素基から選ばれ、それぞれ同一でも異なっていてもよく、隣接した置換基は互いに結合して環を形成してもよく、
8およびR9は水素原子、炭化水素基、ケイ素含有基、ハロゲン原子、ハロゲン含有炭化水素基から選ばれ、R8とR9とが異なる原子または基であり、
10は炭化水素基、ケイ素含有基、ハロゲン原子、ハロゲン含有炭化水素基から選ばれ、
Mは第4族遷移金属であり、
Qはハロゲン原子、炭化水素基、アニオン配位子または孤立電子対で配位可能な中性配位子であり、Qが複数存在する場合には、各Qは同一でも異なっていてもよく、
jは1〜4の整数である。)
本発明に係るオレフィン重合体の製造方法は、前記一般式[1]において、R1がtert-ブチル基または1−アダマンチル基であることが好ましい。
本発明に係るオレフィン重合体の製造方法は、前記一般式[1]において、R4およびR5が水素原子であることが好ましい。
本発明に係るオレフィン重合体の製造方法は、前記一般式[1]において、R8およびR9が炭素数1〜20の炭化水素基であることが好ましい。
本発明に係るオレフィン重合体の製造方法は、前記一般式[1]において、R8がメチル基であるが好ましい。
本発明に係るオレフィン重合体の製造方法は、前記オレフィン重合用触媒が、さらに担体(C)を含むことが好ましい。
本発明に係るオレフィン重合体の製造方法は、前記モノマーの少なくとも一部が、プロピレンであることが好ましい。
本発明に係るオレフィン重合体の製造方法は、得られるオレフィン重合体が下記要件(ia)および(iia)を同時に満たすことが好ましい。
(ia)プロピレン由来の構成単位(P)が50mol%<P≦100mol%
(iia)135℃デカリン中における極限粘度[η](dl/g)が3.0≦[η]≦20
本発明に係るオレフィン重合体の製造方法は、得られるオレフィン重合体が下記要件(ib)〜(iiib)を同時に満たすことが好ましい。
(ib)エチレン由来の構成単位(E)が0mol%≦E<50mol%、かつプロピレン由来の構成単位(P)が50mol%<P≦100mol%
(iib)ゲルパーミッションクロマトグラフにおける重量平均分子量(Mw)が400000<Mw<2000000かつ、Mwと数平均分子量(Mn)との分子量分布の範囲(Mw/Mn)が3<Mw/Mn<10
(iiib)示唆走査熱量分析における融解熱ΔH(mJ/mg)が10<ΔH<70
本発明のオレフィン重合体の製造方法によれば、特定の構造を有する有用かつ新規なメタロセン化合物を含むオレフィン重合用触媒を用いることにより、高分子量かつ広い分子量分布を有するオレフィン重合体を効率よく製造することができる。
以下、本発明に係るオレフィン重合体の製造方法について説明する。
本発明は、(A)一般式[1]で表される架橋メタロセン化合物と、(B)(b−1)有機アルミニウムオキシ化合物、(b−2)架橋メタロセン化合物(A)と反応してイオン対を形成する化合物、(b−3)有機アルミニウム化合物から選択される少なくとも1種の化合物とを含むオレフィン重合用触媒存在下に、50℃以上200℃以下の重合温度条件下において、炭素数2以上20以下のα−オレフィンから選択される少なくとも1種のモノマーを重合することを特徴とするオレフィン重合体の製造方法である。
以下、(A)一般式[1]で表される架橋メタロセン化合物(以下、メタロセン化合物(A)、あるいは架橋メタロセン化合物(A)とも記す)、および(B)(b−1)有機アルミニウムオキシ化合物、(b−2)架橋メタロセン化合物(A)と反応してイオン対を形成する化合物、(b−3)有機アルミニウム化合物から選択される少なくとも1種の化合物(以下、化合物(B)とも記す)について説明した後に、本発明のオレフィン重合体の製造方法について詳細に説明する。なお、本発明の技術的範囲は以下の実施形態に限定解釈されるものではない。
〔メタロセン化合物(A)〕
本発明に用いるメタロセン化合物(A)は、下記一般式[1]で表される架橋メタロセン化合物である。
Figure 2015137352
(式中、R1は3級炭化水素基であり、R2、R3、R4、R5、R6およびR7は水素原子、炭化水素基、ケイ素含有基、ハロゲン原子、ハロゲン含有炭化水素基から選ばれ、それぞれ同一でも異なっていてもよく、隣接した置換基は互いに結合して環を形成してもよく、R8およびR9は水素原子、炭化水素基、ケイ素含有基、ハロゲン原子、ハロゲン含有炭化水素基から選ばれ、R8とR9とが異なる原子または基であり、R10は炭化水素基、ケイ素含有基、ハロゲン原子、ハロゲン含有炭化水素基から選ばれ、Mは第4族遷移金属であり、Qはハロゲン原子、炭化水素基、アニオン配位子または孤立電子対で配位可能な中性配位子であり、Qが複数存在する場合には、各Qは同一でも異なっていてもよく、jは1〜4の整数である。)
本発明に用いるメタロセン化合物(A)を含むオレフィン重合用触媒を用いることにより、例えばプロピレン等のα−オレフィンを重合する場合、オレフィン重合体を効率よく製造することができる。すなわち、本発明に用いるメタロセン化合物(A)は、オレフィン重合体、特にプロピレン(共)重合体を製造するためのオレフィン重合用の触媒成分として好適に用いることができる。
前記R1は3級炭化水素基である。3級炭化水素基としては、具体的には、tert−ブチル基、tert−ペンチル基、tert−アミル基、1−メチルシクロヘキシル基、1−アダマンチル基が例示でき、tert−ブチル基、tert−ペンチル基、1−メチルシクロヘキシル基または1−アダマンチル基が好ましく、tert−ブチル基または1−アダマンチル基であることが特に好ましい。R1がtert−ブチル基または1−アダマンチル基であることが好ましい理由としては、触媒構造の安定化に寄与し、生成するオレフィン重合体の高分子量化へ繋がると考えられるからである。
次に、前記R2、R3、R4、R5、R6およびR7、R8およびR9、並びにR10がとりえる、炭化水素基、ケイ素含有基、ハロゲン原子、ハロゲン含有炭化水素基について説明する。
炭化水素基としては、炭素数1〜20のアルキル基、炭素数3〜20の飽和脂環式基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基が例示される。
炭素数1〜20のアルキル基としては、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デカニル基等の直鎖状アルキル基;iso−プロピル基、tert−ブチル基、アミル基、3−メチルペンチル基、1,1−ジエチルプロピル基、1,1−ジメチルブチル基、1−メチル−1−プロピルブチル基、1,1−プロピルブチル基、1,1−ジメチル−2−メチルプロピル基、1−メチル−1−イソプロピル−2−メチルプロピル基等の分岐状アルキル基が例示される。アルキル基としては、炭素数が1〜10であることが好ましい。
炭素数3〜20の飽和脂環式基としては、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等のシクロアルキル基;ノルボルニル基、アダマンチル基等の脂環式多環基が例示される。飽和脂環式基としては、炭素数が5〜7であることが好ましい。
炭素数6〜20のアリール基としては、フェニル基、ナフチル基、フェナントリル基、アントラセニル基、ビフェニル基等の非置換アリール基;o−トリル基、m−トリル基、p−トリル基、エチルフェニル基、n−プロピルフェニル基、iso−プロピルフェニル基、n−ブチルフェニル基、sec−ブチルフェニル基、tert−ブチルフェニル基、キシリル基等のアルキルアリール基が例示される。アリール基としては、炭素数が6〜10であることが好ましい。
炭素数7〜20のアラルキル基としては、ベンジル基、クミル基、α−フェネチル基、β−フェネチル基、ジフェニルメチル基、ナフチルメチル基、ネオフィル基等の非置換アラルキル基;o−メチルベンジル基、m−メチルベンジル基、p−メチルベンジル基、エチルベンジル基、n−プロピルベンジル基、iso−プロピルベンジル基、n−ブチルベンジル基、sec−ブチルベンジル基、tert−ブチルベンジル基等のアルキルアラルキル基が例示される。アラルキル基としては、炭素数が7〜10であることが好ましい。
ケイ素含有基としては、メチルシリル基、ジメチルシリル基、トリメチルシリル基、エチルシリル基、ジエチルシリル基、トリエチルシリル基、ジメチル−tert−ブチルシリル基等のアルキルシリル基;ジメチルフェニルシリル基、ジフェニルメチルシリル基、トリフェニルシリル基等のアリールシリル基が例示される。ケイ素含有基としては、メチルシリル基、ジメチルシリル基またはトリメチルシリル基が好ましい。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が例示される。ハロゲン原子としては、フッ素原子または塩素原子が好ましい。
ハロゲン含有炭化水素基としては、上記炭化水素基が有する少なくとも1つの水素原子をハロゲン原子で置換してなる基が例示され、具体的には、ハロゲン置換アルキル基、ハロゲン置換アリール基、ハロゲン置換アラルキル基等が挙げられる。
ハロゲン置換アルキル基としては、トリフルオロメチル基等のフルオロアルキル基が例示される。
ハロゲン置換アリール基としては、ペンタフルオロフェニル基等のフルオロアリール基、o−クロロフェニル基、m−クロロフェニル基、p−クロロフェニル基、クロロナフチル基等のクロロアリール基、o−ブロモフェニル基、m−ブロモフェニル基、p−ブロモフェニル基、ブロモナフチル基等のブロモアリール基、o−ヨードフェニル基、m−ヨードフェニル基、p−ヨードフェニル基、ヨードナフチル基等のヨードアリール基などの上記非置換アリール基のハロゲン置換基;トリフルオロメチルフェニル基等のフルオロアルキルアリール基、ブロモメチルフェニル基、ジブロモメチルフェニル基等のブロモアルキルアリール基、ヨードメチルフェニル基、ジヨードメチルフェニル基等のヨードアルキルアリール基などの上記アルキルアリール基のハロゲン置換基が例示される。
ハロゲン置換アラルキル基としては、o−クロロベンジル基、m−クロロベンジル基、p−クロロベンジル基、クロロフェネチル基等のクロロアラルキル基、o−ブロモベンジル基、m−ブロモベンジル基、p−ブロモベンジル基、ブロモフェネチル基等のブロモアラルキル基、o−ヨードベンジル基、m−ヨードベンジル基、p−ヨードベンジル基、ヨードフェネチル基等のヨードアラルキル基などの上記非置換アラルキル基のハロゲン置換基が例示される。
ハロゲン含有炭化水素基としては、フッ素原子含有炭化水素基またはクロロ原子含有炭化水素基が好ましく、トリフルオロメチル基、ペンタフルオロフェニル基、o−クロロフェニル基、m−クロロフェニル基、p−クロロフェニル基、トリフルオロメチルフェニル基、o−クロロベンジル基、m−クロロベンジル基、p−クロロベンジル基またはクロロフェネチル基が好ましい。
4およびR5が水素原子であることが好ましい。R4およびR5が水素原子であると生成するオレフィン重合体を効率的に得る観点から好ましい。
8とR9とが異なる原子または基である。R8とR9とが異なる原子または基であると、
オレフィン重合時の触媒構造が安定化し、共重合能が向上するため、高分子量かつ広い分子量分布を有するオレフィン重合体を得ることができる。
なお、R8とR9とは異なる原子または基であるが、ここで異なる原子または基とは、R8とR9とは同様のカテゴリーに分類される原子または基であってよいが、その具体的な原子または基が異なることを意味する。より詳細には、例えばR8とR9とが、共にハロゲン原子であってもよいが、この場合にはR8とR9とが異なる種類のハロゲン原子(例えば、片方がフッ素原子で、他方が塩素原子である態様、片方が塩素原子で、他方が臭素原子である態様)であればよい。また、別の例としては、R8とR9とが、共に炭化水素基であってもよいが、この場合にはR8とR9とが異なる種類の炭化水素基(例えば、片方がメチル基で、他方がエチル基である態様、片方がn−プロピル基で、他方がiso−プロピル基である態様)であればよい。
8およびR9が炭素数1〜20の炭化水素基であることが好ましい。炭素数1〜20の炭化水素基としては、炭素数1〜20のアルキル基、炭素数3〜20の飽和脂環式基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基が例示される。
8およびR9が炭素数1〜20の炭化水素基である場合、炭化水素基の炭素数は、1〜10であることがより好ましい。R8およびR9が炭素数が1〜10の炭化水素基であると、触媒構造が安定化し、生成するオレフィン重合体の分子量向上に繋がると考えられるからである。
8およびR9が炭素数1〜20のアルキル基である場合には、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基およびiso−プロピル基が好ましく、炭素数3〜20の飽和脂環式基である場合には、シクロペンチル基またはシクロヘキシル基が好ましく、炭素数6〜20のアリール基である場合には、フェニル基、o−トリル基、m−トリル基またはp−トリル基が好ましく、炭素数7〜20のアラルキル基である場合にはベンジル基またはクミル基が好ましい。
8およびR9としては、メチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、iso−プロピル基、フェニル基、o−トリル基、m−トリル基またはp−トリル基が特に好ましい。
8はメチル基であることが好ましい。R8がメチル基あることが好ましい理由としては、オレフィン重合時に広分子量分布を形成するオレフィン重合用触媒構造をとり、分子量分布が広いオレフィン重合体の安定的な生産性の寄与に繋がると考えられるからである。
9は、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、iso−プロピル基、フェニル基、o−トリル基、m−トリル基またはp−トリル基が特に好ましい。R9が上記基であることが好ましい理由としては、オレフィン重合時に広分子量分布を形成するオレフィン重合用触媒構造をとり、分子量分布が広いオレフィン重合体の安定的な生産性の寄与に繋がると考えられるからである。
2およびR7は炭素数1〜10の炭化水素基であることが好ましく、tert−ブチル基、1−アダマンチル基、シクロヘキシル基、アリール基またはベンジル基であることが特に好ましく、R2およびR7が上記基の中の同一の基であることが極めて好ましい。上記基のような嵩高い置換基を有することで触媒性能が向上し、得られるオレフィン重合体の生産性が向上する。
3およびR6は水素原子またはメチル基であることが好ましい。上記基であることにより、オレフィンの挿入機構が緩和し、分子量分布が広くなると考えられる。
10はメチル基、エチル基、n−プロピル基、n−ブチル基であることが好ましく、メチル基またはエチル基であることが特に好ましい。上記基であることにより、オレフィン重合用触媒の構造が安定化し、得られるオレフィン重合体の分子量の向上につながると考えられるからである。
次に、前記M、Q、nおよびjについて説明する。
Mは第4族遷移金属、すなわちTi、ZrまたはHfであり、好ましくはZrまたはHfであり、特に好ましくはZrである。
Qはハロゲン原子(例:フッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭化水素基、アニオン配位子または孤立電子対で配位可能な中性配位子を示す。
Qにおける炭化水素基としては、炭素数1〜10のアルキル基、炭素数3〜10のシクロアルキル基が好ましい。炭素数1〜10のアルキル基としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、2−メチルプロピル基、1,1−ジメチルプロピル基、2,2−ジメチルプロピル基、1,1−ジエチルプロピル基、1−エチル−1−メチルプロピル基、1,1,2,2−テトラメチルプロピル基、sec−ブチル基、tert−ブチル基、1,1−ジメチルブチル基、1,1,3−トリメチルブチル基、ネオペンチル基が例示され;炭素数3〜10のシクロアルキル基としては、シクロヘキシルメチル基、シクロヘキシル基、1−メチル−1−シクロヘキシル基が例示される。Qにおける炭化水素基の炭素数は、5以下であることがより好ましい。
アニオン配位子としては、メトキシ、tert−ブトキシ等のアルコキシ基;フェノキシ等のアリールオキシ基;アセテート、ベンゾエート等のカルボキシレート基;メシレート、トシレート等のスルホネート基が例示される。
孤立電子対で配位可能な中性配位子としては、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン、ジフェニルメチルホスフィン等の有機リン化合物;テトラヒドロフラン(THF)、ジエチルエーテル、ジオキサン、1,2−ジメトキシエタン等のエーテル類が例示される。
Qの好ましい態様は、ハロゲン原子または炭素数1〜5のアルキル基である。
jは1〜4の整数であり、好ましくは2である。
(メタロセン化合物(A)の例示)
本発明に用いるメタロセン化合物(A)の具体例を示すが、特にこれによって本発明の範囲が限定されるものではない。なお、本発明においてメタロセン化合物(A)は、単独で用いてもよく2種以上を併用して用いてもよい。
説明する際の便宜上、メタロセン化合物(A)のMQj(金属部分)を除いたリガンド構造を、シクロペンタジエニル誘導体部分とフルオレニル部分との2つに分け、フルオレニル部分をFluで表し、シクロペンタジエニル誘導体部分は、Cpと表す。
メタロセン化合物のMQj(金属部分)を除いたリガンド構造を、シクロペンタジエニル誘導体部分(α)、フルオレニル部分(β)の2つに分け、それぞれの部分構造の具体例を表1、2に示す。
Figure 2015137352
Figure 2015137352
上記表に従えば、α1およびβ2、α4およびβ2のリガンド構造はそれぞれ下記一般式[2]および[3]であらわされ、金属部分のMQjがZrCl2の場合は、それぞれ下記メタロセン化合物[4]または[5]と例示することができる。
Figure 2015137352
MQjの具体的な例示としては、ZrCl2、ZrBr2、ZrMe2、Zr(Et)(Me)、Zr(OTs)2、Zr(OMs)2、Zr(OTf)2、TiCl2、TiBr2、TiMe2、Ti(Et)(Me)、Ti(OTs)2、Ti(OMs)2、Ti(OTf)2、HfCl2、HfBr2、HfMe2、Hf(Et)(Me)、Hf(OTs)2、Hf(OMs)2、Hf(OTf)2などが挙げられる。Meはメチル基、Etはエチル基、Tsはp−トルエンスルホニル基、Msはメタンスルホニル基、Tfはトリフルオロメタンスルホニル基を示す。
〔メタロセン化合物(A)の合成法〕
本発明で用いるメタロセン化合物(A)の合成法としては特に限定はないが、例えば、以下の特許公報に記載された方法に準拠して合成することができる。具体的には、特開2000−212194号公報、特開2004−168744号公報、特開2004−189666号公報、特開2004−161957号公報、特開2007−302854号公報、特開2007−302853号公報、国際公開第01/027124号パンフレット等である。
〔オレフィン重合用触媒〕
本発明のオレフィン重合体の製造方法で用いられるオレフィン重合用触媒は、上述したメタロセン化合物(A)に加えて、少なくとも化合物(B)を含み、さらにメタロセン化合物(A)、化合物(B)以外の成分、例えば担体(C)、有機化合物成分(D)を含有していてもよい。
[化合物(B)]
本発明では、オレフィン重合用触媒の成分として、化合物(B)が用いられる。化合物(B)は、(b−1)有機アルミニウムオキシ化合物、(b−2)架橋メタロセン化合物(A)と反応してイオン対を形成する化合物、および(b−3)有機アルミニウム化合物から選択される少なくとも1種である。これらの中では、有機アルミニウムオキシ化合物(b−1)を少なくとも用いることが好ましい。有機アルミニウムオキシ化合物(b−1)は生成するオレフィン重合体を効率的に得る観点から好ましい。
〈有機アルミニウムオキシ化合物(b−1)〉
有機アルミニウムオキシ化合物(b−1)としては、一般式[B1]で表される化合物および一般式[B2]で表される化合物等の従来公知のアルミノキサン、一般式[B3]で表される構造を有する修飾メチルアルミノキサン、一般式[B4]で表されるボロン含有有機アルミニウムオキシ化合物が例示される。
Figure 2015137352
式[B1]および[B2]において、Rは炭素数1〜10の炭化水素基、好ましくはメチル基であり、nは2以上、好ましくは3以上、より好ましくは10以上の整数である。本発明では、式[B1]および[B2]において、Rがメチル基(Me)であるメチルアルミノキサンが好適に使用される。
Figure 2015137352
式[B3]において、Rは炭素数2〜10の炭化水素基であり、mおよびnはそれぞれ独立に2以上の整数である。複数あるRは相互に同一でも異なっていてもよい。修飾メチルアルミノキサン[B3]は、トリメチルアルミニウムとトリメチルアルミニウム以外のアルキルアルミニウムとを用いて調製することができる。このような修飾メチルアルミノキサン[B3]は、一般にMMAO(modified methyl aluminoxane)と呼ばれている。MMAOは、具体的には米国特許第4960878号および米国特許第5041584号で挙げられる方法で調製することが出来る。
また、東ソー・ファインケム社等からも、トリメチルアルミニウムとトリイソブチルアルミニウムとを用いて調製された(すなわち、一般式[B3]においてRがイソブチル基である)修飾メチルアルミノキサンが、MMAOやTMAOという商品名で商業的に生産されている。
MMAOは各種溶媒への溶解性および保存安定性が改善されたアルミノキサンである。具体的には一般式[B1]または[B2]で表される化合物等のようなベンゼンに対して不溶性または難溶性の化合物とは異なり、MMAOは脂肪族炭化水素、脂環族炭化水素および芳香族炭化水素に溶解するものである。
Figure 2015137352
式[B4]において、Rcは炭素数1〜10の炭化水素基である。複数あるRdはそれぞれ独立に水素原子、ハロゲン原子または炭素数1〜10の炭化水素基である。本発明では、後述するような高温においてもオレフィン重合体を製造することができる。したがって、本発明の特徴の一つに、特開平2−78687号公報に例示されているようなベンゼン不溶性または難溶性の有機アルミニウムオキシ化合物をも使用できることが挙げられる。また、特開平2−167305号公報に記載されている有機アルミニウムオキシ化合物、特開平2−24701号公報、特開平3−103407号公報に記載されている2種以上のアルキル基を有するアルミノキサンなども好適に使用できる。
なお、上記の「ベンゼン不溶性または難溶性の」有機アルミニウムオキシ化合物とは、60℃のベンゼンに溶解する当該化合物の溶解量が、Al原子換算で通常は10重量%以下、好ましくは5重量%以下、特に好ましくは2重量%以下である有機アルミニウムオキシ化合物をいう。
本発明において、上記例示の有機アルミニウムオキシ化合物(b−1)は、単独で用いてもよく2種以上を併用して用いてもよい。
〈架橋メタロセン化合物(A)と反応してイオン対を形成する化合物(b−2)〉
架橋メタロセン化合物(A)と反応してイオン対を形成する化合物(b−2)(以下「イオン性化合物(b−2)」ともいう)としては、特開平1−501950号公報、特開平1−502036号公報、特開平3−179005号公報、特開平3−179006号公報、特開平3−207703号公報、特開平3−207704号公報、特開2004−51676号公報、米国特許第5321106号等に記載された、ルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物が例示される。さらに、ヘテロポリ化合物およびイソポリ化合物も例示される。これらの中では、イオン性化合物(b−2)としては、一般式[B5]で表される化合物が好ましい。
Figure 2015137352
式[B5]において、Re+としては、H+、オキソニウムカチオン、カルベニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオン、遷移金属を有するフェロセニウムカチオンが例示される。Rf、Rg、RhおよびRiはそれぞれ独立に有機基、好ましくはアリール基、ハロゲン置換アリール基を示す。
上記カルベニウムカチオンとしては、トリフェニルカルベニウムカチオン、トリス(メチルフェニル)カルベニウムカチオン、トリス(ジメチルフェニル)カルベニウムカチオン等の三置換カルベニウムカチオンが例示される。
アンモニウムカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリ(n−プロピル)アンモニウムカチオン、トリイソプロピルアンモニウムカチオン、トリ(n−ブチル)アンモニウムカチオン、トリイソブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N,2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオンが例示される。
ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリス(メチルフェニル)ホスホニウムカチオン、トリス(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオンが例示される。
e+としては、上記例示の中では、カルベニウムカチオン、アンモニウムカチオンが好ましく、トリフェニルカルベニウムカチオン、N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオンが特に好ましい。
1.Re+がカルベニウムカチオンの場合(カルベニウム塩)
カルベニウム塩としては、トリフェニルカルベニウムテトラフェニルボレート、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムテトラキス(3,5−ジトリフルオロメチルフェニル)ボレート、トリス(4−メチルフェニル)カルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリス(3,5−ジメチルフェニル)カルベニウムテトラキス(ペンタフルオロフェニル)ボレートが例示される。
2.Re+がアンモニウムカチオンの場合(アンモニウム塩)
アンモニウム塩としては、トリアルキルアンモニウム塩、N,N−ジアルキルアニリニウム塩、ジアルキルアンモニウム塩が例示される。
トリアルキルアンモニウム塩としては、具体的には、トリエチルアンモニウムテトラフェニルボレート、トリプロピルアンモニウムテトラフェニルボレート、トリ(n−ブチル)アンモニウムテトラフェニルボレート、トリメチルアンモニウムテトラキス(p−トリル)ボレート、トリメチルアンモニウムテトラキス(o−トリル)ボレート、トリ(n−ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリエチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(2,4−ジメチルフェニル)ボレート、トリ(n−ブチル)アンモニウムテトラキス(3,5−ジメチルフェニル)ボレート、トリ(n−ブチル)アンモニウムテトラキス(4−トリフルオロメチルフェニル)ボレート、トリ(n−ブチル)アンモニウムテトラキス(3,5−ジトリフルオロメチルフェニル)ボレート、トリ(n−ブチル)アンモニウムテトラキス(o−トリル)ボレート、ジオクタデシルメチルアンモニウムテトラフェニルボレート、ジオクタデシルメチルアンモニウムテトラキス(p−トリル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(o−トリル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(2,4−ジメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(3,5−ジメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(4−トリフルオロメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムテトラキス(3,5−ジトリフルオロメチルフェニル)ボレート、ジオクタデシルメチルアンモニウムが例示される。
N,N−ジアルキルアニリニウム塩としては、具体的には、N,N−ジメチルアニリニウムテトラフェニルボレート、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N−ジメチルアニリニウムテトラキス(3,5−ジトリフルオロメチルフェニル)ボレート、N,N−ジエチルアニリニウムテトラフェニルボレート、N,N−ジエチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N−ジエチルアニリニウムテトラキス(3,5−ジトリフルオロメチルフェニル)ボレート、N,N,2,4,6−ペンタメチルアニリニウムテトラフェニルボレート、N,N,2,4,6−ペンタメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートが例示される。
ジアルキルアンモニウム塩としては、具体的には、ジイソプロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジシクロヘキシルアンモニウムテトラフェニルボレートが例示される。
イオン性化合物(b−2)は、単独で用いてもよく2種以上を併用して用いてもよい。
〈有機アルミニウム化合物(b−3)〉
有機アルミニウム化合物(b−3)としては、一般式[B6]で表される有機アルミニウム化合物、一般式[B7]で表される周期律表第1族金属とアルミニウムとの錯アルキル化物が例示される。
a mAl(ORbnpq …[B6]
式[B6]において、RaおよびRbはそれぞれ独立に炭素数1〜15、好ましくは1〜4の炭化水素基であり、Xはハロゲン原子であり、mは0<m≦3、nは0≦n<3、pは0≦p<3、qは0≦q<3の数であり、かつm+n+p+q=3である。
2AlRa 4 …[B7]
式[B7]において、M2はLi、NaまたはKであり、複数あるRaはそれぞれ独立に炭素数1〜15、好ましくは1〜4の炭化水素基である。
有機アルミニウム化合物[B6]としては、トリメチルアルミニウム、トリエチルアルミニウム、トリn−ブチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム等のトリn−アルキルアルミニウム;トリイソプロピルアルミニウム、トリイソブチルアルミニウム、トリsec−ブチルアルミニウム、トリtert−ブチルアルミニウム、トリ2−メチルブチルアルミニウム、トリ3−メチルヘキシルアルミニウム、トリ2−エチルヘキシルアルミニウム等のトリ分岐鎖アルキルアルミニウム;トリシクロヘキシルアルミニウム、トリシクロオクチルアルミニウム等のトリシクロアルキルアルミニウム;トリフェニルアルミニウム、トリトリルアルミニウム等のトリアリールアルミニウム; ジイソプロピルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド等のジアルキルアルミニウムハイドライド;一般式(i−C49xAly(C510z(式中、x、yおよびzは正の数であり、z≦2xである。)などで表されるイソプレニルアルミニウム等のアルケニルアルミニウム;イソブチルアルミニウムメトキシド、イソブチルアルミニウムエトキシド等のアルキルアルミニウムアルコキシド;ジメチルアルミニウムメトキシド、ジエチルアルミニウムエトキシド、ジブチルアルミニウムブトキシド等のジアルキルアルミニウムアルコキシド;エチルアルミニウムセスキエトキシド、ブチルアルミニウムセスキブトキシド等のアルキルアルミニウムセスキアルコキシド;一般式Ra 2.5Al(ORb0.5(式中、RaおよびRbは式[B6]中のRaおよびRbと同義である。)で表される平均組成を有する部分的にアルコキシ化されたアルキルアルミニウム;ジエチルアルミニウムフェノキシド、ジエチルアルミニウム(2,6−ジtert−ブチル−4−メチルフェノキシド)等のアルキルアルミニウムアリーロキシド;ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、ジブチルアルミニウムクロリド、ジエチルアルミニウムブロミド、ジイソブチルアルミニウムクロリド等のジアルキルアルミニウムハライド;エチルアルミニウムセスキクロリド、ブチルアルミニウムセスキクロリド、エチルアルミニウムセスキブロミド等のアルキルアルミニウムセスキハライド;エチルアルミニウムジクロリド等のアルキルアルミニウムジハライド等の部分的にハロゲン化されたアルキルアルミニウム;ジエチルアルミニウムヒドリド、ジブチルアルミニウムヒドリド等のジアルキルアルミニウムヒドリド、エチルアルミニウムジヒドリド、プロピルアルミニウムジヒドリド等のアルキルアルミニウムジヒドリド等の部分的に水素化されたアルキルアルミニウム;エチルアルミニウムエトキシクロリド、ブチルアルミニウムブトキシクロリド、エチルアルミニウムエトキシブロミド等の部分的にアルコキシ化およびハロゲン化されたアルキルアルミニウム;が例示される。
錯アルキル化物[B7]としては、LiAl(C254、LiAl(C7154が例示される。また、錯アルキル化物[B7]に類似する化合物も使用することができ、窒素原子を介して2以上のアルミニウム化合物が結合した有機アルミニウム化合物が例示される。このような化合物としては、(C252AlN(C25)Al(C252が例示される。
有機アルミニウム化合物(b−3)としては、入手が容易な点から、トリメチルアルミニウム、トリイソブチルアルミニウムが好ましい。また、有機アルミニウム化合物(b−3)は、1種で用いてもよく2種以上を併用してもよい。
[担体(C)]
本発明では、オレフィン重合用触媒の成分として、さらに担体(C)を用いてもよい。担体(C)は、無機化合物または有機化合物であって、顆粒状または微粒子状の固体である。
〈無機化合物〉
無機化合物としては、多孔質酸化物、無機ハロゲン化物、粘土鉱物、粘土(通常は該粘土鉱物を主成分として構成される。)、イオン交換性層状化合物(大部分の粘土鉱物はイオン交換性層状化合物である。)が例示される。多孔質酸化物としては、SiO2、Al23、MgO、ZrO、TiO2、B23、CaO、ZnO、BaO、ThO2;これらの酸化物を含む複合物または混合物が例示される。複合物または混合物としては、天然または合成ゼオライト、SiO2−MgO、SiO2−Al23、SiO2−TiO2、SiO2−V25、SiO2−Cr23、SiO2−TiO2−MgOが例示される。これらの中では、SiO2およびAl23の何れか一方または双方の成分を主成分とする多孔質酸化物が好ましい。
多孔質酸化物は、種類および製法によりその性状は異なるが、粒径が好ましくは10〜300μm、より好ましくは20〜200μmの範囲にあり;比表面積が好ましくは50〜1000m2/g、より好ましくは100〜700m2/gの範囲にあり;細孔容積が好ましくは0.3〜3.0cm3/gの範囲にある。このような多孔質酸化物は、必要に応じて100〜1000℃、好ましくは150〜700℃で焼成して使用される。無機ハロゲン化物としては、MgCl2、MgBr2、MnCl2、MnBr2が例示される。無機ハロゲン化物は、そのまま用いてもよいし、ボールミル、振動ミルにより粉砕した後に用いてもよい。また、アルコール等の溶媒に上記無機ハロゲン化物を溶解させた後、析出剤によって微粒子状に析出させた成分を用いることもできる。
粘土、粘土鉱物、イオン交換性層状化合物としては、天然産のものに限らず、人工合成物を使用することもできる。なお、イオン交換性層状化合物は、イオン結合などによって構成される面が互いに弱い結合力で平行に積み重なった結晶構造を有する化合物であり、含有されるイオンが交換可能な化合物である。
具体的には、粘土、粘土鉱物としては、カオリン、ベントナイト、木節粘土、ガイロメ粘土、アロフェン、ヒシンゲル石、パイロフィライト、合成雲母等のウンモ群、モンモリロナイト群、バーミキュライト、リョクデイ石群、パリゴルスカイト、カオリナイト、ナクライト、ディッカイト、ヘクトライト、テニオライト、ハロイサイトが例示され;イオン交換性層状化合物としては、六方最密パッキング型、アンチモン型、CdCl2型、CdI2型等の層状の結晶構造を有するイオン結晶性化合物が例示される。具体的には、イオン交換性層状化合物としては、α−Zr(HAsO42・H2O、α−Zr(HPO42、α−Zr(KPO42・3H2O、α−Ti(HPO42、α−Ti(HAsO42・H2O、α−Sn(HPO42・H2O、γ−Zr(HPO42、γ−Ti(HPO42、γ−Ti(NH4PO42・H2O等の多価金属の結晶性酸性塩が例示される。
粘土、粘土鉱物には、化学処理を施すことも好ましい。化学処理としては、表面に付着している不純物を除去する表面処理、粘土の結晶構造に影響を与える処理など、何れも使用できる。化学処理としては、具体的には、酸処理、アルカリ処理、塩類処理、有機物処理が例示される。
また、イオン交換性層状化合物は、そのイオン交換性を利用し、層間の交換性イオンを別の大きな嵩高いイオンと交換することにより、層間が拡大した層状化合物としてもよい。このような嵩高いイオンは、層状構造を支える支柱的な役割を担っており、通常はピラーと呼ばれる。例えば、層状化合物の層間に下記金属水酸化物イオンをインターカレーションした後に加熱脱水することにより、層間に酸化物支柱(ピラー)を形成することができる。なお、このように層状化合物の層間に別の物質を導入することをインターカレーションという。
インターカレーションするゲスト化合物としては、TiCl4、ZrCl4等の陽イオン性無機化合物;Ti(OR)4、Zr(OR)4、PO(OR)3、B(OR)3等の金属アルコキシド(Rは炭化水素基など);[Al134(OH)247+、[Zr4(OH)142+、[Fe3O(OCOCH36+等の金属水酸化物イオンが例示される。これらのゲスト化合物は、単独で用いてもよく2種以上を併用して用いてもよい。
また、ゲスト化合物をインターカレーションする際に、Si(OR)4、Al(OR)3、Ge(OR)4等の金属アルコキシド(Rは炭化水素基など)を加水分解および重縮合して得た重合物、SiO2等のコロイド状無機化合物などを共存させることもできる。
無機化合物の中では、粘土鉱物および粘土が好ましく、モンモリロナイト群、バーミキュライト、ヘクトライト、テニオライトおよび合成雲母が特に好ましい。
〈有機化合物〉
有機化合物としては、粒径が10〜300μmの範囲にある顆粒状または微粒子状の固体が例示される。具体的には、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン等の炭素数2〜14のα−オレフィンを主成分として合成される重合体;ビニルシクロヘキサン、スチレンを主成分として合成される重合体;これら重合体の変成体が例示される。
[有機化合物成分(D)]
本発明では、オレフィン重合用触媒の成分として、有機化合物成分(D)を用いてもよい。有機化合物成分(D)は、必要に応じて、α−オレフィンの重合反応における重合性能およびオレフィン重合体の物性を向上させる目的で使用される。有機化合物成分(D)としては、アルコール類、フェノール性化合物、カルボン酸、リン化合物、スルホン酸塩が例示される。
[各成分の使用法および添加順序]
オレフィン重合の際には、各成分の使用法、添加順序は任意に選ばれるが、以下のような方法が例示される。以下では、メタロセン化合物(A)、化合物(B)、担体(C)および有機化合物成分(D)を、それぞれ成分(A)、成分(B)、成分(C)、成分(D)ともいう。
(1)成分(A)および成分(B)を任意の順序で重合器に添加する方法。
(2)成分(A)を成分(C)に担持した触媒成分と、成分(B)とを任意の順序で重合器に添加する方法。
(3)成分(B)を成分(C)に担持した触媒成分と、成分(A)とを任意の順序で重合器に添加する方法。
(4)成分(A)と成分(B)とを成分(C)に担持した触媒成分を重合器に添加する方法。
(5)成分(A)、成分(B)および成分(D)を任意の順序で重合器に添加する方法。
上記(1)〜(5)の各方法においては、各触媒成分の少なくとも2種は予め接触されていてもよい。成分(B)が担持されている上記(3)、(4)の各方法においては、必要に応じて担持されていない成分(B)を、任意の順序で添加してもよい。この場合、成分(B)は、同一でも異なっていてもよい。また、成分(C)に成分(A)が担持された固体触媒成分、成分(C)に成分(A)および成分(B)が担持された固体触媒成分は、オレフィンが予備重合されていてもよく、予備重合された固体触媒成分上に、さらに触媒成分が担持されていてもよい。
〔オレフィン重合体の製造方法〕
本発明のオレフィン重合体の製造方法は、前述のオレフィン重合用触媒の存在下で、50℃以上200℃以下の重合温度条件下において、炭素数2以上20以下のα−オレフィンから選択される少なくとも1種のモノマーを重合する工程を有する。ここで「重合」とは、単独重合および共重合を総称する意味で用いる。また「オレフィン重合用触媒の存在下でオレフィンを重合する」とは、上記(1)〜(5)の各方法のように、任意の方法でオレフィン重合用触媒の各成分を重合器に添加してオレフィンを重合する態様を包含する。
好ましくは、本発明のオレフィン重合用触媒の存在下で、少なくともプロピレンを重合することにより、プロピレン由来の構成単位を50モル%を超え100モル%以下、好ましくは55〜100モル%、さらに好ましくは80〜100モル%、特に好ましくは90〜100モル%の範囲で含むオレフィン重合体を製造する。ただし、プロピレン由来の構成単位の含量とプロピレン以外の炭素数2〜20のα−オレフィン由来の構成単位の含量との合計を100モル%とする。
本発明では、重合は、溶液重合、懸濁重合等の液相重合法または気相重合法のいずれにおいても実施できる。液相重合法において用いられる不活性炭化水素媒体としては、例えば、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;エチレンクロリド、クロルベンゼン、ジクロロメタン等のハロゲン化炭化水素が挙げられる。不活性炭化水素媒体は1種単独で用いてもよく、2種以上を混合して用いてもよい。また、重合に供給されうる液化オレフィン自身を溶媒として用いる、いわゆるバルク重合法を用いることもできる。
オレフィン重合用触媒を用いてオレフィンの重合を行うに際して、オレフィン重合用触媒を構成しうる各成分の使用量は以下のとおりである。また、オレフィン重合用触媒において、各成分の含有量を以下のとおりに設定することができる。
(1)オレフィン重合用触媒を用いて、オレフィンの重合を行うに際して、メタロセン化合物(A)は、反応容積1リットル当り、通常は10-9〜10-1モル、好ましくは10-8〜10-2モルとなるような量で用いられる。
(2)オレフィン重合用触媒の成分として有機アルミニウムオキシ化合物(b−1)を用いる場合には、化合物(b−1)は、化合物(b−1)中のアルミニウム原子(Al)とメタロセン化合物(A)中の全第4族遷移金属原子(M)とのモル比〔Al/M〕が、通常は0.01〜5000、好ましくは0.05〜2000となるような量で用いられる。
(3)オレフィン重合用触媒の成分としてイオン性化合物(b−2)を用いる場合には、化合物(b−2)は、化合物(b−2)とメタロセン化合物(A)中の全第4族遷移金属原子(M)とのモル比〔(b−2)/M〕が、通常は1〜10、好ましくは1〜5となるような量で用いられる。
(4)オレフィン重合用触媒の成分として有機アルミニウム化合物(b−3)を用いる場合には、化合物(b−3)は、化合物(b−3)とメタロセン化合物(A)中の全第4族遷移金属原子(M)とのモル比〔(b−3)/M〕が、通常は10〜5000、好ましくは20〜2000となるような量で用いられる。
(5)オレフィン重合用触媒の成分として有機化合物成分(D)を用いる場合には、化合物(B)が有機アルミニウムオキシ化合物(b−1)であるときは、有機化合物成分(D)と化合物(b−1)とのモル比〔(D)/(b−1)〕が、通常は0.01〜10、好ましくは0.1〜5となるような量で;化合物(B)がイオン性化合物(b−2)であるときは、有機化合物成分(D)と化合物(b−2)とのモル比〔(D)/(b−2)〕が、通常は0.01〜10、好ましくは0.1〜5となるような量で;化合物(B)が有機アルミニウム化合物(b−3)であるときは、有機化合物成分(D)と化合物(b−3)とのモル比〔(D)/(b−3)〕が、通常は0.01〜2、好ましくは0.005〜1となるような量で用いられる。
本発明の製造方法において、オレフィンの重合温度は、通常50〜200℃、好ましくは55〜180℃であり、特に好ましくは55〜150℃(換言すれば、特に好ましくは工業化可能な温度である。);重合圧力は、通常常圧〜10MPaゲージ圧、好ましくは常圧〜5MPaゲージ圧である。重合反応は、回分式、半連続式、連続式のいずれの方法においても行うことができる。さらに重合を反応条件の異なる二段以上に分けて行うこともできる。得られるオレフィン重合体の分子量は、重合系に水素等を存在させるか、重合温度を変化させるか、または成分(B)の使用量により調節することができる。
本発明の製造方法は、工業的製法において有利な高温条件下であっても、高い分子量および広い分子量分布を有するプロピレン重合体等のオレフィン重合体を製造することが可能である。
特に水素は、触媒の重合活性を向上させる効果や、重合体の分子量を増加または低下させる効果が得られることがあり、好ましい添加物であるといえる。系内に水素を添加する場合、その量はオレフィン1モルあたり0.00001〜100NL程度が適当である。系内の水素濃度は、水素の供給量を調整する以外にも、水素を生成または消費する反応を系内で行う方法や、膜を利用して水素を分離する方法、水素を含む一部のガスを系外に放出することによっても調整することができる。
本発明の製造方法で得られたオレフィン重合体に対しては、上記方法で合成した後に、必要に応じて公知の触媒失活処理工程、触媒残渣除去工程、乾燥工程等の後処理工程を行ってよい。
〈モノマー〉
本発明の製造方法において、重合反応に供給されるモノマーは、例えば、炭素数2以上20以下のα−オレフィンから選択される少なくとも1種のモノマーである。
炭素数2以上20以下のα−オレフィンとしては、直鎖状または分岐状のα−オレフィンが挙げられる。直鎖状または分岐状のα−オレフィンとしては、例えば、エチレン、プロピレン、1−ブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3−メチル−1−ペンテン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−イコセンが挙げられる。炭素数2〜10のα−オレフィンから選択される少なくとも1種が好ましく、プロピレン、エチレンがより好ましく、プロピレンが特に好ましい。α−オレフィンは1種単独で用いてもよく、2種以上を併用してもよい。モノマーの少なくとも一部がプロピレンであることが好ましい。
α−オレフィンとしてプロピレンを用いる場合、必要に応じてエチレンおよび炭素数4〜20のα−オレフィンから選択される少なくとも1種のオレフィンAを併用することができる。プロピレンとともに用いることのできる前記オレフィンAは、エチレンおよび炭素数4〜10のα−オレフィンから選択される少なくとも1種が好ましく、例えば、1−ブテン、1−ペンテン、3−メチル−1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3−メチル−1−ペンテン、1−オクテン、1−デセンが挙げられる。中でも、エチレン、1−ブテン、1−ヘキセン、4−メチル−1−ペンテンおよび1−オクテンから選択される少なくとも1種であることがより好ましく、エチレンであることがさらに好ましい。共重合の場合は、プロピレンとエチレンとの共重合が最も好ましい。
α−オレフィンとしてプロピレンを用い、かつ上記オレフィンAを用いる場合、プロピレンと上記オレフィンAとの使用量比は、プロピレン:上記オレフィンA(モル比)で、通常1:10〜5000:1、好ましくは1:5〜1000:1である。
また、環状オレフィン、極性基含有モノマー、末端水酸基化ビニル化合物、および芳香族ビニル化合物から選択される少なくとも1種を反応系に共存させて重合を進めることもできる。また、ポリエンを併用することも可能である。また、本発明の趣旨を逸脱しない範囲で、ビニルシクロヘキサン等のその他の成分を共重合してもよい。また、炭素数2以上20以下のα‐オレフィン以外のモノマー(他のモノマー)を用いる場合には、炭素数2以上20以下のα‐オレフィン100質量部に対して、他のモノマーを、例えば20質量部以下、好ましくは10質量部以下の量で用いることができる。
環状オレフィンとしては、例えば、シクロペンテン、シクロヘプテン、ノルボルネン、5−メチル−2−ノルボルネン、テトラシクロドデセン、2−メチル−1,4,5,8−ジメタノ−1,2,3,4,4a,5,8,8a−オクタヒドロナフタレンが挙げられる。
極性基含有モノマーとしては、例えば、
アクリル酸、メタクリル酸、フマル酸、無水マレイン酸、イタコン酸、無水イタコン酸、ビシクロ(2,2,1)−5−ヘプテン−2,3−ジカルボン酸無水物等のα,β−不飽和カルボン酸、およびこれらのナトリウム塩、カリウム塩、リチウム塩、亜鉛塩、マグネシウム塩、カルシウム塩、アルミニウム塩等の金属塩;
アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸tert−ブチル、アクリル酸2−エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル等のα,β−不飽和カルボン酸エステル;
酢酸ビニル、プロピオン酸ビニル、カプロン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、トリフルオロ酢酸ビニル等のビニルエステル類;アクリル酸グリシジル、メタクリル酸グリシジル、イタコン酸モノグリシジルエステル等の不飽和グリシジル;
が挙げられる。
末端水酸基化ビニル化合物としては、例えば、水酸化−1−ブテン、水酸化−1−ペンテン、水酸化−1−ヘキセン、水酸化−1−オクテン、水酸化−1−デセン、水酸化−1−ウンデセン、水酸化−1−ドデセン、水酸化−1−テトラデセン、水酸化−1−ヘキサデセン、水酸化−1−オクタデセン、水酸化−1−エイコセン等の直鎖状の末端水酸基化ビニル化合物;水酸化−3−メチル−1−ブテン、水酸化−3−メチル−1−ペンテン、水酸化−4−メチル−1−ペンテン、水酸化−3−エチル−1−ペンテン、水酸化−4,4−ジメチル−1−ペンテン、水酸化−4−メチル−1−ヘキセン、水酸化−4,4−ジメチル−1−ヘキセン、水酸化−4−エチル−1−ヘキセン、水酸化−3−エチル−1−ヘキセン等の分岐状の末端水酸基化ビニル化合物が挙げられる。
芳香族ビニル化合物としては、例えば、スチレン;o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、o,p−ジメチルスチレン、o−エチルスチレン、m−エチルスチレン、p−エチルスチレン等のモノもしくはポリアルキルスチレン;メトキシスチレン、エトキシスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルベンジルアセテート、ヒドロキシスチレン、o−クロロスチレン、p−クロロスチレン、ジビニルベンゼン等の官能基含有スチレン誘導体;3−フェニルプロピレン、4−フェニルプロピレン、α−メチルスチレンが挙げられる。
ポリエンとしては、ジエンおよびトリエンから選択されることが好ましい。重合反応に供給される全オレフィンに対して、ポリエンを0.0001〜1モル%の範囲内で用いることも好ましい態様である。
ジエンとしては、例えば、1,4−ペンタジエン、1,5−ヘキサジエン、1,4−ヘキサジエン、1,4−オクタジエン、1,5−オクタジエン、1,6−オクタジエン、1,7−オクタジエン、1,9−デカジエン等のα,ω−非共役ジエン;エチリデンノルボルネン、ビニルノルボルネン、ジシクロペンタジエン、7−メチル−1,6−オクタジエン、4−エチリデン−8−メチル−1,7−ノナジエン等の非共役ジエン;ブタジエン、イソプレン等の共役ジエンが挙げられる。これらの中でも、α,ω−非共役ジエンや、ノルボルネン骨格を有するジエンが好ましい。
トリエンとしては、例えば、6,10−ジメチル−1,5,9−ウンデカトリエン、4,8−ジメチル−1,4,8−デカトリエン、5,9−ジメチル−1,4,8−デカトリエン、6,9−ジメチル−1,5,8−デカトリエン、6,8,9−トリメチル−1,5,8−デカトリエン、6−エチル−10−メチル−1,5,9−ウンデカトリエン、4−エチリデン−1,6,−オクタジエン、7−メチル−4−エチリデン−1,6−オクタジエン、4−エチリデン−8−メチル−1,7−ノナジエン(EMND)、7−メチル−4−エチリデン−1,6−ノナジエン、7−エチル−4−エチリデン−1,6−ノナジエン、6,7−ジメチル−4−エチリデン−1,6−オクタジエン、6,7−ジメチル−4−エチリデン−1,6−ノナジエン、4−エチリデン−1,6−デカジエン、7−メチル−4−エチリデン−1,6−デカジエン、7−メチル−6−プロピル−4−エチリデン−1,6−オクタジエン、4−エチリデン−1,7−ノナジエン、8−メチル−4−エチリデン−1,7−ノナジエン、4−エチリデン−1,7−ウンデカンジエン等の非共役トリエン;1,3,5−ヘキサトリエン等の共役トリエンが挙げられる。これらの中でも、末端に二重結合を有する非共役トリエン、4,8−ジメチル−1,4,8−デカトリエン、4−エチリデン−8−メチル−1,7−ノナジエン(EMND)が好ましい。
ジエンまたはトリエンはそれぞれ1種単独で用いてもよく、2種以上を併用してもよい。また、ジエンとトリエンとを組み合わせて用いてもよい。ポリエンの中でも、特にα,ω−非共役ジエンや、ノルボルネン骨格を有するポリエンが好ましい。
〔オレフィン重合体〕
本発明によれば、上述した特定の構造を有するメタロセン化合物(A)を含むオレフィン重合用触媒の存在下で、1種または2種以上の炭素数2以上20以下のα−オレフィンを重合することで;好ましくは、プロピレンと、必要に応じてエチレンおよび炭素数4〜20のα−オレフィンから選択される少なくとも1種のオレフィンAとを重合することにより、オレフィン重合体を効率よく製造することができる。
本発明の製造方法で得られるオレフィン重合体の一態様としては、プロピレン由来の構成単位を50モル%を超え100モル%以下、好ましくは55〜100モル%、さらに好ましくは80〜100モル%、特に好ましくは90〜100モル%の範囲で含むプロピレン重合体が挙げられる。前記プロピレン重合体は、上述のプロピレン以外のオレフィンA由来の構成単位を合計0モル%以上50モル%未満、好ましくは0〜45モル%、さらに好ましくは0〜20モル%、特に好ましくは0〜10モル%の範囲で含んでいる。ただし、プロピレン由来の構成単位の含量と前記オレフィンA由来の構成単位の含量との合計を100モル%とする。前記オレフィンA由来の構成単位が前記範囲にあるオレフィン共重合体は、成型加工性に優れる。また、本発明の趣旨を逸脱しない範囲で、その他の構成単位を含んでいてもよい。これらの含量は、核磁気共鳴分光法や、基準となる物質がある場合には赤外分光法等により測定することができる。
これらの重合体の中でも、プロピレン単独重合体、プロピレン/エチレン共重合体、プロピレン/1−ブテン共重合体、プロピレン/エチレン/1−ブテン共重合体、プロピレン/1−オクテン重合体、プロピレン/1−ヘキセン重合体、プロピレン/4−メチル−1−ペンテン重合体、プロピレン/エチレン/1−オクテン重合体、プロピレン/エチレン/1−ヘキセン重合体、プロピレン/エチレン/4−メチル−1−ペンテン重合体が特に好ましく、プロピレン単独重合体、プロピレン/エチレン共重合体が最も好ましい。また、これらの重合体から選択される2種以上を混合または連続的に製造することによって得られる、いわゆるブロック共重合体(インパクトコポリマー)でもよい。
本発明の製造方法で得られるオレフィン重合体は、上記で述べた構成単位を有する重合体の中でも、実質的にプロピレン由来の構成単位のみからなるプロピレン重合体、実質的にプロピレン由来の構成単位とエチレン由来の構成単位とのみからなるプロピレン/エチレン共重合体が最も好ましい。「実質的に」とは、前記プロピレン重合体ではプロピレン由来の構成単位の割合が95重量%以上であり、前記プロピレン/エチレン共重合体ではプロピレン由来の構成単位とエチレン由来の構成単位との合計割合が95重量%以上であることを意味する。
オレフィン重合体のDSCにより求められる融点(Tm)は、100℃以上150℃未満が好ましく、より好ましくは105〜140℃、110〜138℃であることが特に好ましい。融点(Tm)が前記範囲にあるオレフィン重合体をフィルム等の成形体に応用した場合は、低温ヒートシール性に優れる。
本発明のオレフィン重合体において、ASTM D1238(230℃、荷重2.16kg)に従って測定したメルトマスフローレイト(MFR)は0.1≦MFR≦150の範囲が好ましく、より好ましくは0.1≦MFR≦100の範囲である。前記範囲にあるオレフィン共重合体は、成型加工性に優れる。
本発明に係るオレフィン重合体の製造方法は、無水素条件下におけるオレフィン重合活性が、1kg/mmol−M/h以上1000000kg/mmol−M/h以下であることが好ましい。
本発明の製造方法で得られるオレフィン重合体が下記要件(ia)および(iia)を同時に満たすことが好ましい。
(ia)プロピレン由来の構成単位(P)が50mol%<P≦100mol%
(iia)135℃デカリン中における極限粘度[η](dl/g)が3.0≦[η]≦20
プロピレン由来の構成単位(P)が50モル%を超え100モル%以下、好ましくは55〜100モル%、さらに好ましくは80〜100モル%、特に好ましくは90〜100モル%の範囲で含む(但し、炭素数2以上20以下のα‐オレフィン由来の構成単位を100mol%とする。)。得られるオレフィン重合体の成型加工性の観点から上記範囲であることが好ましい。
また135℃デカリン中における極限粘度[η](dl/g)は3.0≦[η]≦10であることが好ましく、3.0≦[η]≦8.0であることがさらに好ましい。得られるオレフィン重合体の成型加工性の観点から上記範囲であることが好ましい。
また、本発明の製造方法で得られるオレフィン重合体が下記要件(ib)〜(iiib)を同時に満たすことがより好ましい。
(ib)エチレン由来の構成単位(E)が0mol%≦E<50mol%、かつプロピレン由来の構成単位(P)が50mol%<P≦100mol%
(iib)ゲルパーミッションクロマトグラフにおける重量平均分子量(Mw)が400000<Mw<2000000かつ、Mwと数平均分子量(Mn)との分子量分布の範囲(Mw/Mn)が3<Mw/Mn<10
(iiib)示唆走査熱量分析における融解熱ΔHが10(mJ/mg)<ΔH<70(mJ/mg)
エチレン由来の構成単位(E)が0mol%以上50mol%未満、好ましくは0〜45mol%、さらに好ましくは0〜20mol%、特に好ましくは0〜10mol%である。また、プロピレン由来の構成単位(P)が50モル%を超え100モル%以下、好ましくは55〜100モル%、さらに好ましくは80〜100モル%、特に好ましくは90〜100モル%の範囲で含む(但し、炭素数2以上20以下のα‐オレフィン由来の構成単位を100mol%とする。)。得られるオレフィン重合体の成型加工性の観点から上記範囲であることが好ましい。前記E、Pの測定法としては、オレフィン重合体が、プロピレン/エチレン共重合体である場合には、例えば日本分光社製フーリエ変換赤外分光光度計FT/IR−610を用い、プロピレンのメチル基に基づく横揺れ振動1155cm-1付近の面積とC−H伸縮振動による倍音吸収4325cm-1付近の吸光度を求め、その比から検量線(標準試料を13C−NMRにて標定することにより作成可能である)により算出することが可能である。
ゲルパーミッションクロマトグラフにおけるMwが400000<Mw<1800000かつ、Mw/Mnが3<Mw/Mn<9であることがより好ましく、Mwが400000<Mw<1600000かつ、Mw/Mnが3<Mw/Mn<7であることがさらに好ましい。オレフィン重合体の成型加工性の観点から上記範囲であることが好ましい。
また、融解熱ΔHが20(mJ/mg)<ΔH<70(mJ/mg)であることが好ましく、ΔHが30(mJ/mg)<ΔH<70(mJ/mg)であることが特に好ましい。得られるオレフィン重合体の成型加工性の観点から上記範囲であることが好ましい。
以上の物性の測定方法の詳細は実施例に記載したとおりである。
以下、本発明を実施例に基づいて更に具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。
まず、オレフィン重合体の物性・性状を測定する方法について述べる。
〔融点(Tm)、結晶化温度(Tc)、融解熱ΔH〕
オレフィン重合体の融点(Tm)あるいは結晶化温度(Tc)は、パーキンエルマー社製DSC Pyris1またはDSC7を用い、以下のようにして測定した。
窒素雰囲気下(20mL/min)、試料(オレフィン重合体)(約5mg)を(1)230℃まで昇温して230℃で10分間保持し、(2)10℃/分で30℃まで冷却して30℃で1分間保持した後、(3)10℃/分で230℃まで昇温させた。前記(3)の昇温過程における結晶溶融ピークのピーク頂点から融点(Tm)を、前記(2)の降温過程における結晶化ピークのピーク頂点から結晶化温度(Tc)を算出した。
なお、実施例および比較例に記載したオレフィン重合体において、複数の結晶溶融ピークが観測された場合(例えば、低温側ピークTm1、高温側ピークTm2)には、高温側ピークをオレフィン重合体の融点(Tm)と定義した。融解熱ΔHは結晶融解ピーク面積から計算した。
〔極限粘度[η]〕
オレフィン重合体の極限粘度[η]は、デカリン溶媒を用いて、135℃で測定される値である。
すなわち、オレフィン重合体の造粒ペレット(約20mg)をデカリン溶媒(15mL)に溶解し、135℃のオイルバス中で比粘度ηspを測定する。このデカリン溶液にデカリン溶媒(5mL)を追加して希釈した後、前記と同様に比粘度ηspを測定する。この希釈操作をさらに2回繰り返し、オレフィン重合体の濃度(C)を0に外挿したときのηsp/Cの値をオレフィン重合体の極限粘度[η](dl/g)とする。
極限粘度[η]=lim(ηsp/C) (C→0)
〔重量平均分子量(Mw)、数平均分子量(Mn)、分子量分布(Mw/Mn)〕
重量平均分子量(Mw)、数平均分子量(Mn)、分子量分布(Mw/Mn)は、Waters社製ゲル浸透クロマトグラフAlliance GPC−2000型を用い、以下のようにして測定した。
分離カラムはTSKgel GNH6−HT:2本およびTSKgel GNH6−HTL:2本であり、カラムサイズはいずれも直径7.5mm、長さ300mmであり、カラム温度は140℃とし、移動相にはo−ジクロロベンゼン(和光純薬工業)と酸化防止剤としてBHT(武田薬品)0.025重量%とを用い、前記移動相は1.0mL/分で移動させ、試料濃度は15mg/10mLとし、試料注入量は500マイクロリットルとし、検出器として示差屈折計を用いた。標準ポリスチレンは、分子量がMw<1000およびMw>4×106については東ソー社製を用い、1000≦Mw≦4×106についてはプレッシャーケミカル社製を用いた。分子量分布および各種平均分子量は、汎用校正の手順に従い、ポリプロピレン分子量換算として計算した。
〔目的物の同定〕
合成例で得られたメタロセン化合物および中間生成物の構造は、270MHz 1H−NMR(日本電子GSH−270)およびFD−MS(日本電子SX−102A)を用いて決定した。
[合成例1]
メチル(エチル)メチレン(3−tert−ブチル−5−メチルシクロペンタジエニル)(2,7−ジ−tert−ブチル−フルオレニル)ジルコニウムジクロリドの合成;触媒成分(a)
Figure 2015137352
[合成例1−1]
1−tert−ブチル−3−メチル−シクロペンタジエン(5g)、メタノール250ml、ピロリジン52.2g、ブタン−2−オン(26.46g)を反応容器に入れ、50℃、8時間攪拌した。さらに室温下、24時間攪拌を行い、飽和塩化アンモニウム水を加えて反応を停止させた。ヘキサンで抽出後、シリカゲルクロマトグラフィにて精製し、目的物である3−tert−ブチル−5−メチル−6,6−メチル(エチル)フルベン(フルベン誘導体A)を得た(収率51%)。
[合成例1−2]
2,7−tert−ブチルフルオレン(2g)、tert−ブチルメチルエーテル(50ml)を反応容器に入れ攪拌した。0℃下にし、n−ブチルリチウムのヘキサン溶液(1.6M)を7.5ml滴下した。50℃下、2時間攪拌を行い反応を進行させ、−50℃下、合成例1−1で得られたフルベン誘導体A(1.6g)を添加し、50℃4時間反応を行った。0℃下、水で反応を停止させ、ヘキサンで目的物を抽出後、有機溶媒を減圧濃縮した。ジクロロメタン、メタノールで再結晶化を行い、配位子Aであるメチル(エチル)メチレン(3−tert−ブチル−5−メチルシクロペンタジエン)(2,7−ジ−tert−ブチル−フルオレニン)を0.7g得た。1H−NMR,FD−MSにて目的物であることを確認した。
[合成例1−3]
合成例1−2で得られた配位子A(0.7g)をトルエン、THF溶液に溶解させた。0℃下にし、n−ブチルリチウムのヘキサン溶液(1.6M)を1.9ml滴下した。50℃下、4時間攪拌を行い、減圧濃縮し、ヘキサン40mlを加えた。−78℃下、四塩化ジルコニウム(0.35g)を加え、室温下、72時間攪拌した。ろ過を行い、塩を除去し、溶液を減圧濃縮した。ヘキサンにて洗浄を行い、目的物であるメチル(エチル)メチレン(3−tert−ブチル−5−メチルシクロペンタジエニル)(2,7−ジ−tert−ブチル−フルオレニル)ジルコニウムジクロリド(収率12%)で得た。1H−NMR,FD−MSにて目的物であることを確認した。
1H−NMR(CDCl3;TMS基準)8.0−7.2(6H),6.1(1H),5.7(1H),2.7−2.2(6H),1.5−1.0ppm(32H)、FD−MS:628(M+)
[合成例2]
メチル(n−ブチル)メチレン(3−tert−ブチル−5−メチルシクロペンタジエニル)(2,7−ジ−tert−ブチル−フルオレニル)ジルコニウムジクロリドの合成;触媒成分(b)
Figure 2015137352
[合成例2−1]
ブタン−2−オンのかわりにヘキサンー2−オンを用いた以外は合成例1−1同様に行い、3−tert−ブチル−5−メチル−6,6−メチル(n−ブチル)フルベン(フルベン誘導体B)を得た。
[合成例2−2]
フルベン誘導体Aのかわりにフルベン誘導体Bを用いた以外は合成例1−2同様に行い、配位子Bを得た。
[合成例2−3]
配位子Aのかわりに配位子Bをもちいた以外は合成例1−3に従い実施し、メチル(n−ブチル)メチレン(3−tert−ブチル−5−メチルシクロペンタジエニル)(2,7−ジ−tert−ブチル−フルオレニル)ジルコニウムジクロリドを得た。
1H−NMR(CDCl3;TMS基準)8.0−7.2(6H),6.1(1H),5.7(1H),3.5−1.0(42H)、FD−MS:654(M+)
[実施例1]
窒素雰囲気下、シュレンク管に架橋メタロセン化合物(A)として触媒成分(a)4.2μmolを入れ、脱水トルエン7.8mLに溶解させた後、修飾メチルアルミノキサン(商品名:TMAO341、東ソー・ファインケム株式会社製)の懸濁液0.72mL(n−ヘキサン溶媒、アルミニウム原子換算で2.96M、2.13mmol)を加え、室温で1時間攪拌を行い、触媒成分(a)の濃度が0.0005Mの触媒成分(a)溶液を調製した。
充分に窒素置換した内容積15mLのSUS製オートクレーブに、トリイソブチルアルミニウムのn−ヘプタン溶液0.2mL(0.05M、10μmol)と重合溶媒としてn−ヘプタン3.0mLを入れ、600回転/分にて攪拌を行った。この溶液を60℃に昇温し、次いでプロピレンで全圧が7barになるまで加圧した。
上記オートクレーブに、触媒成分(a)溶液0.1mL(触媒成分(a)0.05μmol)、およびn−ヘプタン0.7mLを加え、重合を開始した。60℃で10分間重合した後、少量のイソブチルアルコールを加えて重合を停止した。得られたプロピレン重合体を含むスラリーにメタノール50mL、少量の塩酸水溶液を加え、室温にて1時間攪拌を行った。その後、ろ過によって回収したプロピレン単独重合体を減圧乾燥し、0.17gのオレフィン重合体(プロピレン単独重合体)を得た。
重合活性は20.8kg−PP/mmol−Zr・hrであり、得られたポリマーの融点(Tm)は136.6℃、融解熱量(ΔH)は69.2mJ/mg、結晶化温度(Tc)は101.9℃、[η]は3.75dl/g、重量平均分子量(Mw)、数平均分子量(Mn)並びに分子量分布(Mw/Mn)は、それぞれMw=568000、Mn=144000、Mw/Mn=3.94であった。
結果を表3に示す。
[実施例2、比較例1]
実施例2および比較例1において、使用した架橋メタロセン化合物を表3および表4に記載のとおりに変更したこと以外は実施例1と同様に行った。結果を表3および表4に示す。
Figure 2015137352
Figure 2015137352
本発明のオレフィン重合体の製造方法により、高分子量かつ広い分子量分布を有し、有用なオレフィン重合体を経済的に製造することができ、本発明の製造方法は工業的に極めて価値がある。

Claims (9)

  1. (A)下記一般式[1]で表される架橋メタロセン化合物と、
    (B)(b−1)有機アルミニウムオキシ化合物、(b−2)架橋メタロセン化合物(A)と反応してイオン対を形成する化合物、(b−3)有機アルミニウム化合物から選択される少なくとも1種の化合物とを含むオレフィン重合用触媒存在下に、
    50℃以上200℃以下の重合温度条件下において、
    炭素数2以上20以下のα−オレフィンから選択される少なくとも1種のモノマーを重合することを特徴とするオレフィン重合体の製造方法:
    Figure 2015137352
    (式中、R1は3級炭化水素基であり、
    2、R3、R4、R5、R6およびR7は水素原子、炭化水素基、ケイ素含有基、ハロゲン原子、ハロゲン含有炭化水素基から選ばれ、それぞれ同一でも異なっていてもよく、隣接した置換基は互いに結合して環を形成してもよく、
    8およびR9は水素原子、炭化水素基、ケイ素含有基、ハロゲン原子、ハロゲン含有炭化水素基から選ばれ、R8とR9とが異なる原子または基であり、
    10は炭化水素基、ケイ素含有基、ハロゲン原子、ハロゲン含有炭化水素基から選ばれ、
    Mは第4族遷移金属であり、
    Qはハロゲン原子、炭化水素基、アニオン配位子または孤立電子対で配位可能な中性配位子であり、Qが複数存在する場合には、各Qは同一でも異なっていてもよく、
    jは1〜4の整数である。)
  2. 前記一般式[1]において、R1がtert-ブチル基または1−アダマンチル基であることを特徴とする請求項1に記載のオレフィン重合体の製造方法。
  3. 前記一般式[1]において、R4およびR5が水素原子であることを特徴とする請求項1または請求項2に記載のオレフィン重合体の製造方法。
  4. 前記一般式[1]において、R8およびR9が炭素数1〜20の炭化水素基であることを特徴とする請求項1〜3のいずれか一項に記載のオレフィン重合体の製造方法。
  5. 前記一般式[1]において、R8がメチル基であることを特徴とする請求項1〜4のいずれか一項に記載のオレフィン重合体の製造方法。
  6. 前記オレフィン重合用触媒が、さらに担体(C)を含むことを特徴とする請求項1〜5のいずれか一項に記載のオレフィン重合体の製造方法。
  7. 前記モノマーの少なくとも一部が、プロピレンであることを特徴とする請求項1〜6のいずれか一項に記載のオレフィン重合体の製造方法。
  8. 請求項7に記載のオレフィン重合体の製造方法であって、
    得られるオレフィン重合体が下記要件(ia)および(iia)を同時に満たすことを特徴とするオレフィン重合体の製造方法。
    (ia)プロピレン由来の構成単位(P)が50mol%<P≦100mol%
    (iia)135℃デカリン中における極限粘度[η](dl/g)が3.0≦[η]≦20
  9. 請求項8に記載のオレフィン重合体の製造方法であって、
    得られるオレフィン重合体が下記要件(ib)〜(iiib)を同時に満たすことを特徴とするオレフィン重合体の製造方法。
    (ib)エチレン由来の構成単位(E)が0mol%≦E<50mol%、かつプロピレン由来の構成単位(P)が50mol%<P≦100mol%
    (iib)ゲルパーミッションクロマトグラフにおける重量平均分子量(Mw)が400000<Mw<2000000かつ、Mwと数平均分子量(Mn)との分子量分布の範囲(Mw/Mn)が3<Mw/Mn<10
    (iiib)示唆走査熱量分析における融解熱ΔH(mJ/mg)が10<ΔH<70
JP2014011309A 2014-01-24 2014-01-24 オレフィン重合体の製造方法 Pending JP2015137352A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014011309A JP2015137352A (ja) 2014-01-24 2014-01-24 オレフィン重合体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014011309A JP2015137352A (ja) 2014-01-24 2014-01-24 オレフィン重合体の製造方法

Publications (1)

Publication Number Publication Date
JP2015137352A true JP2015137352A (ja) 2015-07-30

Family

ID=53768586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014011309A Pending JP2015137352A (ja) 2014-01-24 2014-01-24 オレフィン重合体の製造方法

Country Status (1)

Country Link
JP (1) JP2015137352A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190087636A (ko) * 2016-12-15 2019-07-24 보레알리스 아게 고온 용액 중합 공정으로 폴리에틸렌 공중합체를 제조하기 위한 촉매 시스템
KR20190091543A (ko) * 2016-12-15 2019-08-06 보레알리스 아게 고온 용액 중합 공정으로 폴리에틸렌 공중합체를 제조하기 위한 새로운 촉매 시스템
KR20210059900A (ko) * 2019-11-18 2021-05-26 한화솔루션 주식회사 올레핀계 중합체 및 그 제조방법

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190087636A (ko) * 2016-12-15 2019-07-24 보레알리스 아게 고온 용액 중합 공정으로 폴리에틸렌 공중합체를 제조하기 위한 촉매 시스템
KR20190091543A (ko) * 2016-12-15 2019-08-06 보레알리스 아게 고온 용액 중합 공정으로 폴리에틸렌 공중합체를 제조하기 위한 새로운 촉매 시스템
JP2020502329A (ja) * 2016-12-15 2020-01-23 ボレアリス エージー 高温溶液重合プロセスでポリエチレンコポリマーを製造する為の新規な触媒系
US11530280B2 (en) 2016-12-15 2022-12-20 Borealis Ag Catalyst system for producing polyethylene copolymers in a high temperature solution polymerization process
JP7213183B2 (ja) 2016-12-15 2023-01-26 ボレアリス エージー 高温溶液重合プロセスでポリエチレンコポリマーを製造する為の新規な触媒系
US11639399B2 (en) 2016-12-15 2023-05-02 Borealis Ag Catalyst system for producing polyethylene copolymers in a high temperature solution polymerization process
KR102534541B1 (ko) * 2016-12-15 2023-05-18 보레알리스 아게 고온 용액 중합 공정으로 폴리에틸렌 공중합체를 제조하기 위한 촉매 시스템
KR102543361B1 (ko) * 2016-12-15 2023-06-13 보레알리스 아게 고온 용액 중합 공정으로 폴리에틸렌 공중합체를 제조하기 위한 새로운 촉매 시스템
KR20210059900A (ko) * 2019-11-18 2021-05-26 한화솔루션 주식회사 올레핀계 중합체 및 그 제조방법
KR102579816B1 (ko) 2019-11-18 2023-09-19 한화솔루션 주식회사 올레핀계 중합체 및 그 제조방법

Similar Documents

Publication Publication Date Title
JP5951108B2 (ja) オレフィン重合体の製造方法およびオレフィン重合用触媒
JP6568082B2 (ja) 1−ブテン由来の構成単位を含むオレフィン(共)重合体の製造方法
JP5514838B2 (ja) シンジオタクティックα‐オレフィン重合体の製造方法
JP5800984B2 (ja) オレフィン重合体の製造方法
JP2015137352A (ja) オレフィン重合体の製造方法
JP2016164264A (ja) オレフィン重合体の製造方法およびオレフィン重合用触媒
JP5979920B2 (ja) オレフィン重合用触媒およびそれをもちいたオレフィン重合体の製造方法
JP6679345B2 (ja) 1−ブテン由来の構成単位を含むオレフィン(共)重合体の製造方法
JP2011122118A (ja) オレフィン重合体の製造方法
JP5261163B2 (ja) 高分子量オレフィン重合体の製造方法
JP2015137353A (ja) オレフィン重合体の製造方法
JP2014073983A (ja) 新規なメタロセン化合物、オレフィン重合用触媒およびオレフィン重合体の製造方法
JP5972056B2 (ja) オレフィン重合体の製造方法
JP2018065958A (ja) オレフィン重合体の製造方法
JP2021059673A (ja) オレフィン重合体の製造方法
JP2016147965A (ja) 1−ブテン由来の構成単位を含むオレフィン(共)重合体の製造方法
JP2013060518A (ja) オレフィン重合体の製造方法
JP2015157925A (ja) エチレン系重合体の製造方法
JP2010144036A (ja) 高融点オレフィン重合体の製造方法
JP2015157924A (ja) オレフィン重合体の製造方法および架橋メタロセン化合物
JP2010047630A (ja) 高分子量オレフィン重合体の製造
JP2011102366A (ja) オレフィン重合体の製造方法
JP2014177508A (ja) 新規フルオレン誘導体含有触媒の製造方法とオレフィン重合体の製造方法
JP2010047628A (ja) 高活性触媒によるオレフィン重合体の製造法
JP2010047629A (ja) 高融点オレフィン重合体の製造法