US20080261346A1 - Semiconductor image device package with die receiving through-hole and method of the same - Google Patents

Semiconductor image device package with die receiving through-hole and method of the same Download PDF

Info

Publication number
US20080261346A1
US20080261346A1 US12/165,876 US16587608A US2008261346A1 US 20080261346 A1 US20080261346 A1 US 20080261346A1 US 16587608 A US16587608 A US 16587608A US 2008261346 A1 US2008261346 A1 US 2008261346A1
Authority
US
United States
Prior art keywords
die
substrate
layer
hole
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/165,876
Inventor
Wen-Kun Yang
Jui-Hsien Chang
Tung-Chuan Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/165,876 priority Critical patent/US20080261346A1/en
Publication of US20080261346A1 publication Critical patent/US20080261346A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/24227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect not connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the semiconductor or solid-state body being mounted in a cavity or on a protrusion of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01077Iridium [Ir]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate

Definitions

  • This invention relates to a structure of wafer level package (WLP), and more particularly to a fan-out wafer level package with die receiving through-hole and inter-connecting through holes formed within the substrate to improve the reliability and to reduce the device size.
  • WLP wafer level package
  • the device density is increased and the device dimension is reduced, continuously.
  • the demand for the packaging or interconnecting techniques in such high density devices is also increased to fit the situation mentioned above.
  • an array of solder bumps is formed on the surface of the die.
  • the formation of the solder bumps may be carried out by using a solder composite material through a solder mask for producing a desired pattern of solder bumps.
  • the function of chip package includes power distribution, signal distribution, heat dissipation, protection and support . . . and so on.
  • the traditional package technique for example lead frame package, flex package, rigid package technique, can't meet the demand of producing smaller chip with high density elements on the chip.
  • Wafer level package is to be understood as meaning that the entire packaging and all the interconnections on the wafer as well as other processing steps are carried out before the singulation (dicing) into chips (dies).
  • singulation singulation
  • WLP technique is an advanced packaging technology, by which the die are manufactured and tested on the wafer, and then the wafer is singulated by dicing for assembly in a surface-mount line. Because the wafer level package technique utilizes the whole wafer as one object, not utilizing a single chip or die, therefore, before performing a scribing process, packaging and testing has been accomplished; furthermore, WLP is such an advanced technique so that the process of wire bonding, die mount and under-fill can be omitted. By utilizing WLP technique, the cost and manufacturing time can be reduced, and the resulting structure of WLP can be equal to the die; therefore, this technique can meet the demands of miniaturization of electronic devices.
  • the pads of the semiconductor die will be redistributed through redistribution processes involving a redistribution layer (RDL) into a plurality of metal pads in an area array type.
  • RDL redistribution layer
  • the build up layer will increase the size of the package. Therefore, the thickness of the package is increased. This may conflict with the demand of reducing the size of a chip.
  • the prior art suffers complicated process to form the “Panel” type package. It needs the mold tool for encapsulation and the injection of mold material. It is unlikely to control the surface of die and compound at same level due to warp after heat curing the compound, the CMP process may be needed to polish the uneven surface. The cost is therefore increased.
  • the present invention provides a fan-out wafer level packaging (FO-WLP) structure with good CTE performance and shrinkage size to overcome the aforementioned problem and also provide the better board level reliability test of temperature cycling.
  • FO-WLP fan-out wafer level packaging
  • the object of the present invention is to provide a fan-out WLP with excellent CTE performance and shrinkage size.
  • the further object of the present invention is to provide a fan-out WLP with a substrate having die receiving through-hole for improving the reliability and shrinking the device size.
  • the present invention discloses a structure of package comprising: a substrate with a die receiving through hole, a connecting through hole structure and a first contact pad; a die having micro lens area disposed within the die receiving through hole; a transparent cover covers the micro lens area; a surrounding material formed under the die and filled in the gap between the die and sidewall of the die receiving though hole; a dielectric layer formed on the die and the substrate; a re-distribution layer (RDL) formed on the dielectric layer and coupled to the first contact pad; a protection layer formed over the RDL; and a second contact pad formed at the lower surface of the substrate and under the connecting through hole structure.
  • RDL re-distribution layer
  • the material of the substrate includes epoxy type FR5, FR4, BT, silicon, PCB (print circuit board) material, glass or ceramic.
  • the material of the substrate includes alloy or metal; it prefers that the CTE (Coefficient of Thermal Expansion) of the substrate is close to the CTE of mother board (PCB) having CTE around 16 to 20.
  • the material of the dielectric layer includes an elastic dielectric layer, a photosensitive layer, a silicone dielectric based layer, a siloxane polymer (SINR) layer, a polyimides (PI) layer or silicone resin layer.
  • FIG. 1 illustrates a cross-sectional view of a structure of fan-out WLP (LGA type) according to the present invention.
  • FIG. 1A illustrates a cross-sectional view of a structure of the micro lens according to the present invention.
  • FIG. 2 illustrates a cross-sectional view of a structure of fan-out WLP (BGA type) according to the present invention.
  • FIG. 3 illustrates a cross-sectional view of the substrate according to the present invention.
  • FIG. 4 illustrates a cross-sectional view of the combination of the substrate and the glass carrier according to the present invention.
  • FIG. 5 illustrates a top view of the substrate according to the present invention.
  • FIG. 6 illustrates a cross-sectional view of the CIS module according to the present invention.
  • the present invention discloses a structure of fan-out WLP utilizing a substrate having predetermined terminal contact metal pads 3 formed thereon and a pre-formed through hole 4 formed into the substrate 2 .
  • a die is disposed within the die receiving through hole of the substrate and attached on core paste material, for example, an elastic core paste material is filled into the space between die edge and side wall of die receiving through hole of the substrate or under the die.
  • a photosensitive material is coated over the die and the pre-formed substrate (includes the core paste area).
  • the material of the photosensitive material is formed of elastic material.
  • FIG. 1 illustrates a cross-sectional view of Fan-Out Wafer Level Package (FO-WLP) in accordance with one embodiment of the present invention.
  • the structure of FO-WLP includes a substrate 2 having a first terminal contact conductive pads 3 (for organic substrate) and die receiving through holes 4 formed therein to receive a die 6 .
  • the die receiving through holes 4 is formed from the upper surface of the substrate through the substrate to the lower surface.
  • the through hole 4 is pre-formed within the substrate 2 .
  • the core paste material 21 is printed/coated under the lower surface of the die 6 , thereby sealing the die 6 .
  • the core paste 21 is also refilled within the space (gap) between the die edge 6 and the sidewalls of the through holes 4 .
  • a conductive (metal) layer 24 is coated on the sidewall of the die receiving through holes 4 .
  • the die 6 is disposed within the die receiving through holes 4 on the substrate 2 .
  • contact pads (Bonding pads) 10 are formed on the die 6 .
  • a photosensitive layer or dielectric layer 12 is formed over the die 6 and the upper surface of substrate.
  • Pluralities of openings are formed within the dielectric layer 12 through the lithography process or exposure and develop procedure. The pluralities of openings are aligned to the contact pads (or I/O pads) 10 and the first terminal contact conductive pads 3 on the upper surface of the substrate, respectively.
  • the RDL (redistribution layer) 14 is formed on the dielectric layer 12 by removing selected portions of metal layer formed over the layer 12 , wherein the RDL 14 keeps electrically connected with the die 6 through the I/O pads 10 and the first terminal contact conductive pads 3 .
  • the substrate 2 further comprises connecting through holes 22 formed within the substrate 2 .
  • the first terminal contact metal pads 3 are formed over the connecting through holes 22 .
  • the conductive material is re-filled into the connecting through holes 22 for electrical connection.
  • Second terminal contact conductive pads 18 are located at the lower surface of the substrate 2 and under the connecting through holes 22 and connected to the first terminal contact conductive pads 3 of the substrate.
  • a scribe line 28 is defined between the package units for separating each unit, optionally, there is no dielectric layer over the scribe line.
  • a protection layer 26 is employed to cover the RDL 14 .
  • the die 6 including a micro lens area 60 formed on the die 6 .
  • the micro lens area 60 has a protection layer 62 formed thereon, please refer to FIG. 1A .
  • the dielectric layer 12 and the core paste material 21 act as buffer area that absorbs the thermal mechanical stress between the die 6 and substrate 2 during temperature cycling due to the dielectric layer 12 has elastic property.
  • the aforementioned structure constructs LGA type package.
  • conductive balls 20 are formed on the second terminal contact conductive pads 18 .
  • This type is called BGA type.
  • the other parts are similar to FIG. 1 , therefore, the detailed description is omitted.
  • the terminal pads 18 may act as the UBM (under ball metal) under the BGA scheme in the case.
  • Pluralities of contact conductive pads 3 are formed on the upper surface of the substrate 2 and under the RDL 14 .
  • the material of the substrate 2 is organic substrate likes epoxy type FR5, BT, PCB with defined through holes or Cu metal with pre etching circuit.
  • the CTE is the same as the one of the mother board (PCB).
  • the organic substrate with high Glass transition temperature (Tg) are epoxy type FR5 or BT (Bismaleimide triazine) type substrate.
  • the Cu metal (CTE around 16) can be used also.
  • the glass, ceramic, silicon can be used as the substrate.
  • the elastic core paste is formed of silicone rubber elastic materials.
  • the CTE (X/Y direction) of the epoxy type organic substrate (FR5/BT) is around 16 and the CTE of the tool for chip redistribution is around 5 to 8 by employing the glass materials as the tool.
  • the FR5/BT is unlikely to return to original location after the temperature cycling (the temperature is close to Glass transition temperature Tg) that causes the die shift in panel form during the WLP process which needs several high temperature process, for instant, the curing temperature of dielectric layers and core paste curing etc.
  • the substrate could be round type such as wafer type, the diameter could be 200, 300 mm or higher. It could be employed for rectangular type such as panel form.
  • the substrate 2 is pre-formed with die receiving through holes 4 .
  • the scribe line 28 is defined between the units for separating each unit. Please refer to FIG. 3 , it shows that the substrate 2 includes a plurality of pre-formed die receiving through hole 4 and the connecting through holes 22 . Conductive material is re-filled into the connecting through holes 22 , thereby constructing the connecting through hole structures.
  • the dielectric layer 12 is preferably an elastic dielectric material which is made by silicone dielectric based materials comprising siloxane polymers (SINR), Dow Corning WL5000 series, and the combination thereof.
  • the dielectric layer is made by a material comprising, polyimides (PI) or silicone resin.
  • PI polyimides
  • silicone resin a material comprising, polyimides (PI) or silicone resin.
  • it is a photosensitive layer for simple process.
  • the elastic dielectric layer is a kind of material with CTE larger than 100 (ppm/° C.), elongation rate about 40 percent (preferably 30 percent-50 percent), and the hardness of the material is between plastic and rubber.
  • the thickness of the elastic dielectric layer 18 depends on the stress accumulated in the RDL/dielectric layer interface during temperature cycling test.
  • FIG. 4 illustrate the tool 40 for Glass carrier and the substrate 2 .
  • Adhesion materials 42 such as UV curing type material are formed at the periphery area of the tool 40 .
  • the tool could be made of glass with the shape of panel form.
  • the connecting through holes structures will not be formed at the edge of the substrate.
  • the lower portion of FIG. 4 illustrates the combination of the tool and the substrate.
  • the panel will be adhesion with the glass carrier, it will stick and hold the panel during process.
  • FIG. 5 illustrates the top view of the substrate having die receiving through holes 4 .
  • the edge area 50 of substrate does not have the die receiving through holes, it is employed for sticking the glass carrier during WLP process. After the WLP process is completed, the substrate 2 will be cut along the dot line from the glass carrier, it means that the inside area of dot line will be processed by the sawing process for package singulation.
  • the aforementioned device package may be integrated into a CIS module having a lens holder 70 on a print circuit board 72 with conductive traces 74 .
  • a connector 76 is formed at one end of the print circuit board 72 .
  • print circuit board 72 includes flexible print circuit board (FPC).
  • the device package 100 is formed on the print circuit board 72 via the contact metal pads 75 on FPC and within the lens holder 70 by solder join (paste or Balls) by using SMT process.
  • a lens 78 is formed atop of the holder 70 and IR filter 82 is located within the lens holder 70 and between the device 100 and the lens.
  • At least one passive device 80 may be formed on the FPC within the lens holder 70 or outside the lens holder 70 .
  • the silicon die (CTE is ⁇ 2.3) is packaged inside the package.
  • FR5 or BT organic epoxy type material (CTE ⁇ 16) is employed as the substrate and its CTE is the same as the PCB or Mother Board.
  • the space (gap) between the die and the substrate is filled with filling material (prefer the elastic core paste) to absorb the thermal mechanical stress due to CTE mismatching (between die and the epoxy type FR5/BT).
  • the dielectric layers 12 include elastic materials to absorb the stress between the die pads and the PCB.
  • the RDL metal is Cu/Au materials and the CTE is around 16 that is the same as the PCB and organic substrate, and the UBM 18 of contact bump be located under the terminal contact metal pads 3 of substrate.
  • the metal land of PCB is Cu composition metal, the CTE of Cu is around 16 that is match to the one of PCB. From the description above, the present invention may provide excellent CTE (fully matching in X/Y direction) solution for the WLP.
  • CTE matching issue under the build up layers (PCB and substrate) is solved by the present scheme and it provides better reliability (no thermal stress in X/Y directions for terminal pads (solder balls/bumps) on the substrate during on board level condition) and the elastic DL is employed to absorb the Z direction stress.
  • the space (gap) between chip edge and sidewall of through holes of substrate can be used to fill the elastic dielectric materials to absorb the mechanical/thermal stress.
  • the material of the RDL comprises Ti/Cu/Au alloy or Ti/Cu/Ni/Au alloy; the thickness of the RDL is between 2 um_and — 15 um.
  • the Ti/Cu alloy is formed by sputtering technique also as seed metal layers, and the Cu/Au or Cu/Ni/Au alloy is formed by electroplating; exploiting the electro-plating process to form the RDL can make the RDL thick enough and better mechanical properties to withstand CTE mismatching during temperature cycling.
  • the metal pads can be Al or Cu or combination thereof. If the structure of FO-WLP utilizes SINR as the elastic dielectric layer and Cu as the RDL, according the stress analysis not shown here, the stress accumulated in the RDL/dielectric layer interface is reduced.
  • the RDLs fan out from the die and they communicate toward the second terminal pads downwardly.
  • the die 6 is received within the pre-formed die receiving through hole of the substrate, thereby reducing the thickness of the package.
  • the prior art violates the rule to reduce the die package thickness.
  • the package of the present invention will be thinner than the prior art.
  • the substrate is pre-prepared before package.
  • the through hole 4 is pre-determined. Thus, the throughput will be improved than ever.
  • the present invention discloses a fan-out WLP with reduced thickness and good CTE matching performance.
  • the present invention includes preparing a substrate (preferably organic substrate FR4/FR5/BT) and contact metal pads are formed on top surface.
  • the through hole is formed with the size larger than die size plus >100 um/side.
  • the depth is the same (or about 25 um thick than) with the thickness of dice thickness.
  • the protection layer of micro lens is formed on the processed silicon wafer, it can improves the yield during fan-out WLP process to avoid the particle contamination.
  • the next step is lapping the wafer by back-lapping to desired thickness.
  • the wafer is introduced to dicing procedure to separate the dice.
  • process for the present invention includes providing a die redistribution (alignment) tool with alignment pattern formed thereon. Then, the patterned glues is printed on the tool (be used for sticking the surface of dice), followed by using pick and place fine alignment system with flip chip function to redistribute the desired dies on the tool with desired pitch. The patterned glues will stick the chips (active surface side) on the tool. Subsequently, the substrate (with die receiving through holes) is bound on the tool and followed by printing elastic core paste material on the space (gap) between die and side walls of through holes of the (FR5/BT) substrate and the die back side. It is preferred to keep the surface of the core paste and the substrate at the same level.
  • the curing process is used to cure the core paste material and bonding the glass carrier by UV curing.
  • the panel bonder is used to bond the base on to the substrate and die back side. Vacuum bonding is performed, followed by separating the tool from the panel wafer.
  • a clean up procedure is performed to clean the dice surface by wet and/or dry clean.
  • Next step is to coat the dielectric materials on the surface of panel. Subsequently, lithography process is performed to open via (contact metal pads) and Al bonding pads and micro lens area or the scribe line (optional). Plasma clean step is then executed to clean the surface of via holes and Al bonding pads.
  • Next step is to sputter Ti/Cu as seed metal layers, and then Photo Resistor (PR) is coated over the dielectric layer and seed metal layers for forming the patterns of redistributed metal layers (RDL).
  • PR Photo Resistor
  • the electro plating is processed to form Cu/Au or Cu/Ni/Au as the RDL metal, followed by stripping the PR and metal wet etching to form the RDL metal trace. Subsequently, the next step is to coat or print the top dielectric layer and to open the contact metal via (optional for final testing) or to open the scribe line (optional).
  • the micro lens area can be exposed after the dielectric layer is formed or after the formation of the protection layer.
  • the heat re-flow procedure is performed to re-flow on the ball side (for BGA type).
  • the testing is executed.
  • Panel wafer level final testing is performed by using vertical or epoxy probe card to contact the contact metal via. After the testing, the substrate is sawed to singular the package into individual units. Then, the packages are respectively picked and placed the package on the tray or tape and reel.
  • the process is simple for forming Panel wafer type and is easy to control the roughness of panel surface.
  • the thickness of panel is easy to be controlled and die shift issue will be eliminated during process.
  • the injection mold tool is omitted and warp, CMP polish process will not be introduced either.
  • the panel wafer is easy to be processed by wafer level packaging process.
  • the substrate is pre-prepared with pre-form through holes, inter-connecting through holes and terminal contact metal pads (for organic substrate); the size of through hole is equal to die size plus around >100 um per/side; it can be used as stress buffer releasing area by filling the elastic core paste materials to absorb the thermal stress due to the CTE between silicon die and substrate (FR5/BT)) is difference.
  • the packaging throughput will be increased (manufacturing cycle time was reduced) due to apply the simple build up layers on top the surface of die.
  • the terminal pads are formed on the opposite side of the dice active surface.
  • the dice placement process is the same as the current process.
  • Elastic core paste resin, epoxy compound, silicone rubber, etc.
  • SiNR silicone dielectric material
  • the contact pads are opened by using photo mask process only due to the dielectric layer (SINR) is photosensitive layer for opening the contacting open.
  • the die and substrate be bonded together with glass carrier.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

The present invention discloses a structure of package comprising: a substrate with a die receiving through hole, a connecting through hole structure and a first contact pad; a die having micro lens area disposed within the die receiving through hole; a transparent cover covers the micro lens area; a surrounding material formed under the die and filled in the gap between the die and sidewall of the die receiving though hole; a dielectric layer formed on the die and the substrate; a re-distribution layer (RDL) formed on the dielectric layer and coupled to the first contact pad; a protection layer formed over the RDL; and a second contact pad formed at the lower surface of the substrate and under the connecting through hole structure.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a Divisional of co-pending application Ser. No. 11/647,217, filed on Dec. 29, 2006, and for which priority is claimed under 35 U.S.C. § 120, the entire contents of which are hereby incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to a structure of wafer level package (WLP), and more particularly to a fan-out wafer level package with die receiving through-hole and inter-connecting through holes formed within the substrate to improve the reliability and to reduce the device size.
  • 2. Brief Description of the Prior Art
  • In the field of semiconductor devices, the device density is increased and the device dimension is reduced, continuously. The demand for the packaging or interconnecting techniques in such high density devices is also increased to fit the situation mentioned above. Conventionally, in the flip-chip attachment method, an array of solder bumps is formed on the surface of the die. The formation of the solder bumps may be carried out by using a solder composite material through a solder mask for producing a desired pattern of solder bumps. The function of chip package includes power distribution, signal distribution, heat dissipation, protection and support . . . and so on. As a semiconductor become more complicated, the traditional package technique, for example lead frame package, flex package, rigid package technique, can't meet the demand of producing smaller chip with high density elements on the chip.
  • Furthermore, because conventional package technologies have to divide a dice on a wafer into respective dies and then package the die respectively, therefore, these techniques are time consuming for manufacturing process. Since the chip package technique is highly influenced by the development of integrated circuits, therefore, as the size of electronics has become demanding, so does the package technique. For the reasons mentioned above, the trend of package technique is toward ball grid array (BGA), flip chip (FC-BGA), chip scale package (CSP), Wafer level package (WLP) today. “Wafer level package” is to be understood as meaning that the entire packaging and all the interconnections on the wafer as well as other processing steps are carried out before the singulation (dicing) into chips (dies). Generally, after completion of all assembling processes or packaging processes, individual semiconductor packages are separated from a wafer having a plurality of semiconductor dies. The wafer level package has extremely small dimensions combined with extremely good electrical properties.
  • WLP technique is an advanced packaging technology, by which the die are manufactured and tested on the wafer, and then the wafer is singulated by dicing for assembly in a surface-mount line. Because the wafer level package technique utilizes the whole wafer as one object, not utilizing a single chip or die, therefore, before performing a scribing process, packaging and testing has been accomplished; furthermore, WLP is such an advanced technique so that the process of wire bonding, die mount and under-fill can be omitted. By utilizing WLP technique, the cost and manufacturing time can be reduced, and the resulting structure of WLP can be equal to the die; therefore, this technique can meet the demands of miniaturization of electronic devices.
  • Though the advantages of WLP technique mentioned above, some issues still exist influencing the acceptance of WLP technique. For instance, the CTE difference (mismatching) between the materials of a structure of WLP and the mother board (PCB) becomes another critical factor to mechanical instability of the structure. A package scheme disclosed by U.S. Pat. No. 6,271,469 suffers the CTE mismatching issue. It is because the prior art uses silicon die encapsulated by molding compound. As known, the CTE of silicon material is 2.3, but the CTE of molding compound is around 40-80. The arrangement causes chip location be shifted during process due to the curing temperature of compound and dielectric layers materials are higher and the inter-connecting pads will be shifted that will causes yield and performance problem. It is difficult to return the original location during temperature cycling (it caused by the epoxy resin property if the curing Temp near/over the Tg). It means that the prior structure package can not be processed by large size, and it causes higher manufacturing cost.
  • Further, some technical involves the usage of die that directly formed on the upper surface of the substrate. As known, the pads of the semiconductor die will be redistributed through redistribution processes involving a redistribution layer (RDL) into a plurality of metal pads in an area array type. The build up layer will increase the size of the package. Therefore, the thickness of the package is increased. This may conflict with the demand of reducing the size of a chip.
  • Further, the prior art suffers complicated process to form the “Panel” type package. It needs the mold tool for encapsulation and the injection of mold material. It is unlikely to control the surface of die and compound at same level due to warp after heat curing the compound, the CMP process may be needed to polish the uneven surface. The cost is therefore increased.
  • Therefore, the present invention provides a fan-out wafer level packaging (FO-WLP) structure with good CTE performance and shrinkage size to overcome the aforementioned problem and also provide the better board level reliability test of temperature cycling.
  • SUMMARY OF THE INVENTION
  • The object of the present invention is to provide a fan-out WLP with excellent CTE performance and shrinkage size.
  • The further object of the present invention is to provide a fan-out WLP with a substrate having die receiving through-hole for improving the reliability and shrinking the device size.
  • The present invention discloses a structure of package comprising: a substrate with a die receiving through hole, a connecting through hole structure and a first contact pad; a die having micro lens area disposed within the die receiving through hole; a transparent cover covers the micro lens area; a surrounding material formed under the die and filled in the gap between the die and sidewall of the die receiving though hole; a dielectric layer formed on the die and the substrate; a re-distribution layer (RDL) formed on the dielectric layer and coupled to the first contact pad; a protection layer formed over the RDL; and a second contact pad formed at the lower surface of the substrate and under the connecting through hole structure.
  • The material of the substrate includes epoxy type FR5, FR4, BT, silicon, PCB (print circuit board) material, glass or ceramic. Alternatively, the material of the substrate includes alloy or metal; it prefers that the CTE (Coefficient of Thermal Expansion) of the substrate is close to the CTE of mother board (PCB) having CTE around 16 to 20. The material of the dielectric layer includes an elastic dielectric layer, a photosensitive layer, a silicone dielectric based layer, a siloxane polymer (SINR) layer, a polyimides (PI) layer or silicone resin layer.
  • Further scope of the applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present invention.
  • FIG. 1 illustrates a cross-sectional view of a structure of fan-out WLP (LGA type) according to the present invention.
  • FIG. 1A illustrates a cross-sectional view of a structure of the micro lens according to the present invention.
  • FIG. 2 illustrates a cross-sectional view of a structure of fan-out WLP (BGA type) according to the present invention.
  • FIG. 3 illustrates a cross-sectional view of the substrate according to the present invention.
  • FIG. 4 illustrates a cross-sectional view of the combination of the substrate and the glass carrier according to the present invention.
  • FIG. 5 illustrates a top view of the substrate according to the present invention.
  • FIG. 6 illustrates a cross-sectional view of the CIS module according to the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The invention will now be described in greater detail with preferred embodiments of the invention and illustrations attached. Nevertheless, it should be recognized that the preferred embodiments of the invention is only for illustrating. Besides the preferred embodiment mentioned here, present invention can be practiced in a wide range of other embodiments besides those explicitly described, and the scope of the present invention is expressly not limited expect as specified in the accompanying claims.
  • The present invention discloses a structure of fan-out WLP utilizing a substrate having predetermined terminal contact metal pads 3 formed thereon and a pre-formed through hole 4 formed into the substrate 2. A die is disposed within the die receiving through hole of the substrate and attached on core paste material, for example, an elastic core paste material is filled into the space between die edge and side wall of die receiving through hole of the substrate or under the die. A photosensitive material is coated over the die and the pre-formed substrate (includes the core paste area). Preferably, the material of the photosensitive material is formed of elastic material.
  • FIG. 1 illustrates a cross-sectional view of Fan-Out Wafer Level Package (FO-WLP) in accordance with one embodiment of the present invention. As shown in the FIG. 1, the structure of FO-WLP includes a substrate 2 having a first terminal contact conductive pads 3 (for organic substrate) and die receiving through holes 4 formed therein to receive a die 6. The die receiving through holes 4 is formed from the upper surface of the substrate through the substrate to the lower surface. The through hole 4 is pre-formed within the substrate 2. The core paste material 21 is printed/coated under the lower surface of the die 6, thereby sealing the die 6. The core paste 21 is also refilled within the space (gap) between the die edge 6 and the sidewalls of the through holes 4. A conductive (metal) layer 24 is coated on the sidewall of the die receiving through holes 4.
  • The die 6 is disposed within the die receiving through holes 4 on the substrate 2. As know, contact pads (Bonding pads) 10 are formed on the die 6. A photosensitive layer or dielectric layer 12 is formed over the die 6 and the upper surface of substrate. Pluralities of openings are formed within the dielectric layer 12 through the lithography process or exposure and develop procedure. The pluralities of openings are aligned to the contact pads (or I/O pads) 10 and the first terminal contact conductive pads 3 on the upper surface of the substrate, respectively. The RDL (redistribution layer) 14, also referred to as conductive trace 14, is formed on the dielectric layer 12 by removing selected portions of metal layer formed over the layer 12, wherein the RDL 14 keeps electrically connected with the die 6 through the I/O pads 10 and the first terminal contact conductive pads 3. The substrate 2 further comprises connecting through holes 22 formed within the substrate 2. The first terminal contact metal pads 3 are formed over the connecting through holes 22. The conductive material is re-filled into the connecting through holes 22 for electrical connection. Second terminal contact conductive pads 18 are located at the lower surface of the substrate 2 and under the connecting through holes 22 and connected to the first terminal contact conductive pads 3 of the substrate. A scribe line 28 is defined between the package units for separating each unit, optionally, there is no dielectric layer over the scribe line. A protection layer 26 is employed to cover the RDL 14.
  • Is should be note that the die 6 including a micro lens area 60 formed on the die 6. The micro lens area 60 has a protection layer 62 formed thereon, please refer to FIG. 1A.
  • The dielectric layer 12 and the core paste material 21 act as buffer area that absorbs the thermal mechanical stress between the die 6 and substrate 2 during temperature cycling due to the dielectric layer 12 has elastic property. The aforementioned structure constructs LGA type package.
  • An alternative embodiment can be seen in FIG. 2, conductive balls 20 are formed on the second terminal contact conductive pads 18. This type is called BGA type. The other parts are similar to FIG. 1, therefore, the detailed description is omitted. The terminal pads 18 may act as the UBM (under ball metal) under the BGA scheme in the case. Pluralities of contact conductive pads 3 are formed on the upper surface of the substrate 2 and under the RDL 14.
  • Preferably, the material of the substrate 2 is organic substrate likes epoxy type FR5, BT, PCB with defined through holes or Cu metal with pre etching circuit. Preferably, the CTE is the same as the one of the mother board (PCB). Preferably, the organic substrate with high Glass transition temperature (Tg) are epoxy type FR5 or BT (Bismaleimide triazine) type substrate. The Cu metal (CTE around 16) can be used also. The glass, ceramic, silicon can be used as the substrate. The elastic core paste is formed of silicone rubber elastic materials.
  • It is because that the CTE (X/Y direction) of the epoxy type organic substrate (FR5/BT) is around 16 and the CTE of the tool for chip redistribution is around 5 to 8 by employing the glass materials as the tool. The FR5/BT is unlikely to return to original location after the temperature cycling (the temperature is close to Glass transition temperature Tg) that causes the die shift in panel form during the WLP process which needs several high temperature process, for instant, the curing temperature of dielectric layers and core paste curing etc.
  • The substrate could be round type such as wafer type, the diameter could be 200, 300 mm or higher. It could be employed for rectangular type such as panel form. The substrate 2 is pre-formed with die receiving through holes 4. The scribe line 28 is defined between the units for separating each unit. Please refer to FIG. 3, it shows that the substrate 2 includes a plurality of pre-formed die receiving through hole 4 and the connecting through holes 22. Conductive material is re-filled into the connecting through holes 22, thereby constructing the connecting through hole structures.
  • In one embodiment of the present invention, the dielectric layer 12 is preferably an elastic dielectric material which is made by silicone dielectric based materials comprising siloxane polymers (SINR), Dow Corning WL5000 series, and the combination thereof. In another embodiment, the dielectric layer is made by a material comprising, polyimides (PI) or silicone resin. Preferably, it is a photosensitive layer for simple process.
  • In one embodiment of the present invention, the elastic dielectric layer is a kind of material with CTE larger than 100 (ppm/° C.), elongation rate about 40 percent (preferably 30 percent-50 percent), and the hardness of the material is between plastic and rubber. The thickness of the elastic dielectric layer 18 depends on the stress accumulated in the RDL/dielectric layer interface during temperature cycling test.
  • FIG. 4 illustrate the tool 40 for Glass carrier and the substrate 2. Adhesion materials 42 such as UV curing type material are formed at the periphery area of the tool 40. In one case, the tool could be made of glass with the shape of panel form. The connecting through holes structures will not be formed at the edge of the substrate. The lower portion of FIG. 4 illustrates the combination of the tool and the substrate. The panel will be adhesion with the glass carrier, it will stick and hold the panel during process.
  • FIG. 5 illustrates the top view of the substrate having die receiving through holes 4. The edge area 50 of substrate does not have the die receiving through holes, it is employed for sticking the glass carrier during WLP process. After the WLP process is completed, the substrate 2 will be cut along the dot line from the glass carrier, it means that the inside area of dot line will be processed by the sawing process for package singulation.
  • Please refer to FIG. 6, the aforementioned device package may be integrated into a CIS module having a lens holder 70 on a print circuit board 72 with conductive traces 74. A connector 76 is formed at one end of the print circuit board 72. Preferably, print circuit board 72 includes flexible print circuit board (FPC). The device package 100 is formed on the print circuit board 72 via the contact metal pads 75 on FPC and within the lens holder 70 by solder join (paste or Balls) by using SMT process. A lens 78 is formed atop of the holder 70 and IR filter 82 is located within the lens holder 70 and between the device 100 and the lens. At least one passive device 80 may be formed on the FPC within the lens holder 70 or outside the lens holder 70.
  • The silicon die (CTE is ˜2.3) is packaged inside the package. FR5 or BT organic epoxy type material (CTE˜16) is employed as the substrate and its CTE is the same as the PCB or Mother Board. The space (gap) between the die and the substrate is filled with filling material (prefer the elastic core paste) to absorb the thermal mechanical stress due to CTE mismatching (between die and the epoxy type FR5/BT). Further, the dielectric layers 12 include elastic materials to absorb the stress between the die pads and the PCB. The RDL metal is Cu/Au materials and the CTE is around 16 that is the same as the PCB and organic substrate, and the UBM 18 of contact bump be located under the terminal contact metal pads 3 of substrate. The metal land of PCB is Cu composition metal, the CTE of Cu is around 16 that is match to the one of PCB. From the description above, the present invention may provide excellent CTE (fully matching in X/Y direction) solution for the WLP.
  • Apparently, CTE matching issue under the build up layers (PCB and substrate) is solved by the present scheme and it provides better reliability (no thermal stress in X/Y directions for terminal pads (solder balls/bumps) on the substrate during on board level condition) and the elastic DL is employed to absorb the Z direction stress. The space (gap) between chip edge and sidewall of through holes of substrate can be used to fill the elastic dielectric materials to absorb the mechanical/thermal stress.
  • In one embodiment of the invention, the material of the RDL comprises Ti/Cu/Au alloy or Ti/Cu/Ni/Au alloy; the thickness of the RDL is between 2 um_and15 um. The Ti/Cu alloy is formed by sputtering technique also as seed metal layers, and the Cu/Au or Cu/Ni/Au alloy is formed by electroplating; exploiting the electro-plating process to form the RDL can make the RDL thick enough and better mechanical properties to withstand CTE mismatching during temperature cycling. The metal pads can be Al or Cu or combination thereof. If the structure of FO-WLP utilizes SINR as the elastic dielectric layer and Cu as the RDL, according the stress analysis not shown here, the stress accumulated in the RDL/dielectric layer interface is reduced. As shown in FIG. 1-2, the RDLs fan out from the die and they communicate toward the second terminal pads downwardly. It is different from the prior art technology, the die 6 is received within the pre-formed die receiving through hole of the substrate, thereby reducing the thickness of the package. The prior art violates the rule to reduce the die package thickness. The package of the present invention will be thinner than the prior art. Further, the substrate is pre-prepared before package. The through hole 4 is pre-determined. Thus, the throughput will be improved than ever. The present invention discloses a fan-out WLP with reduced thickness and good CTE matching performance.
  • The present invention includes preparing a substrate (preferably organic substrate FR4/FR5/BT) and contact metal pads are formed on top surface. The through hole is formed with the size larger than die size plus >100 um/side. The depth is the same (or about 25 um thick than) with the thickness of dice thickness.
  • The protection layer of micro lens is formed on the processed silicon wafer, it can improves the yield during fan-out WLP process to avoid the particle contamination. The next step is lapping the wafer by back-lapping to desired thickness. The wafer is introduced to dicing procedure to separate the dice.
  • Thereafter, process for the present invention includes providing a die redistribution (alignment) tool with alignment pattern formed thereon. Then, the patterned glues is printed on the tool (be used for sticking the surface of dice), followed by using pick and place fine alignment system with flip chip function to redistribute the desired dies on the tool with desired pitch. The patterned glues will stick the chips (active surface side) on the tool. Subsequently, the substrate (with die receiving through holes) is bound on the tool and followed by printing elastic core paste material on the space (gap) between die and side walls of through holes of the (FR5/BT) substrate and the die back side. It is preferred to keep the surface of the core paste and the substrate at the same level. Next, the curing process is used to cure the core paste material and bonding the glass carrier by UV curing. The panel bonder is used to bond the base on to the substrate and die back side. Vacuum bonding is performed, followed by separating the tool from the panel wafer.
  • Once the die is redistributed on the substrate (panel base), then, a clean up procedure is performed to clean the dice surface by wet and/or dry clean. Next step is to coat the dielectric materials on the surface of panel. Subsequently, lithography process is performed to open via (contact metal pads) and Al bonding pads and micro lens area or the scribe line (optional). Plasma clean step is then executed to clean the surface of via holes and Al bonding pads. Next step is to sputter Ti/Cu as seed metal layers, and then Photo Resistor (PR) is coated over the dielectric layer and seed metal layers for forming the patterns of redistributed metal layers (RDL). Then, the electro plating is processed to form Cu/Au or Cu/Ni/Au as the RDL metal, followed by stripping the PR and metal wet etching to form the RDL metal trace. Subsequently, the next step is to coat or print the top dielectric layer and to open the contact metal via (optional for final testing) or to open the scribe line (optional).
  • The micro lens area can be exposed after the dielectric layer is formed or after the formation of the protection layer.
  • After the ball placement or solder paste printing, the heat re-flow procedure is performed to re-flow on the ball side (for BGA type). The testing is executed. Panel wafer level final testing is performed by using vertical or epoxy probe card to contact the contact metal via. After the testing, the substrate is sawed to singular the package into individual units. Then, the packages are respectively picked and placed the package on the tray or tape and reel.
  • The advantages of the present inventions are:
  • The process is simple for forming Panel wafer type and is easy to control the roughness of panel surface. The thickness of panel is easy to be controlled and die shift issue will be eliminated during process. The injection mold tool is omitted and warp, CMP polish process will not be introduced either. The panel wafer is easy to be processed by wafer level packaging process.
  • The substrate is pre-prepared with pre-form through holes, inter-connecting through holes and terminal contact metal pads (for organic substrate); the size of through hole is equal to die size plus around >100 um per/side; it can be used as stress buffer releasing area by filling the elastic core paste materials to absorb the thermal stress due to the CTE between silicon die and substrate (FR5/BT)) is difference. The packaging throughput will be increased (manufacturing cycle time was reduced) due to apply the simple build up layers on top the surface of die. The terminal pads are formed on the opposite side of the dice active surface.
  • The dice placement process is the same as the current process. Elastic core paste (resin, epoxy compound, silicone rubber, etc.) is refilled the space between the dice edge and the sidewall of the through holes for thermal stress releasing buffer in the present invention, then, vacuum heat curing is applied. CTE mismatching issue is overcome during panel form process (using the glass carrier with lower CTE that close to silicon die). Only silicone dielectric material (preferably SINR) is coated on the active surface and the substrate (preferably FR45 or BT) surface. The contact pads are opened by using photo mask process only due to the dielectric layer (SINR) is photosensitive layer for opening the contacting open. The die and substrate be bonded together with glass carrier. The reliability for both package and board level is better than ever, especially, for the board level temperature cycling test, it was due to the CTE of substrate and PCB mother board are identical, hence, no thermal mechanical stress be applied on the solder bumps/balls; the previous failure mode (solder ball crack) during temperature cycling on board test were not obvious. The cost is low and the process is simple. It is easy to form the multi-chips package as well.
  • Although preferred embodiments of the present invention have been described, it will be understood by those skilled in the art that the present invention should not be limited to the described preferred embodiments. Rather, various changes and modifications can be made within the spirit and scope of the present invention, as defined by the following claims.

Claims (9)

1. A method for forming semiconductor device package comprising:
providing a substrate with die receiving through holes, connecting through hole structure and contact metal pads;
printing patterned glues on a die redistribution tool;
redistributing desired dice having micro lens area on said die redistribution tool with desired pitch by a pick and place fine alignment system;
bonding said substrate to said die redistribution tool;
refilling elastic core paste material into the space between said dice and sidewall of the through hole and back side of said dice;
separating said die redistribution tool;
coating a dielectric layer on the active surface of said die and upper surface of said substrate;
forming openings to expose micro lens, contact pads of said dice and substrate;
forming at least one conductive built up layer over said dielectric layer;
forming a contacting structure over said at least one conductive built up layer;
forming a protection layer over said at least one conductive built up layer;
exposing said micro lens area.
2. The method of claim 1, further comprising forming a conductive bump coupled to said contacting structure.
3. The method of claim 1, wherein said dielectric layer includes an elastic dielectric layer, a photosensitive layer, a silicone dielectric based material layer, a polyimides (PI) layer or a silicone resin layer.
4. The method of claim 3, wherein said silicone dielectric based material comprises siloxane polymers (SINR), Dow Corning WL5000 series, or the combination thereof.
5. The method of claim 1, wherein said at least one conductive built up layer comprises Ti/Cu/Au alloy or Ti/Cu/Ni/Au alloy.
6. The method of claim 1, wherein the material of said substrate includes epoxy type FR5 or FR4.
7. The method of claim 1, wherein the material of said substrate includes BT, silicon, PCB (print circuit board) material, glass or ceramic.
8. The method of claim 1, wherein the material of said substrate includes alloy or metal.
9. The method of claim 1, further includes a protection layer formed over said micro lens area of said die.
US12/165,876 2006-12-29 2008-07-01 Semiconductor image device package with die receiving through-hole and method of the same Abandoned US20080261346A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/165,876 US20080261346A1 (en) 2006-12-29 2008-07-01 Semiconductor image device package with die receiving through-hole and method of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/647,217 US7459729B2 (en) 2006-12-29 2006-12-29 Semiconductor image device package with die receiving through-hole and method of the same
US12/165,876 US20080261346A1 (en) 2006-12-29 2008-07-01 Semiconductor image device package with die receiving through-hole and method of the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/647,217 Division US7459729B2 (en) 2006-10-06 2006-12-29 Semiconductor image device package with die receiving through-hole and method of the same

Publications (1)

Publication Number Publication Date
US20080261346A1 true US20080261346A1 (en) 2008-10-23

Family

ID=39466027

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/647,217 Active 2027-02-19 US7459729B2 (en) 2006-10-06 2006-12-29 Semiconductor image device package with die receiving through-hole and method of the same
US12/165,876 Abandoned US20080261346A1 (en) 2006-12-29 2008-07-01 Semiconductor image device package with die receiving through-hole and method of the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/647,217 Active 2027-02-19 US7459729B2 (en) 2006-10-06 2006-12-29 Semiconductor image device package with die receiving through-hole and method of the same

Country Status (7)

Country Link
US (2) US7459729B2 (en)
JP (1) JP2008211179A (en)
KR (1) KR20080063223A (en)
CN (1) CN101211945A (en)
DE (1) DE102007063342A1 (en)
SG (1) SG144128A1 (en)
TW (1) TWI358806B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120105713A1 (en) * 2010-11-02 2012-05-03 Stmicroelectronics Asia Pacific Pte Ltd. Low profile chip scale module and method of producing the same
EP2908341A1 (en) * 2014-02-18 2015-08-19 ams AG Semiconductor device with surface integrated focusing element

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9000461B2 (en) * 2003-07-04 2015-04-07 Epistar Corporation Optoelectronic element and manufacturing method thereof
US7419852B2 (en) * 2004-08-27 2008-09-02 Micron Technology, Inc. Low temperature methods of forming back side redistribution layers in association with through wafer interconnects, semiconductor devices including same, and assemblies
US7812434B2 (en) * 2007-01-03 2010-10-12 Advanced Chip Engineering Technology Inc Wafer level package with die receiving through-hole and method of the same
US20080169556A1 (en) * 2007-01-16 2008-07-17 Xin Tec Inc. Chip package module heat sink
US7863088B2 (en) * 2007-05-16 2011-01-04 Infineon Technologies Ag Semiconductor device including covering a semiconductor with a molding compound and forming a through hole in the molding compound
TWI474447B (en) * 2009-06-29 2015-02-21 Advanced Semiconductor Eng Semiconductor package structure and enveloping method thereof
US8772087B2 (en) * 2009-10-22 2014-07-08 Infineon Technologies Ag Method and apparatus for semiconductor device fabrication using a reconstituted wafer
US20120217049A1 (en) * 2011-02-28 2012-08-30 Ibiden Co., Ltd. Wiring board with built-in imaging device
CN102903722A (en) * 2011-07-26 2013-01-30 旭丽电子(广州)有限公司 Thin-type active detection module and manufacturing method thereof
CN103187508B (en) * 2011-12-31 2015-11-18 刘胜 LED Wafer-level Chip Scale Package structure and packaging technology
CN102569324B (en) * 2012-02-22 2017-03-01 苏州晶方半导体科技股份有限公司 The encapsulating structure of imageing sensor and method for packing
CN102646660B (en) * 2012-04-27 2014-11-26 苏州晶方半导体科技股份有限公司 Semiconductor packaging method
KR101985236B1 (en) 2012-07-10 2019-06-03 삼성전자주식회사 Multi-chip package and method of manufacturing the same
TWI512930B (en) * 2012-09-25 2015-12-11 Xintex Inc Chip package and method for forming the same
US9219091B2 (en) 2013-03-12 2015-12-22 Optiz, Inc. Low profile sensor module and method of making same
CN104576575B (en) * 2013-10-10 2017-12-19 日月光半导体制造股份有限公司 Semiconductor package assembly and a manufacturing method thereof
KR102159548B1 (en) * 2014-01-28 2020-09-24 엘지이노텍 주식회사 Embedded printed circuit substrate
KR102158068B1 (en) * 2014-02-05 2020-09-21 엘지이노텍 주식회사 Embedded printed circuit substrate
CN104037146B (en) * 2014-06-25 2016-09-28 苏州晶方半导体科技股份有限公司 Encapsulating structure and method for packing
CN105530410B (en) * 2014-09-30 2019-05-07 豪威光电子科技(上海)有限公司 The forming method of camera lens encapsulated modules
KR20160080166A (en) * 2014-12-29 2016-07-07 에스케이하이닉스 주식회사 Embedded image sensor package and method of fabricating the same
US9543347B2 (en) 2015-02-24 2017-01-10 Optiz, Inc. Stress released image sensor package structure and method
CN204760384U (en) * 2015-05-18 2015-11-11 华天科技(昆山)电子有限公司 Wafer -level package structure of high pixel image sensor chip
CN108292647B (en) * 2015-09-30 2022-09-30 天工方案公司 Device and method relating to the manufacture of shielded modules
KR102016492B1 (en) * 2016-04-25 2019-09-02 삼성전기주식회사 Fan-out semiconductor package
CN107827079B (en) * 2017-11-17 2019-09-20 烟台睿创微纳技术股份有限公司 A kind of production method of MEMS chip
CN107958881A (en) * 2017-11-28 2018-04-24 华进半导体封装先导技术研发中心有限公司 A kind of CIS device encapsulation structures and method for packing
KR20190088812A (en) 2018-01-19 2019-07-29 삼성전자주식회사 Fan-out sensor package
KR102016495B1 (en) * 2018-01-31 2019-10-21 삼성전기주식회사 Fan-out sensor package
JP2019216187A (en) 2018-06-13 2019-12-19 ソニーセミコンダクタソリューションズ株式会社 Imaging apparatus
CN110752225B (en) * 2018-07-23 2022-07-12 宁波舜宇光电信息有限公司 Photosensitive assembly and manufacturing method thereof
WO2020037677A1 (en) * 2018-08-24 2020-02-27 深圳市汇顶科技股份有限公司 Packaging method and structure for light emitting device, and electronic device
US10847400B2 (en) * 2018-12-28 2020-11-24 Applied Materials, Inc. Adhesive-less substrate bonding to carrier plate
TWI688073B (en) * 2019-05-22 2020-03-11 穩懋半導體股份有限公司 Semiconductor integrated circuit and circuit layout method thereof
CN115036302A (en) * 2022-05-31 2022-09-09 上海沛塬电子有限公司 Wafer-level power module and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7498646B2 (en) * 2006-07-19 2009-03-03 Advanced Chip Engineering Technology Inc. Structure of image sensor module and a method for manufacturing of wafer level package
US7525139B2 (en) * 2004-04-28 2009-04-28 Advanced Chip Engineering Technology Inc. Image sensor with a protection layer

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69408558T2 (en) * 1993-05-28 1998-07-23 Toshiba Ave Kk Use of an anisotropic conductive layer for connecting connection conductors of a printed circuit board to the electrical connection contacts of a photoelectric conversion device and method for assembling this device
US6297540B1 (en) * 1999-06-03 2001-10-02 Intel Corporation Microlens for surface mount products
US6271469B1 (en) 1999-11-12 2001-08-07 Intel Corporation Direct build-up layer on an encapsulated die package
JP4944301B2 (en) * 2000-02-01 2012-05-30 パナソニック株式会社 Optoelectronic device and manufacturing method thereof
US6407411B1 (en) * 2000-04-13 2002-06-18 General Electric Company Led lead frame assembly
JP2003198897A (en) * 2001-12-27 2003-07-11 Seiko Epson Corp Optical module, circuit board, and electronic device
US7074638B2 (en) * 2002-04-22 2006-07-11 Fuji Photo Film Co., Ltd. Solid-state imaging device and method of manufacturing said solid-state imaging device
US6970491B2 (en) * 2002-10-30 2005-11-29 Photodigm, Inc. Planar and wafer level packaging of semiconductor lasers and photo detectors for transmitter optical sub-assemblies
US6982470B2 (en) * 2002-11-27 2006-01-03 Seiko Epson Corporation Semiconductor device, method of manufacturing the same, cover for semiconductor device, and electronic equipment
JP3800335B2 (en) * 2003-04-16 2006-07-26 セイコーエプソン株式会社 Optical device, optical module, semiconductor device, and electronic apparatus
US7329856B2 (en) * 2004-08-24 2008-02-12 Micron Technology, Inc. Image sensor having integrated infrared-filtering optical device and related method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7525139B2 (en) * 2004-04-28 2009-04-28 Advanced Chip Engineering Technology Inc. Image sensor with a protection layer
US7498646B2 (en) * 2006-07-19 2009-03-03 Advanced Chip Engineering Technology Inc. Structure of image sensor module and a method for manufacturing of wafer level package

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120105713A1 (en) * 2010-11-02 2012-05-03 Stmicroelectronics Asia Pacific Pte Ltd. Low profile chip scale module and method of producing the same
US8934052B2 (en) * 2010-11-02 2015-01-13 Stmicroelectronics Pte Ltd Camera module including an image sensor and a laterally adjacent surface mount device coupled at a lower surface of a dielectric material layer
EP2908341A1 (en) * 2014-02-18 2015-08-19 ams AG Semiconductor device with surface integrated focusing element
WO2015124465A1 (en) * 2014-02-18 2015-08-27 Ams Ag Semiconductor device with surface integrated focusing element and method of producing a semiconductor device with focusing element
US20170062504A1 (en) * 2014-02-18 2017-03-02 Ams Ag Semiconductor device with surface integrated focusing element and method of producing a semiconductor device with focusing element
US9947711B2 (en) * 2014-02-18 2018-04-17 Ams Ag Semiconductor device with surface integrated focusing element and method of producing a semiconductor device with focusing element

Also Published As

Publication number Publication date
TWI358806B (en) 2012-02-21
CN101211945A (en) 2008-07-02
US7459729B2 (en) 2008-12-02
DE102007063342A1 (en) 2008-07-03
TW200834840A (en) 2008-08-16
SG144128A1 (en) 2008-07-29
JP2008211179A (en) 2008-09-11
US20080157312A1 (en) 2008-07-03
KR20080063223A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
US7459729B2 (en) Semiconductor image device package with die receiving through-hole and method of the same
US8178963B2 (en) Wafer level package with die receiving through-hole and method of the same
US8178964B2 (en) Semiconductor device package with die receiving through-hole and dual build-up layers over both side-surfaces for WLP and method of the same
US7812434B2 (en) Wafer level package with die receiving through-hole and method of the same
US7655501B2 (en) Wafer level package with good CTE performance
US20080157358A1 (en) Wafer level package with die receiving through-hole and method of the same
US20080083980A1 (en) Cmos image sensor chip scale package with die receiving through-hole and method of the same
US20080237828A1 (en) Semiconductor device package with die receiving through-hole and dual build-up layers over both side-surfaces for wlp and method of the same
US8237257B2 (en) Substrate structure with die embedded inside and dual build-up layers over both side surfaces and method of the same
US8350377B2 (en) Semiconductor device package structure and method for the same
US7884461B2 (en) System-in-package and manufacturing method of the same
US20080217761A1 (en) Structure of semiconductor device package and method of the same
US20080116564A1 (en) Wafer level package with die receiving cavity and method of the same
US20080136002A1 (en) Multi-chips package and method of forming the same
US20080274579A1 (en) Wafer level image sensor package with die receiving cavity and method of making the same
US20080211075A1 (en) Image sensor chip scale package having inter-adhesion with gap and method of the same
US7525185B2 (en) Semiconductor device package having multi-chips with side-by-side configuration and method of the same
US20080197474A1 (en) Semiconductor device package with multi-chips and method of the same
US20080157340A1 (en) RF module package
KR20080077934A (en) Multi-chips package with reduced structure and method for forming the same
KR20080075450A (en) Wafer level image sensor package with die receiving cavity and method of the same

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION