JP2015076519A - 電子部品パッケージおよび電子部品パッケージの製造方法 - Google Patents

電子部品パッケージおよび電子部品パッケージの製造方法 Download PDF

Info

Publication number
JP2015076519A
JP2015076519A JP2013211954A JP2013211954A JP2015076519A JP 2015076519 A JP2015076519 A JP 2015076519A JP 2013211954 A JP2013211954 A JP 2013211954A JP 2013211954 A JP2013211954 A JP 2013211954A JP 2015076519 A JP2015076519 A JP 2015076519A
Authority
JP
Japan
Prior art keywords
electronic component
mold resin
filler
component package
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013211954A
Other languages
English (en)
Other versions
JP6213128B2 (ja
Inventor
谷 元昭
Motoaki Tani
元昭 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2013211954A priority Critical patent/JP6213128B2/ja
Publication of JP2015076519A publication Critical patent/JP2015076519A/ja
Application granted granted Critical
Publication of JP6213128B2 publication Critical patent/JP6213128B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

【課題】本願は、粒径の小さいフィラーの使用量を減らしても充填不良を抑制可能な電子部品パッケージおよび電子部品パッケージの製造方法を提供することを課題とする。【解決手段】電子部品パッケージであって、複数の電子部品と、前記複数の電子部品を封止する封止材であって、各電子部品の側方の部分に含まれるフィラーの粒径が、前記各電子部品を覆う部分に含まれるフィラーの粒径より小さい封止材と、を備える。【選択図】図1

Description

本願は、電子部品パッケージおよび電子部品パッケージの製造方法に関する。
近年、電子機器は高性能化の一途を辿っている。例えば、半導体チップ等の電子部品は、高密度化と低コスト化を両立するパッケージ技術が求められている。電子部品のパッケージングにおいては、各種の工夫が施されている(例えば、特許文献1〜3を参照)。
高密度化と低コスト化の両立を実現するパッケージ技術としては、例えば、CSP(Chip−Size Package)がある。CSPは、近年、ファインピッチ化が加速しており、CSPの形態も樹脂インターポーザを用いたものからWLP(Wafer Level Package)へと変化している。WLPは、例えば、WL−CSP(Wafer Level CSP)、W−CSP(Wafer CSP)と呼ばれることもある。WLPは、ウェーハ状態でパッケージまで行うことが可能である。WLPは、良否判定の試験後にダイシングされ、個片化される。よって、WLPは、WLPよりも以前のパッケージ技術に比較すると、より低コストで実装面積をリアルチップサイズまで小さくでき、半導体業界で期待されているパッケージの一つである。
特開平4−211150号公報 特開平8−23005号公報 特開2010−10301号公報
電子部品を封止してパッケージングするモールド樹脂にはフィラーが含まれる。モールド樹脂に含まれるフィラーの粒径が大きいと、電子部品の間隔を狭くしてパッケージの高密度化を図った場合に、狭小部分でフィラーの充填不良が生じる可能性がある。しかし、粒径の小さいフィラーは、粒径の大きいフィラーに比べて高価である。
そこで、本願は、粒径の小さいフィラーの使用量を減らしても充填不良を抑制可能な電子部品パッケージおよび電子部品パッケージの製造方法を提供することを課題とする。
本願は、次のような電子部品パッケージを開示する。
複数の電子部品と、
前記複数の電子部品を封止する封止材であって、各電子部品の側方の部分に含まれるフィラーの粒径が、前記各電子部品を覆う部分に含まれるフィラーの粒径より小さい封止材と、を備える、
電子部品パッケージ。
また、本願は、次のような電子部品パッケージの製造方法を開示する。
複数の電子部品を支持基板に貼り付ける工程と、
前記支持基板に貼り付けられた前記複数の電子部品を封止する封止材であって、各電子部品の側方の部分に含まれるフィラーの粒径が、前記各電子部品を覆う部分に含まれるフィラーの粒径より小さい封止材で封止する工程と、を備える、
電子部品パッケージの製造方法。
上記電子部品パッケージおよび電子部品パッケージの製造方法であれば、粒径の小さいフィラーの使用量を減らしても充填不良を抑制可能となる。
図1は、実施形態に係る電子部品パッケージを示した図の一例である。 図2は、モールド樹脂が硬化する際の各部の収縮量を矢印の長さで示した図の一例である。 図3は、配線層を形成した電子部品パッケージを示した図の一例である。 図4は、粘着層を形成した支持基板を示した図の一例である。 図5は、チップを付けた支持基板を示した図の一例である。 図6は、支持基板にモールド樹脂が塗布された状態を示した図の一例である。 図7は、モールド樹脂が成型された状態を示した図の一例である。 図8は、支持基板および粘着層が除去された状態を示した図の一例である。 図9は、支持基板に1種類目のモールド樹脂が塗布された状態を示した図の一例である。 図10は、1種類目のモールド樹脂が成型された状態を示した図の一例である。 図11は、支持基板に2種類目のモールド樹脂が塗布された状態を示した図の一例である。 図12は、2種類目のモールド樹脂が成型された状態を示した図の一例である。 図13は、表面電極が形成された電子部品パッケージを拡大して示した図の一例である。 図14は、第一絶縁層が形成された電子部品パッケージを示した図の一例である。 図15は、第一配線層が形成された電子部品パッケージを示した図の一例である。 図16は、第二絶縁層が形成された電子部品パッケージを示した図の一例である。 図17は、第二配線層が形成された電子部品パッケージを示した図の一例である。 図18は、ソルダーレジストおよびパッケージ表面電極が形成された電子部品パッケージを示した図の一例である。 図19は、比較例に係るモールド樹脂基板を示した図の一例である。
以下、実施形態について説明する。以下に示す実施形態は、単なる例示であり、本開示の技術的範囲を以下の態様に限定するものではない。
図1は、実施形態に係る電子部品パッケージを示した図の一例である。実施形態に係る電子部品パッケージとしては、図1に示すような、LSI(Large Scale Integration)のチップ(本願でいう「電子部品」の一例である)1を封止した電子部品パッケージ2を例示できる。しかし、実施形態に係る電子部品パッケージは、図1に示すような電子部品パッケージ2に限定されるものではない。実施形態に係る電子部品パッケージとしては、LSIの他に、受動素子等の各種電子部品を封止した電子部品パッケージを例示することもできる。本実施形態の電子部品パッケージ2は、図1に示すよ
うに、2つのチップ1をモールド樹脂(本願でいう「封止材」の一例である)3で封止したマルチチップのWLPである。
電子部品パッケージ2のモールド樹脂3は、モールド樹脂3のうち各チップ1の側方の部分(以下、「領域3S」という)に含まれるフィラーFSの粒径が、各チップ1を覆う部分(以下、「領域3U」という)に含まれるフィラーFUの粒径より小さい。各チップ1の側方の部分に含まれるフィラーFSの粒径が、各チップ1を覆う部分に含まれるフィラーFUの粒径より小さいため、2つのチップ1間のギャップを狭くしても、チップ1間にフィラーFSが十分に行き渡る。よって、粒径の小さいフィラーFSの使用量を減らしても充填不良を抑制することが可能である。従って、モールド樹脂3の強度分布のばらつきが生じにくく、ボイド等の生じない信頼性の高いパッケージを実現することができる。
なお、電子部品パッケージ2は、領域3Sに含まれるフィラーFSの含有率を領域3Uに含まれるフィラーFUの含有率より小さくしてもよい。各チップ1の側方の部分に含まれるフィラーFSの含有率を、各チップ1を覆う部分に含まれるフィラーFUの含有率より小さくすると、電子部品パッケージ2のモールド樹脂3は、領域3Sの熱膨張率が領域3Uの熱膨張率より大きくなる。領域3Sの熱膨張率が領域3Uの熱膨張率より大きいと、モールド樹脂3が硬化する際の各部の収縮量は次のようになる。
図2は、モールド樹脂が硬化する際の各部の収縮量を矢印の長さで示した図の一例である。領域3Uは、モールド樹脂3が硬化する際、フィラーFUの含有率に応じた量だけ収縮する。領域3Sについても領域3Uと同様、モールド樹脂3が硬化する際、フィラーFSの含有率に応じた量だけ収縮する。領域3Sのフィラーの含有率が領域3Uよりも低いと、領域3Sは、領域3Uよりも単位長さあたりの収縮量が大きくなる。
パッケージングに用いるモールド樹脂等の封止材の熱膨張率は、通常、半導体素子等の電子部品の熱膨張率より大きい。よって、チップ1を熱膨張率が均等な封止材で封止すると、チップ1を覆う部分の封止材の収縮により、チップ1の側方の部分の封止材がチップ1を押圧することになる。また、各電子部品を覆う部分の封止材の熱膨張率と電子部品の熱膨張率との相違により、パッケージ全体に反りが生じることがある。
しかし、領域3Sに含まれるフィラーFSの含有量を領域3Uよりも小さくすれば、領域3Sが領域3Uよりも単位長さあたりの収縮量が大きくなるため、熱膨張率が均等なモールド樹脂で封止した場合に比べて、領域3Sから各チップ1へ加わる応力を緩和することができる。また、領域3Sに熱膨張率の大きく硬度の低い樹脂が領域3Uよりも多く存在していれば、電子部品パッケージ2全体の反りの抑制が図られる。
図3は、配線層(「再配線層」と呼ばれる場合もある)を形成した電子部品パッケージを示した図の一例である。上記電子部品パッケージ2は、例えば、図3に示すように、各チップ1に隣接する配線層4を更に形成することができる。配線層4の形成により、端子数の増大等に対応することが可能である。
上記電子部品パッケージ2は、例えば、以下のような方法で製造することができる。
図4は、粘着層を形成した支持基板を示した図の一例である。本製造方法では、例えば、図4に示すような支持基板10が用意される。支持基板10には、チップ1を取り付けるための粘着層11が形成される。支持基板10は、温度に関わらず平坦なものであればよい。支持基板10としては、例えば、金属、ガラス、プリント板、セラミックス等の支持基板を例示することができる。また、粘着層11は、チップ1が支持基板10に付着した状態を維持可能なものであればよい。粘着層11は、例えば、粘着フィルムを貼り付け
て形成してもよいし、スピンコート法、スプレーコート法、印刷法等によって粘着剤を塗布して形成してもよい。また、粘着層11は、後の工程でチップ1が外れやすいよう、加熱により発泡する熱発泡型粘着層でもよいし、紫外線で発泡する紫外線発泡型粘着層でもよいし、処理不要で剥離できる粘着層でもよい。
図5は、チップを付けた支持基板を示した図の一例である。粘着層11が形成された支持基板10には、チップ1が取り付けられる。チップ1は、フェイスダウンの状態、すなわち、電極面が粘着層11に接触する状態で支持基板10に取り付けられる。チップ1は、例えば、フリップチップボンダーやマウンターによって支持基板10に取り付け可能である。
図6は、支持基板にモールド樹脂が塗布された状態を示した図の一例である。チップ1が取り付けられた支持基板10には、モールド樹脂3が塗布される。塗布されるモールド樹脂3は、液状であってもよいし、顆粒状であってもよい。支持基板10に塗布されるモールド樹脂3には2種類ある。すなわち、支持基板10には、粒径の小さい微細なフィラーを含有したモールド樹脂3Sが塗布された後、大粒径のフィラーを含有したモールド樹脂3Uが塗布される。モールド樹脂3Sは、モールド樹脂3Uよりも先に塗布されるため、モールド樹脂3のうち各チップ1の側方の部分、すなわち、領域3Sを形成することになる。また、モールド樹脂3Uは、モールド樹脂3Sの上に塗布されるため、モールド樹脂3のうち各チップ1を覆う部分、すなわち、領域3Uを形成することになる。
図7は、モールド樹脂が成型された状態を示した図の一例である。モールド樹脂3が塗布された支持基板10には、例えば、モールド樹脂3を所望の形にするための金型がセットされ、モールド樹脂3の硬化が行われる。これにより、モールド樹脂3は板状に硬化する。モールド樹脂3が硬化した後は、モールド樹脂3の表面の研削等を行い、形態を整える。なお、モールド樹脂3の表面の研削は、次工程以降の何れかのタイミングで行ってもよい。
図8は、支持基板および粘着層が除去された状態を示した図の一例である。モールド樹脂3の硬化が行われた後は、支持基板10および粘着層11の除去が行われる。支持基板10および粘着層11の除去が行われることにより、上記実施形態に係る電子部品パッケージ2が完成する。
上記製造方法においては、モールド樹脂3Sを硬化させる前にモールド樹脂3Uを塗布し、モールド樹脂3を一括成型している。よって、領域3Sと領域3Uとの間の界面には、モールド樹脂3Sとモールド樹脂3Uとが混合した部分が存在し得る。モールド樹脂3Sとモールド樹脂3Uとが混合した部分は、モールド樹脂の粘度が低ければ低い程著しく発現することになる。モールド樹脂3Sとモールド樹脂3Uとが混合した部分を意図的に形成することにより、例えば、モールド樹脂3U側からモールド樹脂3S側へ向かうに従って熱膨張率等の物性値が徐々に変化するような傾斜状の物性を呈する電子部品パッケージ2を実現できる。物性値が徐々に変化していれば界面に応力が生じにくくなる。上記電子部品パッケージ2は、領域3Sと領域3Uとの間の界面に2種類のモールド樹脂が混合した部分が存在していても、各チップ1へ加わる応力を緩和し、電子部品パッケージ2全体の反りを抑制することができる。しかし、電子部品パッケージ2の製造方法は、上記方法に限定されるものでなく、例えば、モールド樹脂3Sを硬化させた後にモールド樹脂3Uを塗布することにより、モールド樹脂3を2段階で成型してもよい。
以下、上記製造方法の変形例について説明する。
図9は、支持基板に1種類目のモールド樹脂が塗布された状態を示した図の一例である
。本変形例に係る製造方法においては、チップ1が取り付けられた支持基板10に、モールド樹脂3Sが塗布される。
図10は、1種類目のモールド樹脂が成型された状態を示した図の一例である。本変形例に係る製造方法においては、モールド樹脂3Sが塗布された支持基板10には、例えば、モールド樹脂3Sを所望の形にするための金型がセットされ、モールド樹脂3Sの硬化が行われる。
図11は、支持基板に2種類目のモールド樹脂が塗布された状態を示した図の一例である。本変形例に係る製造方法においては、硬化したモールド樹脂3Sの上にモールド樹脂3Uが塗布される。
図12は、2種類目のモールド樹脂が成型された状態を示した図の一例である。本変形例に係る製造方法においては、モールド樹脂3Uが塗布された支持基板10には、例えば、モールド樹脂3Uを所望の形にするための金型がセットされ、モールド樹脂3Uの硬化が行われる。モールド樹脂3の硬化が行われた後は、支持基板10および粘着層11の除去が行われ、図8に示したような電子部品パッケージ2が完成する。
上記何れかの製造方法により製造された電子部品パッケージ2は、例えば、以下に示すような方法で配線層を形成することにより、プリント基板等に実装可能な電子部品パッケージ2にすることができる。
図13は、表面電極が形成された電子部品パッケージを拡大して示した図の一例である。支持基板10および粘着層11の除去が行われた後は、例えば、チップ1の集積回路1Cが形成されている電極面(表面電極1Tがある面)が上側になるように電子部品パッケージ2が反転される。
図14は、第一絶縁層が形成された電子部品パッケージを示した図の一例である。チップ1の電極面が上側になるように電子部品パッケージ2が反転された後は、チップ1の表面電極1Tの部分を開口させた第一絶縁層5aが形成される。第一絶縁層5aは、例えば、感光性エポキシ、感光性ポリベンゾオキサゾール、又は、感光性ポリイミドのような感光性樹脂を塗布・現像・キュアし、必要に応じてプラズマ処理を行い、電極面の電極部分を開口することにより形成できる。
図15は、第一配線層が形成された電子部品パッケージを示した図の一例である。第一絶縁層5aが形成された後は、例えば、レジスト等を用いて所望の配線パターンの第一配線層4aが形成される。
第一配線層4aは、例えば、次のようにして形成することができる。すなわち、第一絶縁層5aが形成された後、金属密着層と銅をスパッタで形成し、シード層を形成する。金属密着層を形成する材料としては、例えば、チタン、クロム等から任意のものを選定することができる。その後、ビアとなる部分や配線となる部分を開口したフォトレジストパターンを形成し、先に形成したシード層を用いて銅の電気めっきを行う。フォトレジストを剥離した後は、フォトレジストの下に残存していたシード層を除去する。このシード層の除去には、ウエットエッチングを用いてもよいし、ドライエッチングを用いてもよい。なお、形成された銅配線に対し、密着性向上等の目的で表面処理等を加えてもよい。第一配線層4aは、例えば、以上のような処理を経ることにより形成することができる。
第一配線層4aが形成された後は、例えば、感光性樹脂の塗布・現像・キュアや、銅配線の表面処理等を適当な回数繰り返し、所望の多層配線を形成する。図16は、第二絶縁
層が形成された電子部品パッケージを示した図の一例である。第一配線層4aが形成された後は、例えば、パッケージの電極が形成される部分を露出させた第二絶縁層5bが形成される。
図17は、第二配線層が形成された電子部品パッケージを示した図の一例である。第二絶縁層5bが形成された後は、第二絶縁層5bの開口部分を塞ぐようにして第二配線層4bが形成される。
図18は、ソルダーレジストおよびパッケージ表面電極が形成された電子部品パッケージを示した図の一例である。第二配線層4bが形成された後は、パッケージの電極が形成される部分を露出させたソルダーレジスト6が形成される。そして、ソルダーレジスト6の開口部分において露出している第二配線層4bの表面にニッケルや金等のメッキが施されることにより、パッケージ表面に電極TSが形成される。パッケージ表面電極1Tが形成された後は、支持基板10を個片に切断することにより、プリント基板等に実装可能な電子部品パッケージ2が完成する。
上記実施形態に係る電子部品パッケージ2および電子部品パッケージ2の製造方法は、例えば、2つのチップ1間を100μm以内の狭ピッチとするような場合であっても、粒径の小さいフィラーの使用量を減らしながら充填不良の抑制を図ることができる。従って、チップ1間のギャップを狭くして電子部品パッケージ2の高密度化を図り、高信頼性の維持や低コスト化を図ることが可能である。
例えば、一般的な液状または顆粒状のモールド樹脂は、無機フィラーを含んでいる。無機フィラーとして、例えば、平均粒径50〜70μmのシリカフィラーを選び、モールド樹脂に97〜98重量%含有させた場合、硬化後の樹脂の熱膨張率は7〜9ppm/℃となる。このような1種類のモールド樹脂のみを用いた場合、100μmという狭ピッチに対してフィラーの径が大き過ぎるため、2つのチップ間にフィラーが入らず、チップ間は樹脂だけが充填されてしまう。また、フィラーがチップ間の蓋となり、樹脂すら充填されずにボイドが生じる可能性がある。ところが、上記実施形態に係る電子部品パッケージ2および電子部品パッケージ2の製造方法は、2種類のモールド樹脂を用いているため、粒径の小さいフィラーの使用量を減らしながら充填不良の抑制を図ることができる。
例えば、2つのチップ1間が100μm以内の狭ピッチであれば、最初に平均粒径1〜10μmのシリカフィラーを90重量%含有したモールド樹脂を上記モールド樹脂3Bとして塗布する。次に、平均粒径50〜70μmのシリカフィラーを98重量%含有したモールド樹脂を上記モールド樹脂3Uとして塗布し、成型を行う。これにより、領域3Sに含まれるフィラーFSの粒径が、領域3Uに含まれるフィラーFBの粒径より小さい電子部品パッケージ2が実現できる。また、領域3Sの熱膨張率が領域3Uの熱膨張率より大きい電子部品パッケージ2が実現できる。なお、モールド樹脂3Sを硬化させる前にモールド樹脂3Uを塗布し、モールド樹脂3を一括成型した場合には、モールド樹脂3U側からモールド樹脂3S側へ向かうに従って平均粒径が徐々に変化するような傾斜状の物性を呈する電子部品パッケージ2が実現されることになる。また、モールド樹脂3Sを硬化させた後にモールド樹脂3Uを塗布し、モールド樹脂3を2段階で成型した場合には、領域3Sが平均粒径1〜10μmのシリカフィラーで形成され、領域3Uが平均粒径50〜70μmのシリカフィラーで形成された電子部品パッケージ2が実現されることになる。
以下、上記実施形態の第1実施例について説明する。本第1実施例では、支持基板10の一例として170×170mmで厚さ0.3mmのステンレス基板を用いた。そして、ステンレス基板の上に、上記粘着層11の一例である熱発泡型粘着層を貼り付けた。そし
て、粘着層の上に、各15×15mmのパッケージエリア内にフリップチップボンダーで5×5mmで厚さ0.4mmの4個のベアチップ半導体(上記チップ1の一例に相当する)を、電極面が粘着層の表面に接するように配置した。配置したベアチップ半導体のギャップ間隔は、各50μmとした。
その後、平均粒径2μmのシリカフィラー(上記フィラーFSの一例に相当する)を90重量%含有するモールド樹脂(上記モールド樹脂3Sの一例に相当する)を塗布し、続けて平均粒径25μmのシリカフィラー(上記フィラーFUの一例に相当する)を98重量%含有するモールド樹脂(上記モールド樹脂3Uの一例に相当する)を塗布した。そして、成型用の金型を用いて厚さ0.6mm、直径150mmのウェーハ状のモールド樹脂基板を形成した。
次に、180℃の熱を加え、粘着層からウェーハ状のモールド樹脂基板を剥離した。その後、200℃、1時間で板状のモールド樹脂を完全に硬化させた。この時のウェーハ状のモールド樹脂基板の反りは0.1mmであった。
次に、ベアチップ半導体の表面電極を有する面にスピンコート用の感光性エポキシワニスを塗布し、プリベーク、露光、現像、キュア、酸素プラズマ処理等の工程を経て、膜厚8μmで、表面電極部(上記表面電極1Tの一例に相当する)をφ30μm開口した絶縁層(上記第一絶縁層5aの一例に相当する)を形成した。次に、スパッタでチタンと銅をそれぞれ0.1μm、0.3μmの厚さで製膜し、シード層を形成した。その後、ビア部、配線部を開口したフォトレジストパターンを形成し、先に形成したシード層を用いて銅の電気めっきを行った。電気めっき後、フォトレジストを剥離した後、フォトレジストの下に残存していたシード層をウエットエッチングとドライエッチングで除去した。そして、ソルダーレジストを形成し、配線表面をニッケルと金のメッキ処理をした。
個片にした半導体パッケージ(上記電子部品パッケージ2の一例に相当する)の断面を観察した所、ベアチップ半導体の側方にあるシリカフィラーの含有率が、ベアチップ半導体を覆っている部分の含有率より少ないことが確認された。また、半導体パッケージを覆っている部分からベアチップ半導体の側方の部分へ向かって、シリカフィラーの含有率が少なくなるように傾斜がついていることが確認された。また、ベアチップ半導体の側方にあるシリカフィラーの粒径が、ベアチップ半導体を覆っている部分の含有率より小さいことが確認された。また、半導体パッケージを覆っている部分からベアチップ半導体の側方の部分へ向かって、シリカフィラーの粒径が小さくなるように傾斜がついており、50μmのベアチップ半導体のギャップ間に微細な粒径のシリカフィラーが充填されていることが確認された。
以下、上記実施形態の第2実施例について説明する。本第2実施例では、支持基板10の一例として170×170mmで厚さ0.3mmのガラス基板を用いた。そして、ガラス基板の上に、上記粘着層11の一例である紫外線発泡型粘着層を貼り付けた。そして、粘着層の上に、各10×10mmのパッケージエリア内にマウンターで6×6mmで厚さ0.5mmのベアチップ半導体と20個の0603サイズのチップコンデンサ(上記チップ1の一例に相当する)を、電極面が粘着層の表面に接するように配置し接合させた。配置した各部品のギャップ間隔は、各70μmとした。
その後、平均粒径2μmのシリカフィラー(上記フィラーFSの一例に相当する)を88重量%含有するモールド樹脂(上記モールド樹脂3Sの一例に相当する)を塗布し、成型用の金型を用いて厚さ0.55mm、直径150mmのウェーハ状に硬化させて板状のモールド樹脂を形成した。その後、平均粒径50μmのシリカフィラー(上記フィラーF
Uの一例に相当する)を97重量%含有するモールド樹脂(上記モールド樹脂3Uの一例に相当する)を塗布し、成型用の金型を用いて全体の厚さ0.7mm、直径150mmのウェーハ状のモールド樹脂基板を形成した。この時のウェーハ状のモールド樹脂基板の反りは0.15mmであった。
次に、ガラス面から紫外線を照射し、紫外線発泡型粘着層から、ウェーハ状のモールド樹脂基板を剥離した。その後、220℃、1時間でウェーハ状のモールド樹脂基板を完全硬化させた。
次に、ベアチップ半導体とチップコンデンサの電極面を有する面にスピンコート用の感光性ポリベンゾオキサゾールを塗布し、プリベーク、露光、現像、キュア、酸素プラズマ処理等の工程を経て、膜厚10μmで、表面電極部(上記表面電極1Tの一例に相当する)をφ40μm開口した絶縁層(上記第一絶縁層5aの一例に相当する)を形成した。次に、スパッタでチタンと銅をそれぞれ0.1μm、0.2μmの厚さで製膜し、シード層を形成した。その後、ビア部、配線部を開口したフォトレジストパターンを形成し、先に形成したシード層を用いて銅の電気めっきを行った。電気めっき後、フォトレジストを剥離した後、フォトレジストの下に残存していたシード層をウエットエッチングとドライエッチングで除去した。そして、ソルダーレジストを形成し、配線表面をニッケルと金の処理をした。
個片にした半導体パッケージ(上記電子部品パッケージ2の一例に相当する)の断面を観察した所、ベアチップ半導体の側方にあるシリカフィラーの含有率が、ベアチップ半導体を覆っている部分の含有率より少なくなっていることが確認された。また、ベアチップ半導体の側方にあるシリカフィラーの粒径が、ベアチップ半導体を覆っている部分の含有率より小さくなっており、70μmの各部品のギャップ間に微細な粒径のシリカフィラーが充填されていることが確認された。
<比較例>
以下、比較例について説明する。本比較例は、第1実施例と同様に、支持基板として170×170mmで厚さ0.3mmのステンレス基板を用いた。そして、ステンレス基板の上に熱発泡型粘着層を貼り付けた。そして、粘着層の上に、各15×15mmのパッケージエリア内にフリップチップボンダーで5×5mmで厚さ0.4mmのベアチップ半導体を、電極面が粘着層の表面に接するように複数配置した。配置したベアチップ半導体のギャップ間隔は、各50μmとした。
その後、平均粒径25μmのシリカフィラーを98重量%含有するモールド樹脂のみを塗布し、成型用の金型を用いて厚さ0.6mm、直径150mmのウェーハ状のモールド樹脂基板を形成した。図19は、本比較例に係るモールド樹脂基板を示した図の一例である。特定の平均粒径のシリカフィラーを含有するモールド樹脂のみを塗布してモールド樹脂基板を形成した場合、図19に示すような、特定の平均粒径のシリカフィラーが樹脂全体に含有されるモールド樹脂基板が形成されることになる。
次に、180℃の熱を加え、粘着層からウェーハ状モールド樹脂基板を剥離した。その後、200℃、1時間で板状モールド樹脂を完全硬化させた。この時のウェーハ状のモールド樹脂基板の反りは0.5mmであった。すなわち、反り量は、第1実施例の約5倍であった。
また、断面を観察した所、50μmのベアチップ半導体のギャップ間には、シリカフィラーはほとんど充填されてなく、また、大きなフィラーが蓋となって樹脂が充填されず、ボイドが生じている箇所も一部に観察された。
第1実施例、第2実施例と比較例とを比較すると、第1実施例および第2実施例の方が比較例よりも充填不良が抑制されることが判る。これにより、チップ1間のギャップを狭くして電子部品パッケージ2の高密度化を図り、高信頼性の維持や低コスト化を図ることが可能であることが判る。
例えば、半導体チップの周囲の端子をチップ全面に再配置したFan−in WLPの場合、チップの多端子化を図ると、チップエリアだけでは端子の再配置が困難になる。この点につき、チップエリアの外側に端子を再配置したFan−out WLPであれば、端子を配置可能なエリアがチップの大きさに依存しないため、多端子化にも柔軟に対応できる。Fan−out型のWLPは、チップ等の電子部品をモールド樹脂組成物で電子部品を固めて基板状態に再構築した後、電子部品の電極面側に配線層を形成し、その後、個片化するものである。
しかし、電子部品をモールド樹脂で固めてウェーハ形状にする際、金型成型を用いて電子部品を覆い固めるようにモールド樹脂が成型される。よって、電子部品の非電極面側にはモールド樹脂が残存し、電子部品を覆い固めた成型物は厚さ方向において非対象な構造となる。このモールド樹脂には、通常、フィラーを樹脂中に均一且つ高濃度に充填した材料が用いられるが、それでもなお熱膨張率は7〜9ppm/Kである。すなわち、フィラーを樹脂中に均一且つ高濃度に充填したモールド樹脂であっても、例えば、電子部品の代表である半導体素子のSi単体の熱膨張率(3〜5ppm/K)より大きいため、非電極面側からモールド樹脂に覆い固められた半導体素子の電極面側と非電極面側との間には熱膨張率に差が生じる。このため、モールド樹脂を硬化させた場合、モールド樹脂基板に反りが生じる可能性がある。また、フィラーが高濃度で充填されている硬度の高いモールド樹脂が硬化時に発生する応力で、埋め込んだ半導体素子の側方から半導体素子へ力が加わり、半導体素子に加わるダメージで故障してしまう可能性がある。例えば、半導体素子の配線の更なる微細化や、超low−k絶縁膜といった次世代型の絶縁膜等を採用した半導体素子が出現した場合、モールド樹脂から半導体素子に加わるダメージによる故障はより顕著になる可能性がある。
また、マルチチップパッケージのように複数の電子部品を含んだパッケージを形成する場合、高密度化の観点から電子部品間のギャップをできるだけ狭くしたい場合がある。しかし、電子部品間のギャップが狭くなると、モールド樹脂に含まれているフィラーの粒径が電子部品間のギャップに比べて大きいが故に電子部品間にフィラーが入らず、例えば、上記比較例の一例を示した図19に示されるように、電子部品間が樹脂だけで充填されてしまう可能性がある。電子部品間が樹脂だけになると、構造体としての強度を確保するために比較的重要な部分となる電子部品間の強度が弱くなり、外力等が加わった際にクラック等の発生原因になる。また、フィラーの粒径が電子部品間のギャップに比べて大き過ぎると、粒径の大きなフィラーが電子部品間の蓋となり、フィラーのみならず樹脂すら充填されずにボイドが生じる可能性がある。ボイドが生じると、例えば、信頼性試験の際、ボイドの部分に水分が滞り、信頼性試験の結果が低評価になる可能性がある。しかし、粒径の小さいフィラーを含んだモールド樹脂だけで電子部品を全て封止することは、コストの増大を招く。
しかしながら、上記実施形態に係る電子部品パッケージ2及びその製造方法であれば、粒径の小さいフィラーの使用量を減らしても充填不良を抑制することが可能である。よって、コストの増大を抑制しながらパッケージの高密度化や信頼性の維持を図ることが可能である。
なお、本願は、以下の付記的事項を含む。
(付記1)
複数の電子部品と、
前記複数の電子部品を封止する封止材であって、各電子部品の側方の部分に含まれるフィラーの粒径が、前記各電子部品を覆う部分に含まれるフィラーの粒径より小さい封止材と、を備える、
電子部品パッケージ。
(付記2)
前記封止材は、前記各電子部品の側方の部分の熱膨張率が、前記各電子部品を覆う部分の熱膨張率より大きい、
付記1に記載の電子部品パッケージ。
(付記3)
前記封止材は、前記各電子部品を覆う部分から前記各電子部品の側方の部分へ向かって熱膨張率が徐々に大きくなる、
付記1または2に記載の電子部品パッケージ。
(付記4)
前記封止材は、前記各電子部品の側方の部分に含まれるフィラーの含有率が、前記各電子部品を覆う部分に含まれるフィラーの含有率より小さい、
付記1から3の何れか一項に記載の電子部品パッケージ。
(付記5)
前記フィラーは、無機フィラーである、
付記1から4の何れか一項に記載の電子部品パッケージ。
(付記6)
前記フィラーは、シリカフィラー、アルミナフィラー、窒化アルミニウムフィラー、窒化ボロンフィラー、窒化珪素フィラーのうち少なくとも何れか1つを含んでいる、
付記1から5の何れか一項に記載の電子部品パッケージ。
(付記7)
前記電子部品パッケージは、ウェハーレベルパッケージである、
付記1から6の何れか一項に記載の電子部品パッケージ。
(付記8)
複数の電子部品を支持基板に貼り付ける工程と、
前記支持基板に貼り付けられた前記複数の電子部品を封止する封止材であって、各電子部品の側方の部分に含まれるフィラーの粒径が、前記各電子部品を覆う部分に含まれるフィラーの粒径より小さい封止材で封止する工程と、を備える、
電子部品パッケージの製造方法。
(付記9)
前記封止する工程では、前記複数の電子部品に第一の封止材を塗布した後、前記第一の封止材に含まれるフィラーよりも粒径の大きいフィラーを含んだ第二の封止材を塗布する、
付記8に記載の電子部品パッケージの製造方法。
(付記10)
前記封止する工程では、前記各電子部品の側方の部分の熱膨張率が、前記各電子部品を覆う部分の熱膨張率より大きくなるように前記封止材で封止する、
付記8また9に記載の電子部品パッケージの製造方法。
(付記11)
前記封止する工程では、前記各電子部品を覆う部分から前記各電子部品の側方の部分へ向かって熱膨張率が徐々に大きくなるように前記封止材で封止する、
付記8から10の何れか一項に記載の電子部品パッケージの製造方法。
(付記12)
前記封止する工程では、前記各電子部品の側方の部分に含まれるフィラーの含有率が、前記各電子部品を覆う部分に含まれるフィラーの含有率より小さくなるように前記封止材
で封止する、
付記8から11の何れか一項に記載の電子部品パッケージの製造方法。
(付記13)
前記フィラーは、無機フィラーである、
付記8から12の何れか一項に記載の電子部品パッケージの製造方法。
(付記14)
前記フィラーは、シリカフィラー、アルミナフィラー、窒化アルミニウムフィラー、窒化ボロンフィラー、窒化珪素フィラーのうち少なくとも何れか1つを含んでいる、
付記8から13の何れか一項に記載の電子部品パッケージの製造方法。
(付記15)
前記電子部品パッケージは、ウェハーレベルパッケージである、
付記8から14の何れか一項に記載の電子部品パッケージの製造方法。
1・・チップ;1T・・表面電極;1C・・集積回路;2・・電子部品パッケージ;3・・モールド樹脂;3S,3U・・領域;FS,FU・・フィラー;4・・配線層;4a・・第一配線層;4b・・第二配線層;5a・・第一絶縁層;5b・・第二絶縁層;6・・ソルダーレジスト;TS・・電極;10・・支持基板;11・・粘着層

Claims (5)

  1. 複数の電子部品と、
    前記複数の電子部品を封止する封止材であって、各電子部品の側方の部分に含まれるフィラーの粒径が、前記各電子部品を覆う部分に含まれるフィラーの粒径より小さい封止材と、を備える、
    電子部品パッケージ。
  2. 前記封止材は、前記各電子部品の側方の部分の熱膨張率が、前記各電子部品を覆う部分の熱膨張率より大きい、
    請求項1に記載の電子部品パッケージ。
  3. 前記封止材は、前記各電子部品を覆う部分から前記各電子部品の側方の部分へ向かって熱膨張率が徐々に大きくなる、
    請求項1または2に記載の電子部品パッケージ。
  4. 前記封止材は、前記各電子部品の側方の部分に含まれるフィラーの含有率が、前記各電子部品を覆う部分に含まれるフィラーの含有率より小さい、
    請求項1から3の何れか一項に記載の電子部品パッケージ。
  5. 複数の電子部品を支持基板に貼り付ける工程と、
    前記支持基板に貼り付けられた前記複数の電子部品を封止する封止材であって、各電子部品の側方の部分に含まれるフィラーの粒径が、前記各電子部品を覆う部分に含まれるフィラーの粒径より小さい封止材で封止する工程と、を備える、
    電子部品パッケージの製造方法。
JP2013211954A 2013-10-09 2013-10-09 電子部品パッケージおよび電子部品パッケージの製造方法 Expired - Fee Related JP6213128B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013211954A JP6213128B2 (ja) 2013-10-09 2013-10-09 電子部品パッケージおよび電子部品パッケージの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013211954A JP6213128B2 (ja) 2013-10-09 2013-10-09 電子部品パッケージおよび電子部品パッケージの製造方法

Publications (2)

Publication Number Publication Date
JP2015076519A true JP2015076519A (ja) 2015-04-20
JP6213128B2 JP6213128B2 (ja) 2017-10-18

Family

ID=53001142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013211954A Expired - Fee Related JP6213128B2 (ja) 2013-10-09 2013-10-09 電子部品パッケージおよび電子部品パッケージの製造方法

Country Status (1)

Country Link
JP (1) JP6213128B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017117842A (ja) * 2015-12-21 2017-06-29 京セラ株式会社 電子部品及び電子部品の製造方法
WO2018181761A1 (ja) * 2017-03-31 2018-10-04 日立化成株式会社 封止フィルム、電子部品装置の製造方法及び電子部品装置
JP2019021904A (ja) * 2017-07-19 2019-02-07 株式会社村田製作所 電子モジュールおよび電子モジュールの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102514042B1 (ko) 2018-08-01 2023-03-24 삼성전자주식회사 반도체 패키지 및 이의 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823005A (ja) * 1993-09-14 1996-01-23 Toshiba Corp 樹脂封止型半導体装置の製造方法、樹脂封止型半導体装置及び封止用樹脂シート
JPH09172137A (ja) * 1995-11-30 1997-06-30 Lockheed Martin Corp 応力減少成形基板の一部としてコンプライアント層を有する高密度相互接続回路モジュール
JP2002076237A (ja) * 2000-08-30 2002-03-15 Hitachi Maxell Ltd 半導体装置及びその製造方法
JP2004014629A (ja) * 2002-06-04 2004-01-15 Sony Corp 半導体装置及びその製造方法
JP2009170492A (ja) * 2008-01-11 2009-07-30 Toshiba Corp 半導体装置およびその製造方法
JP2012146843A (ja) * 2011-01-13 2012-08-02 Murata Mfg Co Ltd モジュール基板及びモジュール基板の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823005A (ja) * 1993-09-14 1996-01-23 Toshiba Corp 樹脂封止型半導体装置の製造方法、樹脂封止型半導体装置及び封止用樹脂シート
JPH09172137A (ja) * 1995-11-30 1997-06-30 Lockheed Martin Corp 応力減少成形基板の一部としてコンプライアント層を有する高密度相互接続回路モジュール
JP2002076237A (ja) * 2000-08-30 2002-03-15 Hitachi Maxell Ltd 半導体装置及びその製造方法
JP2004014629A (ja) * 2002-06-04 2004-01-15 Sony Corp 半導体装置及びその製造方法
JP2009170492A (ja) * 2008-01-11 2009-07-30 Toshiba Corp 半導体装置およびその製造方法
JP2012146843A (ja) * 2011-01-13 2012-08-02 Murata Mfg Co Ltd モジュール基板及びモジュール基板の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017117842A (ja) * 2015-12-21 2017-06-29 京セラ株式会社 電子部品及び電子部品の製造方法
WO2018181761A1 (ja) * 2017-03-31 2018-10-04 日立化成株式会社 封止フィルム、電子部品装置の製造方法及び電子部品装置
CN110462818A (zh) * 2017-03-31 2019-11-15 日立化成株式会社 密封膜、电子部件装置的制造方法及电子部件装置
KR20190132401A (ko) * 2017-03-31 2019-11-27 히타치가세이가부시끼가이샤 봉지 필름, 전자 부품 장치의 제조 방법 및 전자 부품 장치
JPWO2018181761A1 (ja) * 2017-03-31 2020-02-20 日立化成株式会社 封止フィルム、電子部品装置の製造方法及び電子部品装置
JP7115469B2 (ja) 2017-03-31 2022-08-09 昭和電工マテリアルズ株式会社 封止フィルム、電子部品装置の製造方法及び電子部品装置
KR102440947B1 (ko) 2017-03-31 2022-09-05 쇼와덴코머티리얼즈가부시끼가이샤 봉지 필름, 전자 부품 장치의 제조 방법 및 전자 부품 장치
CN110462818B (zh) * 2017-03-31 2023-12-26 株式会社力森诺科 密封膜、电子部件装置的制造方法及电子部件装置
JP2019021904A (ja) * 2017-07-19 2019-02-07 株式会社村田製作所 電子モジュールおよび電子モジュールの製造方法

Also Published As

Publication number Publication date
JP6213128B2 (ja) 2017-10-18

Similar Documents

Publication Publication Date Title
TWI642156B (zh) 採用成型中介層的晶圓級封裝
US8178964B2 (en) Semiconductor device package with die receiving through-hole and dual build-up layers over both side-surfaces for WLP and method of the same
US7812434B2 (en) Wafer level package with die receiving through-hole and method of the same
US7655501B2 (en) Wafer level package with good CTE performance
US9601353B2 (en) Packages with molding structures and methods of forming the same
US8178963B2 (en) Wafer level package with die receiving through-hole and method of the same
US8759964B2 (en) Wafer level package structure and fabrication methods
JP2008252087A (ja) 半導体装置パッケージ構造及びその方法
JP2008160084A (ja) ダイ収容キャビティを備えたウェーハレベルパッケージおよびその方法
JP2008258582A (ja) ダイ受入れキャビティを備えたウェハレベル・イメージセンサパッケージおよびその方法
US20080157358A1 (en) Wafer level package with die receiving through-hole and method of the same
TW201820571A (zh) 具有虛設晶粒的扇出型封裝結構
US20080261346A1 (en) Semiconductor image device package with die receiving through-hole and method of the same
KR20080089311A (ko) Wlp용 다이 수용 스루홀 및 양 표면 위에 이중 사이드빌드업층들을 갖는 반도체 디바이스 패키지 및 그 방법
KR20080077934A (ko) 축소된 구조를 갖는 멀티칩 패키지 및 그 형성 방법
JP2008153654A (ja) マルチチップパッケージおよびその形成方法
JP2016004999A (ja) Icパッケージ用高密度フィルム
JP2005259813A (ja) 半導体装置
JP6213128B2 (ja) 電子部品パッケージおよび電子部品パッケージの製造方法
Kikuchi et al. Warpage analysis with newly molding material of fan-out panel level packaging and the board level reliability test results
JP2004128286A (ja) チップ状電子部品及びその製造方法、その製造に用いる疑似ウェーハ及びその製造方法、並びに実装構造
TW200933844A (en) Wafer level package with die receiving through-hole and method of the same
TWI844218B (zh) 電子封裝件及其製法
JP6988360B2 (ja) 半導体装置の製造方法及び半導体装置
JP5884319B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170904

R150 Certificate of patent or registration of utility model

Ref document number: 6213128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees