JP2015085458A - ロボット制御装置、ロボットシステム、及びロボット - Google Patents

ロボット制御装置、ロボットシステム、及びロボット Download PDF

Info

Publication number
JP2015085458A
JP2015085458A JP2013226556A JP2013226556A JP2015085458A JP 2015085458 A JP2015085458 A JP 2015085458A JP 2013226556 A JP2013226556 A JP 2013226556A JP 2013226556 A JP2013226556 A JP 2013226556A JP 2015085458 A JP2015085458 A JP 2015085458A
Authority
JP
Japan
Prior art keywords
robot
unit
point
error
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013226556A
Other languages
English (en)
Other versions
JP6511715B2 (ja
Inventor
比呂之 宮澤
Hiroyuki Miyazawa
比呂之 宮澤
如洋 山口
Yukihiro Yamaguchi
如洋 山口
信宏 狩戸
Nobuhiro Karido
信宏 狩戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2013226556A priority Critical patent/JP6511715B2/ja
Priority to US14/527,106 priority patent/US10059001B2/en
Priority to EP20140190856 priority patent/EP2868441A1/en
Priority to CN201410594160.3A priority patent/CN104589354B/zh
Publication of JP2015085458A publication Critical patent/JP2015085458A/ja
Application granted granted Critical
Publication of JP6511715B2 publication Critical patent/JP6511715B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39016Simultaneous calibration of manipulator and camera
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39391Visual servoing, track end effector with camera image feedback
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39394Compensate hand position with camera detected deviation, new end effector attitude
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/02Arm motion controller
    • Y10S901/03Teaching system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/46Sensing device
    • Y10S901/47Optical

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

【課題】キャリブレーションに係る負担を軽減しても対象物への意図しない接触や、対象物やハンドが破損するおそれを低減する。
【解決手段】画像取得部は対象物を含む画像を取得し、制御部はキャリブレーションの誤差、ロボットの設置の誤差、ロボットの剛性に起因する誤差、ロボットが対象物を把持した位置の誤差、撮像に関する誤差、及び作業環境に関する誤差の少なくとも1つに基づいて、取得した画像を用いたビジュアルサーボを開始する。また、制御部は、ロボットの作業部の一点と前記対象物との間の距離が2mm以上のとき、ビジュアルサーボを開始する。
【選択図】図1

Description

本発明は、ロボット制御装置、ロボットシステム、及びロボットに関する。
製造等の作業現場では、製品の組み立てや検査等の作業に多軸ロボットが用いられ、人手で行っていた作業の自動化が図られてきた。ロボットを構成するハンド等の構成部を動作させる際、その位置及び姿勢には作業に応じた精度が求められる。そこで、作業環境において予めキャリブレーション(calibration、校正ともいう)を行って基準点の位置を取得しておく。従来、キャリブレーションは、主に人手で厳密に行われていた。例えば、0.02mmの精度を確保するために、キャリブレーションだけで数時間から1日以上費やされることもあった。
ここで、キャリブレーションを厳密に行った上で、特許文献1、特許文献2に記載されているような作業が行われていた。
例えば、特許文献1には、高速、高精度、かつ制御系として安定に、マニピュレーターを対象物まで移動させる情報処理方法について記載されている。この方法では、対象物が検知されていない場合、対象物の位置に基づいてあらかじめ設定された目標位置までの経路に沿って、マニピュレーターを移動させるティーチングプレイバック制御(位置制御)を実行し、対象物が検知された場合、目標位置よりも対象物に近い位置を新たな目標位置として、新たな経路を設定して、移動制御を切り替えるための切替条件が満たされるまでの間、新たな経路に沿ってマニピュレーターを移動させるティーチングプレイバック制御を実行する。切替条件が満たされた場合、視覚サーボ制御(ビジュアルサーボ)を実行する。
また、例えば、特許文献2には探索動作中のワークの引っかかりを防止し、挿入位置の縁に凹凸部があってもワークを対象物上の挿入位置へ挿入することができる組み立て作業ロボットの制御方法について記載されている。特許文献2に記載の制御方法は、ロボットが把持したワークを対象物に押し当てた状態で対象物上を移動させ、対象物に設けられた挿入位置を探索し、ワークを挿入位置へ挿入する組み立て作業ロボットの制御方法において、挿入位置を探索する際に、探索進行方向のワーク端を持上げ、ワークを対象物に対して予め設定された傾斜角で傾斜させる。
特開2011−93055号公報 特開2010−137299号公報
しかし、キャリブレーションが行われていない場合や、行われていたとしても不十分な場合には、特許文献1、2に記載の方法では、ロボットが設置された位置、姿勢、その他の要因により精度が確保されない。そのため、対象物を把持するハンドが意図せずに対象物に接触することや、対象物やハンド自体が破損するおそれがあった。
そこで、本発明は、上記問題に鑑みてなされたものであり、キャリブレーションに係る負担を軽減しても対象物への意図しない接触や、対象物やハンドが破損するおそれを低減することができるロボット制御装置、ロボットシステム、及びロボットを提供することを課題とする。
(1)本発明の一態様は、対象物を含む画像を取得する画像取得部と、キャリブレーションの誤差、ロボットの設置の誤差、前記ロボットの剛性に起因する誤差、前記ロボットが対象物を把持した位置の誤差、撮像に関する誤差、及び作業環境に関する誤差の少なくとも1つに基づいて、ビジュアルサーボを開始する制御部と、を備えるロボット制御装置である。
この構成によれば、誤差に応じてビジュアルサーボ制御を開始するタイミングが定められるので、キャリブレーションに係る負担を軽減しても対象物への意図しない接触や、対象物やハンドが破損するおそれを低減することができる。
(2)本発明の他の態様は、上記のロボット制御装置において、前記作業環境は、前記対象物の明るさを示す照度である。
この構成によれば、対象物の照度に応じて、対象物への意図しない接触や、対象物やハンドが破損するおそれを低減することができる。
(3)本発明の他の態様は、対象物を含む画像を取得する画像取得部と、ロボットの作業部の端点と前記対象物との間の距離が2mm以上のとき、ビジュアルサーボを開始する制御部と、を備えるロボット制御装置である。
この構成によれば、誤差が2mm生じても対象物との距離が2mm以上のときにビジュアルサーボ制御が開始されるので、対象物への意図しない衝突や、対象物やハンドを破損するおそれを低減することができる。
(4)本発明の他の態様は、上記のロボット制御装置において、前記制御部は、前記距離が2mmから300mmまでのとき、前記ビジュアルサーボを開始する。
この構成によれば、対象物の誤認識を回避することによる制御の失敗を防止し、制御対象のロボットの作業速度を確保することができる。
(5)本発明の他の態様は、上記のロボット制御装置において、前記ビジュアルサーボは、前記ロボットが第1の姿勢から前記第1の姿勢とは異なる第2の姿勢へと移る間に、前記画像取得部に前記対象物を複数回撮像させる制御である。
この構成によれば、対象物の位置や姿勢の時間変化を考慮して目標位置に移動させることができる。
(6)本発明の他の態様は、上記のロボット制御装置において、力を検出する力検出部が設けられた作業部の一点を対象物に接触させ、前記対象物と接触した位置を前記作業部の一点の基準点と定める制御部と、を備えるロボット制御装置である。
この構成によれば、対象物とロボットの作業部の端点とが接触した位置を作業部の位置や姿勢を制御する際の基準点として人手に頼らずに定められる。そのため、キャリブレーションに係る作業を効率化することができる。
(7)本発明の他の態様は、力を検出する力検出部が設けられた作業部の一点を1mm以下の平面粗さを有する対象物に接触させ、前記対象物と接触した位置を前記作業部の一点の基準点と定める制御部と、を備えるロボット制御装置である。
この構成によれば、対象物とロボットの作業部の端点とが接触した位置を作業部の位置や姿勢を制御する際の基準点として人手に頼らずに定められる。そのため、キャリブレーションに係る作業を効率化することができる。また、平面粗さを1mm以下とすることで、基準点を2mm以内の精度で取得することができる。
(8)本発明の他の態様は、上記のロボット制御装置であって、前記作業部の一点は、前記力検出部よりも前記作業部の先端に位置している。
この構成によれば、力検出部は、作業部が対象物に接触したときに作用する力が直接自部に作用しないため、作用部の一点に接触した力を有効に検出することができる。
(9)本発明の他の態様は、上記のロボット制御装置であって、前記制御部は、前記作業部の一点を前記対象物に接触させる際、前記作業部の一点を水平面に垂直な方向に移動させ、前記対象物と接触した位置の前記垂直な方向の座標値を前記基準点の前記垂直な方向の座標値と定める。
この構成によれば、基準点からの水平面に垂直な方向への基準点の座標値を人手に頼らずに定められるのでキャリブレーションに係る作業を効率化することができる。
(10)本発明の他の態様は、上記のロボット制御装置であって、前記制御部は、前記作業部の一点を前記対象物に接触させる際、前記作業部の一点を前記水平面に平行な方向に移動させ、前記対象物と接触した位置の前記平行な方向の座標値を前記基準点の前記平行な方向の座標値と定める。
この構成によれば、基準点からの水平面に平行な方向への基準点の座標値を人手に頼らずに定められるのでキャリブレーションに係る作業を効率化することができる。
(11)本発明の他の態様は、上記のロボット制御装置であって、前記制御部は、前記定めた基準点からの相対位置を用いてロボットの動作を制御する。
この構成によれば、その基準点からの相対位置によりロボットの作業部を制御することで作業環境等による誤差を低減又は解消することができる。
(12)本発明の他の態様は、作業部を備えるロボットと、ロボット制御装置とを備えるロボットシステムであって、前記ロボット制御装置は、対象物を含む画像を取得する画像取得部と、キャリブレーションの誤差、前記ロボットの設置の誤差、前記ロボットの剛性に起因する誤差、前記ロボットが対象物を把持した位置の誤差、撮像に関する誤差、及び作業環境に関する誤差の少なくとも1つに基づいて、ビジュアルサーボを開始する制御部と、を備えるロボットシステムである。
この構成によれば、誤差に応じてビジュアルサーボ制御を開始するタイミングが定められるので、キャリブレーションに係る負担を軽減しても対象物への意図しない接触や、対象物やハンドが破損するおそれを低減することができる。
(13)本発明の他の態様は、作業部を備えるロボットと、ロボット制御装置とを備えるロボットシステムであって、前記ロボット制御装置は、対象物を含む画像を取得する画像取得部と、前記作業部の一点と前記対象物との間の距離が2mm以上のとき、ビジュアルサーボを開始する制御部とを備えるロボットシステムである。
この構成によれば、誤差が2mm生じても対象物との距離が2mm以上のときにビジュアルサーボ制御が開始されるので、対象物への意図しない衝突や、対象物やハンドを破損するおそれを低減することができる。
(14)本発明の他の態様は、作業部を備えるロボットと、ロボット制御装置とを備えるロボットシステムであって、前記ロボット制御装置は、力を検出する力検出器を設けられた前記作業部の一点を対象物に接触させ、前記対象物と接触した位置を前記作業部の一点の基準点と定める制御部と、を備えるロボットシステムである。
この構成によれば、対象物とロボットの作業部の端点とが接触した位置を作業部の位置や姿勢を制御する際の基準点として人手に頼らずに定められる。そのため、キャリブレーションに係る作業を効率化することができる。
(15)本発明の他の態様は、作業部を備えるロボットと、ロボット制御装置とを備えるロボットシステムであって、前記ロボット制御装置は、力を検出する力検出器を設けられた前記作業部の一点を1mm以下の平面粗さを有する対象物に接触させ、前記対象物と接触した位置を前記作業部の一点の基準点と定める制御部と、を備えるロボットシステムである。
この構成によれば、対象物とロボットの作業部の端点とが接触した位置を作業部の位置や姿勢を制御する際の基準点として人手に頼らずに定められる。そのため、キャリブレーションに係る作業を効率化することができる。また、平面粗さを1mm以下とすることで、基準点を2mm以内の精度で取得することができる。
(16)本発明の他の態様は、作業部と、対象物を含む画像を取得する画像取得部と、キャリブレーションの誤差、設置の誤差、剛性に起因する誤差、対象物を把持した位置の誤差、撮像に関する誤差、及び作業環境に関する誤差の少なくとも1つに基づいて、ビジュアルサーボを開始する制御部と、を備えるロボットである。
この構成によれば、誤差に応じてビジュアルサーボ制御を開始するタイミングが定められるので、キャリブレーションに係る負担を軽減しても対象物への意図しない接触や、対象物やハンドが破損するおそれを低減することができる。
(17)本発明の他の態様は作業部と、対象物を含む画像を取得する画像取得部と、前記作業部の一点と前記対象物との間の距離が2mm以上のとき、ビジュアルサーボを開始する制御部と、を備えるロボットである。
この構成によれば、誤差が2mm生じてもビジュアルサーボ制御を開始するタイミングが定められるので、対象物への意図しない衝突や、対象物やハンドを破損するおそれを低減することができる。
(18)本発明の他の態様は、作業部と、前記作業部に作用する力を検出する力検出部と、前記作業部の一点を対象物に接触させ、前記対象物と接触した位置を前記作業部の一点の基準点と定める制御部と、を備えるロボットである。
この構成によれば、対象物とロボットの作業部の端点とが接触した位置を作業部の位置や姿勢を制御する際の基準点として人手に頼らずに定められる。そのため、キャリブレーションに係る作業を効率化することができる。
(19)本発明の他の態様は、作業部と、前記作業部に作用する力を検出する力検出部と、前記作業部の一点を1mm以下の平面粗さを有する対象物に接触させ、前記対象物と接触した位置を前記作業部の一点の基準点と定める制御部と、を備えるロボットである。
この構成によれば、対象物とロボットの作業部の端点とが接触した位置を作業部の位置や姿勢を制御する際の基準点として人手に頼らずに定められる。そのため、キャリブレーションに係る作業を効率化することができる。また、平面粗さを1mm以下とすることで、基準点を2mm以内の精度で取得することができる。
本実施形態に係るロボットシステムの概略図である。 作業環境の例を示す概略図である。 本実施形態に係るロボットシステムの機能構成を示すブロック図である。 本実施形態に係るロボットシステムにおける制御の流れの一例を示すブロック図である。 制御方式をビジュアルサーボ制御に切り替える条件の一例を示す表である。 本実施形態に係るキャリブレーション処理で用いられる対象物の平面粗さと位置誤差との大きさの関係の一例を示す表である。 本実施形態に係るロボット制御処理を示すフローチャートである。 本実施形態に係るキャリブレーション処理におけるハンドの動作の一例を示す図である。 本実施形態に係るキャリブレーション処理におけるハンドの動作の他の例を示す図である。 本実施形態に係るキャリブレーション処理におけるハンドの動作のさらに他の例を示す図である。 簡易キャリブレーションと精密キャリブレーションの比較例を示す。 本実施形態に係るロボット制御装置の機能構成の他の例を示す図である。
以下、本発明の実施形態について、図面を参照しながら説明する。
図1は、本実施形態に係るロボットシステム1の概略図である。
ロボットシステム1は、ロボット制御装置10と、ロボット20と、1個又は複数(この例では、2個)の撮像装置30とを備える。ロボット制御装置10は、ロボット20及び撮像装置30と互いに通信することができるように接続される。
ロボット制御装置10は、ロボット20の動作を制御する。ロボット制御装置10は、例えば、ロボット20の作業対象となる対象物を含む画像を示す画像データを撮像装置30から取得し、取得した画像に基づくビジュアルサーボを開始して対象物の位置を目標位置に近づける制御を行う。ビジュアルサーボを開始する条件は、キャリブレーションの誤差、ロボット20の設置の誤差、ロボット20の剛性に起因する誤差、ロボット20が対象物を把持した位置の誤差、撮像に関する誤差、及び作業環境に関する誤差の少なくとも1つに基づいて予め定めておくことができる。例えば、ロボット20の作業部21(後述)の一点と対象物との間の相対距離が2mm又は2mmより大きいときである。ビジュアルサーボとは、目標物との相対的な位置の変化を視覚情報として計測し、計測した視覚情報をフィードバック情報として用いることによって目標物を追跡する制御手法である。
ビジュアルサーボでは、撮像装置30で複数回撮像された画像データのそれぞれが視覚情報として用いられる。例えば、撮像装置30において予め定めた時間間隔(例えば、30ms)で撮像された画像データが用いられる。つまり、ビジュアルサーボとは、より具体的には、現在撮像された対象物を含む現在画像が示す対象物の位置が、目標画像が示す対象物の位置に近づくようにロボット20の動作を制御することである。目標画像とは、目標位置に配置された対象物を目標物として含む画像である。言い換えれば、ビジュアルサーボとは、画像取得部が複数回取得した画像を用いて対象物を目標位置へ移動させる制御である。また、ビジュアルサーボは、ロボットが第1の姿勢から前記第1の姿勢とは異なる第2の姿勢へと移る間に、画像取得部(例えば、撮像装置30、画像取得部140(後述))に対象物を複数回撮像させる制御を含んでもよい。
また、ロボット制御装置10は、ロボット20の作業部21に作用する力を検出し、検出した力に基づいて作業部21の一点をロボット20の作業対象となる対象物又はその対象物から予め定めた範囲内にある物体のいずれかに接触するまで接近させる(度当たり)。そして、ロボット制御装置10は、作業部21の一点とその物体とが接触した点を基準点として定める。その後、ロボット制御装置10は、基準点からの相対位置を用いてロボット20、具体的には作業部21の位置や姿勢を制御する。作業部21の一点に接触する対象物又はその対象物から予め定めた範囲内にある物体のいずれかは、その表面が平滑な物体、例えば、1mm又は1mmよりも小さい平面粗さを有する物体である。ロボット制御装置10の構成については、後述する。
ロボット20は、ロボット制御装置10からの制御信号に従って動作し、作業を行う。ロボット20の作業内容は、特に限定されないが、例えば作業台T上で作業の対象となる対象物W1を対象物W2に空けられた穴Hに嵌め込む作業が該当する。対象物は、ワークとも呼ばれる。
ロボット20は、1もしくは複数(この例では、2本)のアーム22と、アーム22の先端部に設けられたハンド26と、アーム22の手首部分に設けられた力覚センサー25と、を備える。アーム22の手首部分とはアーム22の先端部とハンド26との間の部分である。アーム22は、1もしくは複数(この例では、左右各6個)のジョイント23及び1もしくは複数(この例では、左右各5個)のリンク24を含んで構成される。
力覚センサー25は、例えば、ハンド26に作用する力や、モーメントを検出する。力覚センサー25は、検出した力やモーメントを示すセンサー値をロボット制御装置10に出力する。センサー値は、例えば、ロボット制御装置10においてロボット20のインピーダンス制御に用いられる。力覚センサー25は、例えば、6軸力覚センサーである。6軸力覚センサーは、並進3軸方向の力成分と、回転3軸まわりのモーメント成分との6成分を同時に検出することができるセンサーである。並進3軸とは、例えば、3次元直交座標系を形成する互いに直交する3つの座標軸(X軸、Y軸、Z軸)である。回転3軸とは、例えば、その3つの座標軸のそれぞれである。力覚センサー25が検出する成分の個数は、6成分に限られず、例えば、3成分(3軸力覚センサー)であってもよい。なお、力覚センサー25は、力検出部25とも呼ばれる。
ハンド26は、例えば、少なくとも2個の指状の構成部を備える。指状の構成部を、指と呼ぶ。ハンド26は、指を用いて対象物(例えば、W1、W2)を把持することができる。ハンド26は、アームの22の先端部に対して着脱可能であってもよい。ハンド26は、エンドエフェクターの一種ということができる。つまり、ロボット20は、ハンド26に代え、又はハンド26とともにハンド26以外の種類のエンドエフェクターを備えてもよい。エンドエフェクターとは、対象物を把持したり、持ち上げたり、吊り上げたり、吸着したり、加工する、等の操作を行う部材である。エンドエフェクターは、ハンドフック、吸盤、等、様々な形態をとることができる。また、エンドエフェクターは、1本のアーム22について各1個に限らず、2個、又は2個よりも多く備えられてもよい。
アーム22、力覚センサー25、及びハンド26を含むユニットは、作業部21を形成し、マニピュレーターとも呼ばれる。作業部21は、ロボット20が命令された所定の作業を行うために動作する部位である。図1に示す例では、ロボット20は、2本の作業部21を備える。作業部21は、ジョイント23やハンド26等の各部を動作させるための駆動部、例えば、アクチュエーター(図示せず)を備える。アクチュエーターは、例えば、サーボモーターや、エンコーダー、等を備える、エンコーダーは、自部で検出した変位をエンコード(符号化)してエンコーダー値に変換し、変換したエンコーダー値をロボット制御装置に出力する。エンコーダー値は、ロボット制御装置10においてロボット20に対するフィードバック制御、等に用いられる。なお、作業部21は、所定の作業を行うために動作する部位であれば、マニピュレーターとして構成されていなくてもよく、例えば、アーム22、ハンド26、それぞれの単体もしくは力覚センサー25との組み合わせ、であってもよい。
ロボット20は、ロボット制御装置10から入力された制御命令に従って、各ジョイント23を連動して駆動する。これにより、ロボット制御装置10は、アーム22の先端部等に予め設定された注目位置を所定の可動範囲内で所望の位置に移動させることや、所望の方向に向けることができる。この注目位置を、端点と呼ぶ。端点は、エンドポイントとも呼ばれ、作業部21において力検出部25よりも先端に設置されている。ロボット制御装置10は、例えば、端点を上述した作業部21の一点として用いることによって作業部21を構成するハンド26やアーム22を駆動することで、対象物等を把持することや、解放することができる。
なお、作業部21の一点は、アーム22の先端部に限られず、例えば、ハンド26等のエンドエフェクターの先端部であってもよい。また、上述した作業部21の一点は、作業部21の制御の手掛かりとして用いることができれば、端点に限らず、例えば、ハンド26を形成する指部が対象物W21を把持したときに接触する部分(腹)、複数の指部のうちのいずれかの指部の先端であってもよい。但し、以下では、作業部21の「一点」が主に「端点」である場合を例にとる。
作業部21の端点の位置の誤差は、ロボット20の剛性にも起因する。例えば、作業部21を2本備えた双腕のロボット20は、多機能の作業を行うために用いられ、工場その他の事業所で様々な作業を実行または補助するために用いられる。人間やその他の物品と近接するので、接触又は衝突してもその損害を低減するため、剛性が比較的低い部材(例えば、径の小さいステンレス材)で筐体や躯体が形成される。そのため、ロボット20に重力や外力が加えられると「たわみ」が大きくなり、精度が劣化する原因になる。つまり、ロボット20の剛性が低いほど作業部21に作用した重力や外力に応じて姿勢が変化しやすくなり、誤差が増大する。
作業部21の端点の位置の誤差は、ロボット20の設置にも起因する。ここで、ロボット20は、その底面に複数のキャスター27と固定脚(アジャストフット)28を有する。キャスター27と固定脚28は、ロボット20の底面に配置された台車(図示せず)に固定されている。キャスター27と固定脚28は、台車の下部に昇降可能に支持された可動フレーム(図示せず)に取り付けられている。可動フレームに取り付けられた2個のペダル(図示せず)の一方が踏み下ろされることでキャスター27が固定脚28よりも下がる。このとき、ロボット20に外力が加えられることにより、キャスター27を形成する車輪が回転して移動可能になる。また、2個のペダルの他方が踏み下ろされることで固定脚28がキャスター27よりも下がる。このとき、ロボット20の位置が簡易に固定されるが、作業部21が動作することにより位置のずれが生じる。そのため、ボルト等で緊密に固定する場合よりも位置の誤差が大きくなる傾向がある。
従って、このような構成では、作業環境の異なる場所に移動して利用することが容易である反面、新たに設置誤差が生じる原因になるため、キャリブレーションを頻繁に行う必要が生じる。
本実施形態では、キャリブレーションに係る負担を軽減することで、キャリブレーションの実行を促す。また、後述するように、ロボット20の設置の誤差、ロボット20の剛性に起因する誤差に応じて定めた条件でビジュアルサーボを開始する。これにより、精度を確保することで対象物への意図しない接触や、対象物やハンドが破損するおそれを低減することができる。
撮像装置30は、ロボット20の作業領域を表す画像を撮像し、撮像した画像を示す画像データを生成する。ロボット20の作業領域は、図1に示す例では、作業台T上において作業部21により作業可能な範囲である3次元空間であり、作業部21の一点を含む領域である。作業台T上には、それぞれ異なる位置に配置された2台の撮像装置30が、対象物W2に空けられた孔Hに向けられている。撮像装置30は、例えば、可視光カメラ、赤外線カメラ、等である。撮像装置30は、生成した画像データをロボット制御装置10に出力する。
上述したロボットシステム1の構成は、本実施形態の概要を説明するための一例に過ぎない。即ち、上述したロボットシステム1の構成は、上述した構成に限られず、その他の構成を有していてもよい。
例えば、図1は、ジョイント23の数(軸数)が左右各6個(6軸)である例を示すが、ジョイント23の数は各6個よりも少なくてもよいし、各6個よりも多くてもよい。リンク24の数は、ジョイント23の数に応じて定められる。また、ジョイント23、リンク24、ハンド26、等の部材の形状、大きさ、配置、構造を適宜変更してもよい。
また、撮像装置30の設置位置は、図1に示すように作業台T上に限られず、天井や壁面上であってもよい。また、これらの撮像装置30に代えて、又はこれに加えて、アーム22の先端部、胴体部、頭部、等に撮像装置30を設けてもよい。また、撮像装置30は、ロボット制御装置10に代えてロボット20に接続されてもよい。その場合には、撮像装置30が生成した画像データは、ロボット20を介してロボット制御装置10に入力される。また、ロボット制御装置10は、ロボット20に内蔵してロボット20に一体化されてもよい。
次に、ロボット20が作業を行う作業環境の例について説明する。
図2は、作業環境の例を示す概略図である。
図2は、3通りの作業環境の例を示す。3個の作業台T1−T3がそれぞれ異なる位置に設置され、作業台T1等には各2個の対象物W11、W12等がそれぞれ異なる位置関係で配置されている。これらの作業環境は、それぞれ嵌め合い作業を行うための作業環境である。嵌め合い作業とは、対象物W11を対象物W12に空けられた孔Hに差し込む作業である。キャリブレーションが行われていない場合や、行われていたとしても精度が不十分な場合には、孔Hから離れた位置に搬送され、作業に失敗してしまうばかりではなく、対象物W11を破損することがある。
作業環境により制御誤差の主な要因やその程度が異なるため、ロボット20が作業環境を変更して新たな作業を開始する前にキャリブレーションを行うことが重要である。作業環境の要素には、例えば、照度、対象物の反射率、対象物間の位置関係がある。図2に示す例では、作業台T2等の近傍での照明LT2等の設置の有無、光量が照度に影響する。また、対象物W11、W21、W31の表面に付された着色、凹凸等が反射率に影響する。ロボット20の制御にビジュアルサーボが用いられる場合には、対象物を含む作業領域を示す画像が用いられるため、対象物間の位置関係の他、照度、対象物の反射率が誤差要因となる。
図2に示す例は、1つの室内で嵌め合い作業を行う場合を示すが、作業の種類や場所によって望ましい照度が大きく異なる。例えば、JIS(日本工業規格、Japanese Industrial Standards)Z91110で規定された事務所の照度基準によれば、例えば、細かい視作業を行う事務室、設計室、製図室等では750−1500(lux)、それ以外の事務室、役員室、会議室、印刷室、電子計算機室、制御室、診療室等では300−750(lux)、倉庫、電気室、機械室、雑作業室等では150−300(lux)である。
また、撮像装置30の解像度、設置位置、方向、撮像間隔(フレーム間隔)等は、対象物の認識精度に影響し、撮像に関する誤差要因になる。
なお、対象物W11等を把持する作業部21の端点の位置や姿勢には誤差が生じ、その誤差の大きさは、対象物W11等を把持する都度、異なりうる。そのため、同じ作業環境であっても作業部21が対象物W11等を把持した位置にばらつきが生じる。ビジュアルサーボでは、このばらついた位置に配置された端点を示す画像に基づいて作業部21の動作を制御することを鑑みると、作業部21が対象物W11等を把持した位置の誤差も、これに基づいて制御される作業部21の端点の位置の誤差要因になる。
図2に示すように、ロボット20に作業台T1−T3のいずれか(例えば、作業台T2)の正面に配置された状態で作業を行わせることを考えると、移動による設置誤差が発生する。そのため、各作業環境で作業を行わせる前に予めキャリブレーションを行うことで誤差要因を解消又は低減する必要がある。特に、多品種少量生産を行う際には、品種に応じて作業環境が異なりうるため、それぞれの作業の前にキャリブレーションを短時間で行うことが重要である。本実施形態では、以下に説明するように従来よりも格段に短時間でキャリブレーションを行うことができる。
図3は、本実施形態に係るロボットシステム1の機能構成を示すブロック図である。
ロボット20は、駆動制御部200を備える。駆動制御部200は、ロボット制御装置10から入力された制御信号と、アクチュエーターで取得されたエンコーダー値及び力覚センサー25で取得されたセンサー値、等に基づいて、作業部21の一点、例えば、端点の位置が制御信号で指示される目標位置となるように、アクチュエーターを駆動させる。なお、端点の現在位置は、例えば、アクチュエーターにおけるエンコーダー値等から求めることができる。
ロボット制御装置10は、位置制御部100と、ビジュアルサーボ部110と、力制御部120と、動作制御部130と、画像取得部140とを備える。
位置制御部100は、経路取得部102と、第1軌道生成部104とを備える。ビジュアルサーボ部110は、画像処理部112と、第2軌道生成部114とを備える。力制御部120は、センサー情報取得部122と、第3軌道生成部124とを備える。
位置制御部100は、予め設定された所定の経路に沿って作業部21を移動させる位置制御を実行する。
経路取得部102は、経路に関する経路情報を取得する。経路とは、予め教示により設定された1個又は複数の教示位置を、予め設定された順序で結ぶことで形成された過程である。経路情報、例えば、各教示位置の座標や経路内の教示位置の順序を示す情報は、メモリー12(後述)に保持されている。メモリー12に保持される経路情報は、入力装置15等を介して入力されてもよい。なお、経路情報には、作業部21の一点として、例えば端点の最終的な位置、すなわち目標位置に関する情報も含まれる。
第1軌道生成部104は、駆動制御部200から取得された現在位置と、経路取得部102により取得された経路に関する情報に基づいて、次の教示位置、すなわち、端点の軌道を設定する。
また、第1軌道生成部104は、設定された端点の軌道に基づいて次に移動させるアーム22の位置、すなわちジョイント23に設けられた各アクチュエーターの目標角度を決定する。また、第1軌道生成部104は、目標角度だけアーム22を移動させるような指令値を生成し、動作制御部130へ出力する。なお、第1軌道生成部104が行う処理は、一般的な内容であるため、詳細な説明を省略する。
ビジュアルサーボ部110は、撮像装置30が撮像した画像を、画像取得部140を介して取得する。また、ビジュアルサーボ部110は、取得した画像に基づいて、ビジュアルサーボを開始して、アーム22を移動させる。なお、本実施形態では、ビジュアルサーボとして、例えば、視差が生じる2枚の画像を利用して画像を立体として認識させるステレオグラム等の方法を用いて計算した対象の3次元位置情報に基づいてロボットを制御する位置ベース法を採用する。なお、ビジュアルサーボとして、目標の画像から抽出した特徴量と現在の画像から抽出した特徴量とに基づいてロボットを制御する画像ベース法を採用してもよい。また、ビジュアルサーボとして、現在画像と目標画像についてパターンマッチングを行い、現在画像から目標画像が示す対象物と照合がとれた対象物を認識し、認識した対象物が表示されている位置や姿勢に基づいて、その対象物の位置や姿勢を特定してもよい。
画像処理部112は、画像取得部140から取得した画像データから端点を認識し、認識した端点を含む画像を抽出する。目標位置に存在する端点を含む目標画像は、予め取得しておきメモリー12等の記憶部に格納しておけばよい。画像処理部112は、その時点で抽出された現在画像から端点の現在位置を認識し、目標画像から端点の目標位置を認識し、認識した現在位置及び目標位置を第2軌道生成部114に出力する。また、画像処理部112は、認識した現在位置から目標位置までの距離を計算し、計算した距離を動作制御部130に出力する。なお、画像処理部112が行う画像認識処理は、公知の処理を用いることができるため、詳細な説明を省略する。
第2軌道生成部114は、画像処理部112により認識された現在位置及び目標位置に基づいて、端点の軌道、即ち端点の移動量及び移動方向を設定する。
また、第2軌道生成部114は、設定した端点の移動量及び移動方向に基づいて、各ジョイント23に設けられた各アクチュエーターの目標角度を決定する。さらに、第2軌道生成部114は、目標角度だけアーム22を移動させるような指令値を生成し、動作制御部130へ出力する。なお、第2軌道生成部114が行う軌道の生成処理、目標角度の決定処理、指令値の生成処理等は、一般的な様々な技術を用いることができるため、詳細な説明を省略する。
力制御部120は、ロボット20の力覚センサー25からのセンサー情報(力情報やモーメント情報を示すセンサー値)に基づいて、力制御(力覚制御ともいう)を行う。本実施形態では、力制御としてインピーダンス制御を行う。インピーダンス制御は、ロボットの手先(ハンド26等)に外から力を加えた場合に生じる機械的なインピーダンス(慣性、減衰係数、剛性)を、目的とする作業に適合した値に設定するための位置と力の制御手法である。具体的には、例えば、ロボット20のエンドエフェクター部に質量と粘性係数と弾性要素が接続されるモデルにおいて、目標として設定した質量と粘性係数と弾性係数で物体に接触するようにする制御である。
なお、力制御を行うためには、ハンド26等のエンドエフェクターに加わる力やモーメントを検出する必要があるが、エンドエフェクターに加わる力やモーメントを検出する方法は力覚センサーを用いるものに限られない。例えば、アーム22の各軸トルク値からエンドエフェクターに及ぼす外力を推定することもできる。したがって、力制御を行うためには、直接または間接的にエンドエフェクターに加わる力を取得する手段を、アーム22が有していればよい。
センサー情報取得部122は、ロボット20の力覚センサー25から出力されるセンサー情報(検出されたセンサー値など)を取得する。なお、センサー情報取得部122は、力検出部と呼ぶこともできる。
第3軌道生成部124は、インピーダンス制御により端点の移動方向及び移動量を決定する。また、第3軌道生成部124は、端点の移動方向及び移動量に基づいて、各ジョイント23に設けられた各アクチュエーターの目標角度を決定する。また、第3軌道生成部124は、目標角度だけアーム22を移動させるような指令値を生成し、動作制御部130へ出力する。なお、第3軌道生成部124が行う軌道の生成処理、目標角度の決定処理、指令値の生成処理等は、一般的な様々な技術を用いることができるため、詳細な説明を省略する。
なお、関節を持つロボット20では、各関節の角度を決定すると、フォワードキネマティクス処理により端点の位置が一意に決定される。つまり、N関節ロボットではN個の関節角度により1つの目標位置を表現できることになるから、当該N個の関節角度の組を1つの目標関節角度とすれば、端点の軌道を目標関節角度の集合と考えることができる。よって、第1軌道生成部104、第2軌道生成部114及び第3軌道生成部124から出力される指令値は、位置に関する値(目標位置)であってもよいし、関節の角度に関する値(目標角度)であってもよい。
画像取得部140は、撮像装置30が撮像した画像データを取得し、取得した画像データをビジュアルサーボ部110及び動作制御部130に出力する。
動作制御部(制御部)130は、第2軌道生成部114で計算された距離の大きさ及び力覚センサー25から入力されたセンサー値に基づいて位置制御部100から入力された指令値、ビジュアルサーボ部110から入力された指令値、又は力制御部120から入力された指令値のいずれかを選択する。動作制御部130は、選択した指令値に基づいて作業部21を移動させる制御信号をロボット20に出力する。
ここで、動作制御部130は、キャリブレーションの誤差、ロボット20の設置の誤差、撮像に関する誤差、及び作業環境に関する誤差の少なくとも1つに基づいて、ビジュアルサーボ部110から入力された指令値を選択する。このとき、動作制御部130は、接点A2と接点Bとの間を電気的に接続する。この指令値を選択する条件は、例えば、第2軌道生成部114で計算された距離、つまりロボット20の作業部21の端点と対象物との間の距離が第2の距離(例えば、2mm)以上、かつ、第1の距離(例えば、300mm)以下のときである。即ち、対象物からの距離が第2の距離以上、かつ第1の距離以下である場合には、ビジュアルサーボがなされる。この対象物からの距離とは、対象物の表面上の1点と作業部21の端点との間の距離のうちの最小となる距離(最短距離)である。
第2軌道生成部114で計算された距離が第1の距離よりも大きい場合には、動作制御部130は、位置制御部100から入力された指令値を選択する。このとき、動作制御部130は、接点A1と接点Bとの間を電気的に接続する。即ち、相対距離が第1の距離より大きい場合には、位置制御がなされる。
第2軌道生成部114で計算された距離が第2の距離よりも小さい場合には、動作制御部130は、力制御部120から入力された指令値を選択する。このとき、動作制御部130は、接点A3と接点Bとの間を電気的に接続する。即ち、距離が第2の距離より小さい場合には、力制御がなされる。
但し、キャリブレーションを行う際、動作制御部130は、第2軌道生成部114で計算された距離が第2の距離に達した場合には、制御信号の出力を一時的に停止することで、作業部21の動作を停止させる(寸止め)。その後、動作制御部130は、力制御部120から入力された指令値をロボット20に出力することで、作業部21、即ち端点の動作を再開する。ここで、動作制御部130は、ハンド26を形成する2本の指の間隔が互いに最も開いた状態で所定の方向に所定の速度で再度移動させる。所定の速度は、端点と対象物もしくは他の物体が接触しても互いに損傷せず、制御信号の出力を停止することで端点の移動を即座に止めることができる程度に低い速度である。所定の方向は、ロボット座標系である3次元直交座標系の一つの方向、例えば、水平面に垂直な方向(Z方向)である。
動作制御部130は、対象物(例えば、対象物W11)又はその対象物から予め定めた範囲(例えば、作業範囲)内にある物体(例えば、対象物W21)のいずれかに接触したか否かを判定する。動作制御部130は、例えば、力覚センサー25から入力されたセンサー値の単位時間当たりの変化が予め定めたセンサー値の変化(例えば、50g重/s)よりも急激であるとき接触したと判定する。
動作制御部130は、接触したと判定したとき、作業部21の端点と対象物もしくは予め覚めた範囲内にある物体と接触した点を基準点として定め、定めた基準点を示す基準信号を第1軌道生成部104、第2軌道生成部114、第3軌道生成部124に出力する。ここで、第1軌道生成部104、第2軌道生成部114、第3軌道生成部124は、例えば、動作制御部130から入力された基準信号が示す基準点の所定の方向(例えば、Z方向)の座標値と、作業部21の端点のその方向の座標値が等しいものとしてリセットする。これにより、その方向の座標値を定める(位置決め)ことができ、基準点を基準とした作業部21の端点の相対的な座標値を取得することができる。
なお、作業部21の端点の停止、ロボット座標系での移動、接触、位置決めといった一連の処理ならびに動作(以下、キャリブレーション処理と呼ぶ)を、その他の方向(例えば、X方向、Y方向)についても行うことで、それらの方向に係る相対的な座標値を取得することができる。
その後、動作制御部130は、基準点からの相対位置を用いてロボット20の動作を制御する。ここで、動作制御部130は、所定の目標位置を基準点からの相対的な座標値に変換し、変換した座標値で指定された位置に作業部21の端点を近づけるように作業部21の位置及び姿勢を制御する。これにより、作業環境等の変化に伴う誤差を解消又は低減することができる。
また、ロボット座標系における各方向(例えば、Z方向)へのキャリブレーション処理を、その方向に垂直な平面(例えば、XY平面)内で異なる座標について繰り返す(例えば、6回)ことで精度が向上させることができる。その方向の座標値が同一であっても、その方向に垂直な平面内で座標値が異なる場合には、作業部21を形成するジョイント23の角度、すなわちエンコーダー値が異なる可能性があるため、より多様な基準点が取得され、その基準点が制御に用いられるためである。
各方向へのキャリブレーション処理が行われた後、動作制御部130は、通常の作業、つまり目標位置に作業部21の端点を近づける制御を行う。動作制御部130が行う処理の詳細は後述する。
次に、本実施形態に係るロボットシステム1における制御の流れの一例について説明する。
図4は、本実施形態に係るロボットシステム1における制御の流れの一例を示すブロック図である。
位置制御部100において、位置制御により作業部21の各ジョイント23を目標角度に近づけるためのフィードバックループが回っている。予め設定された経路情報には、目標位置に関する情報が含まれる。第1軌道生成部104は、経路情報を取得すると、目標位置に関する情報と、駆動制御部200により取得された現在位置とに基づいて軌道及び指令値(ここでは、目標角度)を生成する。
ビジュアルサーボ部110において、撮像装置30で取得した現在画像を示す画像データを用いて現在位置を目標位置に近づけるためのビジュアルフィードバックループが回っている。第2軌道生成部114は、メモリー12から目標位置に関する情報として目標画像を示す目標画像データを取得する。また、現在位置及び目標位置は、画像上における座標系(画像座標系)で表されているため、これをロボット20における座標系(ロボット座標系)に変換する。また、第2軌道生成部114は、変換後の現在位置及び目標位置に基づいて、軌道及び指令値(ここでは、目標角度)を生成する。
力制御部120において、力覚センサー25から入力されたセンサー値に基づいて、目標として設定したインピーダンス(目標インピーダンス)で、ロボット20の作業部21の端点を物体に接触させるためのフィードバックループが回っている。第3軌道生成部124は、入力されたセンサー値が、目標インピーダンスとなるように軌道及び指令値(ここでは、目標角度)を生成する。
動作制御部(制御部)130は、第2軌道生成部114で計算された距離の大きさ及び力覚センサー25から入力されたセンサー値に基づいて位置制御部100から入力された指令値、ビジュアルサーボ部110から入力された指令値、又は力制御部120から入力された指令値のいずれかを選択する。動作制御部130は、選択した指令値に基づいて作業部21を移動させる制御信号をロボット20に出力する。
なお、一般的に画像処理の負荷は高いため、ビジュアルサーボ部110が指令値を出力する間隔(例えば30ミリ秒(msec)毎)は、位置制御部100や力制御部120が指令値を出力する間隔(例えば、1ミリ秒(msec)毎)よりも長い。
駆動制御部200には、ロボット制御装置10から指令値(目標角度)が入力される。駆動制御部200は、各ジョイント23に設けられた各アクチュエーターのエンコーダー値等に基づいて現在角度を取得し、目標角度と現在角度の差分(偏差角度)を算出する。また、駆動制御部200は、偏差角度に基づいてアーム22の移動速度を算出し、作業部21を算出した移動速度に応じた偏差角度だけ移動させる。
上述したように、動作制御部130は、作業部21の位置を制御する制御方式をビジュアルサーボに切り替えるタイミングを、第1の距離、第2の距離といった閾値に基づいて制御する。これらの閾値は、作業部21の端点と対象物との間の距離に応じて、(1)対象物への衝突する可能性の有無、(2)対象物を誤認識もしくは認識に失敗する可能性の有無、(3)作業部21を動作させる速度の差異、に応じて定められる。
図5は、制御方式をビジュアルサーボに切り替える条件の一例を示す表である。
各行は、(1)対象物への衝突する可能性の有無(対象物への衝突)、(2)対象物を誤認識もしくは認識に失敗する可能性の有無(対象物の誤認識)、(3)作業部21を動作させる速度(ロボットの作業速度)を示す。各列は、作業部21の端点と対象物との距離(対象物からの距離)の区分を示す。
例えば、距離が2mm未満の場合には、(1)対象物へ衝突する可能性があるが(×)、(2)対象物を誤認識もしくは認識に失敗する可能性はなく(○)、(3)作業部21を動作させる速度は十分確保できる(○)。距離が2mm以上、かつ300mm以下の場合には、(1)対象物へ衝突する可能性はなく(○)、(2)対象物を誤認識もしくは認識に失敗する可能性はなく(○)、(3)作業部21を動作させる速度は十分確保できる(○)。距離が300mmを越える場合には、(1)対象物へ衝突する可能性はないが(○)、(2)対象物を誤認識もしくは認識に失敗する可能性があり(×)、(3)作業部21を動作させる速度が遅い(×)。
これにより、(1)、(2)、(3)の要因がいずれも問題にならない距離の範囲を画定する2mm、300mmが、それぞれ第1の距離、第2の距離として選ばれる。
また、第1の距離、第2の距離は、上述した誤差要因、即ち、ロボット20の設置の誤差、ロボット20の剛性に起因する誤差、作業部21が対象物を把持した位置の誤差、撮像に関する誤差、作業環境に関する誤差のいずれか、または、それらの任意の組み合わせに応じて定めてもよい。これらの誤差要因は、(1)−(3)に影響するためである。
また、上述したキャリブレーション処理を行うことによってキャリブレーションされたロボット座標系の座標値の精度は、作業部21の端点と接触させる物体の平面の凹凸に依存する。
図6は、本実施形態に係るキャリブレーション処理で用いられる対象物の平面粗さと位置誤差との大きさの関係の一例を示す表である。
ここで、対象物の平面粗さが1mm未満では、作業部21の端点の位置誤差(ハンドの位置誤差)が小さく(○)、対象物の平面粗さが1mm以上では、位置誤差が大きい(×)。従って、作業部21の端点の位置誤差が2mm以下となる精度を確保するためには、その物体の平面粗さを1mm以下とする。
次に、本実施形態に係るロボット制御処理について説明する。
図7は、本実施形態に係るロボット制御処理を示すフローチャートである。
この例では、動作開始時における目標位置と作業部21の端点(開始位置)と間の距離が第1の距離よりも大きく、開始位置が目標位置から所定の座標軸の方向(例えば、Z方向)にあり、目標位置が対象物(例えば、対象物W12)の表面上の1点に設定されている場合を仮定している。
(ステップS101)動作制御部130は、位置制御を行う。ここで、動作制御部130は、位置制御部100から入力された指令値を示す制御信号をロボット20に出力する。その後、ステップS102に進む。
(ステップS102)動作制御部130は、対象物からの距離が第1の距離(例えば、300mm)よりも小さいか否かを判定する。小さくないと判定した場合には(ステップS102 NO)、ステップS101を繰り返す。小さいと判定した場合には(ステップS102 YES)、ステップS103に進む。
(ステップS103)動作制御部130は、ビジュアルサーボ(制御)を行う。ここで、動作制御部130は、ビジュアルサーボ部110から入力された指令値を示す制御信号をロボット20に出力する。その後、ステップS104に進む。
(ステップS104)動作制御部130は、対象物からの距離が第2の距離(例えば、2mm)よりも小さいか否かを判定する。小さくないと判定した場合には(ステップS104 NO)、ステップS103を繰り返す。小さいと判定した場合には(ステップS104 YES)、ステップS105に進む。
(ステップS105)動作制御部130は、作業部21の端点の動作を一時的に停止(例えば、1秒)させる。その後、ステップS106に進む。
(ステップS106)動作制御部130は、力制御を行って再び作業部21の端点を目標に近づける。ここで、動作制御部130は、力制御部120から入力された指令値を示す制御信号をロボット20に出力する。その後、ステップS107に進む。
(ステップS107)動作制御部130は、作業部21の端点が対象物の表面に接触したか否かを検出する。接触が検出された場合には(ステップS107 YES)、ステップS108に進む。接触が検出されない場合には(ステップS107 NO)、ステップS106に進む。
(ステップS108)動作制御部130は、作業部21の端点の動作を一時的に停止させる。その後、ステップS109に進む。
(ステップS109)動作制御部130は、ステップS107で作業部21の端点を動作させる方向の座標値のキャリブレーション(位置決め)を行う。ここで、動作制御部130は、例えば、対象物と接触した点の座標値を、その端点の基準点の座標値と定める。その後、ステップS110に進む。
(ステップS110)動作制御部130は、全ての座標軸方向について座標値のキャリブレーションを実行したか否かを判定する。実行済みと判定された場合には(ステップS110 YES)、図7に示す処理を終了する。その後、動作制御部130は、所望の作業(例えば、嵌め合い作業)をロボット20に行わせる。全ての座標軸方向(3次元直交座標系の場合、X方向、Y方向、Z方向)について実行されていないと判定された場合には(ステップS110 NO)、ステップS111に進む。
(ステップS111)動作制御部130は、作業部21の端点を動作させる座標軸方向を他の座標方向(例えば、Z方向からX方向)に変更する。その後、ステップS109に進む。
次に、キャリブレーション処理におけるハンド26の動作例について説明する。
図8は、本実施形態に係るキャリブレーション処理におけるハンド26の動作の一例を示す図である。
図8において、上方、右方は、それぞれZ方向、X方向を示す。破線で表されたハンド26は、対象物W12から第2の距離としてL2だけZ方向に離れていることを示す(図7、ステップS104)。対象物W12の表面は、XY平面上にある。実線で表されたハンド26は、ハンド26の端点(この例では、最先端)が対象物W12に接触していることを示す(図7、ステップS107)。ハンド26の直上に示した下向きの矢印は、ハンド26を破線で示した位置から実線で示した位置に移動させることを示す。即ち、図8は、ハンド26をZ方向に移動させ、対象物W12に接触した位置をもってZ座標の基準点を定めることを示す(図7、ステップS109)。
図9は、本実施形態に係るキャリブレーション処理におけるハンド26の動作の他の例を示す図である。
この例では、目標位置は対象物W11の側面に設定され、ステップS111(図7)によりハンド26をX方向に動作させてX座標の基準点を定める場合を示す。破線で表されたハンド26は、長手方向がZ方向を向くように配置された対象物W11から第2の距離としてL2だけX方向に離れていることを示す。実線で表されたハンド26は、ハンド26の端点(この例では、側面)が対象物W11に接触していることを示す。この位置において、ハンド26の端点のX座標のキャリブレーションが行われる(図7、ステップS109)。ハンド26の左側面に示した右向きの矢印は、ハンド26を破線で示した位置から実線で示した位置に移動させることを示す。即ち、ハンド26をX方向に移動させ、対象物W11に接触した位置をもってX座標の基準点が定められる。
図9に示す例は、ハンド26の向きが図8に示す例と同一である場合を示すが、これには限られない。次に説明するようにハンド26の向きを変更し、変更後に変更前と同一の方向にハンド26を移動させてもよい。
図10は、本実施形態に係るキャリブレーション処理におけるハンド26の動作のさらに他の例を示す図である。
この例では、目標位置は対象物W12の表面に設定され、ハンド26の向きの変更前のX座標の基準点を定める場合を示す。破線で表されたハンド26は、ステップS111(図7)により向きがZ方向からX方向に変更され、対象物W12の表面から第2の距離としてL2だけZ方向に離れていることを示す。実線で表されたハンド26は、ハンド26の端点(この例では、側面)が対象物W11に接触していることを示す。この位置において、ハンド26の端点のX座標のキャリブレーションが行われる(図7、ステップS109)。
ハンド26の上側面に示した下向きの矢印は、ハンド26を破線で示した位置から実線で示した位置に移動させることを示す。即ち、図10は、ハンド26をZ方向(変更後)に移動させ、対象物W11に接触した位置をもってZ座標(変更後)の基準点を定めることを示す。この変更後のZ座標は、変更前のX座標に相当する。作業環境により作業部21が移動可能な領域が制限される場合(所定の対象物以外の物体が配置されている場合、等)でも、3次元のキャリブレーションを行うことができる。
図9、10は、X座標の基準点を定める場合を例にとったが、Y座標についてもハンド26をY方向に移動させて接触した点、又はY方向(変更前)をZ方向(変更後)に方向を変更したうえでZ方向に移動させて接触した点、をもってX座標の基準点を定めてもよい。
本実施形態では、上述したようにビジュアルサーボを用いて作業部21の端点を対象物に接近させ、その後、力制御を用いて対象物に接触させることで精密なキャリブレーションを実現し、キャリブレーションを簡易に行うことができる。
次に、本実施形態に係るキャリブレーションと従来のキャリブレーションとの効果とを比較する。本実施形態に係るキャリブレーション処理を用いたキャリブレーションを簡易キャリブレーション、従来のように人手によるキャリブレーションを精密キャリブレーションと呼ぶ。
図11は、簡易キャリブレーションと精密キャリブレーションの比較例を示す。
各列は、キャリブレーション精度、作業時間を示す。作業時間とは、キャリブレーションに要する時間であり、ロボットキャリブレーションとビジョンキャリブレーションとが行われる時間が含まれる。各列は、簡易キャリブレーション、精密キャリブレーションを示す。但し、この例では、簡易キャリブレーションにおいて、作業部21が比較的剛性が低い柔構造のアームで形成され、キャリブレーションが行われる基準点の数が2箇所である。これに対し、精密キャリブレーションにおいて、作業部21が高剛性アームで形成され、キャリブレーションにおいて用いる基準点の数が6箇所である。
簡易キャリブレーションでは、キャリブレーション精度が±2mm以内、作業時間は合計約20分である。精密キャリブレーションでは、キャリブレーション精度が±0.2mm以内であるが、作業時間は合計約4時間である。
即ち、精密キャリブレーションでは、高い精度が得られるが必要とする作業時間が長ので、頻繁に作業環境が変化する場合には現実的ではない。これに対し、簡易キャリブレーションでは、実用に耐えられる精度が得られ、作業時間を格段に低減することができる。図11に示す例では、簡易キャリブレーションでの精度は、精密キャリブレーションよりも一見低いが、接触させようとする物体の表面粗さに依存する。即ち、簡易キャリブレーションでも、表面粗さがより小さい物体を用いることや、基準点の数を増加することで精度を高くすることができる。
上述したロボットシステム1の構成は、本実施形態の特徴を説明するものであって、これには限られない。ロボット制御装置10は、コンピューターで構成されていてもよい。
図12は、本実施形態に係るロボット制御装置10の機能構成の他の例を示す図である。
ロボット制御装置10は、CPU(Central Processing Unit)11、メモリー12、外部記憶装置13、通信装置14、入力装置15、出力装置16、及びI/F(Interface)17を含んで構成される。
CPU11は、上述した処理に係る演算を行う。メモリー12は、不揮発性の記憶装置であるROM(Read Only Memory)や揮発性の記憶装置であるRAM(Random Access Memory)を含む。通信装置14は、ロボット20との間で通信を行う。入力装置15は、ユーザーの操作を受け付け、受け付けた操作に応じた操作入力信号を入力する装置、例えば、マウス、キーボード、等である。出力装置16は、画像データを視認可能に出力する装置、例えば、ディスプレイ、等である。I/F17は、他の装置と接続し、データを入力又は出力する。例えば、I/F17は、例えば撮像装置30から画像データを入力する。
上述の各機能部は、例えば、CPU11がメモリー12に格納された所定のプログラムを読み出して実行することにより実現される。なお、所定のプログラムは、例えば、予めメモリー12にインストールされてもよいし、通信装置14を介してネットワークからダウンロードされてインストール又は更新されてもよい。
ロボット制御装置10とロボット20は、上述のように互いに別体で構成されてもよいが、それらが一体化されたロボット20として構成されてもよい。
また、撮像装置30は、上述のようにロボット制御装置10又はロボット20と別体であってもよいが、一体化されてもよい。
また、本実施形態では、ロボット20の一例として、2本の作業部21を備える双腕ロボットを示したが、1本の作業部21を備える単腕ロボット、3本以上の作業部21を備えるロボットであってもよい。また、ロボット20は、スカラーロボットでもよく、垂直多関節ロボットでもよい。
また、ロボット20は、移動を可能にする部材としてキャスター27に代え、例えば、動作可能な脚部を備えてもよい。ロボット20は、例えば、その脚部を備えた歩行ロボットとして構成されていてもよく、ロボット制御装置10は、その脚部の動作を制御してもよい。ここで、ロボットの設置の誤差、前記ロボットの剛性に起因する誤差に基づいてビジュアルサーボを開始する制御を行うことや、作業部21の一点を対象物に接触させ、対象物と接触した位置を作業部21の一点の基準点と定めることで、移動に係る制御に対する要求条件が緩和される。例えば、脚部の位置に対する精度、車輪の回転速度に対する精度、等を低下させることが許容される。そのため、ロボット20の製造、検査、等に係るコストを低減することができる。
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
上述したロボットシステム1の機能構成は、ロボットシステム1の構成について理解を容易にするために、主な処理内容に応じて分類したものである。構成要素の分類の仕方や名称によって、本願発明が制限されることはない。ロボットシステム1の構成は、処理内容に応じて、さらに多くの構成要素に分類することもできる。また、1つの構成要素がさらに多くの処理を実行するように分類することもできる。また、各構成要素の処理は、1つのハードウェアで実行されてもよいし、複数のハードウェアで実行されてもよい。
また、ロボット制御装置10及びロボット20の機能及び処理の分担は、図示した例に限られない。例えば、ロボット制御装置10の少なくとも一部の機能は、ロボット20に含まれ、ロボット20により実現されてもよい。また、例えば、ロボット20の少なくとも一部の機能は、ロボット制御装置10に含まれ、ロボット制御装置10により実現されてもよい。
また、上述したフローチャートの各処理単位は、ロボット制御装置10の処理を理解容易にするために、主な処理内容に応じて分割したものである。処理単位の分割の仕方や名称によって、本願発明が制限されることはない。ロボット制御装置10の処理は、処理内容に応じて、さらに多くの処理単位に分割することもできる。また、1つの処理単位がさらに多くの処理を含むように分割することもできる。
以上、本発明について実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。上記実施形態に多様な変更または改良を加えることが可能であることが当業者には明らかである。また、そのような変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
1…ロボットシステム、
10…ロボット制御装置、11…CPU、12…メモリー、13…外部記憶装置、
14…通信装置、15…入力装置、16…出力装置、17…I/F
100…位置制御部、102…経路取得部、104…第1軌道生成部、
110…ビジュアル制御部、112…画像処理部、114…第2軌道生成部、
120…力制御部、122…センサー情報取得部、124…第3軌道生成部、
130…動作制御部、140…画像取得部、
20…ロボット、21…作業部、22…アーム、23…ジョイント、24…リンク、
25…力覚センサー、26…ハンド、27…キャスター、28…固定脚、
200…駆動制御部、
30…撮像装置

Claims (19)

  1. 対象物を含む画像を取得する画像取得部と、
    キャリブレーションの誤差、ロボットの設置の誤差、前記ロボットの剛性に起因する誤差、前記ロボットが対象物を把持した位置の誤差、撮像に関する誤差、及び作業環境に関する誤差の少なくとも1つに基づいて、ビジュアルサーボを開始する制御部と、
    を備えるロボット制御装置。
  2. 前記作業環境は、前記対象物の明るさを示す照度である請求項1に記載のロボット制御装置。
  3. 対象物を含む画像を取得する画像取得部と、
    ロボットの作業部の端点と前記対象物との間の距離が2mm以上のとき、ビジュアルサーボを開始する制御部と、
    を備えるロボット制御装置。
  4. 前記制御部は、前記距離が2mmから300mmまでのとき、前記ビジュアルサーボを開始する請求項3に記載のロボット制御装置。
  5. 前記ビジュアルサーボは、前記ロボットが第1の姿勢から前記第1の姿勢とは異なる第2の姿勢へと移る間に、前記画像取得部に前記対象物を複数回撮像させる制御である請求項1から4のいずれか1項に記載のロボット制御装置。
  6. 力を検出する力検出部が設けられた作業部の一点を対象物に接触させ、前記対象物と接触した位置を前記作業部の一点の基準点と定める制御部と、
    を備えるロボット制御装置。
  7. 力を検出する力検出部が設けられた作業部の一点を1mm以下の平面粗さを有する対象物に接触させ、前記対象物と接触した位置を前記作業部の一点の基準点と定める制御部と、
    を備えるロボット制御装置。
  8. 前記作業部の一点は、前記力検出部よりも前記作業部の先端に位置している請求項6又は請求項7に記載のロボット制御装置。
  9. 前記制御部は、前記作業部の一点を前記対象物に接触させる際、前記作業部の一点を水平面に垂直な方向に移動させ、前記対象物と接触した位置の前記垂直な方向の座標値を前記基準点の前記垂直な方向の座標値と定める請求項6から請求項8のいずれか1項に記載のロボット制御装置。
  10. 前記制御部は、前記作業部の一点を前記対象物に接触させる際、前記作業部の一点を前記水平面に平行な方向に移動させ、前記対象物と接触した位置の前記平行な方向の座標値を前記基準点の前記平行な方向の座標値と定める前記請求項9に記載のロボット制御装置。
  11. 前記制御部は、前記定めた基準点からの相対位置を用いてロボットの動作を制御する請求項7から10のいずれか1項に記載のロボット制御装置。
  12. 作業部を備えるロボットと、ロボット制御装置とを備えるロボットシステムであって、
    前記ロボット制御装置は、
    対象物を含む画像を取得する画像取得部と、
    キャリブレーションの誤差、前記ロボットの設置の誤差、前記ロボットの剛性に起因する誤差、前記ロボットが対象物を把持した位置の誤差、撮像に関する誤差、及び作業環境に関する誤差の少なくとも1つに基づいて、ビジュアルサーボを開始する制御部と、
    を備えるロボットシステム。
  13. 作業部を備えるロボットと、ロボット制御装置とを備えるロボットシステムであって、
    前記ロボット制御装置は、
    対象物を含む画像を取得する画像取得部と、
    前記作業部の一点と前記対象物との間の距離が2mm以上のとき、ビジュアルサーボを開始する制御部と、
    を備えるロボットシステム。
  14. 作業部を備えるロボットと、ロボット制御装置とを備えるロボットシステムであって、
    前記ロボット制御装置は、
    力を検出する力検出器を設けられた前記作業部の一点を対象物に接触させ、前記対象物と接触した位置を前記作業部の一点の基準点と定める制御部と、
    を備えるロボットシステム。
  15. 作業部を備えるロボットと、ロボット制御装置とを備えるロボットシステムであって、
    前記ロボット制御装置は、
    力を検出する力検出器を設けられた前記作業部の一点を1mm以下の平面粗さを有する対象物に接触させ、前記対象物と接触した位置を前記作業部の一点の基準点と定める制御部と、
    を備えるロボットシステム。
  16. 作業部と、
    対象物を含む画像を取得する画像取得部と、
    キャリブレーションの誤差、設置の誤差、剛性に起因する誤差、対象物を把持した位置の誤差、撮像に関する誤差、及び作業環境に関する誤差の少なくとも1つに基づいて、ビジュアルサーボを開始する制御部と、
    を備えるロボット。
  17. 作業部と、
    対象物を含む画像を取得する画像取得部と、
    前記作業部の一点と前記対象物との間の距離が2mm以上のとき、ビジュアルサーボを開始する制御部と、
    を備えるロボット。
  18. 作業部と、
    前記作業部に作用する力を検出する力検出部と、
    前記作業部の一点を対象物に接触させ、前記対象物と接触した位置を前記作業部の一点の基準点と定める制御部と、
    を備えるロボット。
  19. 作業部と、
    前記作業部に作用する力を検出する力検出部と、
    前記作業部の一点を1mm以下の平面粗さを有する対象物に接触させ、前記対象物と接触した位置を前記作業部の一点の基準点と定める制御部と、
    を備えるロボット。
JP2013226556A 2013-10-31 2013-10-31 ロボット制御装置、ロボットシステム、及びロボット Active JP6511715B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013226556A JP6511715B2 (ja) 2013-10-31 2013-10-31 ロボット制御装置、ロボットシステム、及びロボット
US14/527,106 US10059001B2 (en) 2013-10-31 2014-10-29 Robot control device, robot system, and robot
EP20140190856 EP2868441A1 (en) 2013-10-31 2014-10-29 Robot control device, robot system, and robot
CN201410594160.3A CN104589354B (zh) 2013-10-31 2014-10-29 机器人控制装置、机器人系统以及机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013226556A JP6511715B2 (ja) 2013-10-31 2013-10-31 ロボット制御装置、ロボットシステム、及びロボット

Publications (2)

Publication Number Publication Date
JP2015085458A true JP2015085458A (ja) 2015-05-07
JP6511715B2 JP6511715B2 (ja) 2019-05-15

Family

ID=51868791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013226556A Active JP6511715B2 (ja) 2013-10-31 2013-10-31 ロボット制御装置、ロボットシステム、及びロボット

Country Status (4)

Country Link
US (1) US10059001B2 (ja)
EP (1) EP2868441A1 (ja)
JP (1) JP6511715B2 (ja)
CN (1) CN104589354B (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116891A1 (ja) * 2017-12-15 2019-06-20 川崎重工業株式会社 ロボットシステム及びロボット制御方法
CN110142785A (zh) * 2019-06-25 2019-08-20 山东沐点智能科技有限公司 一种基于目标检测的巡检机器人视觉伺服方法
WO2021044473A1 (ja) * 2019-09-02 2021-03-11 ヤマハ発動機株式会社 多関節ロボットアーム制御装置及び多関節ロボットアーム装置
JP7054036B1 (ja) 2021-07-09 2022-04-13 株式会社不二越 ロボットビジョンシステム
WO2023281686A1 (ja) * 2021-07-08 2023-01-12 Dmg森精機株式会社 ワーク供給システム
WO2023013699A1 (ja) * 2021-08-03 2023-02-09 京セラ株式会社 ロボット制御装置、ロボット制御システム、及びロボット制御方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104416581A (zh) * 2013-08-27 2015-03-18 富泰华工业(深圳)有限公司 具有报警功能的机械手
JP2015089575A (ja) * 2013-11-05 2015-05-11 セイコーエプソン株式会社 ロボット、制御装置、ロボットシステム及び制御方法
US9592608B1 (en) * 2014-12-15 2017-03-14 X Development Llc Methods and systems for providing feedback during teach mode
KR20180015774A (ko) * 2015-09-25 2018-02-14 두산로보틱스 주식회사 로봇 제어 방법 및 장치
CN108349087A (zh) * 2015-11-16 2018-07-31 川崎重工业株式会社 机器人
RU2653397C2 (ru) * 2015-11-16 2018-05-08 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Исполнительный орган робота
US9919422B1 (en) 2016-01-06 2018-03-20 X Development Llc Methods and systems to provide mechanical feedback during movement of a robotic system
CN105538345B (zh) * 2016-01-27 2017-09-26 华南理工大学 一种基于多镜头的智能机械手及定位装配方法
JP6671993B2 (ja) * 2016-02-01 2020-03-25 東京エレクトロン株式会社 基板受け渡し位置の教示方法及び基板処理システム
CN109070365B (zh) * 2016-04-22 2021-11-05 三菱电机株式会社 物体操作装置及物体操作方法
CA3030738A1 (en) * 2016-07-15 2018-01-18 Magna International Inc. System and method for adaptive bin picking for manufacturing
JP6844158B2 (ja) * 2016-09-09 2021-03-17 オムロン株式会社 制御装置および制御プログラム
CN108724237B (zh) * 2016-12-24 2021-10-29 宁波亿诺维信息技术有限公司 一种工业机器人
JP6527178B2 (ja) * 2017-01-12 2019-06-05 ファナック株式会社 視覚センサのキャリブレーション装置、方法及びプログラム
JP6881188B2 (ja) * 2017-09-27 2021-06-02 オムロン株式会社 位置検出装置およびプログラム
US10875662B2 (en) * 2018-04-19 2020-12-29 Aurora Flight Sciences Corporation Method of robot manipulation in a vibration environment
JP7135408B2 (ja) * 2018-04-26 2022-09-13 セイコーエプソン株式会社 ロボット制御装置およびロボットシステム
US11110610B2 (en) 2018-06-19 2021-09-07 Bae Systems Plc Workbench system
CN109318234B (zh) * 2018-11-09 2021-03-12 哈尔滨工业大学 一种适用于视觉伺服插拔作业的标定方法
TWI696529B (zh) * 2018-11-30 2020-06-21 財團法人金屬工業研究發展中心 自動定位方法以及自動控制裝置
JP7059968B2 (ja) * 2019-03-01 2022-04-26 オムロン株式会社 制御装置および位置合わせ装置
JP7024751B2 (ja) * 2019-03-20 2022-02-24 オムロン株式会社 制御装置および制御プログラム
JP7350559B2 (ja) * 2019-08-08 2023-09-26 キヤノン株式会社 エンコーダ装置、駆動装置、ロボット装置、位置検出方法、物品の製造方法、プログラム、及び記録媒体
CN110561422B (zh) * 2019-08-14 2021-04-20 深圳市优必选科技股份有限公司 一种校准机器人各关节的方法、装置及机器人
EP4017688A1 (en) 2019-09-30 2022-06-29 Siemens Aktiengesellschaft Machine learning enabled visual servoing with dedicated hardware acceleration
US11878432B2 (en) 2019-10-21 2024-01-23 Silicon Laboratories Inc. Low-cost robotics for placement of integrated circuit and method therefor
US11529742B2 (en) * 2019-10-21 2022-12-20 Silicon Laboratories Inc. Control of low-cost robotics and method therefor
JP7120512B2 (ja) * 2019-11-22 2022-08-17 Smc株式会社 軌跡制御装置
CN111823225A (zh) * 2020-06-04 2020-10-27 江汉大学 一种视觉伺服三维仿真方法及装置
CN113500584B (zh) * 2021-07-15 2022-06-28 西北工业大学 一种三自由度并联机器人的末端误差校正系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07195287A (ja) * 1993-12-29 1995-08-01 Hitachi Constr Mach Co Ltd 力制御ロボットの接触式位置検出装置
JPH09311712A (ja) * 1996-05-21 1997-12-02 Nippon Telegr & Teleph Corp <Ntt> ロボット制御方法及び装置
JP2003211382A (ja) * 2002-01-16 2003-07-29 Denso Wave Inc ロボット制御装置
JP2011093055A (ja) * 2009-10-30 2011-05-12 Honda Motor Co Ltd 情報処理方法及び装置並びにプログラム
JP2011152599A (ja) * 2010-01-26 2011-08-11 Ihi Corp ロボットのキャリブレーション方法および装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4532757A (en) * 1983-09-30 1985-08-06 Martin Marietta Corporation Robotic fruit harvester
WO2000045229A1 (en) * 1999-01-29 2000-08-03 Georgia Tech Research Corporation Uncalibrated dynamic mechanical system controller
JP2008126328A (ja) * 2006-11-17 2008-06-05 Toyota Motor Corp ロボット装置及びそのセンサ計測情報転送システム
EP2268459B9 (en) * 2008-04-30 2012-03-21 ABB Technology AB A method and a system for determining the relation between a robot coordinate system and a local coordinate system located in the working range of the robot
JP2010131711A (ja) 2008-12-05 2010-06-17 Honda Motor Co Ltd ロボットアームの制御方法
JP5071362B2 (ja) 2008-12-09 2012-11-14 株式会社安川電機 組み立て作業ロボットの制御方法および組み立て作業ロボット
JP2010152550A (ja) * 2008-12-24 2010-07-08 Canon Inc 作業装置及びその校正方法
JP2010274396A (ja) * 2009-06-01 2010-12-09 Kawasaki Heavy Ind Ltd 自動作業システムにおける位置ズレ補正方法及び位置ズレ補正プログラム
US8600552B2 (en) 2009-10-30 2013-12-03 Honda Motor Co., Ltd. Information processing method, apparatus, and computer readable medium
JP2011140077A (ja) * 2010-01-06 2011-07-21 Honda Motor Co Ltd 加工システム及び加工方法
JP5218470B2 (ja) * 2010-04-28 2013-06-26 株式会社安川電機 ロボットの作業成否判定装置、および方法
JP5505138B2 (ja) * 2010-07-05 2014-05-28 株式会社安川電機 ロボット装置およびロボット装置による把持方法
JP5682314B2 (ja) * 2011-01-06 2015-03-11 セイコーエプソン株式会社 ロボット
JP6305673B2 (ja) * 2011-11-07 2018-04-04 セイコーエプソン株式会社 ロボット制御システム、ロボットシステム及びロボット
JP5929224B2 (ja) * 2012-01-20 2016-06-01 セイコーエプソン株式会社 ロボット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07195287A (ja) * 1993-12-29 1995-08-01 Hitachi Constr Mach Co Ltd 力制御ロボットの接触式位置検出装置
JPH09311712A (ja) * 1996-05-21 1997-12-02 Nippon Telegr & Teleph Corp <Ntt> ロボット制御方法及び装置
JP2003211382A (ja) * 2002-01-16 2003-07-29 Denso Wave Inc ロボット制御装置
JP2011093055A (ja) * 2009-10-30 2011-05-12 Honda Motor Co Ltd 情報処理方法及び装置並びにプログラム
JP2011152599A (ja) * 2010-01-26 2011-08-11 Ihi Corp ロボットのキャリブレーション方法および装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11305427B2 (en) 2017-12-15 2022-04-19 Kawasaki Jukogyo Kabushiki Kaisha Robot system and robot control method
JP7122821B2 (ja) 2017-12-15 2022-08-22 川崎重工業株式会社 ロボットシステム及びロボット制御方法
CN111565895A (zh) * 2017-12-15 2020-08-21 川崎重工业株式会社 机器人系统及机器人控制方法
CN111565895B (zh) * 2017-12-15 2023-01-03 川崎重工业株式会社 机器人系统及机器人控制方法
WO2019116891A1 (ja) * 2017-12-15 2019-06-20 川崎重工業株式会社 ロボットシステム及びロボット制御方法
JP2019107704A (ja) * 2017-12-15 2019-07-04 川崎重工業株式会社 ロボットシステム及びロボット制御方法
CN110142785A (zh) * 2019-06-25 2019-08-20 山东沐点智能科技有限公司 一种基于目标检测的巡检机器人视觉伺服方法
WO2021044473A1 (ja) * 2019-09-02 2021-03-11 ヤマハ発動機株式会社 多関節ロボットアーム制御装置及び多関節ロボットアーム装置
WO2023281686A1 (ja) * 2021-07-08 2023-01-12 Dmg森精機株式会社 ワーク供給システム
JP7054036B1 (ja) 2021-07-09 2022-04-13 株式会社不二越 ロボットビジョンシステム
CN114589699A (zh) * 2021-07-09 2022-06-07 株式会社不二越 机器人视觉系统
WO2023282032A1 (ja) * 2021-07-09 2023-01-12 株式会社不二越 ロボットビジョンシステム
JP2023010327A (ja) * 2021-07-09 2023-01-20 株式会社不二越 ロボットビジョンシステム
TWI798099B (zh) * 2021-07-09 2023-04-01 日商不二越股份有限公司 機器人視覺系統
WO2023013699A1 (ja) * 2021-08-03 2023-02-09 京セラ株式会社 ロボット制御装置、ロボット制御システム、及びロボット制御方法

Also Published As

Publication number Publication date
US10059001B2 (en) 2018-08-28
US20150120055A1 (en) 2015-04-30
CN104589354A (zh) 2015-05-06
JP6511715B2 (ja) 2019-05-15
CN104589354B (zh) 2018-12-07
EP2868441A1 (en) 2015-05-06

Similar Documents

Publication Publication Date Title
JP6511715B2 (ja) ロボット制御装置、ロボットシステム、及びロボット
US20150120058A1 (en) Robot, robot system, and robot control apparatus
CN106493711B (zh) 控制装置、机器人以及机器人系统
JP6329645B2 (ja) ロボット
JP2018161692A (ja) 情報処理装置、情報処理方法およびプログラム
JP2015182142A (ja) ロボット、ロボットシステム及び教示方法
US20140277720A1 (en) Robot system, method for controlling robot, and method for producing to-be-processed material
CN108235696B (zh) 机器人控制方法和设备
US10583555B2 (en) System and method for determining tool offsets
JP2011115877A (ja) 双腕ロボット
JP2012011531A (ja) ロボット装置およびロボット装置による把持方法
JP2012171027A (ja) ワークピッキングシステム
US10960542B2 (en) Control device and robot system
JP6314429B2 (ja) ロボット、ロボットシステム、及びロボット制御装置
CN110024509B (zh) 部件安装装置及其控制方法
JP2015085499A (ja) ロボット、ロボットシステム、制御装置及び制御方法
JPWO2019065427A1 (ja) ロボットハンドシステム制御方法およびロボットハンドシステム
JP4640499B2 (ja) 把持制御装置
JP2016209936A (ja) ロボット装置、ロボット制御方法、プログラム及び記録媒体
JP2009196040A (ja) ロボットシステム
JP2015074065A (ja) ロボット及び取り出し方法
JP2005335010A (ja) 把持制御装置
JP2015089578A (ja) ロボットシステム
JP7259487B2 (ja) 制御方法およびロボットシステム
JP2019155523A (ja) ロボット制御装置、ロボット制御方法、ロボット制御装置を用いた物品の組立方法、プログラム及び記録媒体

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160617

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160627

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180430

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20180904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181017

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190325

R150 Certificate of patent or registration of utility model

Ref document number: 6511715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150