WO2018181761A1 - 封止フィルム、電子部品装置の製造方法及び電子部品装置 - Google Patents

封止フィルム、電子部品装置の製造方法及び電子部品装置 Download PDF

Info

Publication number
WO2018181761A1
WO2018181761A1 PCT/JP2018/013344 JP2018013344W WO2018181761A1 WO 2018181761 A1 WO2018181761 A1 WO 2018181761A1 JP 2018013344 W JP2018013344 W JP 2018013344W WO 2018181761 A1 WO2018181761 A1 WO 2018181761A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
sealing
resin
electronic component
film
Prior art date
Application number
PCT/JP2018/013344
Other languages
English (en)
French (fr)
Inventor
野村 豊
裕介 渡瀬
弘邦 荻原
知世 金子
鈴木 雅彦
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to CN201880020294.0A priority Critical patent/CN110462818B/zh
Priority to JP2019510149A priority patent/JP7115469B2/ja
Priority to KR1020197028871A priority patent/KR102440947B1/ko
Priority to CN202311384098.0A priority patent/CN117438381A/zh
Publication of WO2018181761A1 publication Critical patent/WO2018181761A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting

Definitions

  • the present invention relates to a sealing film, in particular, a sealing film used for sealing a semiconductor device such as a semiconductor chip or embedding an electronic component placed on a printed wiring board, and a semiconductor device using the sealing film
  • the present invention relates to an electronic component device manufacturing method and the like, and an electronic component device.
  • a mounting form such as a semiconductor device having almost the same size as a semiconductor chip or a package-on-package in which a semiconductor device is stacked on the semiconductor device is also widely adopted. In the future, it is expected that semiconductor devices will be further reduced in size and thickness.
  • the sealing of the rearranged semiconductor chip is usually performed by molding using a liquid or solid resin sealing material.
  • steps such as formation of wiring for arranging external connection terminals and formation of external connection terminals are performed on the sealed molded product produced by sealing.
  • Japanese Patent No. 3616615 JP 2001-244372 A Japanese Patent Laid-Open No. 2001-127095 US Patent Application Publication No. 2007/205513 Japanese Patent No. 5385247 JP 2012-224062 A
  • the problem of warpage of the encapsulated molded product that occurs when the thermosetting sealing resin is cooled to room temperature tends to become significant.
  • the warp generated in the sealed molded product may cause a positional shift in the dicing process and the rewiring process, and may cause a decrease in the reliability of the package.
  • the warp is large, for example, when the insulating resin for rewiring is a liquid material, there is a problem that the sealing molded product cannot be fixed to the coater chuck for applying the liquid material. It may be difficult to form the insulating resin layer.
  • This invention is made
  • One aspect of the present invention is a first resin layer containing a first thermosetting resin and a first inorganic filler, and a second resin containing a second thermosetting resin and a second inorganic filler.
  • a sealing film for sealing an electronic component is provided.
  • the second resin layer has a sealing surface directed toward the electronic component when the electronic component is sealed, and the second resin layer and the first resin layer are laminated in this order from the sealing surface side. Yes.
  • the cure shrinkage rate in the second resin layer is larger than the cure shrinkage rate in the first resin layer.
  • the sealing film according to one aspect of the present invention can sufficiently suppress the warpage of the sealed molded product by having the above-described configuration.
  • the ratio of the cure shrinkage rate of the second resin layer to the cure shrinkage rate of the first resin layer may be greater than 1 and less than 10.
  • the first thermosetting resin and the second thermosetting resin may be the same or different epoxy resins.
  • the sealing resin layer of the sealing film according to the one aspect of the present invention described above and the electronic component disposed opposite to the sealing surface are pressed under heating, thereby sealing
  • An electronic component device comprising: embedding an electronic component in a resin layer; and curing the sealing resin layer to form a sealing layer that is a cured product of the sealing resin layer and seals the electronic component.
  • Still another aspect of the present invention provides an electronic component device including an electronic component and a sealing portion that seals the electronic component.
  • the sealing part may be a cured product of the sealing resin layer of the sealing film according to the present invention described above.
  • the electronic component may be surrounded by a cured product of the second resin layer in the sealing portion.
  • the electronic component may include a semiconductor chip.
  • the electronic component device is generally a semiconductor device.
  • a sealing film that can sufficiently suppress warpage of a sealed molded product.
  • a method for manufacturing an electronic component device such as a semiconductor device using the sealing film and an electronic component device such as a semiconductor device are also provided.
  • FIG. 1 It is a schematic cross section which shows the sealing film which concerns on one Embodiment.
  • A is a schematic cross section of a sealing molded product when a semiconductor chip is sealed with a conventional single-layer sealing film
  • (b) is a sealing film according to an embodiment having different curing shrinkage rates.
  • It is a schematic cross section of the sealing molding at the time of sealing a semiconductor chip. It is a schematic cross section for explaining one embodiment of a method of manufacturing a semiconductor device. It is a schematic cross section for explaining one embodiment of a method of manufacturing a semiconductor device.
  • FIG. 1 is a schematic cross-sectional view showing a sealing film according to an embodiment.
  • the sealing film according to this embodiment is a sealing film for sealing an electronic component, and includes a first resin layer 1 containing a first thermosetting resin and a first inorganic filler, A sealing resin layer 10 having a two-layer structure including two thermosetting resins and a second resin layer 2 containing a second inorganic filler is provided.
  • the main surface on the second resin layer 2 side is a sealing surface 2S directed toward the electronic component when the electronic component is sealed.
  • the cure shrinkage rate of the second resin layer 2 is larger than the cure shrinkage rate of the first resin layer 1.
  • sealing with a resin sealing material usually has a difference between the linear expansion coefficient of an object to be sealed such as a semiconductor chip and the linear expansion coefficient of a resin sealing material, room temperature after the resin sealing material is thermally cured. When it is returned to the above, there is a large difference between the shrinkage amount of the resin sealing material and the shrinkage amount of the sealed object.
  • the linear expansion coefficient of the silicon chip is 3.4 ppm / ° C.
  • the epoxy resin sealing material The linear expansion coefficient is about 6 ppm / ° C.
  • the inorganic filler is filled at a high ratio, and the thermal contraction between the silicon chip and the epoxy resin sealing material due to the difference in the linear expansion coefficient.
  • the thermal contraction between the silicon chip and the epoxy resin sealing material due to the difference in the linear expansion coefficient.
  • the cured product 3a side of the resin sealing material is usually used. That is, a warp occurs in a direction in which the side on which the semiconductor chip 20 with a small shrinkage is not embedded is concave.
  • the sealing film according to the present embodiment when the semiconductor chip 20 is embedded on the second resin layer 2 side, the first resin layer 1 Since the second resin layer 2 has a larger amount of heat shrinkage than the second resin layer 2, the total amount of heat shrinkage between the second resin layer 2 and the semiconductor chip 20 is close to the heat shrinkage amount of the first resin layer 1.
  • the warp accompanying the thermal contraction of the cured product 1a of the first resin layer after the thermosetting and the warp accompanying the thermal contraction of the cured product 2a of the second resin layer cancel each other, resulting in a cured product of the sealing film. It is considered that warpage of the sealing molded product 100 including the sealing portion 10a and the semiconductor chip 20 sealed thereto can be suppressed.
  • the second resin layer having a high cure shrinkage rate has a relatively high flow rate in the course of curing by heating, as compared with the first resin layer having a low cure shrinkage rate. It is easy to have sex. Therefore, by embedding the electronic component on the second resin layer side, it is possible to seal the electronic component with a favorable embedding property in which occurrence of unfilling is suppressed.
  • the sealing film according to the present embodiment since the elastic modulus of the first and second resin layers is not limited, a material having a high elastic modulus can be applied as the thermosetting resin. Therefore, the sealing film according to the present embodiment is excellent in handleability, and is less likely to be warped due to the problem of displacement of electronic components such as a semiconductor chip and the stress of the rewiring layer after the rewiring layer is provided. This is also excellent.
  • the cure shrinkage rates of the first and second resin layers can be determined by the following method, for example, based on the change in specific gravity before and after the heat curing of each resin layer.
  • the specific gravity of the resin layer at 23 ° C. before heat curing is d 0
  • the specific gravity of the resin layer cooled to 23 ° C. after heat curing is d 1
  • Heat curing is performed under a predetermined pressure (for example, 3 MPa). The heating conditions for heat curing are adjusted so that the resin layer is sufficiently cured and no volume change due to curing occurs.
  • a cure shrinkage rate can also be calculated
  • the curing shrinkage rate may include not only shrinkage due to the curing reaction of the thermosetting resin but also shrinkage due to a decrease in constituent materials accompanying the curing process, such as volatilization of the solvent.
  • the ratio of the cure shrinkage rate of the second resin layer to the cure shrinkage rate of the first resin layer is not particularly limited as long as it is larger than 1, but from the viewpoint of more effectively suppressing the warpage of the sealed molded product, 1 .05 or more, 1.10 or more, or 1.15 or more.
  • the upper limit of the ratio of the curing shrinkage rate of the second resin layer to the curing shrinkage rate of the first resin layer is not particularly limited, but is, for example, less than 10.
  • the curing shrinkage rate of the first resin layer may be, for example, 0.4% or less, 0.3% or less, or 0.2% or less from the viewpoint of suppressing warpage and dimensional stability of the molded product.
  • the cure shrinkage rate of the second resin layer is, for example, 0.2% or more, 0.3% or more, or 0.4% or more from the viewpoint of more effectively correcting the warp by using cure shrinkage. Good.
  • the curing shrinkage rate of the second resin layer may be, for example, 2.0% or less, 1.5% or less, or 1.0% or less from the viewpoint of dimensional stability of the molded product.
  • the method for adjusting the curing shrinkage rate of the first and second resin layers is not particularly limited.
  • a method of selecting different types of the first thermosetting resin contained in the first resin layer and the second thermosetting resin contained in the second resin layer, a curing agent or curing One selected from a method of changing the type and / or content of the catalyst and a method of adjusting the curing rate by changing the degree of thermal history in the process of forming the first resin layer and the second resin layer.
  • the curing shrinkage rate of the first and second resin layers may be adjusted by the above method.
  • the curing rate can be increased by increasing the thermal history in the process of forming the resin layer.
  • the magnitude of the heat history can be adjusted by, for example, the drying temperature and the drying time for forming the first and second resin layers.
  • the curing rate can be evaluated based on, for example, a curing heat value measured by differential scanning calorimetry.
  • the curing heating value in the resin composition (solvent-free or varnish) used for the resin layer formation is regarded as a standard (curing rate 0%), and the curing rate can be obtained from the ratio of the curing heating value in the resin layer to that. .
  • the thickness of the first resin layer and the second resin layer is not particularly limited, but may be, for example, 30 to 800 ⁇ m, 50 to 500 ⁇ m, or 80 to 300 ⁇ m, respectively. When the thickness is 30 ⁇ m or more, good embedding property of the electronic component is particularly easily obtained. If the thickness is 800 ⁇ m or less, the effect of the present invention can be obtained at a higher level.
  • the thicknesses of the first resin layer and the second resin layer may be substantially the same or different from each other. However, in the case where they are different, from the viewpoint of suppressing warpage and reducing the thickness of the electronic component, The thickness may be smaller than the thickness of the second resin layer.
  • the total thickness of the first resin layer and the second resin layer (the thickness of the sealing resin layer) is not particularly limited, but may be 50 to 1000 ⁇ m.
  • the first resin layer contains a first thermosetting resin and a first inorganic filler
  • the second resin layer contains a second thermosetting resin and a second inorganic filler.
  • the first thermosetting resin and the second thermosetting resin may be the same as or different from each other, but combining the thermosetting resins different from each other may result in the first resin layer and the second thermosetting resin being combined. It can be a method for making the curing shrinkage rate of the resin layer different.
  • Each of the first thermosetting resin and the second thermosetting resin may be a thermosetting resin described below.
  • “same” means that the structures of the compounds as the thermosetting resin are substantially the same.
  • the thermosetting resin may be a compound that can form a crosslinked structure by a thermosetting reaction.
  • examples thereof include epoxy resins, phenol resins, unsaturated imide resins, cyanate resins, isocyanate resins, benzoxazine resins, and oxetanes.
  • examples include resins, amino resins, unsaturated polyester resins, allyl resins, dicyclopentadiene resins, silicone resins, triazine resins, and melamine resins. These may be used alone or in combination of two or more.
  • These thermosetting resins can be combined with a curing agent and / or a curing catalyst if necessary. From the viewpoint of excellent fluidity and suitable for embedding electronic components, an epoxy resin can be used.
  • the epoxy resin is not particularly limited, but may be a compound having two or more epoxy groups (or glycidyl groups) in one molecule.
  • the epoxy resin include bisphenol A type epoxy resin, bisphenol AP type epoxy resin (1,1-bis (4-hydroxyphenyl) -1-phenylethanediglycidyl ether), and bisphenol AF type epoxy resin (2,2- Bis (4-hydroxyphenyl) hexafluoropropane diglycidyl ether), bisphenol B type epoxy resin (2,2-bis (4-hydroxyphenyl) butanediglycidyl ether), bisphenol BP type epoxy resin (bis (4-hydroxyphenyl) ) Diphenylmethane diglycidyl ether), bisphenol C type epoxy resin (2,2-bis (3-methyl-4-hydroxyphenyl) propane diglycidyl ether), bisphenol E type epoxy resin (1,1-bis (4-H) Roxyphenyl) ethanediglycidyl ether), bisphenol F type epoxy resin, bisphenol G type
  • epoxy resins include EXA4700 (tetrafunctional naphthalene type epoxy resin) manufactured by DIC Corporation, and NC-7000 (polyfunctional solid epoxy resin containing naphthalene skeleton) manufactured by Nippon Kayaku Co., Ltd., Nippon Kayaku Co., Ltd.
  • EPPN-502H trisphenol epoxy resin
  • other epoxidized products of condensates of phenols and aromatic aldehydes having a phenolic hydroxyl group DIC Corporation Epicron HP-7200H (dicyclopentadiene skeleton-containing polyfunctional solid epoxy Resin) dicyclopentadiene aralkyl epoxy resin, Nippon Kayaku Co., Ltd.
  • NC-3000H (biphenyl skeleton-containing polyfunctional solid epoxy resin) and other biphenyl aralkyl epoxy resin, DIC Corporation Epicron N660, and Epicron 690, Novolac epoxy resin such as EOCN-104S manufactured by Nippon Kayaku Co., Ltd., Tris (2,3-epoxypropyl) isocyanurate such as TEPIC manufactured by Nissan Chemical Industries, Ltd., Epicron 860 manufactured by DIC Corporation, Epicron 900-IM , Epicron EXA-4816, and Epicron EXA-4822, Araldite AER280 manufactured by Asahi Ciba Co., Ltd., Epototo YD-134 manufactured by Tohto Kasei Co., Ltd., JER834 and JER872 manufactured by Mitsubishi Chemical Corporation, ELA-134 manufactured by Sumitomo Chemical Co., Ltd., oil Epicoat 807, 815, 825, 827, 828, 834, 1001, 1004, 1007, and 1009 manufactured by
  • Bisphenol A type epoxy resin such as YDF8170, bisphenol F type epoxy resin such as JER806 manufactured by Mitsubishi Chemical Corporation, naphthalene type epoxy resin such as Epicron HP-4032 manufactured by DIC Corporation, Epicron HP-4032 manufactured by DIC Corporation, etc.
  • naphthalene type epoxy resin such as Epicron HP-4032 manufactured by DIC Corporation, Epicron HP-4032 manufactured by DIC Corporation, etc.
  • examples thereof include a naphthalene type epoxy resin, a phenol novolak type epoxy resin such as Epicron N-740 manufactured by DIC Corporation, and an aliphatic epoxy resin such as Nadecol DLC301 manufactured by Nagase ChemteX Corporation. These epoxy resins may be used individually by 1 type, and may use 2 or more types together.
  • the content of the first thermosetting resin in the first resin layer is 5% by mass on the basis of the total amount of the first resin layer, from the viewpoint of sufficiently ensuring the film formability even in the presence of the inorganic filler described later.
  • the amount may be 10% by mass or more, or 15% by mass or more.
  • the content of the first thermosetting resin in the first resin layer is 40% by mass or less, 30% by mass or less, or 20% by mass based on the total amount of the first resin layer. It may be the following.
  • the content of the second thermosetting resin in the second resin layer is 10% by mass or more and 15% by mass or more based on the total amount of the second resin layer from the viewpoint of more effectively correcting the warp by curing shrinkage. Or 20 mass% or more. From the viewpoint of dimensional stability of the encapsulated molded product, the content of the second thermosetting resin in the second resin layer is 45% by mass or less, 35% by mass or less, or 30% based on the total amount of the second resin layer. It may be less than mass%.
  • the curing agent that can be combined with the thermosetting resin is not particularly limited.
  • the curing agent when an epoxy resin is used as the thermosetting resin, the curing agent has 1 reactive group with an epoxy group (glycidyl group). It may be a compound having two or more in the molecule.
  • curing agent may be used individually by 1 type, and may use 2 or more types together.
  • curing agent examples include phenol resins, acid anhydrides, imidazole compounds, aliphatic amines, and alicyclic amines.
  • the phenol resin is not particularly limited as long as it is a compound having two or more phenolic hydroxyl groups in one molecule.
  • the phenol resin include phenol compounds such as phenol, cresol, xylenol, resorcinol, catechol, bisphenol A and bisphenol F, or naphthol compounds such as ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene, and formaldehyde, acetaldehyde, propionaldehyde.
  • Resins obtained by condensation or cocondensation with aldehyde compounds such as benzaldehyde and salicylaldehyde under an acidic catalyst biphenyl skeleton type phenol resin, paraxylylene-modified phenol resin, metaxylylene / paraxylylene-modified phenol resin, melamine-modified phenol resin, terpene-modified Phenolic resin, dicyclopentadiene modified phenolic resin, cyclopentadiene modified phenolic resin, polycyclic aroma Examples thereof include a ring-modified phenol resin and a xylylene-modified naphthol resin.
  • phenolic resins examples include Phenolite LF2882, Phenolite LF2822, Phenolite TD-2090, Phenolite TD-2149, Phenolite VH-4150, and Phenolite VH4170, manufactured by Dainippon Ink and Chemicals, Inc. PAPS-PN2 manufactured by Kikai Kogyo Co., Ltd., XLC-LL and XLC-4L manufactured by Mitsui Chemicals, Inc., SN-100, SN-180, SN-300, SN-395, and SN-400 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. Examples include TrisP-HAP, TrisP-PA, TriP-PHBA, CyRS-PRD4 manufactured by Honshu Chemical Industry Co., Ltd., and MTPC, SK Resin HE910-10 manufactured by Air Water Co., Ltd.
  • the content of the curing agent is not particularly limited.
  • the equivalent ratio of epoxy group to phenolic hydroxyl group is 0.5 to 3.0 or 1 0 to 1.5.
  • the equivalent ratio of the epoxy group to the reactive group of the epoxy group is 0.5 to 3.0 or 1.0 to 1.5. It may be.
  • the curing catalyst that can be combined with the epoxy resin is not particularly limited, but is preferably an amine-based, imidazole-based, urea-based, or phosphorus-based curing catalyst.
  • amine-based curing catalysts include 1,8-diazabicyclo [5.4.0] undecene-7, 1,5-diazabicyclo [4.3.0] nonene-5, and the like.
  • imidazole-based curing catalyst include 2-ethyl-4-methylimidazole and 1-cyanoethyl-2-ethyl-4-methylimidazole.
  • urea-based curing catalysts include 3-phenyl-1,1-dimethylurea.
  • Examples of the phosphorus-based curing catalyst include triphenylphosphine and its addition reaction product, (4-hydroxyphenyl) diphenylphosphine, bis (4-hydroxyphenyl) phenylphosphine, tris (4-hydroxyphenyl) phosphine, and the like.
  • imidazole-based curing accelerators are rich in derivatives, and it is easy to obtain a desired activation temperature.
  • Examples of commercially available imidazole-based curing accelerators include 2PHZ-PW and 2P4MZ manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • the content of the curing catalyst is not particularly limited, but is, for example, 0.05 to 1.0 part by mass or 0.1 to 0.5 part by mass with respect to 100 parts by mass of the total amount of the thermosetting resin. It's okay.
  • the first inorganic filler and the second inorganic filler may be the same or different from each other.
  • inorganic fillers examples include barium sulfate, barium titanate, amorphous silica, crystalline silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, silicon nitride, and nitride. Examples thereof include particles such as aluminum. Silica particles are preferred as the inorganic filler from the viewpoint of easily obtaining desired cured film characteristics because of its relatively low coefficient of thermal expansion.
  • An inorganic filler may be used individually by 1 type, and may use 2 or more types together.
  • the shape of the inorganic filler is not limited to a spherical shape, and may be a flake shape (plate shape) or a fiber shape.
  • the second inorganic filler contained in the second resin layer may be a spherical inorganic filler in which fluidity is easily obtained from the viewpoint of embedding of the electronic component.
  • the surface of the inorganic filler may be modified.
  • the method of surface modification is not particularly limited, the method using a silane coupling agent is simple, a silane coupling agent having a wide variety of functional groups can be used, and desired properties are easily imparted.
  • the silane coupling agent include alkyl silane, alkoxy silane, vinyl silane, epoxy silane, amino silane, acrylic silane, methacryl silane, mercapto silane, sulfide silane, isocyanate silane, sulfur silane, styryl silane, and alkyl chloro silane.
  • silane coupling agent examples include methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, methyltriethoxysilane, methyltriphenoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, diisopropyldimethoxysilane, isobutyl.
  • the average particle diameter of the inorganic filler is not particularly limited, but may be, for example, 0.01 to 50 ⁇ m.
  • the average particle diameter of the inorganic filler is measured by, for example, a laser diffraction method.
  • the content of the first inorganic filler in the first resin layer is 60% by mass or more, 70% by mass or more, or 80% by mass or more based on the total amount of the first resin layer from the viewpoint of reducing the amount of heat shrinkage. It may be. From the viewpoint of sufficiently securing the film formability, the content of the first inorganic filler in the first resin layer is 95% by mass or less, 90% by mass or less, or 85% by mass based on the total amount of the first resin layer. % Or less.
  • the content of the second inorganic filler in the second resin layer is 55% by mass or more, 65% by mass or more, or 70 based on the total amount of the second resin layer from the viewpoint of dimensional stability of the sealed molded product. It may be at least mass%. From the viewpoint of sufficiently securing the film formability, the content of the second inorganic filler in the second resin layer is 95% by mass or less, 90% by mass or less, or 85% by mass based on the total amount of the second resin layer. % Or less.
  • the first resin layer and the second resin layer may contain components other than those described above.
  • a component may be a component generally used for a sealing film. Examples thereof include antioxidants, flame retardants, ion scavengers, pigments, dyes, silane coupling agents, and elastomers.
  • the sealing film may further include a film-like support.
  • the first resin layer and the second resin layer are usually provided in this order from the support side.
  • a support body will not be specifically limited if it can be removed after sealing,
  • a polymer film or metal foil can be used.
  • a polyethylene film a polyolefin film such as a polypropylene film
  • polyester film such as a polyethylene terephthalate film
  • a polyvinyl chloride film such as a polyethylene terephthalate film
  • polyvinyl chloride film such as a polyvinyl chloride film
  • polycarbonate film such as a polycarbonate film
  • acetylcellulose film such as a polyimide film
  • polyamide film a polyamide film
  • tetrafluoroethylene film examples include, for example, a polyethylene film
  • the film-like support may be subjected to release treatment in order to facilitate peeling.
  • the release treatment method include a method in which a release agent is applied to the surface of the support and dried.
  • the release agent include siloxane-based, fluorine-based, and olefin-based release agents.
  • the surface of the metal foil may be etched with an acid or the like.
  • the thickness of the film-like support is not particularly limited, but may be 2 to 200 ⁇ m from the viewpoint of workability and drying property when the resin layer is formed by coating. If the thickness of the support is 2 ⁇ m or more, the support may be damaged when the varnish resin composition is applied to form a resin layer, or the support may be deformed by the weight of the varnish resin composition. Is less likely to occur. If the thickness of the support is 200 ⁇ m or less, the drying of the varnish-like resin composition (removal of the organic solvent) can be efficiently performed even when using a dryer that blows hot air mainly from both the coated surface and the back surface. It can be carried out.
  • the sealing film is a protective layer that covers the main surface opposite to the support of the sealing resin layer (or the second resin layer) for the purpose of protecting the first resin layer and the second resin layer.
  • a protective film may be further provided.
  • the thickness of the protective layer is not particularly limited, but may be, for example, 12 to 100 ⁇ m from the viewpoint of sufficient protective effect and reducing the thickness when the sealing film is wound into a roll.
  • the sealing film according to the present embodiment forms, for example, a first resin layer and a second resin layer, and bonds them together, or a first resin layer and a second resin layer on a film-like support. It can manufacture by forming the resin layer in order.
  • the first resin layer and the second resin layer can be formed by mixing components constituting each of them and depositing the obtained resin composition.
  • An organic solvent is added to the resin composition to be formed to prepare a varnish-like resin composition, which is coated on a support, and the coating film is dried to thereby form a first resin layer and a second resin layer. May be formed.
  • coating on the support body of a varnish-like resin composition, and drying of a coating film may be performed continuously, unwinding a support body from the roll of a support body, for example.
  • the curing shrinkage rate of the first resin layer and the second resin layer may be adjusted according to the drying conditions at this time.
  • the warpage of the sealed molded product obtained by using the sealing film can be evaluated by, for example, producing a wafer level package or an evaluation substrate imitating the wafer level package. At that time, the embedding property of the semiconductor chip can be evaluated at the same time.
  • 3 and 4 are schematic cross-sectional views showing an embodiment of a method for manufacturing a semiconductor device.
  • the temporary fixing material 40 is pasted on the substrate 30 and the plurality of semiconductor chips 20 are temporarily fixed on the temporary fixing material 40 ((a) in FIG. 3).
  • the semiconductor chip 20 seals the semiconductor chip 20 and the sealing film (sealing resin layer) 10 having the first resin layer 1 and the second resin layer 2 provided on the first resin layer 1.
  • the layers are pressed under heating in this state, and the sealing resin A step of embedding the semiconductor chip 20 in the layer 10 (FIGS.
  • a sealed portion 10a is formed which includes the cured product 1a of the first resin layer and the cured product 2a of the second resin layer, and seals the semiconductor chip 20.
  • the boundary between the cured product 1a of the first resin layer and the cured product 2a of the second resin layer is not necessarily clear.
  • a laminating method may be used for pressing the sealing film, or a compression mold may be used.
  • the laminator used in the laminating method is not particularly limited, and examples thereof include a roll type and a balloon type laminator. Among these, from the viewpoint of further improving the embedding property, a balloon type capable of vacuum pressurization may be employed.
  • the temperature for embedding the semiconductor chip (for example, the laminating temperature) is adjusted so that the sealing resin layer 10 (particularly the second resin layer 2) flows and the semiconductor chip is embedded.
  • This temperature is set below the softening point when a support is present. Further, this temperature may be a temperature at which the second resin layer exhibits a minimum melt viscosity or a temperature in the vicinity thereof.
  • the pressure for embedding the semiconductor chip varies depending on the size and density of the semiconductor chip (or electronic component), but may be 0.2 to 1.5 MPa, or 0.3 to 1.0 MPa, for example.
  • the pressing time is not particularly limited, but may be 20 to 600 seconds, 30 to 300 seconds, or 40 to 120 seconds.
  • Curing of the sealing resin layer can be performed, for example, in the atmosphere or under an inert gas.
  • the curing temperature is not particularly limited, and may be 80 to 280 ° C., 100 to 240 ° C., or 120 to 200 ° C. If the curing temperature is 80 ° C. or higher, the curing of the sealing film proceeds sufficiently and the occurrence of defects can be particularly effectively suppressed. When the curing temperature is 280 ° C. or lower, the occurrence of heat damage to other materials can be suppressed.
  • the curing time is not particularly limited, but may be 30 to 600 minutes, 45 to 300 minutes, or 60 to 240 minutes. When the curing time is within these ranges, the sealing resin layer is sufficiently cured, and good production efficiency can be obtained.
  • the curing conditions may be a combination of a plurality of conditions with different temperatures and / or times.
  • Embedding the electronic component (semiconductor chip 20) in the sealing resin layer 10 and curing the sealing resin layer 10 to form the sealing portion 10a may be separate steps, It may be a step performed simultaneously or continuously. For example, by pressing the sealing resin layer and the electronic component while heating, the electronic component is embedded in the sealing resin layer and the sealing resin layer is cured to form a sealing portion for sealing the electronic component. Also good.
  • a semiconductor device can be obtained through the following insulating layer formation, wiring pattern formation, ball mounting, and dicing steps. In order to perform these steps efficiently with high accuracy, it is desirable that the warpage of the sealed molded product 100 is small.
  • the temporarily fixing material 40 is peeled off together with the substrate 30 to obtain a sealing molded product 100 including the semiconductor chip 20 and a sealing portion 10a for sealing the semiconductor chip 20 (FIG. 4A).
  • the semiconductor chip 20 is exposed in one main surface of the sealing molded product 100.
  • An insulating layer 50 is provided on the main surface of the sealed molded product on the side where the semiconductor chip 20 is exposed ((b) of FIG. 4).
  • the wiring 54 is formed by patterning the insulating layer 50, and the ball 56 is mounted on the patterned insulating layer 52 ((c) of FIG. 4).
  • the sealed molding is separated into pieces by the dicing cutter 60 ((d) and (e) in FIG. 4).
  • the semiconductor device 200 provided with the semiconductor chip 20 and the sealing part 10a which is the hardened
  • the semiconductor chip 20 is embedded in the sealing portion 10a so as to be surrounded by the cured product 2a of the second resin layer in the sealing portion 10a.
  • Example 1 497.5 g of the organic solvent E1 was put in a 10 L plastic container, 3500 g of the inorganic filler C1 was added thereto, and the inorganic filler C1 was dispersed in the organic solvent with a stirring blade. To this dispersion, 300 g of thermosetting resin A1 and 460 g of curing agent B1 were added, and the dispersion was stirred. After visually confirming that the thermosetting resin A1 and the curing agent B1 were dissolved, 2.5 g of the curing catalyst D1 was added, and the dispersion was further stirred for 1 hour. The dispersion was filtered through nylon # 200 mesh (opening 75 ⁇ m), and the filtrate was obtained as a varnish-like resin composition.
  • the obtained varnish-like resin composition was applied to a film-like support (polyethylene terephthalate having a thickness of 38 ⁇ m) under the following conditions using a coating machine, and the support and the coating film were applied in a drying furnace.
  • the coating film was dried by passing at a predetermined drying speed, and the first resin layer or the second resin layer (thickness 100 ⁇ m) was formed on the support.
  • the coating and drying speed means the moving speed of the support.
  • the temperature of drying conditions and the furnace length mean the temperature in the drying furnace and the moving distance of the support in the drying furnace, respectively. The same applies to other examples and comparative examples.
  • Coating head method Comma coating and drying speed: 2 m / min Drying conditions (temperature / furnace length): 110 ° C./3.3 m, 130 ° C./3.3 m, 140 ° C./3.3 m
  • Coating head method Comma coating and drying speed: 3 m / min Drying conditions (temperature / furnace length): 90 ° C / 3.3m, 110 ° C / 3.3m, 120 ° C / 3.3m
  • the 1st resin layer and the 2nd resin layer were bonded together by vacuum lamination, and the sealing film which has the sealing resin layer of 2 layer composition provided with the 1st resin layer and the 2nd resin layer was obtained. .
  • Example 2 A varnish-like resin composition was produced in the same manner as in Example 1 except that the amount of the curing catalyst D1 was changed from 2.5 g to 7.5 g.
  • the obtained varnish-like resin composition was applied to a film-like support (polyethylene terephthalate having a thickness of 38 ⁇ m) under the following conditions using a coating machine, and the support and the coating film were applied in a drying furnace.
  • the coating film was dried by passing at a predetermined drying speed, and a first resin layer (thickness 100 ⁇ m) was formed on the support.
  • Coating head method Comma coating and drying speed: 2 m / min Drying conditions (temperature / furnace length): 110 ° C./3.3 m, 130 ° C./3.3 m, 140 ° C./3.3 m
  • a varnish-like resin composition was produced in the same manner as in Example 1.
  • the obtained varnish-like resin composition was applied on a film-like support (38 ⁇ m-thick polyethylene terephthalate) using a coating machine under the following conditions, and the support and the coating film were predetermined in a drying furnace.
  • the coating film was dried by passing it at a drying speed of 2 to form a second resin layer (thickness 100 ⁇ m) on the support.
  • Coating head method Comma coating and drying speed: 2 m / min Drying conditions (temperature / furnace length): 90 ° C./3.3 m, 110 ° C./3.3 m, 120 ° C./3.3 m
  • the 1st resin layer and the 2nd resin layer were bonded together by vacuum lamination, and the sealing film which has the sealing resin layer of 2 layer composition provided with the 1st resin layer and the 2nd resin layer was obtained. .
  • Example 3 A varnish-like resin composition was produced in the same manner as in Example 1 except that the amount of the curing catalyst D1 was changed from 2.5 g to 7.5 g.
  • the obtained varnish-like resin composition was applied to a film-like support (polyethylene terephthalate having a thickness of 38 ⁇ m) under the following conditions using a coating machine, and the support and the coating film were applied in a drying furnace.
  • the coating film was dried by passing at a predetermined drying speed, and a first resin layer (thickness 100 ⁇ m) was formed on the support.
  • Coating head method Comma coating and drying speed: 3 m / min Drying conditions (temperature / furnace length): 110 ° C./3.3 m, 130 ° C./3.3 m, 140 ° C./3.3 m
  • a varnish-like resin composition was produced in the same manner as in Example 1. Coating is performed on a film-like support (38 ⁇ m thick polyethylene terephthalate) using a coating machine under the following conditions, and the support and the coating are passed through a drying furnace at a predetermined drying speed. Was dried to form a second resin layer (thickness: 100 ⁇ m) on the support. Coating head method: Comma coating and drying speed: 2 m / min Drying conditions (temperature / furnace length): 90 ° C./3.3 m, 110 ° C./3.3 m, 120 ° C./3.3 m
  • the 1st resin layer and the 2nd resin layer were bonded together by vacuum lamination, and the sealing film which has the sealing resin layer of 2 layer composition provided with the 1st resin layer and the 2nd resin layer was obtained. .
  • Example 4 A varnish-like resin composition was produced in the same manner as in Example 1. Using a coating machine, apply on a film-like support (38 ⁇ m thick polyethylene terephthalate) under the following conditions, and dry the coating to form a first resin layer (100 ⁇ m thick) on the support. did. Coating head method: Comma coating and drying speed: 2 m / min Drying conditions (temperature / furnace length): 90 ° C./3.3 m, 110 ° C./3.3 m, 120 ° C./3.3 m
  • a varnish-like resin composition was prepared in the same manner as in Example 1. Coating is performed on a film-like support (38 ⁇ m thick polyethylene terephthalate) using a coating machine under the following conditions, and the support and the coating are passed through a drying furnace at a predetermined drying speed. Was dried to form a second resin layer (thickness: 100 ⁇ m) on the support.
  • Coating head method Comma coating and drying speed: 2.5 m / min Drying conditions (temperature / furnace length): 90 ° C./3.3 m, 110 ° C./3.3 m, 120 ° C./3.3 m
  • Example 5 A varnish-like resin composition was produced in the same manner as in Example 1. Coating is performed on a film-like support (38 ⁇ m thick polyethylene terephthalate) using a coating machine under the following conditions, and the support and the coating are passed through a drying furnace at a predetermined drying speed. Was dried to form a first resin layer (thickness: 100 ⁇ m) on the support. Coating head method: Comma coating and drying speed: 2 m / min Drying conditions (temperature / furnace length): 90 ° C./3.3 m, 110 ° C./3.3 m, 120 ° C./3.3 m
  • the obtained varnish-like resin composition was applied to a film-like support (polyethylene terephthalate having a thickness of 38 ⁇ m) under the following conditions using a coating machine, and the support and the coating film were applied in a drying furnace.
  • the coating film was dried by passing at a predetermined drying speed, and a second resin layer (thickness: 100 ⁇ m) was formed on the support.
  • Coating head method Comma coating and drying speed: 3 m / min Drying conditions (temperature / furnace length): 90 ° C / 3.3m, 110 ° C / 3.3m, 120 ° C / 3.3m
  • Example 6 497.5 g of the organic solvent E1 was put in a 10 L plastic container, 3350 g of the inorganic filler C1 was added thereto, and the inorganic filler C1 was dispersed in the organic solvent with a stirring blade. To this dispersion, 360 g of thermosetting resin A1 and 550 g of curing agent B1 were added, and the dispersion was stirred. After visually confirming that the thermosetting resin A1 and the curing agent B1 were dissolved, 3.0 g of the curing catalyst D1 was added, and the dispersion was further stirred for 1 hour. The dispersion was filtered through nylon # 200 mesh (opening 75 ⁇ m) to obtain a filtrate as a varnish-like resin composition.
  • the obtained varnish-like resin composition was applied to a film-like support (polyethylene terephthalate having a thickness of 38 ⁇ m) under the following conditions using a coating machine, and the support and the coating film were applied in a drying furnace.
  • the coating film was dried by passing at a predetermined drying speed, and a first resin layer (thickness 100 ⁇ m) was formed on the support.
  • Coating head method Comma coating and drying speed: 3 m / min Drying conditions (temperature / furnace length): 90 ° C / 3.3m, 110 ° C / 3.3m, 120 ° C / 3.3m
  • the obtained varnish-like resin composition was applied to a film-like support (polyethylene terephthalate having a thickness of 38 ⁇ m) under the following conditions using a coating machine, and the support and the coating film were applied in a drying furnace.
  • the coating film was dried by passing at a predetermined drying speed, and a second resin layer (thickness: 100 ⁇ m) was formed on the support.
  • Coating head method Comma coating and drying speed: 3 m / min Drying conditions (temperature / furnace length): 90 ° C / 3.3m, 110 ° C / 3.3m, 120 ° C / 3.3m
  • Example 1 The same varnish-like resin composition as in Example 1 was coated on a film-like support (polyethylene terephthalate having a thickness of 38 ⁇ m) using a coating machine under the following conditions, and the support and the coating film were dried in a drying furnace. The coating film was dried by passing the inside at a predetermined drying speed, and a first resin layer and a second resin layer (thickness 100 ⁇ m) were formed on the support.
  • a film-like support polyethylene terephthalate having a thickness of 38 ⁇ m
  • the coating film was dried by passing the inside at a predetermined drying speed, and a first resin layer and a second resin layer (thickness 100 ⁇ m) were formed on the support.
  • Coating head method Comma coating and drying speed: 3 m / min Drying conditions (temperature / furnace length): 90 ° C / 3.3m, 110 ° C / 3.3m, 120 ° C / 3.3m
  • Coating head method Comma coating and drying speed: 2 m / min Drying conditions (temperature / furnace length): 110 ° C./3.3 m, 130 ° C./3.3 m, 140 ° C./3.3 m
  • the 1st resin layer and the 2nd resin layer were bonded together by vacuum lamination, and the sealing film which has the sealing resin layer of 2 layer composition provided with the 1st resin layer and the 2nd resin layer was obtained. .
  • Example 2 The same varnish-like resin composition as in Example 1 was coated on a film-like support (polyethylene terephthalate having a thickness of 38 ⁇ m) using a coating machine under the following conditions, and the support and the coating film were dried in a drying furnace. The coating film was dried by passing through the inside at a predetermined drying speed to form a first resin layer (thickness: 100 ⁇ m) on the support.
  • Coating head method Comma coating and drying speed: 2 m / min Drying conditions (temperature / furnace length): 90 ° C./3.3 m, 110 ° C./3.3 m, 120 ° C./3.3 m
  • a varnish-like resin composition was produced in the same manner as in Example 1 except that the amount of the curing catalyst D1 was changed from 2.5 g to 7.5 g.
  • the obtained varnish-like resin composition was applied to a film-like support (polyethylene terephthalate having a thickness of 38 ⁇ m) under the following conditions using a coating machine, and the support and the coating film were applied in a drying furnace.
  • the coating film was dried by passing at a predetermined drying speed, and a second resin layer (thickness: 100 ⁇ m) was formed on the support.
  • Coating head method Comma coating and drying speed: 2 m / min Drying conditions (temperature / furnace length): 110 ° C./3.3 m, 130 ° C./3.3 m, 140 ° C./3.3 m
  • the 1st resin layer and the 2nd resin layer were bonded together by vacuum lamination, and the sealing film which has the sealing resin layer of 2 layer composition provided with the 1st resin layer and the 2nd resin layer was obtained. .
  • Example 3 The same varnish-like resin composition as in Example 1 was coated on a film-like support (polyethylene terephthalate having a thickness of 38 ⁇ m) using a coating machine under the following conditions, and the support and the coating film were dried in a drying furnace. The coating film was dried by passing through the inside at a predetermined drying speed to form a first resin layer (thickness: 100 ⁇ m) on the support.
  • Coating head method Comma coating and drying speed: 2 m / min Drying conditions (temperature / furnace length): 90 ° C./3.3 m, 110 ° C./3.3 m, 120 ° C./3.3 m
  • Example 2 The same varnish-like resin composition as in Example 1 was coated on a film-like support (polyethylene terephthalate having a thickness of 38 ⁇ m) using a coating machine under the following conditions, and the support and the coating film were dried in a drying furnace. The coating film was dried by passing through the inside at a predetermined drying speed to form a second resin layer (thickness: 100 ⁇ m) on the support.
  • Coating head method Comma coating and drying speed: 1.5 m / min Drying conditions (temperature / furnace length): 90 ° C./3.3 m, 110 ° C./3.3 m, 120 ° C./3.3 m
  • the 1st resin layer and the 2nd resin layer were bonded together by vacuum lamination, and the sealing film which has the sealing resin layer of 2 layer composition provided with the 1st resin layer and the 2nd resin layer was obtained. .
  • Example 4 The same varnish-like resin composition as in Example 1 was coated on a film-like support (polyethylene terephthalate having a thickness of 38 ⁇ m) using a coating machine under the following conditions, and the support and the coating film were dried in a drying furnace. The coating film was dried by passing the inside at a predetermined drying speed, and a resin layer (thickness: 100 ⁇ m) was formed on the support.
  • Coating head method Comma coating and drying speed: 2 m / min Drying conditions (temperature / furnace length): 90 ° C./3.3 m, 110 ° C./3.3 m, 120 ° C./3.3 m
  • the two resin layers obtained were bonded together by vacuum lamination to obtain a sealing film having a single-layer sealing resin layer with a thickness of 200 ⁇ m.
  • the obtained varnish-like resin composition was applied on a film-like support (38 ⁇ m thick polyethylene terephthalate) under the following conditions using a coating machine, the coating film was dried, and a resin layer (thickness) 100 ⁇ m) was formed on the support.
  • Coating head method Comma coating and drying speed: 3 m / min Drying conditions (temperature / furnace length): 90 ° C / 3.3m, 110 ° C / 3.3m, 120 ° C / 3.3m
  • the two resin layers obtained were bonded together by vacuum lamination to obtain a sealing film having a single-layer sealing resin layer with a thickness of 200 ⁇ m.
  • Table 1 summarizes the blending amount, thickness, drying speed, drying conditions, and curing shrinkage ratio of the resin composition in each example.
  • a SUS plate having a diameter of 220 mm and a thickness of 1.5 mm was prepared as a support.
  • a temporary fixing film was attached to one side of the SUS plate using a laminator. The temporarily fixing film protruding from the SUS plate was cut off with a cutter knife.
  • a silicon chip having a size of 7.3 mm ⁇ 7.3 mm and a thickness of 150 ⁇ m was arranged on the temporary fixing film in a lattice shape to obtain an evaluation substrate.
  • the number of mounted silicon chips was 193, and the distance (pitch) between the silicon chips was 9.6 mm in both the vertical and horizontal directions.
  • a die sorter (CAP3500 manufactured by Canon Machinery Co., Ltd.) was used for the arrangement of the silicon chips.
  • the load at the time of arrangement was 1 kgf per silicon chip.
  • the sealing resin layers of the respective sealing films prepared in the examples and comparative examples are superimposed on the prepared evaluation substrate so that the second resin layer faces the silicon chip, and a vacuum laminator is used in that state.
  • a vacuum laminator is used in that state.
  • the silicon chip was embedded in the sealing resin layer and the sealing resin layer was thermally cured to form a sealing portion for sealing the silicon chip.
  • the “convex” in the direction of warping means that warping has occurred in a direction that is convex toward the sealing portion.
  • Table 2 and Table 3 show the evaluation results. According to the sealing film of the example in which the cure shrinkage rate of the second resin layer is larger than the cure shrinkage rate of the first resin layer, the silicon chip can be sealed with good embeddability, and Warpage was sufficiently suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

第1の熱硬化性樹脂及び第1の無機充填剤を含有する第1の樹脂層、及び第2の熱硬化性樹脂及び第2の無機充填剤を含有する第2の樹脂層を有する封止樹脂層を備え、電子部品を封止するための封止フィルムが開示される。電子部品を封止するときに電子部品側に向けられる封止面を有する第2の樹脂層の硬化収縮率が、第1の樹脂層の硬化収縮率よりも大きい。

Description

封止フィルム、電子部品装置の製造方法及び電子部品装置
 本発明は、封止フィルム、特には、半導体チップ等の半導体デバイスの封止、又はプリント配線基板に配置された電子部品の埋め込み等に用いられる封止フィルム、当該封止フィルムを用いた半導体装置等の電子部品装置の製造方法、及び電子部品装置に関する。
 電子機器の軽薄短小化に伴って、半導体装置の小型化及び薄型化が進んでいる。半導体チップとほぼ同じ大きさの半導体装置、又は、半導体装置の上に半導体装置を積むパッケージ・オン・パッケージといった実装形態も盛んに採用されている。今後、半導体装置の小型化及び薄型化が一段と進むと予想される。
 半導体チップの微細化が進展し、端子数が増加すると、半導体チップ上にすべての外部接続用の端子を設けることが難しくなる。例えば、多数の外部接続用の端子を設けた場合、端子間のピッチが狭くなるとともに、端子高さが低くなり、半導体装置を実装した後の接続信頼性の確保が難しい。そこで、半導体装置の小型化及び薄型化を実現するために、新たな実装方式が多々提案されている。
 例えば、半導体ウェハから作製され、個片化された半導体チップを適度な間隔で再配置したのち、これを固形又は液状の封止樹脂を用いて封止し、得られた封止成形物の封止樹脂部分に外部接続用の端子をさらに設ける実装方法、及びこれを用いて作製される半導体装置が提案されている(例えば特許文献1~4参照)。
 再配置した半導体チップの封止は、通常、液状又は固形の樹脂封止材を用いたモールド成形で行われる。上記の実装方式においては、封止により作製された封止成形物に対して、外部接続端子を配置するための配線の形成及び外部接続端子の形成等の工程が実施される。
 配線及び外部端子の形成の工程は封止成形物に対して行われるため、再配置される半導体チップが多いほど、一度の工程で作製可能な半導体装置が増える。そこで、封止成形物の大型化が検討されている。例えば、配線形成時における半導体製造装置の使用に対応するため、ウェハ形状の封止成形物を成形することがある。その場合、ウェハを大径化することで、製造工程の簡略化及びコストの削減が図られている(例えば特許文献5及び6参照)。他方で、より大判化が可能で、半導体製造装置よりも安価なプリント配線板製造装置等の使用が可能となるように、封止成形物のパネル化も検討されている。
特許第3616615号公報 特開2001-244372号公報 特開2001-127095号公報 米国特許出願公開第2007/205513号明細書 特許第5385247号公報 特開2012-224062号公報
 しかしながら、封止成形物が大型化すると、熱硬化した封止樹脂を室温まで冷却したときに生じる封止成形物の反りの問題が顕著となる傾向がある。封止成形物に生じた反りは、ダイシング工程及び再配線工程での位置ずれの原因となり、パッケージの信頼性の低下を招き得る。また、反りが大きいと、例えば、再配線用の絶縁樹脂が液状材料であるときに、液状材料を塗布するためのコーターチャックに封止成形物を固定できない不具合が生じる等、再配線のための絶縁樹脂層を形成することが困難となる可能性がある。
 本発明は、上記事情に鑑みてなされたものであり、封止成形物の反りを充分に抑制することが可能な封止フィルム、及び当該封止フィルムを用いた電子部品装置の製造方法、並びに及び電子部品装置を提供することを目的とする。
 本発明の一側面は、第1の熱硬化性樹脂及び第1の無機充填剤を含有する第1の樹脂層と、第2の熱硬化性樹脂及び第2の無機充填剤を含有する第2の樹脂層とを有する封止樹脂層を備え、電子部品を封止するための封止フィルムを提供する。第2の樹脂層が、電子部品を封止するときに電子部品側に向けられる封止面を有し、第2の樹脂層及び第1の樹脂層が封止面側からこの順に積層されている。第2の樹脂層における硬化収縮率が、第1の樹脂層における硬化収縮率より大きい。
 本発明の一側面に係る封止フィルムは、上記の構成を有することにより、封止成形物の反りを充分に抑制することが可能である。
 第1の樹脂層の硬化収縮率に対する第2の樹脂層の硬化収縮率の比が、1を超えて10未満であってもよい。
 第1の熱硬化性樹脂及び第2の熱硬化性樹脂は、互いに同一又は異なるエポキシ樹脂であってもよい。
 本発明の別の一側面は、上述した本発明の一側面に係る封止フィルムの封止樹脂層、及びその封止面と対向配置された電子部品を加熱下で押圧し、それにより封止樹脂層に電子部品を埋め込むことと、封止樹脂層を硬化させて、封止樹脂層の硬化物であり電子部品を封止する封止層を形成することと、を備える、電子部品装置を製造する方法を提供する。
 本発明のさらに別の一側面は、電子部品と、電子部品を封止している封止部とを備える、電子部品装置を提供する。封止部が、上述の本発明に係る封止フィルムの封止樹脂層の硬化物であってもよい。電子部品が、封止部のうち第2の樹脂層の硬化物に囲まれていてもよい。
 電子部品装置及びその製造方法において、電子部品が半導体チップを含んでいてもよい。この場合、電子部品装置は一般に半導体装置である。
 本発明の一側面によれば、封止成形物の反りを充分に抑制することが可能な封止フィルムが提供される。また、当該封止フィルムを用いた半導体装置等の電子部品装置の製造方法、及び、半導体装置等の電子部品装置も提供される。
一実施形態に係る封止フィルムを示す模式断面図である。 (a)は従来の単層の封止フィルムで半導体チップを封止した場合の封止成形物の模式断面図であり、(b)は硬化収縮率が異なる一実施形態に係る封止フィルムで半導体チップを封止した場合の封止成形物の模式断面図である。 半導体装置を製造する方法の一実施形態を説明するための模式断面図である。 半導体装置を製造する方法の一実施形態を説明するための模式断面図である。
 以下、図面を適宜参照しながら、本発明の実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
 図1は、一実施形態に係る封止フィルムを示す模式断面図である。本実施形態に係る封止フィルムは、電子部品を封止するための封止フィルムであり、第1の熱硬化性樹脂及び第1の無機充填剤を含有する第1の樹脂層1と、第2の熱硬化性樹脂及び第2の無機充填剤を含有する第2の樹脂層2とからなる2層構成の封止樹脂層10を備える。第2の樹脂層2側の主面が、電子部品を封止するときに電子部品側に向けられる封止面2Sである。
 第2の樹脂層2の硬化収縮率が、第1の樹脂層1の硬化収縮率より大きい。このような封止フィルムを用いて電子部品を封止することにより、大型の封止成形物の場合であっても、封止フィルムを熱硬化した後に室温まで戻したときの封止成形物の反りを抑制することができる。さらに、電子部品を良好な埋め込み性で封止することも可能である。
 このような効果が得られる理由は、特に限定されないが、本発明者等は以下のように考えている。まず、通常、樹脂封止材料による封止では、半導体チップ等の被封止体の線膨張係数と樹脂封止材の線膨張係数に差があるため、樹脂封止材料を熱硬化した後に室温まで戻した場合に、樹脂封止材料の収縮量と被封止体の収縮量に大きな差が生じる。例えば、シリコンチップを半導体チップとして用い、エポキシ樹脂封止材を用いて封止成形物を作製した場合、シリコンチップの線膨張係数が3.4ppm/℃であるのに対し、エポキシ樹脂封止材の線膨張係数は、無機充填剤が高い比率で充填されている場合であっても6ppm/℃程度であり、線膨張係数の差に伴って、シリコンチップとエポキシ樹脂封止材とで熱収縮量に差異が生じる。そのため、例えば図2の(a)に示すように、半導体チップ20を単層の封止フィルム3で封止して得られる封止成形物100において、通常、樹脂封止材の硬化物3a側、すなわち、収縮量の小さい半導体チップ20が埋め込まれていない側が凹となる向きの反りが生じる。
 これに対し、本実施形態に係る封止フィルムの場合、図2の(b)に示すように、第2の樹脂層2側に半導体チップ20が埋め込まれたときに、第1の樹脂層1よりも第2の樹脂層2の方が熱収縮量が大きいため、第2の樹脂層2と半導体チップ20の熱収縮量の総量が、第1の樹脂層1の熱収縮量に近い値となる。熱硬化した後に第1の樹脂層の硬化物1aの熱収縮に伴う反りと第2の樹脂層の硬化物2aの熱収縮に伴う反りが互いに相殺され、結果として封止フィルムの硬化物である封止部10a及びこれに封止された半導体チップ20からなる封止成形物100の反りを抑制することができる、と考えられる。
 また、本実施形態に係る封止フィルムにおいて、硬化収縮率の高い第2の樹脂層は、硬化収縮率の低い第1の樹脂層と比較して、加熱による硬化の過程で相対的に高い流動性を有し易い。そのため、第2の樹脂層側に電子部品を埋め込むことによって、電子部品を、未充填の発生が抑制された良好な埋め込む性で封止することも可能である。
 さらに、本実施形態に係る封止フィルムの場合、第1及び第2の樹脂層の弾性率の制限を受けることがないから、熱硬化性樹脂として弾性率の高い材料を適用することができる。そのため、本実施形態に係る封止フィルムは、取扱い性に優れるとともに、半導体チップ等の電子部品の位置ずれの問題、及び再配線層を設けた後の再配線層の応力による反りが発生しにくいという点でも優れている。
 第1及び第2の樹脂層の硬化収縮率は、例えば、各樹脂層の加熱硬化前後での比重の変化に基づいて、以下の方法で決定することができる。加熱硬化前の23℃での樹脂層の比重がdで、加熱硬化後、23℃まで冷却された樹脂層の比重がdであるとき、式:硬化収縮率(%)={(d-d)/d}×100によって硬化収縮率を求めることができる。加熱硬化は、所定の圧力下(例えば3MPa)で行われる。加熱硬化のための加熱条件は、樹脂層が充分に硬化し、硬化による体積変化が実質的に生じなくなるように調整される。また、各樹脂層の加熱硬化前後での体積の変化から硬化収縮率を求めることもできる。具体的には、各樹脂層の加熱硬化前の体積に対する、加熱硬化前後での体積変化の差の割合に基づいて決定することができる。例えば、PVT試験機を用い、金型に充填された樹脂層のサンプルの温度に対する体積変化から硬化収縮率(収縮量)を求めることができる。この場合、サンプルが実質的に体積変化しなくなるまで、サンプルを硬化温度で保持することで、硬化収縮率を求めることができる。硬化収縮率は、熱硬化樹脂の硬化反応に伴う収縮だけではなく、溶剤の揮発等、硬化処理に伴う構成材料の減少による収縮を含んでもよい。
 第1の樹脂層の硬化収縮率に対する第2の樹脂層の硬化収縮率の比は、1よりも大きければ特に制限されないが、封止成形物の反りをより効果的に抑制する観点から、1.05以上、1.10以上、又は1.15以上であってよい。第1の樹脂層の硬化収縮率に対する第2の樹脂層の硬化収縮率の比の上限は特に制限されないが、例えば10未満である。
 第1の樹脂層の硬化収縮率は、反りの抑制及び成形物の寸法安定性の観点から、例えば0.4%以下、0.3%以下、又は0.2%以下であってよい。
 第2の樹脂層の硬化収縮率は、硬化収縮を利用してより効果的に反りを矯正する観点から、例えば0.2%以上、0.3%以上、又は0.4%以上であってよい。第2の樹脂層の硬化収縮率は、成形物の寸法安定性の観点から、例えば2.0%以下、1.5%以下、又は1.0%以下であってよい。
 第1及び第2の樹脂層の硬化収縮率を調整する方法は、特に制限されない。例えば、第1の樹脂層が含有する第1の熱硬化性樹脂、及び第2の樹脂層が含有する第2の熱硬化性樹脂として、互いに異なる種類のものを選択する方法、硬化剤又は硬化触媒の種類及び/又は含有量を変える方法、並びに、第1の樹脂層及び第2の樹脂層を形成する過程での熱履歴の程度を変えることで硬化率を調整する方法から選ばれる1つ以上の方法によって、第1及び第2の樹脂層の硬化収縮率を調整してもよい。
 熱履歴による方法の場合、樹脂層の成膜の過程での熱履歴を大きくすることで、硬化率を高くすることができる。一般に、硬化率が高くなると、その状態からの加熱硬化による硬化収縮率が小さくなる傾向がある。熱履歴の大きさは、例えば、第1及び第2の樹脂層を形成するための乾燥温度、及び乾燥時間によって調整できる。第1の樹脂層上に、第2の樹脂層を形成するためのワニス状樹脂組成物を塗工し、塗工されたワニス状樹脂組成物を第1の樹脂層とともに加熱することで、第1の樹脂層が受ける熱履歴を第2の樹脂層が受ける熱履歴よりも大きくし、それによって第1の樹脂層の硬化率を相対的に高めてもよい。硬化率は、例えば示差走査熱量測定で測定される硬化発熱量に基づいて評価できる。樹脂層形成に用いられる樹脂組成物(無溶剤又はワニス)における硬化発熱量を基準(硬化率0%)とみなして、それに対する樹脂層における硬化発熱量の比から、硬化率を求めることができる。
 第1の樹脂層及び第2の樹脂層の厚みは、特に制限はないが、例えば、それぞれ30~800μm、50~500μm、又は80~300μmであってよい。厚みが30μm以上であれば、電子部品の良好な埋め込み性が特に得られ易い。厚みが800μm以下であれば、本発明の効果をより高水準で得ることができる。第1の樹脂層及び第2の樹脂層の厚みは、それぞれ略同一でも異なっていてもよいが、異なる場合には、反りの抑制及び電子部品の薄型化の観点から、第1の樹脂層の厚みが第2の樹脂層の厚みより小さくてもよい。第1の樹脂層及び第2の樹脂層の合計の厚み(封止樹脂層の厚み)は、特に制限されないが、50~1000μmであってもよい。
 第1の樹脂層は第1の熱硬化性樹脂及び第1の無機充填剤を含有し、第2の樹脂層は第2の熱硬化性樹脂及び第2の無機充填剤を含有する。第1の熱硬化性樹脂及び第2の熱硬化性樹脂は、互いに同一であっても異なっていてもよいが、互いに異なる熱硬化性樹脂を組み合わせることが、第1の樹脂層及び第2の樹脂層の硬化収縮率を異なるものとするための方法になり得る。第1の熱硬化性樹脂及び第2の熱硬化性樹脂は、それぞれ以下で説明する熱硬化性樹脂であってよい。ここで、「同一」とは、熱硬化性樹脂としての化合物の構造が実質的に同一であることを意味する。
 熱硬化性樹脂は、熱硬化反応により架橋構造体を形成し得る化合物であればよく、その例としては、エポキシ樹脂、フェノール樹脂、不飽和イミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂、及びメラミン樹脂が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。これらの熱硬化性樹脂は、必要により硬化剤及び/又は硬化触媒と組み合わせることができる。流動性に優れ、電子部品の埋め込みに好適である観点から、エポキシ樹脂を用いることできる。
 エポキシ樹脂は、特に限定されないが、1分子中に2個以上のエポキシ基(又はグリシジル基)を有する化合物であってもよい。エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールAP型エポキシ樹脂(1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタンジグリシジルエーテル)、ビスフェノールAF型エポキシ樹脂(2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパンジグリシジルエーテル)、ビスフェノールB型エポキシ樹脂(2,2-ビス(4-ヒドロキシフェニル)ブタンジグリシジルエーテル)、ビスフェノールBP型エポキシ樹脂(ビス(4-ヒドロキシフェニル)ジフェニルメタンジグリシジルエーテル)、ビスフェノールC型エポキシ樹脂(2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパンジグリシジルエーテル)、ビスフェノールE型エポキシ樹脂(1,1-ビス(4-ヒドロキシフェニル)エタンジグリシジルエーテル)、ビスフェノールF型エポキシ樹脂、ビスフェノールG型エポキシ樹脂(2,2-ビス(4-ヒドロキシ-3-イソプロピルフェニル)プロパンジグリシジルエーテル)、ビスフェノールM型エポキシ樹脂(1,3-ビス[2-(4-ヒドロキシフェニル)-2-プロピル]ベンゼンジグリシジルエーテル)、ビスフェノールP型エポキシ樹脂(1,4-ビス(2-(4-ヒドロキシフェニル)-2-プロピル)ベンゼンジグリシジルエーテル)、ビスフェノールPH型エポキシ樹脂(5,5’-(1-メチルエチリデン)-ビス[1,1’-(ビスフェニル)-2-オール]プロパンジグリシジルエーテル)、ビスフェノールTMC型エポキシ樹脂(1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサンジグリシジルエーテル)、ビスフェノールZ型エポキシ樹脂(1,1-ビス(4-ヒドロキシフェニル)シクロヘキサンジグリシジルエーテル)、ヘキサンジオールビスフェノールSジグリシジルエーテル等のビスフェノールS型エポキシ樹脂、ノボラック型エポキシ樹脂(フェノールノボラック型エポキシ樹脂等)、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、ジシクロペンタジエン型エポキシ樹脂、ジシクロペンタジエンアラルキル型エポキシ樹脂、ビキシレノールジグリシジルエーテル等のビキシレノール型エポキシ樹脂、水添ビスフェノールAグリシジルエーテル等の水添ビスフェノールA型エポキシ樹脂、及びそれらの二塩基酸変性ジグリシジルエーテル型エポキシ樹脂、トリス(2,3-エポキシプロピル)イソシアヌレート、並びに、脂肪族エポキシ樹脂が挙げられる。
 エポキシ樹脂として市販品を用いることができる。市販のエポキシ樹脂としては、DIC株式会社製EXA4700(4官能ナフタレン型エポキシ樹脂)、日本化薬株式会社製NC-7000(ナフタレン骨格含有多官能固形エポキシ樹脂)等のナフタレン型エポキシ樹脂、日本化薬株式会社EPPN-502H(トリスフェノールエポキシ樹脂)等のフェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、DIC株式会社製エピクロンHP-7200H(ジシクロペンタジエン骨格含有多官能固形エポキシ樹脂)等のジシクロペンタジエンアラルキル型エポキシ樹脂、日本化薬株式会社製NC-3000H(ビフェニル骨格含有多官能固形エポキシ樹脂)等のビフェニルアラルキル型エポキシ樹脂、DIC株式会社製エピクロンN660、及びエピクロンN690、日本化薬株式会社製EOCN-104S等のノボラック型エポキシ樹脂、日産化学工業株式会社製TEPIC等のトリス(2,3-エポキシプロピル)イソシアヌレート、DIC株式会社製エピクロン860、エピクロン900-IM、エピクロンEXA-4816、及びエピクロンEXA-4822、旭チバ株式会社製アラルダイトAER280、東都化成株式会社製エポトートYD-134、三菱化学株式会社製JER834、及びJER872、住友化学株式会社製ELA-134、油化シェルエポキシ株式会社製エピコート807、815、825、827、828、834、1001、1004、1007、及び1009、ダウケミカル社製DER-330、301、及び361、並びに東都化成株式会社製YD8125、及びYDF8170等のビスフェノールA型エポキシ樹脂、三菱化学株式会社製JER806等のビスフェノールF型エポキシ樹脂、DIC株式会社製エピクロンHP-4032等のナフタレン型エポキシ樹脂、DIC株式会社製エピクロンHP-4032等のナフタレン型エポキシ樹脂、DIC株式会社製エピクロンN-740等のフェノールノボラック型エポキシ樹脂、ナガセケムテックス株式会社製ナデコールDLC301等の脂肪族エポキシ樹脂が挙げられる。これらのエポキシ樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
 第1の樹脂層における第1の熱硬化性樹脂の含有量は、後述する無機充填剤の存在下でもフィルム形成性を充分に確保する観点から、第1の樹脂層の全量基準で5質量%以上、10質量%以上、又は15質量%以上であってよい。硬化収縮をより低減させる観点から、第1の樹脂層における第1の熱硬化性樹脂の含有量は、第1の樹脂層の全量基準で40質量%以下、30質量%以下、又は20質量%以下であってよい。
 第2の樹脂層における第2の熱硬化性樹脂の含有量は、硬化収縮によってより効果的に反りを矯正する観点から、第2の樹脂層の全量基準で10質量%以上、15質量%以上、又は20質量%以上であってよい。封止成形物の寸法安定性の観点から、第2の樹脂層における第2の熱硬化性樹脂の含有量は、第2の樹脂層の全量基準45質量%以下、35質量%以下、又は30質量%以下であってよい。
 熱硬化性樹脂と組み合わせられ得る硬化剤は、特に限定されるものではないが、例えば、熱硬化性樹脂としてエポキシ樹脂を用いる場合、硬化剤は、エポキシ基(グリシジル基)との反応基を1分子中に2個以上有する化合物であってもよい。硬化剤は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 硬化剤としては、例えば、フェノール樹脂、酸無水物、イミダゾール化合物、脂肪族アミン、及び脂環族アミンが挙げられる。
 フェノール樹脂としては、1分子中に2個以上のフェノール性水酸基を有する化合物であれば、特に制限されるものではない。フェノール樹脂としては、例えば、フェノール、クレゾール、キシレノール、レゾルシノール、カテコール、ビスフェノールA及びビスフェノールF等のフェノール化合物、又はα-ナフトール、β-ナフトール及びジヒドロキシナフタレン等のナフトール化合物と、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド及びサリチルアルデヒド等のアルデヒド化合物とを酸性触媒下で縮合あるいは共縮合させて得られる樹脂、ビフェニル骨格型フェノール樹脂、パラキシリレン変性フェノール樹脂、メタキシリレン・パラキシリレン変性フェノール樹脂、メラミン変性フェノール樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂、シクロペンタジエン変性フェノール樹脂、多環芳香環変性フェノール樹脂、並びに、キシリレン変性ナフトール樹脂が挙げられる。
 フェノール樹脂として市販品を用いることができる。市販のフェノール樹脂としては、例えば、大日本インキ化学工業株式会社製フェノライトLF2882、フェノライトLF2822、フェノライトTD-2090、フェノライトTD-2149、フェノライトVH-4150、及びフェノライトVH4170、旭有機材工業株式会社製PAPS-PN2、三井化学株式会社製XLC-LL、及びXLC-4L、新日鉄住金化学株式会社製SN-100、SN-180、SN-300、SN-395、及びSN-400、本州化学工業株式会社製TrisP-HAP、TrisP-PA、TriP-PHBA、CyRS-PRD4、及びMTPC、エア・ウォーター株式会社製SKレジンHE910-10が挙げられる。
 硬化剤の含有量は、特に限定はない。例えば、熱硬化性樹脂としてエポキシ樹脂を用い、硬化剤としてフェノール樹脂を用いる場合、エポキシ基とフェノール性水酸基との当量比(エポキシ基/フェノール性水酸基)が、0.5~3.0又は1.0~1.5であってよい。その他の硬化剤の場合、エポキシ基と、エポキシ基との反応基との当量比(エポキシ基/エポキシ基との反応基)が、0.5~3.0又は1.0~1.5であってよい。
 エポキシ樹脂と組み合わせられ得る硬化触媒は、特に制限されるものではないが、アミン系、イミダゾール系、尿素系又はリン系の硬化触媒が好ましい。アミン系の硬化触媒としては、1,8-ジアザビシクロ[5.4.0]ウンデセン-7、1,5-ジアザビシクロ[4.3.0]ノネン-5等が挙げられる。イミダゾール系の硬化触媒としては、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール等が挙げられる。尿素系の硬化触媒としては、3-フェニル-1,1-ジメチルウレア等が挙げられる。リン系の硬化触媒としては、トリフェニルホスフィン及びその付加反応物、(4-ヒドロキシフェニル)ジフェニルホスフィン、ビス(4-ヒドロキシフェニル)フェニルホスフィン、トリス(4-ヒドロキシフェニル)ホスフィン等が挙げられる。これらの中でも、特にイミダゾール系の硬化促進剤は誘導体が豊富であり、所望の活性温度を得やすい。イミダゾール系の硬化促進剤の市販品としては、例えば、四国化成工業株式会社製2PHZ-PW、及び2P4MZが挙げられる。
 硬化触媒の含有量は、特に制限はないが、例えば、熱硬化性樹脂の合計量100質量部に対し、0.05~1.0質量部、又は0.1~0.5質量部であってよい。
 第1の無機充填剤及び第2の無機充填剤は、互いに同種であっても異種であってもよい。
 無機充填剤としては、例えば、硫酸バリウム、チタン酸バリウム、無定形シリカ、結晶性シリカ、溶融シリカ、球状シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、窒化ケイ素、窒化アルミニウムなどの粒子が挙げられる。比較的小さい熱膨張率を有するために所望の硬化膜特性が得られやすい観点から、無機充填剤としてはシリカ粒子が好ましい。無機充填剤は、1種を単独で用いてもよく、2種以上を併用してもよい。無機充填剤の形状は、球形状に限られず、フレーク状(板状)又は繊維状でもよい。第2の樹脂層に含まれる第2の無機充填剤は、電子部品子の埋め込み性の観点から、流動性が得られやすい球形状の無機充填剤であってもよい。
 無機充填剤は、表面改質されていてもよい。表面改質の手法は特に限定されないが、シランカップリング剤による方法は、簡便であり、豊富な種類の官能基を有するシランカップリング剤が利用可能で、所望の特性を付与しやすい。シランカップリング剤としては、例えば、アルキルシラン、アルコキシシラン、ビニルシラン、エポキシシラン、アミノシラン、アクリルシラン、メタクリルシラン、メルカプトシラン、スルフィドシラン、イソシアネートシラン、サルファーシラン、スチリルシラン、及びアルキルクロロシランが挙げられる。
 シランカップリング剤の具体例としては、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、メチルトリエトキシシラン、メチルトリフェノキシシラン、エチルトリメトキシシラン、n-プロピルトリメトキシシラン、ジイソプロピルジメトキシシラン、イソブチルトリメトキシシラン、ジイソブチルジメトキシシラン、イソブチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、シクロヘキシルメチルジメトキシシラン、n-オクチルトリエトキシシラン、n-ドデシルメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、トリフェニルシラノール、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、n-オクチルジメチルクロロシラン、テトラエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド、ビニルトリアセトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリイソプロポキシシラン、アリルトリメトキシシラン、ジアリルジメチルシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリエトキシシラン、N-(1,3-ジメチルブチリデン)-3-アミノプロピルトリエトキシシラン、及びアミノシランが挙げられる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。
 無機充填剤の平均粒子径は、特に制限されるものではないが、例えば0.01~50μmであってよい。無機充填剤の平均粒子径は、例えばレーザー回析法によって測定される。
 第1の樹脂層における第1の無機充填剤の含有量は、熱収縮量低減の観点から、第1の樹脂層の全量基準で60質量%以上、70質量%以上、又は80質量%以上であってよい。フィルム形成性を充分に確保する観点から、第1の樹脂層における第1の無機充填剤の含有量は、第1の樹脂層の全量基準で95質量%以下、90質量%以下、又は85質量%以下であってよい。
 第2の樹脂層における第2の無機充填剤の含有量は、封止成形物の寸法安定性の観点から、第2の樹脂層の全量基準で55質量%以上、65質量%以上、又は70質量%以上であってよい。フィルム形成性を充分に確保する観点から、第2の樹脂層における第2の無機充填剤の含有量は、第2の樹脂層の全量基準で95質量%以下、90質量%以下、又は85質量%以下であってよい。
 第1の樹脂層及び第2の樹脂層は、上記以外の成分を含んでいてもよい。このような成分は、封止フィルムに一般的に用いられる成分であってもよい。その例としては、酸化防止剤、難燃剤、イオン捕捉剤、顔料、染料、シランカップリング剤、及びエラストマーが挙げられる。
 封止フィルムは、フィルム状の支持体をさらに備えていてもよい。この場合、通常、第1の樹脂層及び第2の樹脂層が支持体側からこの順に設けられる。支持体は、封止後に除去できれば特に限定されるものではないが、例えば、高分子フィルム、又は金属箔であることができる。
 支持体として用いられ得る高分子フィルムとしては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム等のポリオレフィンフィルム、ポリエチレンテレフタレートフィルム等のポリエステルフィルム、ポリ塩化ビニルフィルム、ポリカーボネートフィルム、アセチルセルロースフィルム、ポリイミドフィルム、ポリアミドフィルム、及びテトラフルオロエチレンフィルムが挙げられる。支持体として用いられ得る金属箔としては、例えば、銅箔、及びアルミ箔が挙げられる。
 フィルム状の支持体は、剥離し易くするために、離型処理されていてもよい。離型処理の方法としては、例えば、離型剤を支持体の表面に塗布し、乾燥する方法が挙げられる。離型剤としては、例えば、シロキサン系、フッ素系、及びオレフィン系の離型剤が挙げられる。金属箔は、その表面が酸等でエッチングされていてもよい。
 フィルム状の支持体の厚みは特に制限されないが、樹脂層を塗工で形成する場合の作業性及び乾燥性の観点から、2~200μmであってもよい。支持体の厚みが2μm以上であれば、樹脂層を形成するためにワニス状樹脂組成物を塗工するときに支持体が破損したり、ワニス状樹脂組成物の重さで支持体が変形したりするおそれが少ない。支持体の厚みが200μm以下であれば、主に塗工面及び裏面の両面から熱風を吹き付けて乾燥する乾燥機を用いる場合でも、ワニス状樹脂組成物の乾燥(有機溶媒の除去)を効率的に行うことができる。
 封止フィルムは、第1の樹脂層及び第2の樹脂層の保護を目的として、封止樹脂層(又は第2の樹脂層)の支持体とは反対側の主面を被覆する保護層(例えば、保護フィルム)をさらに備えていてもよい。保護層を設けることで、封止フィルムの取扱い性が向上するとともに、封止フィルムが巻取られた場合に支持体の裏面に樹脂層が張り付くといった不具合を回避することができる。
 保護層としては、特に限定されないが、例えば、上記フィルム状の支持体として例示したものと同様のものを用いることができる。
 保護層の厚みは、特に限定されないが、充分な保護効果と、封止フィルムをロール状に巻き取った際の厚みを低減する観点から、例えば、12~100μmであってもよい。
 本実施形態に係る封止フィルムは、例えば、第1の樹脂層及び第2の樹脂層をそれぞれ形成し、それらを貼り合せること、又はフィルム状の支持体上に第1の樹脂層及び第2の樹脂層を順に形成することによって、製造することができる。
 第1の樹脂層及び第2の樹脂層は、それぞれを構成する成分を混合し、得られた樹脂組成物を成膜することによって形成することができる。成膜される樹脂組成物に有機溶媒を加えてワニス状樹脂組成物を調製し、これを支持体上に塗工し、塗膜を乾燥することで第1の樹脂層及び第2の樹脂層を形成してもよい。ワニス状樹脂組成物の支持体上への塗布、及び塗膜の乾燥は、例えば、支持体のロールから支持体を巻き出しながら、連続的に行ってもよい。このときの乾燥条件によって、第1の樹脂層及び第2の樹脂層の硬化収縮率を調整してもよい。
 封止フィルムを用いて得られる封止成形物の反りは、例えば、ウェハレベルパッケージ又はウェハレベルパッケージを模した評価用基板を作製することで評価できる。その際に、半導体チップの埋め込み性も同時に評価できる。
 次に、本実施形態の封止フィルムを用いた電子部品装置の製造方法について説明する。以下では、電子部品の代表例としての半導体チップを有する半導体装置を製造する方法の一実施形態について具体的に説明する。
 図3及び図4は、半導体装置を製造する方法の一実施形態を示す模式断面図である。本実施形態に係る方法は、基板30上に仮固定材40を貼り付け、仮固定材40上に複数の半導体チップ20を仮固定する工程(図3の(a))と、仮固定された半導体チップ20と、第1の樹脂層1及び第1の樹脂層1上に設けられた第2の樹脂層2を有する封止フィルム(封止樹脂層)10とを、半導体チップ20が封止樹脂層10の封止面2Sと対向配置される向き(第2の樹脂層2の封止面2Sが半導体チップと接する向き)で重ね、その状態でこれらを加熱下で押圧し、封止樹脂層10に半導体チップ20を埋め込む工程(図3の(b)及び(c))と、半導体チップ20が埋め込まれた封止フィルム10を硬化させる工程(図3の(c))とを備える。硬化によって、第1の樹脂層の硬化物1a及び第2の樹脂層の硬化物2aからなり、半導体チップ20を封止する封止部10aが形成される。封止部10aにおいて、第1の樹脂層の硬化物1aと第2の樹脂層の硬化物2aの境界は、必ずしも明瞭でなくてもよい。
 本実施形態の方法では、封止フィルムの押圧のためにラミネート法を用いてもよいし、コンプレッションモールドを用いてもよい。
 ラミネート法において使用するラミネータとしては、特に限定されるものではないが、例えば、ロール式、バルーン式等のラミネータが挙げられる。これらの中でも、埋め込み性をより向上させる観点からは、真空加圧が可能なバルーン式を採用してもよい。
 半導体チップの埋め込みのための温度(例えば、ラミネート温度)は、封止樹脂層10(特に第2の樹脂層2)が流動して半導体チップが埋め込まれるように、調整される。この温度は、支持体があるときはその軟化点以下とされる。また、この温度は第2の樹脂層が最低溶融粘度を示す温度又はその近傍の温度であってもよい。半導体チップの埋め込みのための圧力は、半導体チップ(又は電子部品)のサイズ、密集度によって変わるが、例えば、0.2~1.5MPa、又は0.3~1.0MPaであってもよい。押圧の時間は、特に限定されないが、20~600秒、30~300秒、又は40~120秒であってよい。
 封止樹脂層(第1の樹脂層及び第2の樹脂層)の硬化は、例えば、大気下又は不活性ガス下で行うことができる。硬化温度は、特に限定されるものではないが、80~280℃、100~240℃、又は120~200℃であってよい。硬化温度が80℃以上であれば、封止フィルムの硬化が充分に進み、不具合の発生を特に効果的に抑制することができる。硬化温度が280℃以下の場合は、他の材料への熱害の発生を抑制することができる。硬化時間は、特に限定されないが、30~600分、45~300分、又は60~240分であってよい。硬化時間がこれらの範囲であれば、封止樹脂層の硬化が充分に進み、良好な生産効率が得られる。硬化条件は、温度及び/又は時間が異なる複数の条件の組み合わせであってもよい。
 封止樹脂層10に電子部品(半導体チップ20)を埋め込むことと、封止樹脂層10を硬化させて封止部10aを形成することとは、分離した別の工程であってもよいし、同時に又は連続的に行う工程であってもよい。例えば、封止樹脂層及び電子部品を加熱しながら押圧することによって、封止樹脂層に電子部品を埋め込むとともに封止樹脂層を硬化して、電子部品を封止する封止部を形成させてもよい。
 本実施形態においては、以下の絶縁層形成、配線パターン形成、ボールマウント、及びダイシングの各工程を経て、半導体装置を得ることができる。これらの工程を高い精度で効率的に行うために、封止成形物100の反りが小さいことが望ましい。
 まず、仮固定材40を基板30とともに剥離して、半導体チップ20及びこれを封止する封止部10aからなる封止成形物100を得る(図4の(a))。封止成形物100の一方の主面内で半導体チップ20が露出している。半導体チップ20が露出している側の封止成形物の主面上に、絶縁層50が設けられる(図4の(b))。次に、絶縁層50をパターン化することで配線54を形成し、パターン化された絶縁層52上にボール56をマウントする(図4の(c))。
 次に、ダイシングカッター60により、封止成形物を個片化する(図4の(d)及び(e))。これにより、半導体チップ20と、本実施形態に係る封止フィルムの封止樹脂層の硬化物である封止部10aと、を備える半導体装置200が得られる。半導体装置200において、半導体チップ20は、封止部10aのうち第2の樹脂層の硬化物2aに囲まれるように、封止部10a内に埋め込まれている。
 以上、本発明に係る封止フィルム、並びに、半導体装置及び電子部品装置の製造方法の好適な実施形態について説明したが、本発明は必ずしも上述した実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更を行ってもよい。
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
封止フィルムの作製
 封止フィルムを構成する成分として以下の材料を用意した。
[熱硬化性樹脂]
A1:ビスフェノールF型エポキシ樹脂(三菱化学株式会社製、JER806/エポキシ当量:160)
[硬化剤]
B1:フェノールノボラック樹脂(旭有機材工業株式会社製、PAPS-PN2/水酸基当量:104)
B2:トリスメタン型フェノール樹脂(本州化学工業株式会社製、TrisP-HAP/水酸基当量:102)
[無機充填剤]
C1:シリカ(株式会社アドマテックス製、SX-E2、フェニルアミノシラン処理/平均粒径5.8μm)
[硬化触媒]
D1:イミダゾール(四国化成工業株式会社製、2PHZ-PW)
[有機溶剤]
E1:メチルエチルケトン
(実施例1)
 10Lのプラスチック容器に有機溶剤E1を497.5g入れ、これに無機充填剤C1を3500g加えて、撹拌羽根で無機充填剤C1を有機溶剤中に分散した。この分散液に、熱硬化性樹脂A1を300g、硬化剤B1を460g加えて分散液を撹拌した。熱硬化性樹脂A1及び硬化剤B1が溶解したのを目視で確認した後、硬化触媒D1を2.5g加え、分散液をさらに1時間撹拌した。分散液をナイロン製#200メッシュ(開口75μm)で濾過し、ろ液をワニス状樹脂組成物として得た。
 得られたワニス状樹脂組成物を、塗工機を使用して、以下の条件でフィルム状の支持体(38μm厚のポリエチレンテレフタレート)上に塗布し、支持体及び塗膜を、乾燥炉内を所定の乾燥速度で通過させることにより塗膜を乾燥して、第1の樹脂層又は第2の樹脂層(厚み100μm)をそれぞれ支持体上に形成した。塗布及び乾燥速度は、支持体の移動速度を意味する。乾燥条件の温度及び炉長は、それぞれ、乾燥炉内の温度、及び乾燥炉内での支持体の移動距離を意味する。これらは他の実施例及び比較例でも同様である。
(第1の樹脂層)
塗布ヘッド方式:コンマ
塗布及び乾燥速度:2m/分
乾燥条件(温度/炉長):110℃/3.3m、130℃/3.3m、140℃/3.3m
(第2の樹脂層)
塗布ヘッド方式:コンマ
塗布及び乾燥速度:3m/分
乾燥条件(温度/炉長):90℃/3.3m、110℃/3.3m、120℃/3.3m
 第1の樹脂層と第2の樹脂層とを真空ラミネートで貼り合わせて、第1の樹脂層と第2の樹脂層とを備える2層構成の封止樹脂層を有する封止フィルムを得た。
(実施例2)
 硬化触媒D1の量を2.5gから7.5gに変更した以外は、実施例1と同様の方法によりワニス状樹脂組成物を作製した。得られたワニス状樹脂組成物を、塗工機を使用して、以下の条件でフィルム状の支持体(38μm厚のポリエチレンテレフタレート)上に塗布し、支持体及び塗膜を、乾燥炉内を所定の乾燥速度で通過させることにより塗膜を乾燥して、第1の樹脂層(厚み100μm)を支持体上に形成した。
塗布ヘッド方式:コンマ
塗布及び乾燥速度:2m/分
乾燥条件(温度/炉長):110℃/3.3m、130℃/3.3m、140℃/3.3m
 実施例1と同様の方法によりワニス状樹脂組成物を作製した。得られたワニス状樹脂組成物を、塗工機を使用して以下の条件でフィルム状の支持体(38μm厚のポリエチレンテレフタレート)上に塗布し、支持体及び塗膜を、乾燥炉内を所定の乾燥速度で通過させることにより塗膜を乾燥して、第2の樹脂層(厚み100μm)を支持体上に形成した。
塗布ヘッド方式:コンマ
塗布及び乾燥速度:2m/分
乾燥条件(温度/炉長):90℃/3.3m、110℃/3.3m、120℃/3.3m
 第1の樹脂層と第2の樹脂層とを真空ラミネートで貼り合わせて、第1の樹脂層と第2の樹脂層とを備える2層構成の封止樹脂層を有する封止フィルムを得た。
(実施例3)
 硬化触媒D1の量を2.5gから7.5gに変更した以外は、実施例1と同様の方法によりワニス状樹脂組成物を作製した。得られたワニス状樹脂組成物を、塗工機を使用して、以下の条件でフィルム状の支持体(38μm厚のポリエチレンテレフタレート)上に塗布し、支持体及び塗膜を、乾燥炉内を所定の乾燥速度で通過させることにより塗膜を乾燥して、第1の樹脂層(厚み100μm)を支持体上に形成した。
塗布ヘッド方式:コンマ
塗布及び乾燥速度:3m/分
乾燥条件(温度/炉長):110℃/3.3m、130℃/3.3m、140℃/3.3m
 実施例1と同様の方法によりワニス状樹脂組成物を作製した。塗工機を使用して以下の条件でフィルム状の支持体(38μm厚のポリエチレンテレフタレート)上に塗布し、支持体及び塗膜を、乾燥炉内を所定の乾燥速度で通過させることにより塗膜を乾燥して、第2の樹脂層(厚み100μm)を支持体上に形成した。
塗布ヘッド方式:コンマ
塗布及び乾燥速度:2m/分
乾燥条件(温度/炉長):90℃/3.3m、110℃/3.3m、120℃/3.3m
 第1の樹脂層と第2の樹脂層とを真空ラミネートで貼り合わせて、第1の樹脂層と第2の樹脂層とを備える2層構成の封止樹脂層を有する封止フィルムを得た。
(実施例4)
 実施例1と同様の方法によりワニス状樹脂組成物を作製した。塗工機を使用して以下の条件でフィルム状の支持体(38μm厚のポリエチレンテレフタレート)上に塗布し、塗膜を乾燥して、第1の樹脂層(厚み100μm)を支持体上に形成した。
塗布ヘッド方式:コンマ
塗布及び乾燥速度:2m/分
乾燥条件(温度/炉長):90℃/3.3m、110℃/3.3m、120℃/3.3m
 実施例1と同様の方法によりワニス状樹脂組成物を作製した。塗工機を使用して以下の条件でフィルム状の支持体(38μm厚のポリエチレンテレフタレート)上に塗布し、支持体及び塗膜を、乾燥炉内を所定の乾燥速度で通過させることにより塗膜を乾燥して、第2の樹脂層(厚み100μm)を支持体上に形成した。
塗布ヘッド方式:コンマ
塗布及び乾燥速度:2.5m/分
乾燥条件(温度/炉長):90℃/3.3m、110℃/3.3m、120℃/3.3m
(実施例5)
 実施例1と同様の方法によりワニス状樹脂組成物を作製した。塗工機を使用して以下の条件でフィルム状の支持体(38μm厚のポリエチレンテレフタレート)上に塗布し、支持体及び塗膜を、乾燥炉内を所定の乾燥速度で通過させることにより塗膜を乾燥して、第1の樹脂層(厚み100μm)を支持体上に形成した。
塗布ヘッド方式:コンマ
塗布及び乾燥速度:2m/分
乾燥条件(温度/炉長):90℃/3.3m、110℃/3.3m、120℃/3.3m
 10Lのプラスチック容器に有機溶剤E1を497.5g入れ、これに無機充填剤C1を3500g加えて、撹拌羽根で無機充填剤C1を有機溶剤中に分散した。この分散液に、熱硬化性樹脂A1を296g、硬化剤B2を464g加えて分散液を撹拌した。熱硬化性樹脂A1及び硬化剤B2が溶解したのを目視で確認した後、硬化触媒D1を2.5g加えて分散液をさらに1時間撹拌した。分散液をナイロン製#200メッシュ(開口75μm)で濾過して、ろ液をワニス状樹脂組成物として得た。
 得られたワニス状樹脂組成物を、塗工機を使用して、以下の条件でフィルム状の支持体(38μm厚のポリエチレンテレフタレート)上に塗布し、支持体及び塗膜を、乾燥炉内を所定の乾燥速度で通過させることにより塗膜を乾燥して、第2の樹脂層(厚み100μm)を支持体上に形成した。
塗布ヘッド方式:コンマ
塗布及び乾燥速度:3m/分
乾燥条件(温度/炉長):90℃/3.3m、110℃/3.3m、120℃/3.3m
(実施例6)
 10Lのプラスチック容器に有機溶剤E1を497.5g入れ、これに無機充填剤C1を3350g加えて、撹拌羽根で無機充填剤C1を有機溶剤中に分散した。この分散液に、熱硬化性樹脂A1を360g、硬化剤B1を550g加えて分散液を撹拌した。熱硬化性樹脂A1及び硬化剤B1が溶解したのを目視で確認した後、硬化触媒D1を3.0g加えて分散液をさらに1時間撹拌した。分散液をナイロン製#200メッシュ(開口75μm)で濾過して、ろ液をワニス状樹脂組成物として得た。
 得られたワニス状樹脂組成物を、塗工機を使用して、以下の条件でフィルム状の支持体(38μm厚のポリエチレンテレフタレート)上に塗布し、支持体及び塗膜を、乾燥炉内を所定の乾燥速度で通過させることにより塗膜を乾燥して、第1の樹脂層(厚み100μm)を支持体上に形成した。
塗布ヘッド方式:コンマ
塗布及び乾燥速度:3m/分
乾燥条件(温度/炉長):90℃/3.3m、110℃/3.3m、120℃/3.3m
 10Lのプラスチック容器に有機溶剤E1を497.5g入れ、これに無機充填剤C1を3200g加えて、撹拌羽根で無機充填剤C1を有機溶剤中に分散した。この分散液に、熱硬化性樹脂A1を419g、硬化剤B1を641g加えて分散液を撹拌した。熱硬化性樹脂A1及び硬化剤B1が溶解したのを目視で確認した後、硬化触媒D1を3.5g加えて分散液をさらに1時間撹拌した。分散液をナイロン製#200メッシュ(開口75μm)で濾過して、ろ液をワニス状樹脂組成物として得た。
 得られたワニス状樹脂組成物を、塗工機を使用して、以下の条件でフィルム状の支持体(38μm厚のポリエチレンテレフタレート)上に塗布し、支持体及び塗膜を、乾燥炉内を所定の乾燥速度で通過させることにより塗膜を乾燥して、第2の樹脂層(厚み100μm)を支持体上に形成した。
塗布ヘッド方式:コンマ
塗布及び乾燥速度:3m/分
乾燥条件(温度/炉長):90℃/3.3m、110℃/3.3m、120℃/3.3m
(比較例1)
 実施例1と同様のワニス状樹脂組成物を、塗工機を使用して以下の条件でフィルム状の支持体(38μm厚のポリエチレンテレフタレート)上に塗布し、支持体及び塗膜を、乾燥炉内を所定の乾燥速度で通過させることにより塗膜を乾燥して、第1の樹脂層及び第2の樹脂層(厚み100μm)をそれぞれ支持体上に形成した。
(第1の樹脂層)
塗布ヘッド方式:コンマ
塗布及び乾燥速度:3m/分
乾燥条件(温度/炉長):90℃/3.3m、110℃/3.3m、120℃/3.3m
(第2の樹脂層)
塗布ヘッド方式:コンマ
塗布及び乾燥速度:2m/分
乾燥条件(温度/炉長):110℃/3.3m、130℃/3.3m、140℃/3.3m
 第1の樹脂層と第2の樹脂層とを真空ラミネートで貼り合わせて、第1の樹脂層と第2の樹脂層とを備える2層構成の封止樹脂層を有する封止フィルムを得た。
(比較例2)
 実施例1と同様のワニス状樹脂組成物を、塗工機を使用して以下の条件でフィルム状の支持体(38μm厚のポリエチレンテレフタレート)上に塗布し、支持体及び塗膜を、乾燥炉内を所定の乾燥速度で通過させることにより塗膜を乾燥して、第1の樹脂層(厚み100μm)を支持体上に形成した。
塗布ヘッド方式:コンマ
塗布及び乾燥速度:2m/分
乾燥条件(温度/炉長):90℃/3.3m、110℃/3.3m、120℃/3.3m
 硬化触媒D1の量を2.5gから7.5gに変更した以外は、実施例1と同様の方法によりワニス状樹脂組成物を作製した。得られたワニス状樹脂組成物を、塗工機を使用して、以下の条件でフィルム状の支持体(38μm厚のポリエチレンテレフタレート)上に塗布し、支持体及び塗膜を、乾燥炉内を所定の乾燥速度で通過させることにより塗膜を乾燥して、第2の樹脂層(厚み100μm)を支持体上に形成した。
塗布ヘッド方式:コンマ
塗布及び乾燥速度:2m/分
乾燥条件(温度/炉長):110℃/3.3m、130℃/3.3m、140℃/3.3m
 第1の樹脂層と第2の樹脂層とを真空ラミネートで貼り合わせて、第1の樹脂層と第2の樹脂層とを備える2層構成の封止樹脂層を有する封止フィルムを得た。
(比較例3)
 実施例1と同様のワニス状樹脂組成物を、塗工機を使用して以下の条件でフィルム状の支持体(38μm厚のポリエチレンテレフタレート)上に塗布し、支持体及び塗膜を、乾燥炉内を所定の乾燥速度で通過させることにより塗膜を乾燥して、第1の樹脂層(厚み100μm)を支持体上に形成した。
塗布ヘッド方式:コンマ
塗布及び乾燥速度:2m/分
乾燥条件(温度/炉長):90℃/3.3m、110℃/3.3m、120℃/3.3m
 実施例1と同様のワニス状樹脂組成物を、塗工機を使用して以下の条件でフィルム状の支持体(38μm厚のポリエチレンテレフタレート)上に塗布し、支持体及び塗膜を、乾燥炉内を所定の乾燥速度で通過させることにより塗膜を乾燥して、第2の樹脂層(厚み100μm)を支持体上に形成した。
塗布ヘッド方式:コンマ
塗布及び乾燥速度:1.5m/分
乾燥条件(温度/炉長):90℃/3.3m、110℃/3.3m、120℃/3.3m
 第1の樹脂層と第2の樹脂層とを真空ラミネートで貼り合わせて、第1の樹脂層と第2の樹脂層とを備える2層構成の封止樹脂層を有する封止フィルムを得た。
(比較例4)
 実施例1と同様のワニス状樹脂組成物を、塗工機を使用して以下の条件でフィルム状の支持体(38μm厚のポリエチレンテレフタレート)上に塗布し、支持体及び塗膜を、乾燥炉内を所定の乾燥速度で通過させることにより塗膜を乾燥して、樹脂層(厚み100μm)を支持体上に形成した。
塗布ヘッド方式:コンマ
塗布及び乾燥速度:2m/分
乾燥条件(温度/炉長):90℃/3.3m、110℃/3.3m、120℃/3.3m
 得られた樹脂層2枚を真空ラミネートで貼り合わせて、厚みが200μmの1層構成の封止樹脂層を有する封止フィルムを得た。
(比較例5)
 10Lのプラスチック容器に有機溶剤E1を497.5g入れ、これに無機充填剤C1を3500g加えて、撹拌羽根で無機充填剤C1を有機溶剤中に分散した。この分散液に、熱硬化性樹脂A1を296g、硬化剤B2を464g加えて分散液を撹拌した。熱硬化性樹脂A1及び硬化剤B2が溶解したのを目視で確認した後、硬化触媒D1を2.5g加えて分散液をさらに1時間撹拌した。分散液をナイロン製#200メッシュ(開口75μm)で濾過して、ろ液をワニス状樹脂組成物として得た。
 得られたワニス状樹脂組成物を、塗工機を使用して、以下の条件でフィルム状の支持体(38μm厚のポリエチレンテレフタレート)上に塗布し、塗膜を乾燥して、樹脂層(厚み100μm)を支持体上に形成した。
塗布ヘッド方式:コンマ
塗布及び乾燥速度:3m/分
乾燥条件(温度/炉長):90℃/3.3m、110℃/3.3m、120℃/3.3m
 得られた樹脂層2枚を真空ラミネートで貼り合わせて、厚みが200μmの1層構成の封止樹脂層を有する封止フィルムを得た。
 各実施例における樹脂組成物の配合量、厚み、乾燥速度、乾燥条件、及び硬化収縮率を表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
評価試験
(硬化収縮率)
 上記各実施例及び比較例で作製した封止フィルムの支持体を剥離して、硬化収縮率を測定するための評価サンプルを得た。硬化収縮率(%)は、PVT試験機(株式会社東洋精機製作所製)を用いて、下記の条件で測定した。結果を表1及び表2に示す。
評価サンプル質量:8g
加熱条件:40℃から140℃まで昇温し、140℃で2時間保持した後、室温(23℃)まで冷却
圧力:3MPa
シリンダー径:11.284mm(面積:1.0cm
(反り及びチップ埋め込み性)
 支持体として直径220mm、厚み1.5mmのSUS板を準備した。SUS板の片側に仮固定用フィルムを、ラミネータを用いて貼り付けた。SUS板からはみ出した仮固定用フィルムをカッターナイフで切り離した。
 次いで、7.3mm×7.3mm、厚み150μmのシリコンチップを上記仮固定用フィルム上に格子状に配置して、評価用基板を得た。シリコンチップの搭載数は193個、シリコンチップの間隔(ピッチ)は縦方向、横方向ともに9.6mmとした。シリコンチップの配置にはダイソーター(キヤノンマシナリー株式会社製CAP3500)を用いた。配置時の荷重は、シリコンチップ1個当たり1kgfとした。
 作製した評価用基板に、実施例及び比較例で作製した各封止フィルムの封止樹脂層を、第2の樹脂層がシリコンチップ側になる向きで重ね合わせ、その状態で真空ラミネータを用いて加熱しながら封止樹脂層及びシリコンチップを押圧することによって、封止樹脂層にシリコンチップを埋め込むとともに封止樹脂層を熱硬化し、シリコンチップを封止する封止部を形成させた。得られた封止成形物から仮固定用フィルムを剥がし、シリコンチップ側の面を下にして、封止成形物の反りの向きと、底面から最も反りが大きい部分までの反りの量を定規で測定した。反りの向きの「凸」は、封止部側に凸となる向きで反りが発生したことを意味する。
 仮固定用フィルムから剥がした封止成形物のシリコンチップ側の面を目視にて確認し、シリコンチップ間に樹脂が充填されているか否かに基づいて、チップ埋め込み性を判断した。未充填の箇所がない場合を「良好」と判定した。比較例1については、埋め込み性に問題があったため、反りの評価を行わなかった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2及び表3に評価結果を示す。第2の樹脂層の硬化収縮率が第1の樹脂層の硬化収縮率よりも大きい実施例の封止フィルムによれば、良好な埋め込み性でシリコンチップを封止できるとともに、封止成形物の反りが充分に抑制された。
 1…第1の樹脂層、1a…第1の樹脂層の硬化物、2…第2の樹脂層、2a…第2の樹脂層の硬化物、3…樹脂封止材、3a…樹脂封止材の硬化物、10…封止フィルム(封止樹脂層)、10a…封止樹脂層の硬化物、20…半導体チップ、30…基板、40…仮固定材、50…絶縁層、52…パターン化された絶縁層、54…配線、56…ボール、60…ダイシングカッター、100…封止成形物、200…半導体装置。
 

Claims (8)

  1.  電子部品を封止するための封止フィルムであって、
     第1の熱硬化性樹脂及び第1の無機充填剤を含有する第1の樹脂層、及び第2の熱硬化性樹脂及び第2の無機充填剤を含有する第2の樹脂層を有する封止樹脂層を備え、
     前記第2の樹脂層が、前記電子部品を封止するときに前記電子部品側に向けられる封止面を有し、前記第2の樹脂層及び前記第1の樹脂層が前記封止面側からこの順に積層されており、
     前記第2の樹脂層の硬化収縮率が、前記第1の樹脂層の硬化収縮率より大きい、封止フィルム。
  2.  前記第1の樹脂層の硬化収縮率に対する前記第2の樹脂層の硬化収縮率の比が、1を超えて10未満である、請求項1に記載の封止フィルム。
  3.  前記第1の熱硬化性樹脂及び前記第2の熱硬化性樹脂が、互いに同一又は異なるエポキシ樹脂である、請求項1又は2に記載の封止フィルム。
  4.  請求項1~3のいずれか一項に記載の封止フィルムの封止樹脂層、及びその封止面と対向配置された電子部品を加熱下で押圧し、それにより前記封止樹脂層に前記電子部品を埋め込むことと、
     前記封止樹脂層を硬化させて、前記封止樹脂層の硬化物であり前記電子部品を封止する封止部を形成することと、
    を備える、電子部品装置を製造する方法。
  5.  前記電子部品が半導体チップを含む、請求項4に記載の方法。
  6.  電子部品と、前記電子部品を封止している封止部と、を備え、
     前記封止部が、請求項1~3のいずれか一項に記載の封止フィルムの封止樹脂層の硬化物である、
    電子部品装置。
  7.  前記電子部品が半導体チップを含む、請求項6に記載の電子部品装置。
  8.  前記電子部品が、前記封止部のうち前記第2の樹脂層の硬化物に囲まれている、請求項6に記載の電子部品装置。
PCT/JP2018/013344 2017-03-31 2018-03-29 封止フィルム、電子部品装置の製造方法及び電子部品装置 WO2018181761A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880020294.0A CN110462818B (zh) 2017-03-31 2018-03-29 密封膜、电子部件装置的制造方法及电子部件装置
JP2019510149A JP7115469B2 (ja) 2017-03-31 2018-03-29 封止フィルム、電子部品装置の製造方法及び電子部品装置
KR1020197028871A KR102440947B1 (ko) 2017-03-31 2018-03-29 봉지 필름, 전자 부품 장치의 제조 방법 및 전자 부품 장치
CN202311384098.0A CN117438381A (zh) 2017-03-31 2018-03-29 密封膜、电子部件装置的制造方法及电子部件装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-072159 2017-03-31
JP2017072159 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018181761A1 true WO2018181761A1 (ja) 2018-10-04

Family

ID=63678034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013344 WO2018181761A1 (ja) 2017-03-31 2018-03-29 封止フィルム、電子部品装置の製造方法及び電子部品装置

Country Status (5)

Country Link
JP (1) JP7115469B2 (ja)
KR (1) KR102440947B1 (ja)
CN (2) CN117438381A (ja)
TW (1) TWI733014B (ja)
WO (1) WO2018181761A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158450A1 (ja) * 2021-01-19 2022-07-28 昭和電工マテリアルズ株式会社 導電性部材、電子装置の製造方法、接続構造体、及び、電子装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014103187A (ja) * 2012-11-19 2014-06-05 Shin Etsu Chem Co Ltd 繊維含有樹脂基板、封止後半導体素子搭載基板及び封止後半導体素子形成ウエハ、半導体装置、及び半導体装置の製造方法
JP2015076519A (ja) * 2013-10-09 2015-04-20 富士通株式会社 電子部品パッケージおよび電子部品パッケージの製造方法
JP2016012713A (ja) * 2014-06-05 2016-01-21 日立化成株式会社 樹脂フィルム、半導体装置および半導体装置の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616615A (ja) 1984-06-20 1986-01-13 Nippon Sheet Glass Co Ltd 屈折率分布型レンズ
JP2001127095A (ja) 1999-10-29 2001-05-11 Shinko Electric Ind Co Ltd 半導体装置及びその製造方法
JP2001244372A (ja) 2000-03-01 2001-09-07 Seiko Epson Corp 半導体装置およびその製造方法
DE102006009789B3 (de) 2006-03-01 2007-10-04 Infineon Technologies Ag Verfahren zur Herstellung eines Halbleiterbauteils aus einer Verbundplatte mit Halbleiterchips und Kunststoffgehäusemasse
US7906860B2 (en) * 2007-10-26 2011-03-15 Infineon Technologies Ag Semiconductor device
JP5385247B2 (ja) 2010-12-03 2014-01-08 信越化学工業株式会社 ウエハモールド材及び半導体装置の製造方法
KR101767381B1 (ko) * 2010-12-30 2017-08-11 삼성전자 주식회사 인쇄회로기판 및 이를 포함하는 반도체 패키지
JP5623970B2 (ja) 2011-04-22 2014-11-12 信越化学工業株式会社 樹脂積層体、及び半導体装置とその製造方法
JP6393092B2 (ja) * 2013-08-07 2018-09-19 日東電工株式会社 中空型電子デバイス封止用樹脂シート及び中空型電子デバイスパッケージの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014103187A (ja) * 2012-11-19 2014-06-05 Shin Etsu Chem Co Ltd 繊維含有樹脂基板、封止後半導体素子搭載基板及び封止後半導体素子形成ウエハ、半導体装置、及び半導体装置の製造方法
JP2015076519A (ja) * 2013-10-09 2015-04-20 富士通株式会社 電子部品パッケージおよび電子部品パッケージの製造方法
JP2016012713A (ja) * 2014-06-05 2016-01-21 日立化成株式会社 樹脂フィルム、半導体装置および半導体装置の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158450A1 (ja) * 2021-01-19 2022-07-28 昭和電工マテリアルズ株式会社 導電性部材、電子装置の製造方法、接続構造体、及び、電子装置

Also Published As

Publication number Publication date
KR20190132401A (ko) 2019-11-27
JP7115469B2 (ja) 2022-08-09
CN117438381A (zh) 2024-01-23
TW201903989A (zh) 2019-01-16
KR102440947B1 (ko) 2022-09-05
TWI733014B (zh) 2021-07-11
CN110462818A (zh) 2019-11-15
CN110462818B (zh) 2023-12-26
JPWO2018181761A1 (ja) 2020-02-20

Similar Documents

Publication Publication Date Title
KR102359868B1 (ko) 필름형 에폭시 수지 조성물, 필름형 에폭시 수지 조성물의 제조 방법, 및 반도체 장치의 제조 방법
JP6749887B2 (ja) 封止用フィルム及びそれを用いた電子部品装置
JP7115520B2 (ja) 封止用フィルム及び封止構造体
CN109155256B (zh) 密封结构体及其制造方法、以及密封材
WO2018181761A1 (ja) 封止フィルム、電子部品装置の製造方法及び電子部品装置
CN110546184B (zh) 密封用膜、密封结构体和密封结构体的制造方法
CN109983052B (zh) 密封用膜及其固化物、以及电子装置
JP7070559B2 (ja) 封止用フィルム及び封止構造体、並びにこれらの製造方法
JP7354666B2 (ja) 封止用フィルム、封止構造体、及び封止構造体の製造方法
JP6544427B2 (ja) 熱硬化性樹脂組成物、硬化物、樹脂シート、封止構造体及びその製造方法、並びに、電子部品装置及びその製造方法
JP6834265B2 (ja) 封止構造体の製造方法、封止材及び硬化物
JP2018064054A (ja) 封止材、及び、封止構造体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18778284

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019510149

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197028871

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18778284

Country of ref document: EP

Kind code of ref document: A1