JP2015050994A - 核酸増幅法 - Google Patents

核酸増幅法 Download PDF

Info

Publication number
JP2015050994A
JP2015050994A JP2014061741A JP2014061741A JP2015050994A JP 2015050994 A JP2015050994 A JP 2015050994A JP 2014061741 A JP2014061741 A JP 2014061741A JP 2014061741 A JP2014061741 A JP 2014061741A JP 2015050994 A JP2015050994 A JP 2015050994A
Authority
JP
Japan
Prior art keywords
nucleic acid
seq
dna polymerase
amino acid
pcna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014061741A
Other languages
English (en)
Other versions
JP6428997B2 (ja
Inventor
哲大 小林
Tetsudai Kobayashi
哲大 小林
弘嵩 松本
Hirotaka Matsumoto
弘嵩 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2014061741A priority Critical patent/JP6428997B2/ja
Publication of JP2015050994A publication Critical patent/JP2015050994A/ja
Application granted granted Critical
Publication of JP6428997B2 publication Critical patent/JP6428997B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • C12N9/1252DNA-directed DNA polymerase (2.7.7.7), i.e. DNA replicase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

【課題】dUTPを基質として含むPCRにおいて、生体試料由来の夾雑物が多量に存在しても、PCR増幅が可能な核酸増幅法を提供する。
【解決手段】精製工程を経ていない生体試料を核酸増幅反応液に添加し、生体試料中の標的核酸を増幅する方法であって、増幅に用いられる酵素がファミリーBに属するDNAポリメラーゼであり、かつデオキシウリジン(dUTP)を反応液中に含んでいることを特徴とする核酸増幅法。
【選択図】なし

Description

本発明は、PCRによる核酸増幅法に関する。本発明は、研究のみならず臨床診断や環境検査等にも利用できる。
PCR(polymerase chain reaction)とは、(1)熱処理によるDNA変性(2本鎖DNAから1本鎖DNAへの解離)、(2)鋳型1本鎖DNAへのプライマーのアニーリング、(3)DNAポリメラーゼを用いた前記プライマーの伸長、という3ステップを1サイクルとし、このサイクルを繰り返すことによって、試料中の標的核酸を増幅する方法である。
数コピーといった微量サンプルからでも標的核酸を何十万倍に増幅することができ、研究分野のみならず、遺伝子診断、臨床診断といった法医学分野、あるいは、食品や環境中の微生物検査等においても、広く用いられるようになってきている。
一方、PCRは非常に高感度な検出方法であるため、以前に行ったPCR増幅産物のキャリーオーバーによる偽陽性が問題となる。そこで、dTTPの代わりにdUTPを含む基質を用いてPCRを行い、増幅産物にウラシル塩基を取り込ませ、次のPCRを行う際にUracil−N−Glycosylase(UNG)処理することで、コンタミネーション(キャリーオーバー)した増幅産物を分解する手法(dUTP/UDGコンタミネーション除去法)がとられている(非特許文献1)。
しかしながら、dUTP/UDGコンタミネーション除去法において、dTTPの代わりにdUTPを基質としてPCRを行うと、反応効率が低下し、増幅産物の量が減少することが問題となっていた。
また、PCRは、色素やタンパク質、糖類などの夾雑物の影響を受けやすく、夾雑物が反応を阻害することも知られている(非特許文献2)。通常、生体試料中の遺伝子を増幅する場合は、DNAの精製が必要とされているが、DNAの精製は、精製の操作は煩雑で、かつ、時間を要し、操作中にコンタミネーションを生じる危険性がある。また、試料中の目的核酸含量が少ない場合には、回収することができない場合もあった。これらのことから、生体試料を、精製工程を経ることなく、dUTPを含むPCR反応液へ持込み、標的核酸を増幅する方法が求められていた。
特許4395377 特表2006−507012
Gene, Vol.93(1), 125-128 (1990) Journal of Clinical Microbiology, Vol.39, No.2, p485−493(2001)
そこで、本発明はdUTPを基質として含むPCRにおいて、標的核酸の効率的な増幅法を提供することを目的とする。より詳細にはdUTPを基質として含むPCRにおいて、生体試料由来の夾雑物が多量に存在しても、PCR増幅が可能な核酸増幅法を提供する。
さらに本発明の他の目的は、上記の目的に適した試薬キットを提供することにある。要約すれば本発明の目的は、dUTP存在下で動植物組織や体液に存在する遺伝子の増幅に適したPCR改良法およびPCR反応試薬を提供することにある。
前記目的を達成するための本発明の核酸増幅方法は、ファミリーBに属するDNAポリメラーゼを用い、生体試料中のDNAを、精製工程を経ることなく、dUTP存在下で増幅することを特徴とする前記核酸増幅方法である。
すなわち、本発明者は生体由来試料そのものと遺伝子増幅反応液を混合し反応させる核酸増幅法において、ファミリーBに属するDNAポリメラーゼを用いることで、生体由来の夾雑物が多量に存在しても、さらには血液や口腔粘膜のような生体試料をPCR反応液に直接添加しても、PCRが可能になることを見いだし、本発明を成すに至った。
なお、通常のファミリーBに属するDNAポリメラーゼはウラシルと強く結合するため、dUTPを基質として含むPCRでは増幅ができないとされていた。そのため、dUTPを基質として含むPCRにおいて、ファミリーBに属するDNAポリメラーゼを用い、生体試料中のDNAを、精製工程を経ることなく増幅した例は報告されていない。
代表的な本願発明は以下の通りである。
[1]
精製工程を経ていない生体試料を核酸増幅反応液に添加し、生体試料中の標的核酸を増幅する方法であって、増幅に用いられる酵素がファミリーBに属するDNAポリメラーゼであり、かつデオキシウリジン(dUTP)を反応液中に含んでいることを特徴とする核酸増幅法。
[2]
生体試料が、動植物組織、体液、排泄物、細胞、細菌、ウイルスのいずれかである[1]に記載の核酸増幅法。
[3]
核酸増幅に用いられる酵素が、減少した塩基類似体検出活性を有する古細菌DNAポリメラーゼ変異体である、[1]または[2]に記載の核酸増幅法。
[4]
核酸増幅に用いられる酵素が、30塩基/秒以上のDNA合成速度を有する、[1]〜[3]のいずれかに記載の核酸増幅法。
[5]
古細菌DNAポリメラーゼ変異体が、以下の(a)から(c)のいずれかで示されるものであることを特徴とする、[3]または[4]に記載の核酸増幅法。
(a)配列番号1または配列番号2(Pfuの野生型配列に相当)で示されるアミノ酸配列の7、36、37、90〜97および112〜119番目に相当するアミノ酸のうち、少なくとも1つのアミノ酸の改変を有するアミノ酸配列である。
(b)(a)で示されるアミノ酸配列においてさらに少なくとも1つのアミノ酸が改変されており、そのアミノ酸配列が(a)で示されるアミノ酸配列と80%以上同一であり、かつ、減少した塩基類似体検出活性を有するDNAポリメラーゼをコードするアミノ酸配列である。
(c)(a)で示されるアミノ酸配列においてさらに少なくとも1つのアミノ酸が改変されており、そのアミノ酸配列が(a)で示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列であり、かつ、減少した塩基類似体検出活性を有するDNAポリメラーゼをコードするアミノ酸配列である。
[6]
古細菌DNAポリメラーゼの変異体が、配列番号1または配列番号2において、36、93番目に相当するアミノ酸のうち、少なくとも1つのアミノ酸の改変を有する、[3]〜[5]のいずれかに記載の核酸増幅法。
[7]
古細菌DNAポリメラーゼの変異体が、配列番号1または配列番号2において、Y7A/V93K、Y7A/V93R、Y7A/V93Q、Y7A/P36H、Y7A/P36R、P36H/V93K、P36K、P36RまたはP36Hのいずれかの改変を有する、[3]〜[6]のいずれかに記載の核酸増幅法。
[8]
古細菌DNAポリメラーゼの変異体が、配列番号1または配列番号2において、Y7A/V93K、Y7A/P36HまたはP36Hのいずれかの改変を有する、[3]〜[7]のいずれかに記載の核酸増幅法。
[9]
ファミリーBに属するDNAポリメラーゼがさらに3’−5’エキソヌクレアーゼ活性領域を構成するアミノ酸のいずれかに、少なくとも1つのアミノ酸の改変を有する、[1]〜[8]のいずれかに記載の核酸増幅法。
[10]
ファミリーBに属するDNAポリメラーゼの3’−5’エキソヌクレアーゼ活性領域への改変が、配列番号1または配列番号2における、D141、I142、E143、H147、N210及びY311に相当するアミノ酸のいずれかに、少なくとも1つのアミノ酸の改変を有する、[1]〜[9]のいずれかに記載の核酸増幅法。
[11]
ファミリーBに属するDNAポリメラーゼの3’−5’エキソヌクレアーゼ活性領域への改変が、配列番号1または配列番号2における、D141A/E143A、I142R、H147E、H147D、N210DまたはY311Fのいずれかである[1]〜[10]のいずれかに記載の核酸増幅法。
[12]
古細菌DNAポリメラーゼの変異体が、配列番号1または配列番号2において、以下の(1)−(4)のいずれかの改変を有する、[3]〜[11]のいずれかに記載の核酸増幅法。
(1)(A)H147Eと、(B)Y7A/V93K、Y7A/V93R、Y7A/V93Q、Y7A/P36H、Y7A/P36R、P36H/V93K、P36K、P36R、P36H、V93RまたはV93Qのいずれか
(2)(A)N210Dと、(B)Y7A/V93K、Y7A/P36H、Y7A/P36R、P36K、P36R、P36H、V93Q、V93KまたはV93Rのいずれか
(3)(A)I142Rと、(B)Y7A/V93K、Y7A/V93R、Y7A/V93Q、Y7A/P36H、Y7A/P36R、P36R、P36H、V93K、V93RまたはV93Qのいずれか
(4)(A)D141A/E143Aと、(B)Y7A/V93K、Y7A/P36H、Y7A/P36R、P36R、P36HまたはV93Kのいずれか
[13]
さらにPCNAを前記反応液に含む[1]〜[12]のいずれかに記載の核酸増幅法。
[14]
PCNAが単独でDNAにロードする変異体である、[1]〜[13]のいずれかに記載の核酸増幅法。
[15]
PCNAが、配列番号21または配列番号22で示されるアミノ酸配列の(a)82、84、109番目に相当するアミノ酸からなるN末端領域、および(b)139、143、147番目に相当するアミノ酸からなるC末端領域のうち、少なくともひとつの改変を有する変異体である、[1]〜[14]のいずれかに記載の核酸増幅法。
[16]
PCNAが配列番号21または配列番号22における143番目に相当するアミノ酸を塩基性アミノ酸に改変したもの、または、82番目と143番目に相当するアミノ酸を共に中性アミノ酸に改変したもの、147番目に相当するアミノ酸を中性アミノ酸に改変したもの、109番目と143番目に相当するアミノ酸を共に中性アミノ酸に改変したもののいずれかの変異体である、[1]〜[15]のいずれかに記載の核酸増幅法。
[17]
[1]〜[16]のいずれかに記載の核酸増幅法を実行するための試薬。
[18]
[1]〜[16]のいずれかに記載の核酸増幅法を実行するための試薬を含むキット。
本発明によって、DNA精製の際のロスやキャリーオーバーの危険性をなくし、さらに時間・コストを削減することができる。また、dUTP/UDGコンタミネーション除去法によるコンタミネーションを防げるため、研究分野だけでなく、同じサンプルを何度も増幅する遺伝子診断などの臨床分野もしくは法医学分野、あるいは食品や環境中の微生物検査等においても広く利用することができる
本発明の核酸増幅法に用いるDNAポリメラーゼの減少した塩基類似体検出活性の評価 本発明の核酸増幅法に用いるDNAポリメラーゼの減少した塩基類似体検出活性の評価 本発明の核酸増幅法に用いるDNAポリメラーゼの長鎖DNA増幅の評価 本発明の核酸増幅法に用いるDNAポリメラーゼの長鎖DNA増幅の評価 本発明の核酸増幅法に用いるDNAポリメラーゼの合成速度の比較。 本発明の核酸増幅法に用いるDNAポリメラーゼを用いた血液からの増幅評価 PCR増強因子(PCNA)の評価 本発明の核酸増幅法に用いるDNAポリメラーゼのPCNA添加による合成速度の比較 本発明の核酸増幅法に用いるDNAポリメラーゼとPCNAを用いた血液からの増幅評価 本発明の核酸増幅法に用いるDNAポリメラーゼを用いた体組織(爪、髪、口腔粘膜)からの増幅評価 本発明の核酸増幅法に用いるDNAポリメラーゼを用いた植物ライセートからの増幅評価 本発明の核酸増幅法に用いるDNAポリメラーゼを用いた糞便存在下からの増幅評価 本発明の核酸増幅法に用いるDNAポリメラーゼとPCNAを用いた血液からの増幅評価 PCNAの多量体形成に関するアミノ酸領域を示す図である。
以下、本発明の実施形態を示しつつ、本発明についてさらに詳説する。
本明細書においては、塩基配列、アミノ酸配列およびその個々の構成因子については、アルファベット表記による簡略化した記号を用いる場合があるが、いずれも分子生物学・遺伝子工学分野における慣行に従う。また、本明細書においては、アミノ酸配列の変異を簡潔に示すため、例えば「D143A」などの表記を用いる。「D143A」は、第143番目のアスパラギン酸をアラニンに置換したことを示しており、すなわち、置換前のアミノ酸残基の種類、その場所、置換後のアミノ酸残基の種類を示している。また、配列番号は、特に断らない限り、配列表に記載された配列番号に対応する。また、多重変異体の場合は、上記の表記を「/」でつなげて表す。たとえば「D143A/D147A」は、第143番目のアスパラギン酸をアラニンに置換し、かつ、第147番目のアスパラギン酸をアラニンに置換したことを示す。
また、本明細書において「変異型PCNA」という場合の「変異型」とは、従来知られたPCNAとは異なるアミノ酸配列を備えることを意味するものであり、人為的変異によるか自然界における変異によるかを区別するものではない。
(1)[本発明の特徴]
本発明における核酸増幅法は、精製工程を経ていない生体試料を核酸増幅反応液に添加し、生体試料中の標的核酸を増幅する方法であって、増幅に用いられる酵素がファミリーBに属するポリメラーゼであり、かつデオキシウリジン(dUTP)を反応液中に含んでいることを特徴とする。
(2)[精製工程を経ないこと]
本発明における核酸増幅法においては、精製工程を経ていない生体試料内の核酸を精製することなく増幅する。精製とは、生体試料の組織、細胞壁などの夾雑物質と生体試料中のDNAを分離する方法であり、フェノールあるいはフェノール・クロロホルム等を用いて、DNAを分離する方法や、イオン交換樹脂、ガラスフィルターあるいはタンパク凝集作用を有する試薬によってDNAを分離する方法がある。
臓器や細胞など、増幅対象となる核酸が試料の組織内に存在する場合、前記核酸を抽出するために組織を破壊する行為(物理的な処理による破壊、界面活性剤などを使用した破壊など)は、本発明で言う精製に該当しない。また、前記方法で得られた試料、または、生体試料を、緩衝液などにより希釈する行為も本発明で言う精製に該当しない。
本発明における核酸増幅法は、生体試料をこれらの精製法をとることなく、核酸増幅反応液に添加し増幅する方法である。本発明において「精製工程を経ていない生体試料」とは、生体試料そのもの、あるいは液体の生体試料を水などの溶媒を用いて希釈したもの、固体の生体試料を水などの溶媒に添加し熱をかけて破砕させたものなどが挙げられるが、精製工程を経ていなければ、これらに限定されるものではない。
本明細書では「血液耐性」という言葉を用いるが、これは、核酸増幅反応液に血液が存在していても阻害に耐えることを言う。増幅可能な血液濃度が高いほど「血液耐性が高い」と表現する。
(3)[生体試料]
本発明の核酸増幅法に適用する生体試料は、生体から採取された試料であれば特に限定されない。例えば、動植物組織、体液、排泄物、細胞、細菌、ウイルス等をいう。体液には血液や唾液が含まれ、細胞には血液から分離した白血球が含まれるが、これらに限定されるものではない。
(4)[デオキシウリジン(dUTP)]
本発明の核酸増幅法においては、反応液にdUTPを含む。dUTPの入手経路は特に限定されないが、市販のものを使用することができる。
反応液中のdUTPの濃度は特に限定されないが、コンタミネーション除去の効率の観点から、好ましい下限は0.5μM以上、より好ましくは50μM以上、より好ましくは0.1mM以上である。またPCR効率の観点から、dUTPは高濃度で含まれていてもよい。好ましい上限は1mM以下、より好ましくは0.6mM以下である。
また、PCR効率の観点からdTTPとdUTPが混在していてもよい。dTTPとdUTPの比率は100:1〜1:100が好ましい。より好ましくは10:1〜1:10であり、さらに好ましくは1:1であるが、これらに限定されない。
本発明の核酸増幅法に適用される核酸は、その長さや配列、GC含量の違いなどに制約を受けないが、増幅時にdUTPを取り込ませるので、核酸にTが含まれることが必要であり、Tが10個以上含まれていることが好ましい。
(5)[ファミリーBに属するDNAポリメラーゼ]
本発明の核酸増幅法に用いるDNAポリメラーゼは、ファミリーBに属するDNAポリメラーゼである。前記ファミリーBに属するDNAポリメラーゼは、好ましくは古細菌(Archea)由来のDNAポリメラーゼである。
(6)[古細菌由来のDNAポリメラーゼ]
ファミリーBに属する古細菌由来のDNAポリメラーゼとしては、パイロコッカス(Pyrococcus)属およびサーモコッカス(Thermococcus)属の細菌から単離されるDNAポリメラーゼが挙げられる。
パイロコッカス属由来のDNAポリメラーゼとしては、Pyrococcus furiosus、Pyrococcus sp.GB−D、Pyrococcus Woesei、Pyrococcus abyssi、Pyrococcus horikoshiiから単離されたDNAポリメラーゼを含むが、これらに限定されない。
サーモコッカス属に由来するDNAポリメラーゼとしては、Thermococcus kodakaraensis、Thermococcus gorgonarius、Thermococcus litoralis、Thermococcus sp.JDF−3、Thermococcus sp.9degrees North−7(Thermococcus sp.9°N−7)、Thermococcus sp.KS−1、Thermococcus celer、又はThermococcus siculiから単離されたDNAポリメラーゼを含むが、これらに限定されない。
これらのDNAポリメラーゼを用いたPCR酵素は市販されており、Pfu(Staragene社)、KOD(Toyobo社)、Pfx(Life Technologies社)、Vent(New England Biolabs社)、Deep Vent(New England Biolabs社)、Tgo(Roche社)、Pwo(Roche社)などがある。
なかでもPCR効率の観点から、伸長性や熱安定性の優れたKOD DNAポリメラーゼが好ましい。
(7)[減少した塩基類似体検出活性を有するDNAポリメラーゼ変異体]
本発明の核酸増幅法に用いるファミリーBに属するDNAポリメラーゼは、減少した塩基類似体検出活性を有する変異体でもよい。塩基類似体とはアデニンやシトシン、グアニン、チミン以外の塩基を示し、ウラシルやイノシンなどが挙げられる。通常、ファミリーBに属するDNAポリメラーゼは、塩基類似体であるウラシルやイノシンを検出すると強く結合し、ポリメラーゼ機能を阻害する。塩基類似体検出活性とは、塩基類似体と強く結合し、ポリメラーゼ機能を阻害する活性を示す。減少した塩基類似体検出活性を有するファミリーBに属するDNAポリメラーゼ変異体とは、ウラシルやイノシンへの結合能力が低いことを特徴とするファミリーBに属するDNAポリメラーゼ変異体である。
このようなファミリーBに属するDNAポリメラーゼの減少した塩基類似体検出活性を有する変異体としては、古細菌DNAポリメラーゼ変異体が例示できる。
具体的には、アミノ酸1〜40、およびアミノ酸78〜130によって形成されるウラシルの結合に関するアミノ酸配列(ウラシル結合ポケット)に改変を加え、野生型のDNAポリメラーゼと比較して、ウラシルやイノシンへの結合能力が低いことを特徴とする古細菌DNAポリメラーゼ変異体である。ウラシルやイノシンへの結合能力が低い古細菌DNAポリメラーゼ変異体は、dUTPの存在下のPCRでもファミリーBに属する古細菌由来のDNAポリメラーゼの機能低下があまり見られず、dUTPによるDNAポリメラーゼの伸長反応への影響が低減されている。
(8)[DNAポリメラーゼのDNA合成速度]
本発明の核酸増幅法に用いる減少した塩基類似体検出活性を有するDNAポリメラーゼ変異型は、野生型(WT)と比べてDNA合成速度が速いものであることが好ましい。
野生型の、ファミリーBに属するポリメラーゼは高い正確性を持つ。これは取り込まれた塩基が間違っていないかを確認しながら増幅するためである。間違いの原因となる塩基については、シトシンの熱分解により生じアラニンと対合するウラシルが挙げられる。ファミリーBに属するポリメラーゼはウラシルと強く結合するポケットを有し、増幅する核酸にこのウラシルがないかを一つ一つ確認しながら増幅していく。
一方で、このポケットはウラシルと強く相互作用し反応を遅くする(あるいは止める)働きを持つ。この相互作用は、多少なりとも構造の類似するシトシンなどの塩基にも及ぶことが考えられ、そのためDNA合成速度が抑えられていた可能性がある。本発明の核酸増幅法に用いる減少した塩基類似体検出活性を有するDNAポリメラーゼ変異型は、ウラシル結合ポケットへ改変を行うことで、ウラシルのみならずシトシンなどとも相互作用しなくなり、合成速度が上がると考えられる。
ウラシルと強く結合するポケットの改変により合成速度が速くなる程度は、野生型を改変するより、エキソ領域を改変した変異体をさらに改変する方がより高い。
前記ファミリーBに属するDNAポリメラーゼ、または、古細菌由来のDNAポリメラーゼは、下記の測定法で、30塩基/秒以上のDNA合成速度を有することが望ましい。
dUTP存在下ではdUTPとポリメラーゼが強く結合することでPCRの阻害が生じる。DNAの合成速度が高いポリメラーゼの方が、dUTPとの結合を起しにくく、dUTP存在下でdUTPの影響を受けにくい。
<DNAポリメラーゼ合成速度測定法>
本発明において、核酸増幅法に用いられるDNAポリメラーゼの合成速度は以下のように測定する。酵素活性が強い場合には、保存緩衝液(50mM Tris−HCl(pH8.0),50mM KCl,1mM ジチオスレイトール,0.1% Tween20,0.1% Nonidet P40,50% グリセリン)でサンプルを希釈して測定を行う。(1)下記のA液2.5μl、B液2.5μl、C液1.5μl、D液4.8μl、およびE液4μlを混合し、95℃にて10分、37℃にて10分置き、基質を作成する。
(2)、75℃にて30秒、インキュベートさせた基質に0.64ng/μl酵素溶液5μlを加えて75℃にて30秒、60秒、120秒反応する。その後氷冷し、F液35μlを加えて、よく攪拌する。
(3)この液を10μl、1%のアルカリアガロースゲルに供し、Biotinylated 2−Log DNA Ladder (0.1−10 kb)(NEB製)をマーカーとし電気泳動する。
(4)Hybond N+へブロッテリングし、NEBのPhototope−Star Chemiluminescent Detection Kitの取説に従い、ビオチンを検出する。1秒当たりに伸長した鎖の長さを合成速度とする。
A:10×PCR Buffer for KOD −Plus− Ver.2(TOYOBO製)
B:2mM dNTPs(TOYOBO製)
C:25mM MgSO
D:200ng/μl M13 ssDNA(TaKaRa製)
E:100μM Biotin化P7プライマー(配列:Biotin−CGCCAGGGTTTTCCCAGTCACGAC)
F:59mM NaOH、59mM EDTA、0.1% BPB 30% Glycerol
DNA合成速度は、後述のPCR増強因子(たとえばPCNA)の添加によりさらに早くすることができる。50塩基/秒以上のDNA合成速度を有するDNAポリメラーゼが好ましいが、これらに限定されない。
(9)[古細菌DNAポリメラーゼ変異体]
前記「減少した塩基類似体検出活性を有するDNAポリメラーゼ変異体」について、さらに具体的に説明する。
ウラシルの結合に関するアミノ酸配列はパイロコッカス属に由来するDNAポリメラーゼ及びサーモコッカス属に由来するDNAポリメラーゼにおいて高度に保存されている。サーモコッカス・コダカラエンシスに由来するDNAポリメラーゼ(配列番号1)においては、アミノ酸1〜40、およびアミノ酸78〜130によって形成される。パイロコッカス・フリオサス(配列番号2)においては、アミノ酸1〜40、およびアミノ酸78〜130によって形成される。サーモコッカス・ゴルゴナリウス(配列番号3)においては、アミノ酸1〜40、およびアミノ酸78〜130によって形成される。サーモコッカス・リトラリス(配列番号4)においては、アミノ酸1〜40、およびアミノ酸78〜130によって形成される。パイロコッカス・エスピーGB−D(配列番号5)においては、アミノ酸1〜40、およびアミノ酸78〜130によって形成される。サーモコッカス・エスピーJDF−3(配列番号6)のおいては、アミノ酸1〜40、およびアミノ酸78〜130によって形成される。サーモコッカス・エスピー9°N−7(配列番号7)においては、アミノ酸1〜40、およびアミノ酸78〜130によって形成される。サーモコッカス・エスピーKS−1(配列番号8)においては、アミノ酸1〜40、およびアミノ酸78〜130によって形成される。サーモコッカス・セラー(配列番号9)においては、アミノ酸1〜40、およびアミノ酸78〜130によって形成される。サーモコッカス・シクリ(配列番号10)においては、アミノ酸1〜40、およびアミノ酸78〜130によって形成される。
本発明の核酸増幅法に用いるDNAポリメラーゼ変異体として、より好ましいのは、ウラシルと相互作用に直接関連していると想定されている7、36、37、90〜97、および112〜119番目のアミノ酸のうち少なくとも1つに改変を加えた古細菌DNAポリメラーゼ変異体、すなわち、(a)配列番号1または配列番号2で示されるアミノ酸配列の7、36、37、90〜97および112〜119番目に相当するアミノ酸のうち、少なくとも1つのアミノ酸の改変を有するアミノ酸配列で示される古細菌DNAポリメラーゼ変異体である。
上記の古細菌DNAポリメラーゼ変異体は、以下の(b)のアミノ酸配列で示されるものであってもよい。
(b)(a)で示されるアミノ酸配列においてさらに少なくとも1つのアミノ酸が改変されており、そのアミノ酸配列が(a)で示されるアミノ酸配列と80%以上同一(好ましくは85%以上同一であり、さらに好ましくは90%以上同一であり、さらに好ましくは95%以上同一であり、さらに好ましくは98%以上同一であり、さらに好ましくは99%以上同一である)であり、かつ、減少した塩基類似体検出活性を有するDNAポリメラーゼをコードするアミノ酸配列。
アミノ酸配列の同一性を算出する方法としては、種々の方法が知られている。例えば、市販の又は電気通信回線(インターネット)を通じて利用可能な解析ツールを用いて算出することができる。
本明細書では、全米バイオテクノロジー情報センター(NCBI)の相同性アルゴリズムBLAST(Basic local alignment search tool)http://www.ncbi.nlm.nih.gov/BLAST/においてデフォルト(初期設定)のパラメーターを用いることにより、アミノ酸配列の同一性を算出する。
上記の古細菌DNAポリメラーゼ変異体は、以下の(c)のアミノ酸配列で示されるものであってもよい。
(c)(a)で示されるアミノ酸配列においてさらに少なくとも1つのアミノ酸が改変されており、そのアミノ酸配列が(a)で示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列であり、かつ、減少した塩基類似体検出活性を有するDNAポリメラーゼをコードするアミノ酸配列。
ここで「数個」とは、「減少した塩基類似体検出活性」が維持される限り制限されないが、例えば、全アミノ酸の約20%未満に相当する数であり、好ましくは約15%未満に相当する数であり、さらに好ましくは約10%未満に相当する数であり、より一層好ましくは約5%未満に相当する数であり、最も好ましくは約1%未満に相当する数である。より具体的には、変異されるアミノ酸残基の個数は、例えば、2〜160個、好ましくは2〜120個、より好ましくは2〜80個、更に好ましくは2〜40個であり、より更に好ましくは2〜5個である。
なお、「配列番号1に示されるアミノ酸配列における7、36、37、90〜97、および112〜119番目に相当するアミノ酸」とは、配列番号1に示されるアミノ酸配列と完全同一ではないアミノ酸配列を有するDNAポリメラーゼにおいて、配列番号1の7、36、37、90〜97、および112〜119番目に対応するウラシルの結合に関するアミノ酸配列を含む表現である。
本願明細書において、配列番号1に示されるアミノ酸配列と完全同一ではないアミノ酸配列おける、配列番号1上のある位置(順番)と対応する位置とは、配列の一次構造を比較(アラインメント)したとき、配列番号1の当該位置と対応する位置とする。
配列の一次構造を比較する方法としては、種々の方法が知られている。例えば、市販の又は電気通信回線(インターネット)を通じて利用可能な解析ツールを用いて算出することができる。
本明細書では、DNA Databank of Japan(DDBJ)のClustalW(http://clustalw.ddbj.nig.ac.jp/index.php?lang=ja)においてデフォルト(初期設定)のパラメーターを用いることにより、配列の一次構造を比較する。
本発明の核酸増幅法に用いる減少した塩基類似体検出活性を有する古細菌DNAポリメラーゼ変異体は、より好ましくは、配列番号1または配列番号2におけるアミノ酸Y7、P36、またはV93に相当するアミノ酸から選択される少なくとも1つのアミノ酸の改変を有する。
ここで、例えばY7とは、7番目のアミノ酸であるチロシン(Y)残基を意味しており、アルファベット1文字は通用されているアミノ酸の略号を表している。好ましい例において、Y7アミノ酸はチロシン(Y)が非極性アミノ酸に置換されており、具体的にはY7A、Y7G、Y7V、Y7L、Y7I、Y7P、Y7F、Y7M、Y7W、及びY7Cからなる群より選ばれるアミノ酸置換である。
別の好ましい例において、P36アミノ酸はプロリン(P)が正電荷をもつ極性アミノ酸に置換されており、具体的にはP36H、P36K、またはP36Rのアミノ酸置換である。別の好ましい例において、V93アミノ酸はバリン(V)が正電荷をもち極性アミン酸に置換されており、具体的にはV93H、V93K、またはV93Rのアミノ酸置換である。さらに好ましくはV93Kである。
より好ましくは、改変がY7A、P36H、P36K、P36R、V93Q、V93K、及びV93Rからなる群より選ばれる、少なくとも1つのアミノ酸の改変である。さらに好ましくはP36K、P36RまたはP36Hである。さらに好ましくはP36Hである。
本発明における減少した塩基類似体検出活性を有する古細菌DNAポリメラーゼ変異体は、配列番号1または配列番号2におけるアミノ酸Y7、P36、またはV93に相当するアミノ酸から選択される2つ以上のアミノ酸を改変したものでも良い。具体的には、Y7A/V93K、Y7A/P36H、Y7A/P36R、Y7A/V93R、Y7A/V93QまたはP36H/V93Kなどが挙げられ、好ましくは、Y7A/P36HまたはY7A/V93Kなどがあげられるが、これらに限定されるものではない。
なお、特許文献1または2には、ウラシルと相互作用に直接関連していると想定されている7、36、37、90〜97、および112〜119番目のアミノ酸のいずれかに改変を加えた古細菌DNAポリメラーゼ変異体がいくつか例示されているが、その全ての改変体が本願の課題にかなう良好な特性を有しているわけではなく、中には活性を失っているものも見られる。
(10)[塩基類似体検出活性の評価方法]
本発明における塩基類似体検出活性はPCRによって評価できる。塩基類似体は典型的にはウラシルである。例えば、鋳型となるDNA、緩衝材、マグネシウム、dNTPs、プライマー、および評価対象のDNAポリメラーゼを含む通常のPCR反応液に、dUTP溶液を、終濃度0.5μM〜200μMで添加し、熱サイクルを行う。反応後にエチジウムブロマイド染色アガロース電気泳動でPCR産物の有無を確認し、許容できたdUTP濃度によって、ウラシルの検出活性を評価することが出来る。ウラシル検出活性の高いDNAポリメラーゼは少しのdUTPの添加で伸長反応が阻害され、PCR産物が確認できない。またウラシルの検出活性の低いDNAポリメラーゼは高濃度のdUTPを添加しても問題なくPCRによる遺伝子増幅が確認できる。
減少した塩基類似体検出活性を有する古細菌DNAポリメラーゼ変異体とは、酵素至適の反応Buffer中で、任意のプライマー、および鋳型となるDNAを用い、至適の熱サイクルを行った結果、変異がない野生型と比較し、高濃度のdUTPを添加しても伸長反応が阻害されず、PCR産物が確認できるDNAポリメラーゼのことをいう。ただし、野生型との比較が困難な場合は、dUTPを0.5μMの濃度で添加してもPCRの増幅ができる古細菌DNAポリメラーゼ変異体については、当該変異体が野生型と比較して減少した塩基類似体検出活性を有すると推定する。
本発明における塩基類似体検出活性の評価は、以下の方法に従う。
KOD −Plus− Ver.2(Toyobo社製)添付の10×PCR Buffer、またはPfu DNA Polymerase(Agilent社製)添付の10×PCR Bufferを用い、1×PCR Buffer、および1.5mM MgSO、0.2mM dNTPs(dATP、dTTP,dCTP、dGTP)、約1.3kbを増幅する15pmolの配列番号13及び14に記載のプライマー、10ngのヒトゲノムDNA(Roche製)、1Uの各酵素を含む50μlの反応液中に、dUTP(Roche製)を終濃度0.5、5、50、100、200μMになるよう添加する。94℃、30秒の前反応の後、98℃、10秒→65℃、30秒→68℃、1分30秒を30サイクル繰り返すスケジュールでPCRを行う。反応終了後、5μlの反応液についてアガロース電気泳動を行い、エチジウムブロマイド染色し、紫外線照射下約1.3kbの増幅DNA断片を確認することで塩基類似体検出活性が減少しているかどうかが評価できる。
PCRの増幅ができるdUTP濃度が高いほど、塩基類似体検出活性が減少している。本明細書では、このことを、PCRの増幅ができるdUTP濃度が高いほど、「dUTP耐性が高い」とも表現する。
(11)[DNAポリメラーゼ活性測定法]
本発明の核酸増幅法に用いるDNAポリメラーゼは以下のように活性を測定する。酵素活性が強い場合には、保存緩衝液(50mM Tris−HCl(pH8.0),50mM KCl,1mM ジチオスレイトール,0.1% Tween20,0.1% Nonidet P40,50% グリセリン)でサンプルを希釈して測定を行う。
(1)下記のA液25μl、B液5μl、C液5μl、滅菌水10μl、及び酵素溶液5μlをマイクロチューブに加えて75℃にて10分間反応する。
(2)その後氷冷し、E液50μl、D液100μlを加えて、攪拌後更に10分間氷冷する。
(3)この液をガラスフィルター(ワットマン製GF/Cフィルター)で濾過し、0.1N 塩酸およびエタノールで十分洗浄する。
(4)フィルターの放射活性を液体シンチレーションカウンター(パッカード製)で計測し、鋳型DNAのヌクレオチドの取り込みを測定する。酵素活性の1単位はこの条件で30分当りの10nmolのヌクレオチドを酸不溶性画分(即ち、D液を添加したときに不溶化する画分)に取り込む酵素量とする。
A:40mM Tris−HCl緩衝液(pH7.5)16mM 塩化マグネシウム15
mM ジチオスレイトール100μg/mL BSA(牛血清アルブミン)
B:1.5μg/μl 活性化仔牛胸腺DNA
C:1.5mM dNTP(250cpm/pmol [3H]dTTP)
D:20% トリクロロ酢酸(2mMピロリン酸ナトリウム)
E:1mg/mL仔牛胸腺DNA
(12)[3‘−5’エキソヌクレアーゼ領域の改変]
本発明の核酸増幅法に用いる改変されたDNAポリメラーゼは、さらに3’−5’エキソヌクレアーゼ活性領域を構成するアミノ酸のいずれかに、少なくとも1つのアミノ酸の改変を含んでいてもよい。
3‘−5’エキソアーゼ活性とは、取り込まれたヌクレオチドをDNA重合体の3’末端から除去する能力を指し、上記の3‘−5’エキソヌクレアーゼ領域とは、ファミリーBに属するDNAポリメラーゼで高度に保存されている部位であり、サーモコッカス・コダカラエンシスに由来するDNAポリメラーゼ(配列番号1)、パイロコッカス・フリオサスに由来するDNAポリメラーゼ(配列番号2)、サーモコッカス・ゴルゴナリウスに由来するDNAポリメラーゼ(配列番号3)、サーモコッカス・リトラリスに由来するDNAポリメラーゼ(配列番号4)、パイロコッカス・エスピーGB−Dに由来するDNAポリメラーゼ(配列番号5)、サーモコッカス・エスピーJDF−3に由来するDNAポリメラーゼ(配列番号6)、サーモコッカス・エスピー9°N−7に由来するDNAポリメラーゼ(配列番号7)、サーモコッカス・エスピーKS−1に由来するDNAポリメラーゼ(配列番号8)、サーモコッカス・セラーに由来するDNAポリメラーゼ(配列番号9)、又はサーモコッカス・シクリに由来するDNAポリメラーゼ(配列番号10)においては、137〜147、206〜222、および308〜318番目のアミノ酸である。本発明は具体的に配列を提示したDNAポリメラーゼ以外のDNAポリメラーゼにも適用される。また、配列番号1〜10に示されるDNAポリメラーゼ以外のファミリーBに属する古細菌由来DNAポリメラーゼにおいては、配列番号1の137〜147、206〜222、および308〜318番目のアミノ酸からなる3‘−5’エキソヌクレアーゼ領域と対応する領域のことを示す。
なお、「配列番号1に示される137〜147、206〜222、および308〜318番目に相当するアミノ酸」とは、配列番号1に示されるアミノ酸配列と完全同一ではないアミノ酸配列を有するDNAポリメラーゼにおいて、配列番号1の137〜147、206〜222、および308〜318番目に対応するアミノ酸配列を含む表現である。
上記の3‘−5’エキソヌクレアーゼ領域への改変とは、置換、欠失、または付加からなり得る。配列番号1における137〜147、206〜222、および308〜318番目に対応するアミノ酸への改変を示す。
前記3’−5’エキソヌクレアーゼ活性領域を改変したDNAポリメラーゼとしては、配列番号1または配列番号2における141、142、143、210、311番目に対応するアミノ酸の少なくとも一つを改変したものが好ましい。これらの改変型DNAポリメラーゼは、3‘−5’エキソヌクレアーゼ活性が欠損している。
より好ましくは、アミノ酸の改変がD141A、E143A、D141A/E143A、I142R、N210D、またはY311Fから選択されるいずれか一つである、3‘−5’エキソヌクレアーゼ活性を欠損させたDNAポリメラーゼである。
なお、3‘−5’エキソヌクレアーゼ活性を欠損させた(エキソ(−))DNAポリメラーゼとは、活性の完全な欠如を含み、例えば、親酵素と比較して0.03%、0.05%、0.1%、1%、5%、10%、20%、または最大でも50%以下のエキソヌクレアーゼ活性を有する改変されたDNAポリメラーゼを指す。
前記3’−5’エキソヌクレアーゼ活性領域を改変したDNAポリメラーゼとして、別の好ましい形態は、配列番号1または配列番号2における147番目に対応するアミノ酸を改変したものである。より好ましくは、H147E、またはH147Dから選択されるいずれか一つである。これらの改変型DNAポリメラーゼは、エキソヌクレアーゼ活性を維持したまま、PCR効率が向上している。
上記(9)および(12)に例示したDNAポリメラーゼの改変をもとに、本発明の核酸増幅法に用いる改変されたDNAポリメラーゼとして、種々の変異体が考えられる。そのような変異体として、以下の(1)−(4)のいずれかの改変を有する古細菌DNAポリメラーゼの変異体が例示されるが、これに限定されるわけではない。
(1)(A)H147Eと、(B)Y7A/V93K、Y7A/V93R、Y7A/V93Q、Y7A/P36H、Y7A/P36R、P36H/V93K、P36K、P36R、P36H、V93RまたはV93Qのいずれか
(2)(A)N210Dと、(B)Y7A/V93K、Y7A/P36H、Y7A/P36R、P36K、P36R、P36H、V93Q、V93KまたはV93Rのいずれか
(3)(A)I142Rと、(B)Y7A/V93K、Y7A/V93R、Y7A/V93Q、Y7A/P36H、Y7A/P36R、P36R、P36H、V93K、V93RまたはV93Qのいずれか
(4)(A)D141A/E143Aと、(B)Y7A/V93K、Y7A/P36H、Y7A/P36R、P36R、P36HまたはV93Kのいずれか
(13)アミノ酸改変の導入方法
なお、3‘−5’エキソヌクレアーゼ活性領域を改変したDNAポリメラーゼを生成する方法や、3‘−5’エキソヌクレアーゼ活性を解析する方法は公知であり、例えば、米国特許第6946273号に開示されている。PCR効率を向上させたDNAポリメラーゼとは、PCR産物の量が親酵素と比較して増加している改変されたDNAポリメラーゼを示す。PCR産物の量が親酵素と比較して増加しているかどうかを解析するための方法は、特許第3891330号等に記載されている。
本発明の核酸増幅法に用いるDNAポリメラーゼを、改変する方法は、既に当該技術分野において確立されている。よって、公知の方法に従い改変を行うことが出来、その態様は特に制限されない。
アミノ酸の改変を導入する方法の一態様として、Inverse PCR法に基づく部位特異的変異導入法を用いることができる。例えば、KOD −Plus− Mutagenesis Kit(Toyobo社製)は、(1)目的とする遺伝子を挿入したプラスミドを変性させ、該プラスミドに変異プライマーをアニーリングさせ、続いてKOD DNAポリメラーゼを用いて伸長反応を行う、(2)(1)のサイクルを15回繰り返す、(3)制限酵素DpnIを用いて鋳型としたプラスミドのみを選択的に切断する、(4)新たに合成された遺伝子をリン酸化、Ligationを実施し環化させる、(5)環化した遺伝子を大腸菌に形質転換し、目的とする変異の導入されたプラスミドを保有する形質転換体を取得することのできるキットである。
上記改変DNAポリメラーゼ遺伝子を必要に応じて発現ベクターに移し替え、宿主として例えば大腸菌を、該発現ベクターを用いて形質転換した後、アンピシリン等の薬剤を含む寒天培地に塗布し、コロニーを形成させる。コロニーを栄養培地、例えばLB培地や2×YT培地に接種し、37℃で12〜20時間培養した後、菌体を破砕して粗酵素液を抽出する。ベクターとしては、pBluescript由来のものが好ましい。菌体を破砕する方法としては公知のいかなる手法を用いても良いが、例えば超音波処理、フレンチプレスやガラスビーズ破砕のような物理的破砕法やリゾチームのような溶菌酵素を用いることができる。 この粗酵素液を80℃、30分間熱処理し、宿主由来のポリメラーゼを失活させ、DNAポリメラーゼ活性を測定する。
上記方法により選抜された菌株から精製DNAポリメラーゼを取得する方法は、いかなる手法を用いても良いが、例えば下記のような方法がある。栄養培地に培養して得られた菌体を回収した後、酵素的または物理的破砕法により破砕抽出して粗酵素液を得る。得られた粗酵素抽出液から熱処理、例えば80℃、30分間処理し、その後硫安沈殿によりDNAポリメラーゼ画分を回収する。この粗酵素液をセファデックスG−25(アマシャムファルマシア・バイオテク製)を用いたゲル濾過等の方法により脱塩を行うことができる。この操作の後、ヘパリンセファロースカラムクロマトグラフィーにより分離、精製し、精製酵素標品を得ることができる。該精製酵素標品はSDS−PAGEによってほぼ単一バンドを示す程度に純化される。
(14)核酸増幅法
本発明の核酸増幅法は、精製工程を経ていない生体試料を核酸増幅反応液に添加し、生体試料中の標的核酸を増幅する方法であって、増幅に用いられる酵素がファミリーBに属するDNAポリメラーゼであり、かつデオキシウリジン(dUTP)を反応液中に含んでいることを除いて、特に限定されない。
DNAポリメラーゼで増幅可能な方法としては、典型的にはPCRが挙げられるが、本発明はPCRのみならず、DNAを鋳型とし、1種のプライマー、dNTP(デオキシリボヌクレオチド3リン酸)を反応させることによりプライマーを伸長して、DNAプライマー伸長物を合成する方法にも使用される。具体的には、プライマーエクステンション法、シークエンス法、従来の温度サイクルを行わない方法およびサイクルシーケンス法を含む。
本発明の方法において、PCRの場合の代表的な条件を以下に示すが、これに限定されるものではない。
精製していない生体試料から得た増幅対象DNAに、
(a)減少した塩基類似体検出活性を有する古細菌DNAポリメラーゼ変異体
(b)一方のプライマーが他方のプライマーのDNA伸長生成物に互いに相補的である一対のプライマー
(c)dUTPを含むDNA合成基質(デオキシヌクレオチド三リン酸(dNTP))および、
(d)マグネシウムイオン、アンモニウムイオン及び/又はカリウムイオンを含むバッファー溶液
を、混合し、
サーマルサイクラー等を用いて反応液の温度を上下させることにより、(1)DNA変性、(2)プライマーのアニーリング、(3)プライマーの伸長の熱サイクルを繰り返し、特定のDNA断片を増幅させる。
上記PCR方法においては、必要に応じて、さらに、PCR増強因子(後述)、BSA、非イオン界面活性剤などを用いてもよい。
上記PCR方法においては、必要に応じて、さらに、耐熱性DNAポリメラーゼのポリメラーゼ活性及び/又は3’−5’エキソヌクレアーゼ活性を抑制する活性を有する抗体を用いても良い。前記抗体としては、モノクローナル抗体、ポリクローナル抗体などが挙げられる。本反応組成は、PCRの感度上昇、非特異増幅の軽減に特に有効である。
(15)[PCR増強因子]
さらに本発明における核酸増幅反応には、PCR増強因子が含まれていてもよい。その増強因子とは、ポリヌクレオチドポリメラーゼ増強活性、例えばPEF、dUTPase、ssb、PCNA、RFC、ヘリカーゼ等を有する複合体または蛋白を指す(Hogrefeら、1997,Strategies 10:93−96;および米国特許第6,183,997号などを参照)。また、PCR増強因子には非蛋白因子、例えばDMSOおよびベタインも包含される。本発明の核酸増幅法に用いるPCR増強因子は、これらに限定されるものではないが、PCNAが特に好ましい。
本発明の核酸増幅法に用いるPCNAは、PCRの熱サイクルに耐えられる耐熱性のものが望ましく、好ましくはPCR後も活性が残るものが望まれる。さらに好ましくは80℃で30分の熱処理を行っても可溶性であり、活性が50%以上、さらに好ましくは70%以上、さらに好ましくは90%以上残っているものが望まれる。
本発明の核酸増幅法に用いるPCNAとしては、さらに好ましくはパイロコッカス(Pyrococcus)属およびサーモコッカス(Thermococcus)属の細菌から単離されたPCNAが挙げられる。パイロコッカス属由来のPCNAとしては、Pyrococcus furiosus、Pyrococcus sp.GB−D、Pyrococcus Woesei、Pyrococcus abyssi、Pyrococcus horikoshiiから単離されたPCNAを含むが、これらに限定されない。サーモコッカス属に由来するPCNAとしては、Thermococcus kodakaraensis(配列番号21)、Thermococcus gorgonarius、Thermococcus litoralis、Thermococcus sp.JDF−3、Thermococcus sp.9degrees North−7(Thermococcus sp.9°N−7)、Thermococcus sp.KS−1、Thermococcus celer、又はThermococcus siculiから単離されたPCNAを含むが、これらに限定されない。
また、本発明の核酸増幅法に用いるPCNAは発現量を増やすため、配列番号21または配列番号22の73番目に相当するメチオニンを改変したものでもよい。より好ましくはM73Lに改変したものがあげられるが、これに限定されない。
さらに、本発明の核酸増幅法に用いるPCNAは単独でDNAにロードする変異体であってもよい。PCNAは通常、多量体を形成し輪のような構造をとる。DNAにロードするとは、PCNA多量体の輪の構造内部にDNAを通すことを示し、通常はRFCと呼ばれる因子と共同して初めてPCNAはDNAにロードすることができる。単独でDNAにロードする変異体とは、PCNAの多量体形成に関わる部位を改変し、多量体形成を不安定化することで、RFCなしでもDNAをPCNA多量体内部に通しやすくした変異体を示す。
PCNAが多量体形成に関する部位は、サーモコッカス・コダカラエンシスに由来するPCNA(配列番号21)、パイロコッカス・フリオサスのPCNA(配列番号22)においては、82、84、109番目のアミノ酸からなるN末端領域と139、143、147番目のアミノ酸からなるC末端領域があげられる。N末端領域はプラスに帯電し、C末端領域はマイナスに帯電し、相互作用することで多量体形成を行う。
上記および下記において、配列番号21または配列番号22を例にして説明したことは、本明細書で具体的に配列を提示したPCNA以外のPCNAにも適用される。例えば、図14で示したように配列番号21および22に示されるPCNA以外のPCNAにおいては、配列番号21の82、84、109、139、143、147番目のアミノ酸からなる多量体形成に関する領域と対応する領域のことを示す。
単独でDNAにロードするPCNA変異体は、より好ましくは、PCNAの多量体形成に関わる、配列番号21または配列番号22で示されるアミノ酸配列の、
(a)82、84、109番目に相当するアミノ酸からなるN末端領域、または
(b)139、143、147番目に相当するアミノ酸からなるC末端領域に少なくともひとつの改変を有し、RFCがなくともDNAにロードし、DNAポリメラーゼの伸長反応を促進する変異体があげられる。
たとえば、配列番号21の143番目に相当するアミノ酸を塩基性アミノ酸に改変したもの、82番目と143番目を共に中性アミノ酸に改変したもの、147番目を中性アミノ酸に改変したもの、または、109番目と143番目を共に中性アミノ酸に改変したものなどが挙げられる。
本発明の中性アミノ酸としては、天然のものであれば、グリシン、アラニン、バリン、ロイシン、イソロイシン、フェニルアラニン、チロシン、トリプトファン、プロリン、セリン、スレオニン、システイン、メチオニン、アスパラギン、グルタミンが挙げられる。好ましくは、置換部位の周辺部位の立体構造に与える影響がもっとも小さいアラニンである。塩基性アミノ酸としては、天然のものであれば、アルギニン、ヒスチジン、リシンが挙げられる。好ましくはアルギニンである。
より好ましくは、WO2007/004654に記載のPCNA変異体が例示されるほか、第147番目のアミノ酸残基をアラニンに換えた配列(D147A)、第82番目、および第143番目のアミノ酸残基をアラニンに変えた配列(配列番号22の場合R82A/D143A、もしくは、配列番号21の場合R82A/E143A)、第109番目、および第143番目のアミノ酸残基をアラニンに変えた配列(配列番号22の場合R109A/D143A、もしくは、配列番号21の場合R109A/E143A)、などが挙げられるが、これらに限定されるものではない。
PCNA変異体が単独でDNAにロードできるかどうか(増幅増強活性があるかどうか)は、PCRによって評価できる。例えば、鋳型となるDNA、緩衝材、マグネシウム、dNTPs、プライマー、およびファミリーBに属するDNAポリメラーゼを含む通常のPCR反応液に、評価するPCNAを添加し、PCNA添加なしのもの、また野生型PCNA添加のものと増幅量を比較することで、単独でDNAにロードできるか(増幅増強活性があるかどうか)を確認することができる。野生型のPCNAをはじめ、単独でDNAにロードできないPCNAは添加しても、PCRの増幅量は変化せず、むしろ増幅量を減らす傾向がある。一方、単独でDNAにロードできる変異体は、PCNA添加なしのもの、また野生型PCNA添加のものと比べて優れた増幅量を得ることができる。
本発明において「PCNA変異体が単独でDNAにロードできるかどうか(増幅増強活性があるかどうか)」の評価は、dUTPを含んだ反応系で減少した塩基類似体検出活性を持つ古細菌DNAポリメラーゼ変異体を用いて評価する。
具体的には以下の「増幅増強活性の評価方法」に従う。

「増幅増強活性の評価方法」
本明細書においては、
(i)PCR
KOD −Plus− Ver.2(Toyobo社製)添付の10×PCR Buffer添付を用い、1×PCR Buffer、および1.5mM MgSO
dTTPの代わりにdUTPを含んだ0.2mM dNTPs(dATP、dUTP,dCTP、dGTP)、
15pmolのプライマー(1.3kbの増幅には配列番号13及び14)、
10ngのヒトゲノムDNA(Roche製)、
0.8μgのKOD抗体を混合した1U KOD DNAポリメラーゼ V93K変異体 (減少した塩基類似体検出活性を持つ古細菌DNAポリメラーゼ変異体)を含む
50μlの反応液中に、評価するPCNAを250ng添加し、
94℃、30秒の前反応の後、98℃、10秒→60℃、30秒→68℃、1分30秒を35サイクル繰り返すスケジュールでPCRを行う。
(ii)PCR産物の分析
反応終了後、5μlの反応液についてアガロース電気泳動を行い、エチジウムブロマイド染色し、紫外線照射下、増幅DNA断片を、PCNAを添加していないものと比較することで単独でDNAにロードできるかどうか(増幅増強活性があるかどうか)を評価することができる。単独でDNAにロードできる(増幅増強活性の高い)PCNAは添加によって増幅量が増加する。
(16)核酸増幅法を実行するための試薬、キット
本発明の核酸増幅法を実行するための試薬、キットは、ファミリーBに属するDNAポリメラーゼ、および、デオキシウリジン(dUTP)を反応液中に含み、それ以外の構成は特に限定されない。適用する核酸増幅法も特に限定されない。
核酸増幅法としてPCRを行う場合、本発明の試薬、キットとして、以下の(a)〜(d)を含む構成が例示できるが、これに限定されない。
(a)減少した塩基類似体検出活性を有する古細菌DNAポリメラーゼ変異体
(b)一方のプライマーが他方のプライマーのDNA伸長生成物に互いに相補的である一対のプライマー
(c)dUTPを含むDNA合成基質(デオキシヌクレオチド三リン酸(dNTP))および、
(d)マグネシウムイオン、アンモニウムイオン及び/又はカリウムイオンを含むバッファー溶液
前記試薬、キットは、必要に応じて、さらに、その他の試薬類、たとえばPCR増強因子、BSA、非イオン界面活性剤などを用いてもよい。
以下に、本発明を実施例により具体的に説明する。以下の実施例の記載はいかなる面においても本発明を限定しない。
(実施例1)
KOD変異体の作製
サーモコッカス・コダカラエンシス KOD1株由来の改変型耐熱性DNAポリメラーゼ遺伝子を含有するプラスミドを作製した。
変異導入に使用されるDNA鋳型は、pBluescriptにクローニングされたサーモコッカス・コダカラエンシス KOD1株由来の改変型耐熱性DNAポリメラーゼ遺伝子(配列番号11)(pKOD)を用いた。変異導入にはKOD −Plus− Mutagenesis Kit(Toyobo社製)を用いて、方法は取扱い説明書に準じて行った。なお、変異体の確認は塩基配列の解読で行った。得られたプラスミドによりエシェリシア・コリJM109を形質転換し、酵素調製に用いた。
(実施例2)
Pfu変異体の作製
パイロコッカス・フリオサス由来の改変型耐熱性DNAポリメラーゼ遺伝子を含有するプラスミドを作製した。
変異導入に使用されるDNA鋳型は、pBluescriptにクローニングされたパイロコッカス・フリオサス由来の改変型耐熱性DNAポリメラーゼ遺伝子(配列番号12)(pPfu)を用いた。変異導入にはKOD −Plus− Mutagenesis Kit(Toyobo社製)を用いて、方法は取扱い説明書に準じて行った。なお、変異体の確認は塩基配列の解読で行った。得られたプラスミドによりエシェリシア・コリJM109を形質転換し、酵素調製に用いた。
実施例1および実施例2で作製したプラスミドを表1および表2に示す。
(実施例3)
実施例3−1
改変型耐熱性DNAポリメラーゼの作製
実施例1および実施例2で得られた菌体の培養は以下のようにして実施した。まず、滅菌処理した100μg/mLのアンピシリンを含有するTB培地(Molecular cloning 2nd edition、p.A.2)80mLを500mL坂口フラスコに分注した。この培地に予め100μg/mLのアンピシリンを含有する3mLのLB培地(1%バクトトリプトン、0.5%酵母エキス、0.5%塩化ナトリウム;ギブコ製)で37℃、16時間培養したエシェリシア・コリJM109(プラスミド形質転換株)(試験管使用)を接種し、37℃にて16時間通気培養した。培養液より菌体を遠心分離により回収し、50mLの破砕緩衝液(30mM Tris−HCl緩衝液(pH8.0)、30mM NaCl、0.1mM EDTA)に懸濁後、ソニケーション処理により菌体を破砕し、細胞破砕液を得た。次に細胞破砕液を80℃にて15分間処理した後、遠心分離にて不溶性画分を除去した。更に、ポリエチレンイミンを用いた除核酸処理、硫安塩析、ヘパリンセファロースクロマトグラフィーを行い、最後に保存緩衝液(50mM Tris−HCl緩衝液(pH8.0)、50mM 塩化カリウム、1mM ジチオスレイトール、0.1% Tween20、0.1%ノニデットP40、50%グリセリン)に置換し、改変型耐熱性DNAポリメラーゼを得た。
実施例3−2
改変された耐熱性DNAポリメラーゼの減少した塩基類似体検出活性の評価
ウラシルの検出活性は、前述の(10)に記載の「塩基類似体検出活性の評価方法」に従い実施した。
結果、サーモコッカス・コダカラエンシス(KOD)の野生型のDNAポリメラーゼでは0.5μMのdUTPの添加で阻害がかかり、PCR産物が確認できないところ、Y7A、P36H、P36K、P36R、V93Q、V93K、V93Rのウラシル結合ポケットへの変異体では、多少のdUTPを添加してもPCR産物の確認が出来た。またP36KとP36K/Y7AやP36RとP36R/Y7Aなどを比較すると、単変異に比べ2重変異を入れたものの方が、高濃度のdUTP添加に寛容で、増幅量が多い結果となった(図1、図2)。
図1は、野生型(KOD)と、Y7A、P36K、P36R、Y7A/P36K、Y7A/P36R、P36H、V93Q、Y7A/P36Hの7種のKOD変異体の計8種を用いて、反応系に水または終濃度0.5、5、50、100、200μMとなるよう調製したdUTP(Roche社製)を添加してPCR反応を行い、得られた産物を電気泳動した結果である。
野生型ではdUTPを添加した場合はPCR産物が確認できず(レーン2−6)、dUTP無添加の場合(レーン1)のみ増幅産物が確認された。これに対し、7種の変異型では、終濃度0.5μMのdUTPを添加した際にも増幅産物が確認された。中でも、P36K、P36R、Y7A/P36K、Y7A/P36R、P36H、V93Q、Y7A/P36Hの6種については、dUTP終濃度0.5−200μMのすべての範囲で増幅産物が確認された。
図2は、まず、野生型(KOD)、N210Dの変異により3‘−5’エキソヌクレアーゼを欠失させたKOD(KOD N210D)およびI142Rの変異により3‘−5’エキソヌクレアーゼを欠失させたKOD(KOD I142R)の3種を用意し、さらに、KODおよびKOD N210DのそれぞれにV93K、V93R、V93Q、Y7Aのいずれかの変異を加えたもの(計8種)、KOD I142RにV93K、Y7Aのいずれかの変異を加えたもの(2種)を作製した。また、D141A/E143Aの二重変異により3‘−5’エキソヌクレアーゼを欠失させたKODに、さらに、V93K、Y7Aのいずれかの変異を加えたもの(2種)を作製した。これらの計15種を用いて、反応系に水または終濃度0.5、5、50、100、200μMとなるよう調製したdUTP(Roche社製)を添加してPCR反応を行い、得られた産物を電気泳動した結果である。
野生型ではdUTPを添加した場合はPCR産物が確認できず(レーン2−6)、dUTP無添加の場合(レーン1)のみ増幅産物が確認された。これに対し、KODにV93K、V93R、V93Q、Y7Aのいずれかの変異を加えた変異型では、終濃度0.5μMのdUTPを添加した際にも増幅産物が確認された。特にV93K、V93RではdUTPの濃度を200μMに、V93Qでは100μMに、それぞれ上げても増幅産物が確認された。
KODにV93K、V93R、V93Q、Y7Aのいずれかの変異を加えてdUTP耐性を高める効果は、野生型KODに変異を加えるよりも、3‘−5’エキソヌクレアーゼを欠損(N210D、I142RまたはD141A/E143A)させたKODに変異を加える方が、高いことが示された。これらのことから、ウラシル結合ポケットへの変異に加え、3‘−5’エキソヌクレアーゼに欠損を与える変異を加えるとdUTPの耐性能が向上することがわかる。
その他のKOD変異体でも同様の実験を行い、表3のdUTP耐性の欄に増幅が見られたdUTP濃度をまとめた。0は0.5μMのdUTPでPCRができなかったことを示し、同様に0.5や5、100は、それぞれ0.5、5、100μMのdUTPでは増幅が見られたが、それぞれ1段階高い5、100、200μMのdUTPでは増幅が見られなかったことを示す。>200は200μMを添加しても増幅が見られたことを示す。
結果、Y7、P36またはV93のウラシル結合ポケットへの変異はdUTP耐性濃度を高くする傾向があり、H147Eなどの3‘−5’エキソヌクレアーゼを保持している変異体(エキソ(+))にさらに変異を加える場合に比べ、N210D、I142RまたはD141A/E143Aなどの3‘−5’エキソヌクレアーゼを欠質させた変異体(エキソ(−))にさらに変異を加える方が、dUTP耐性濃度が高くなる傾向が確認された。
PfuにおいてもY7AとP36H、V93Kの単変異体とY7A/P36H、Y7A/V93Kの多重変異体を比較し、多重変異体の方増幅量が多いといった同様の結果が得られた。
実施例3−3
改変された耐熱性DNAポリメラーゼを用いた長鎖DNA増幅の評価
表2に記載のKOD変異体を用いて、dTTPなしのdUTPのみの条件でも、1.3kBを超える長鎖DNAが増幅するかどうか調べた。表2ではエキソ領域のアミノ酸変異と、ウラシル結合に関するアミノ酸変異の両方が示されている。エキソ領域のアミノ酸変異に関して、エキソ(+)とあるのは野生型を含め3‘−5’エキソヌクレアーゼを保持している変異、エキソ(−)とあるのは3‘−5’エキソヌクレアーゼを欠失させた変異であることをそれぞれ示す。
dUTPを含むPCRにおいてHuman β−グロビンの1.3kbpおよび、2.8kbp、3.6kbpの増幅を比較した。この際、各酵素は、1Uあたり1μgのKOD抗体と混合したKOD変異体を用いた。
PCRにはKOD −Plus− Ver.2(Toyobo社製)添付のものを用い、1×PCR Buffer、および1.5mM MgSO、2mM dTTPをdUTPに置換したdNTPs(dATP、dUTP,dCTP、dGTP)、15pmolのプライマー(1.3kbpの増幅では配列番号13及び14、2.8kbpの増幅では配列番号15および16、3.6kbpの増幅では配列番号17および18)、10ngのヒトゲノムDNA(Roche社製)、抗体と混合した1Uの各酵素を含む50μlの反応液を用いた。94℃、2分の前反応の後、98℃、10秒→65℃、30秒→68℃、1kbpあたり約1分(1.3kbpの増幅では1分30秒、2.8kbpの増幅では3分、3.6kbpの増幅では4分)を35サイクル繰り返すスケジュールでPCR system GeneAmp9700(Applied Biosystem社)にてPCRを行った。
またコントロールとして、Taq DNAポリメラーゼでの増幅も行った。Taq DNAポリメラーゼはToyobo社製のものを用い、Anti−Taq High(Toyobo社製)と混合したものを用いた。反応は1×BlendTaqに添付のBuffer、2mM dTTPをdUTPに置換したdNTPs(dATP、dUTP,dCTP、dGTP)、10pmolのプライマー(上記と同様)、10ngのヒトゲノムDNA(Roche社製)、抗体と混合した2.5Uの酵素を含む50μlの反応液を、94℃、2分の前反応の後、94℃、30秒→65℃、30秒→68℃、1kbpあたり約1分(1.3kbpの増幅では1分30秒、2.8kbpの増幅では3分、3.6kbpの増幅では4分)を35サイクル繰り返すスケジュールでPCR system GeneAmp9700(Applied Biosystem社製)にてPCRを行った。
それぞれ反応終了後、5μlの反応液についてアガロース電気泳動を行い、エチジウムブロマイド染色し、紫外線照射下約増幅DNA断片の増幅量を確認した。
図3は、野生型(KOD)と、V93K、Y7A/V93K、P36R、Y7A/P36R、P36H、Y7A/P36H、P36R/V93K、Y7A/P36R/V93K、P36H/V93K、Y7A/P36H/V93Kの10種のKOD変異体との計11種を用いて、dTTPの代わりにdUTP(Roche社製)を終濃度0.2mM含む反応系で長さの異なるHuman β−グロビンDNAに対してPCR反応を行い、得られた産物を電気泳動した結果である。図3において、1.3kbpがレーン1、2.8kbpがレーン2、3.6kbpがレーン3である。さらに対照として、Taqで同様の検討を行った。また、野生型KODを用いて、通常のdTTPでPCRを行った結果も合わせて示す。
図4は、まず野生型(KOD)のエキソ領域に、H147E、N210D、I142R、D141A/E143Aのいずれかの変異を加え、さらにそれぞれにV93K、Y7A/V93K、P36R、Y7A/P36R、P36H、Y7A/P36Hのいずれかの変異を加えたもの(計24種)を作製し、これらの変異体を用いて、dTTPの代わりにdUTP(Roche社製)を終濃度0.2mM含む反応系で長さの異なるHuman β−グロビンDNAに対してPCR反応を行い、得られた産物を電気泳動した結果である。図4において、1.3kbpがレーン1、2.8kbpがレーン2、3.6kbpがレーン3である。
図3において、V93K、P36H、P36Rのそれぞれの増幅量を比較した結果、V93Kより、P36位へ変異を加えた変異体(P36R、P36H)の方が、増幅量が多く、長いターゲットまで増幅できることが確認された。
次に、V93K、P36H、P36Rと、それぞれにさらにY7Aの変異を加えた二重変異体の増幅量を比較した結果、単変異のものよりウラシル結合ポケットへ二重変異を入れたものの方が、増幅量が多くなった。これらの変異体はTaqでは増幅できないような長鎖長を増幅することが可能となっていた。
一方で、上記で効果のあったV93K、P36H、P36Rについて組み合わせた種々の多重変異体についてさらに検討したところ、P36H/V93Kでは相乗効果が見られたが、P36R、Y7A/P36R/V93K、Y7A/P36H/V93Kでは増幅が認められなかった。
図3と図4において、野生型のDNAポリメラーゼにV93KやP36Hなどの変異を施したものとエキソ(−)の変異体であるN210D、I142R、D141A/E143Aの変異体に、V93K、P36Hなどの変異を施したものを比較した結果、エキソ(−)のDNAポリメラーゼに変異を施した方が、増幅量が多い結果となった。
さらに、図3と図4において、野生型のDNAポリメラーゼにV93KやP36Hなどの変異を施したものと、PCR効率が向上するエキソ(+)の変異体であるH147EにV93K、P36Hなどの変異を施したものとを比較した結果、エキソ(+)のH147E変異体の方が、増幅量が多い結果となった。
KOD変異体の評価結果を表3にまとめた。表3において、dUTP耐性における11段階評価は、0に近いほど塩基類似体検出活性が強く、10に近いほど塩基類似体検出活性が低いことを表す。また表3中、○は十分に増幅した、△はある程度増幅した、×は増幅しないことを表している。
PfuにおいてもY7AとP36H、V93Kの単変異体とY7A/P36H、Y7A/V93Kの多重変異体を比較し、多重変異体の方が増幅量が多いといった同様の結果が得られた。
実施例3−4
合成速度の比較
合成速度は、前述の(8)に記載の<DNAポリメラーゼ合成速度測定法>に従い実施した。
図5は、野生型(WT)と、Y7A/V93K、P36H、Y7A/P36H、Y7A/V93K/N210D、P36H/N210D、Y7A/P36H/N210D、N210Dの7種のKOD変異体との計8種について、Biotin化P7プライマーを用いてPCR反応を30秒、60秒、120秒行い、それぞれで得られた産物を電気泳動した結果である。図5において、30とあるのはPCR反応を30秒行ったことを示す。60、120についても同様である。図5では、増幅産物が電気泳動写真の上部で検出されるほど、長い増幅産物が取れ合成速度が速いことが示される。写真の左側には、7000bp、3000bpの増幅産物がそれぞれの矢印のところで検出されることを示す。写真の下部に示されている数字は、その結果に基づいて計算された各DNAポリメラーゼの合成速度である。
図5において、野生型(WT)と比べて、Y7A/V93KやP36H、Y7A/P36Hの変異体の方が合成速度が早い結果となった。
またエキソ領域を改変したN210D変異体は、野生型より、合成速度が速く、さらに前記N210D変異体に、Y7A/V93KやP36H、Y7A/P36Hなどの改変を行った変異体は、より合成速度が速くなることが確認された。
実施例3−5
dUTP存在下のPCRにおける血液からの増幅
反応液に添加する血液量を変えて、血液耐性を評価した。比較には、1Uあたり0.8μgのKOD抗体と混合したKOD(野生型)とKOD Y7A/V93K変異体とKOD Y7A/P36H/N210D変異体、抗体を混合したTaq DNAポリメラーゼ(Taq DNAポリメラーゼ(Toyobo社製)とAnti−Taq High(Toyobo社製)を等量混合したもの)を用い、HBgの482bpPCRを行い増幅の違いを比較した。
上記と同様、KODのPCRは、KOD −Plus− Ver.2(Toyobo社製)添付のBuffer、MgSOを用い、1×PCR Buffer、および1.5mM MgSO、15pmolのプライマー(482bpの増幅では配列番号19および20)、抗体と混合した1Uの各酵素を含む50μlの反応液中に、通常のdNTPs(dATP、dTTP,dCTP、dGTP)を0.2mM添加したものと、dTTPをdUTPに置換したdNTPs(dATP、dUTP,dCTP、dGTP)を0.2mMになるよう添加したものをそれぞれ用い、鋳型には血液そのもの、および血液を水で希釈したものを用いた。94℃、2分の前反応の後、98℃、10秒→65℃、10秒→68℃、1kbpあたり約1分(482bpの増幅では1分)を35サイクル繰り返すスケジュールでPCR system GeneAmp9700(Applied Biosystem社)を用いてPCRを行った。
Taq DNAポリメラーゼのPCRは、1×BlendTaqに添付のBuffer(Toyobo製品)、10pmolのプライマー(上記と同様)、抗体と混合した2.5Uの酵素を含む50μlの反応液中に、通常のdNTPs(dATP、dTTP,dCTP、dGTP)を0.2mM添加したものと、dTTPをdUTPに置換したdNTPs(dATP、dUTP,dCTP、dGTP)を0.2mMになるよう添加したものをそれぞれ用い、鋳型には血液そのもの、および血液を水で希釈したものを用いた。94℃、2分の前反応の後、94℃、30秒→65℃、30秒→68℃、1kbpあたり約1分(上記と同様)を35サイクル繰り返すスケジュールでPCR system GeneAmp9700(Applied Biosystem社)を用いてPCRを行った。
反応終了後、5μlの反応液についてアガロース電気泳動を行い、エチジウムブロマイド染色し、紫外線照射下増幅DNA断片の増幅量を確認した。
図6は、試料として血液を用い、反応液に占める血液の割合を10、5、2、0.2、0.02、0.002%になるよう反応液を調整して、種々のDNAポリメラーゼによるPCR反応を行い、得られた産物を電気泳動した結果を示す。用いたDNAポリメラーゼは、Taq、KOD(野生型)、KODの変異体2種(Y7A/V93K、Y7A/P36H/N210D)の計4種である。各写真の左側がdTTPを用いた場合、右側がdUTPを用いた場合である。1レーンは反応液に占める血液の割合10%の場合、以下2−6レーンは順にそれぞれ5%、2%、0.2%、0.02%、0.002%の場合である。
結果、Taq DNAポリメラーゼ、野生型のKOD DNAポリメラーゼはdUTP存在下で増幅が確認されないところ、KOD Y7A/V93KやKOD Y7A/P36H/N210D変異体ではdUTP存在下でもしっかりしたバンドが確認された。
KOD Y7A/V93K変異体より合成速度の速いKOD Y7A/P36H/N210D変異体の方が血液耐性が高く、血液10%添加でも増幅が確認できた。
KODの他の変異体(P36H、P36K、P36R、V93K、V93R、Y7A/P36H、Y7A/P36R、Y7A/V93R、P36H/H147E、P36K/H147E、P36R/H147E、V93K/H147E、V93R/H147E、Y7A/P36H/H147E、Y7A/P36R/H147E、Y7A/V93K/H147E、Y7A/V93R/H147E、P36H/N210D、P36K/N210D、P36R/N210D、V93K/N210D、V93R/N210D、Y7A/P36R/N210D、Y7A/V93K/N210D、Y7A/V93R/N210D、P36H/I142R、P36R/I142R、V93K/I142R、V93R/I142R、Y7A/P36H/I142R、Y7A/P36R/I142R、P36H/D141A/E143A、P36R/D141A/E143A、V93K/D141A/E143A、V93R/D141A/E143A、Y7A/P36H/D141A/E143A、Y7A/P36R/D141A/E143A)でも同様の反応条件で、血液5%添加から増幅を確認し、dUTP存在下でもしっかりとしたバンドが確認できた。
Pfu DNAポリメラーゼ変異体でも同様の反応条件で、血液5%添加から増幅を確認し、P36H、V93R、Y7A/P36H、Y7A/V93Kの変異体で、dUTP存在下でもしっかりとしたバンドが確認できた。
(実施例4)
実施例4−1
KOD−PCNA変異体の作製
サーモコッカス・コダカラエンシス KOD1株由来の改変型耐熱性PCNA遺伝子を含有するプラスミドを作製した。
変異導入に使用されるDNA鋳型は、pBluescriptにクローニングされたサーモコッカス・コダカラエンシス KOD1株由来のPCNA(配列番号23)(pKODPCNA)を用いた。変異導入にはKOD −Plus− Mutagenesis Kit(Toyobo社製)を用いて、方法は取扱い説明書に準じて行った。なお、変異体の確認は塩基配列の解読で行った。得られたプラスミドによりエシェリシア・コリDH5αを形質転換し、酵素調製に用いた。
実施例4−2
Pfu−PCNA変異体の作製
パイロコッカス・フリオサス由来の改変型耐熱性PCNA遺伝子を含有するプラスミドを作製した。
変異導入に使用されるDNA鋳型は、pBluescriptにクローニングされたパイロコッカス・フリオサス株由来のPCNA(配列番号24)(pPfuPCNA)を用いた。変異導入にはKOD −Plus− Mutagenesis Kit(Toyobo社製)を用いて、方法は取扱い説明書に準じて行った。なお、変異体の確認は塩基配列の解読で行った。得られたプラスミドによりエシェリシア・コリDH5αを形質転換し、酵素調製に用いた。
実施例4−1および実施例4−2で作製したプラスミドを表4に示す。
実施例4−3
改変型耐熱性PCNAの作製
実施例4−1で得られた菌体の培養は以下のようにして実施した。まず、滅菌処理した100μg/mLのアンピシリンを含有するTB培地(Molecular cloning 2nd edition、p.A.2)80mLを500mL坂口フラスコに分注した。この培地に予め100μg/mLのアンピシリンを含有する3mLのLB培地(1%バクトトリプトン、0.5%酵母エキス、0.5%塩化ナトリウム;ギブコ製)で37℃、16時間培養したエシェリシア・コリDH5α(プラスミド形質転換株)(試験管使用)を接種し、37℃にて16時間通気培養した。培養液より菌体を遠心分離により回収し、50mLの破砕緩衝液(30mM Tris−HCl緩衝液(pH8.0)、30mM NaCl、0.1mM EDTA)に懸濁後、ソニケーション処理により菌体を破砕し、細胞破砕液を得た。次に細胞破砕液を80℃にて15分間処理した後、遠心分離にて不溶性画分を除去した。更に、ポリエチレンイミンを用いた除核酸処理、硫安塩析、Qセファロースクロマトグラフィーを行い、最後に保存緩衝液(50mM Tris−HCl緩衝液(pH8.0)、50mM 塩化カリウム、1mM ジチオスレイトール、0.1% Tween20、0.1%ノニデットP40、50%グリセリン)に置換し、改変型耐熱性PCNAを得た。
実施例4−4
PCR増強因子(PCNA)の評価
PCNAの効果を確認するため、KOD−PCNA変異体(M73L、M73L/E143R、M73L/R109A/E143A、M73L/D147A、M73L/R82A/E143A、M73L/E143F、M73L/E143A)を用いて『増幅増強活性の測定方法』に従い、dUTP存在下PCRでの増幅量の違いを、Human β−グロビンの1.3kbを増幅することで比較した。
図7は、種々のPCNA変異体を250ng添加しPCR反応を行い、得られた産物を電気泳動した結果を示す。用いたPCNA変異体はM73L、M73L/E143R、M73L/E143A、M73L/R109A/E143A、M73L/D147A、M73L/R82A/E143A、M73L/E143Fの計7種である。
PCNAの添加がない場合(レーン8)やPCNAとしてKOD−PCNA M73L変異体を用いた場合(レーン1)では、バンドがわずかに見出されたに過ぎなかったが、他のKOD PCNA変異体を添加した場合は、増幅量が多くなり、より明確なバンドが確認された。

PCNAは多量体を形成し核酸の合成反応を促進するが、通常、RFCの働きなしではDNAにロードできず反応が進まない。M73L/E143R、M73L/E143A、M73L/R109A/E143A、M73L/D147A、M73L/R82A/E143A、M73L/E143Fの改変は、多量体形成に関わる部位への改変であり、適度に多量体形成が弱まったため、PCNAがDNAにロードでき、PCR増幅量を向上させたことが考えられる(図7)。
またPCNAは合成速度を向上させ伸長時間を短縮する作用が以前報告されていたが、合成速度の向上は、ウラシルと結合ポケットが相互作用する時間を短くし、ウラシルの検出活性を弱める働きがあることが考えられる。
Pfu−PCNA変異体(M73L、M73L/D143R、M73L/R109A/D143A、M73L/D147A、M73L/R82A/D143A、M73L/D143A)でも同様の実験を行い、Pfu−PCNA M73L変異体では、ほとんどバンドが確認できなかったが、他のPfu−PCNA変異体(M73L/D143R、M73L/R109A/D143A、M73L/D147A、M73L/R82A/D143A、M73L/D143A)の添加でしっかりとしたバンドが確認された。
実施例4−5
PCNA添加による合成速度の比較
KOD V93K変異体に様々なPCNA変異体を添加し、合成速度を測定した。KOD V93Kは、保存緩衝液(50mM Tris−HCl(pH8.0),50mM KCl,1mM ジチオスレイトール,0.1% Tween20,0.1% Nonidet P40,50% グリセリン)で希釈し用いた。また、PCNA変異体は各反応系に250ng添加し、合成速度を測定した。
試薬・方法は、前述の(8)に記載の<DNAポリメラーゼ合成速度測定法>に従い実施した。
図8は、V93K変異体に様々なPCNA変異体を添加してPCR反応を30秒、60秒、120秒行い、それぞれで得られた産物を電気泳動した結果である。PCNA変異体としては、KOD由来のPCNA変異体(D147A、E143R、R109A/E143A)を用いた。図8において、30とあるのはPCR反応を30秒行ったことを示す。60、120についても同様である。図8では、増幅産物が電気泳動写真の上部で検出されるほど、長い増幅産物が取れ合成速度が速いことが示される。写真の左側には、7000bp、3000bpの増幅産物がそれぞれの矢印のところで検出されることを示す。写真の下部に示されている数字は、その結果に基づいて計算された各DNAポリメラーゼの合成速度である。
結果、PCNAを添加すると、合成速度が大幅に増加することが確認できた(図8)。これはPCNAがクランプの働きを行い、DNAとポリメラーゼをしっかり結合させたことによると考えられる。
実施例4−6
dUTP存在下のPCRにおける血液からの増幅、PCNA添加の影響
血液耐性の評価にPCNAを加えて影響を確認した。比較には、1Uあたり0.8μgのKOD抗体と混合したKOD(野生型)とKOD Y7A/V93K変異体とKOD Y7A/P36H/N210D変異体、抗体を混合したTaq DNAポリメラーゼ(Taq DNAポリメラーゼ(Toyobo社製)とAnti−Taq High(Toyobo社製)を等量混合したもの)を用い、PCNA D147A変異体を250ng添加し、HBgの482bpのPCRを行い増幅の違いを比較した。
上記と同様、KODのPCRは、KOD −Plus− Ver.2(Toyobo社製)添付のBuffer、MgSOを用い、1×PCR Buffer、および1.5mM MgSO、15pmolのプライマー(配列番号19および20)、抗体と混合した1Uの各酵素を含む50μlの反応液中に、通常のdNTPs(dATP、dTTP,dCTP、dGTP)を0.2mM添加したものと、dTTPをdUTPに置換したdNTPs(dATP、dUTP,dCTP、dGTP)を0.2mMになるよう添加したものをそれぞれ用い、各反応液にKOD−PCNA M73L/D147A変異体を250ng添加した。鋳型には血液そのもの、および血液を水で希釈したものを用いた。94℃、2分の前反応の後、98℃、10秒→65℃、10秒→68℃、1分を35サイクル繰り返すスケジュールでPCR system GeneAmp9700(Applied Biosystem社)を用いてPCRを行った。
Taq DNAポリメラーゼのPCRは、1×BlendTaqに添付のBuffer(Toyobo製品)、10pmolのプライマー(上記と同様)、抗体と混合した2.5Uの酵素を含む50μlの反応液中に、通常のdNTPs(dATP、dTTP,dCTP、dGTP)を0.2mM添加したものと、dTTPをdUTPに置換したdNTPs(dATP、dUTP,dCTP、dGTP)を0.2mMになるよう添加したものをそれぞれ用い、鋳型には血液そのもの、および血液を水で希釈したものを用いた。94℃、2分の前反応の後、94℃、30秒→65℃、30秒→68℃、1分を35サイクル繰り返すスケジュールでPCR system GeneAmp9700(Applied Biosystem社)を用いてPCRを行った。
反応終了後、5μlの反応液についてアガロース電気泳動を行い、エチジウムブロマイド染色し、紫外線照射下増幅DNA断片の増幅量を確認した。
図9は、試料として血液を用い、反応液に占める血液の割合を10、5、2、0.2、0.02、0.002%になるよう反応液を調整して、種々のDNAポリメラーゼによるPCR反応を、KOD由来のPCNA変異体(D147A)の存在下で行い、得られた産物を電気泳動した結果を示す。用いたDNAポリメラーゼは、Taq、KOD(野生型)、KODの変異体2種(Y7A/V93K、Y7A/P36H/N210D)の計4種である。各写真の左側がdTTPを用いた場合、右側がdUTPを用いた場合である。1レーンは反応液に占める血液の割合10%の場合、以下2−6レーンは順にそれぞれ5%、2%、0.2%、0.02%、0.002%の場合である。
結果、PCNAはファミリーBに属するポリメラーゼのPIPモチーフとよばれる部位に結合することが知られている。TaqなどのファミリーAに属するポリメラーゼはPIPモチーフを持たないため、PCNAを添加しても影響は見られなかった(図9)。
一方、減少した塩基類似体検出活性を有するKOD Y7A/V93K、KOD Y7A/P36H/N210D変異体ではPCNAを添加するとより濃い血液まで反応が起こることがわかった。
またPCNAを添加したKOD Y7A/P36H/N210D、PCNAを添加したKOD Y7A/V93Kの合成速度が高い順に増幅量が向上しており、やはり合成速度がdUTP存在下でのPCRでは重要と考えられる。
KODの他の変異体(P36H、P36K、P36R、V93K、V93R、Y7A/P36H、Y7A/P36R、Y7A/V93R、P36H/H147E、P36K/H147E、P36R/H147E、V93K/H147E、V93R/H147E、Y7A/P36H/H147E、Y7A/P36R/H147E、Y7A/V93K/H147E、Y7A/V93R/H147E、P36H/N210D、P36K/N210D、P36R/N210D、V93K/N210D、V93R/N210D、Y7A/P36R/N210D、Y7A/V93K/N210D、Y7A/V93R/N210D、P36H/I142R、P36R/I142R、V93K/I142R、V93R/I142R、Y7A/P36H/I142R、Y7A/P36R/I142R、P36H/D141A/E143A、P36R/D141A/E143A、V93K/D141A/E143A、V93R/D141A/E143A、Y7A/P36H/D141A/E143A、Y7A/P36R/D141A/E143A)でも同様の反応条件で、血液10%添加から増幅を確認し、dUTP存在下でもしっかりとしたバンドが確認できた。
またPCNAも、KOD−PCNA M73L/E143R、M73L/R82A/E143A、M73L/R109A/E143A、Pfu−PCNA M73L/D143R、M73L/D147A、M73L/R82A/D143A、M73L/R109A/D143Aの変異体で、同様の反応を行い、血液10%添加から増幅を確認し、dUTP存在下でもしっかりとしたバンドが確認できた。
Pfu DNAポリメラーゼ変異体でも同様の反応条件で、血液10%添加から増幅を確認し、P36H、V93R、Y7A/P36H、Y7A/V93Kの変異体で、dUTP存在下でもしっかりとしたバンドが確認できた。
実施例4−7
dUTP存在下で体組織(爪、髪、口腔粘膜)からのPCR
爪や髪、口腔粘膜を鋳型に、dUTP存在下でPCRができるかを検討した。爪は爪きりで切断した一片を、髪は1本を、50mM NaOH180μlに添加し、95℃10分の熱処理で破砕を行い、その後、1M Tris−HCl(pH8.0)20μlを加え中和した上清を鋳型として用いた。口腔粘膜は綿棒で採取した粘膜を200μlの水に懸濁したものを鋳型として用いた。
酵素には1Uあたり0.8μgのKOD抗体と混合したKOD(野生型)とKOD Y7A/V93K変異体とKOD Y7A/P36H/N210D変異体、抗体を混合したTaq DNAポリメラーゼ(Taq DNAポリメラーゼ(Toyobo社製)とAnti−Taq High(Toyobo社製)を等量混合したもの)を用い、HBgの482bpのPCRを行い増幅の違いを比較した。
上記と同様、KODのPCRは、KOD −Plus− Ver.2(Toyobo社製)添付のBuffer、MgSOを用い、1×PCR Buffer、および1.5mM MgSO、15pmolのプライマー(配列番号19および20)、抗体と混合した1Uの各酵素を含む50μlの反応液中に、通常のdNTPs(dATP、dTTP,dCTP、dGTP)を0.2mM添加したものと、dTTPをdUTPに置換したdNTPs(dATP、dUTP,dCTP、dGTP)を0.2mMになるよう添加したものをそれぞれ用い、鋳型には上記サンプル1μlを用いた。また、各反応液にPCR増強因子であるKOD−PCNA E143R変異体を250ng添加したものも実施した。94℃、2分の前反応の後、98℃、10秒→65℃、10秒→68℃、1分を35サイクル繰り返すスケジュールでPCR system GeneAmp9700(Applied Biosystem社)を用いてPCRを行った。
Taq DNAポリメラーゼのPCRは、1×BlendTaqに添付のBuffer(Toyobo製品)、10pmolのプライマー(上記と同様)、抗体と混合した2.5Uの酵素を含む50μlの反応液中に、通常のdNTPs(dATP、dTTP,dCTP、dGTP)を0.2mM添加したものと、dTTPをdUTPに置換したdNTPs(dATP、dUTP,dCTP、dGTP)を0.2mMになるよう添加したものをそれぞれ用い、鋳型には上記サンプル1μlを用いた。また、各反応液にPCR増強因子であるKOD−PCNA M73L/E143R変異体を250ng添加したものも実施した。94℃、2分の前反応の後、94℃、30秒→65℃、30秒→68℃、1分を35サイクル繰り返すスケジュールでPCR system GeneAmp9700(Applied Biosystem社)を用いてPCRを行った。
反応終了後、5μlの反応液についてアガロース電気泳動を行い、エチジウムブロマイド染色し、紫外線照射下増幅DNA断片の増幅量を確認した。
図10は、試料として爪、髪、口腔粘液を用い、種々のDNAポリメラーゼによるPCR反応を、KOD由来のPCNA変異体(E143R)の存在下で行い、得られた産物を電気泳動した結果を示す。用いたDNAポリメラーゼは、Taq、KOD(野生型)、KODの変異体2種(Y7A/V93K、Y7A/P36H/N210D)の計4種である。各写真の左側がdTTPを用いた場合、右側がdUTPを用いた場合である。1レーンは爪を試料とした場合、2レーンは髪、3レーンは口腔粘膜である。それそれの「+」レーンは、KOD由来のPCNA変異体(E143R)の存在下であり、「−」はPCNAなしであることを示す。
結果、Taq DNAポリメラーゼ、野生型のKOD DNAポリメラーゼはdUTP存在下でほとんど増幅が確認されないところ、KOD Y7A/V93KやKOD Y7A/P36H/N210D変異体ではdUTP存在下でもしっかりしたバンドが確認された(図10)。またPCNAを添加した反応液の方が増幅量が多い結果となった。
KODの他の変異体(P36H、P36K、P36R、V93K、V93R、Y7A/P36H、Y7A/P36R、Y7A/V93R、P36H/H147E、P36K/H147E、P36R/H147E、V93K/H147E、V93R/H147E、Y7A/P36H/H147E、Y7A/P36R/H147E、Y7A/V93K/H147E、Y7A/V93R/H147E、P36H/N210D、P36K/N210D、P36R/N210D、V93K/N210D、V93R/N210D、Y7A/P36R/N210D、Y7A/V93K/N210D、Y7A/V93R/N210D、P36H/I142R、P36R/I142R、V93K/I142R、V93R/I142R、Y7A/P36H/I142R、Y7A/P36R/I142R、P36H/D141A/E143A、P36R/D141A/E143A、V93K/D141A/E143A、V93R/D141A/E143A、Y7A/P36H/D141A/E143A、Y7A/P36R/D141A/E143A)でも同様の反応条件で、体組織(爪、髪、口腔粘膜)からの増幅を確認し、dUTP存在下でもしっかりとしたバンドが確認できた。またこれらに、KOD−PCNA変異体(M73L/D147A、M73L/R109A/E143A、M73L/E143R)、Pfu−PCNA変異体(M73L/D143R)を添加すると、上記と同様、増幅量の向上が確認できた。
実施例4−8
植物ライセートからの増幅
dUTPを含むPCR反応系で植物ライセートからの増幅を実施した。
比較には、KOD Y7A/P36H/N210D変異体、Taqポリメラーゼを用い、rbcL 1.3kbの増幅量の違いを比較した。KOD Y7A/P36H/N210D変異体にはPCR増強因子としてKOD−PCNA M73L/D147Aを添加したものも実施した。
鋳型にはイネの葉3mm角をBufferA(100mM Tris−HCl(pH9.5)、1M KCl、10mM EDTA)100μlに添加し、95℃、10分の熱処理を行ったものをライセートとして用いた。
KOD Y7A/P36H/N210DのPCRは、KOD −Plus− Ver.2(Toyobo社製)添付のBuffer、MgSOを用い、1×PCR Buffer、および1.5mM MgSO、15pmolのプライマー(配列番号25および26)、 2mM dTTPをdUTPに置換したdNTPs(dATP、dUTP,dCTP、dGTP) 、KOD抗体と混合した1Uの酵素を含む50μlの反応液中に、植物ライセートを反応液に対して2%になるように加え、94℃、2分の前反応の後、98℃、10秒→65℃ 30秒→68℃、1.5分を35サイクル繰り返すスケジュールでPCR system GeneAmp9700(Applied Biosystem社)を用いて行った。KOD−PCNA M73L/D147Aは上記反応系に250ng加え、PCNAなしのものと比較した。
Taq DNAポリメラーゼはToyobo社製のものを用い、Anti−Taq High(Toyobo社製)と混合したものを用いた。反応は1×BlendTaqに添付のBuffer、10pmolのプライマー(上記と同様)、 2mM dTTPをdUTPに置換したdNTPs(dATP、dUTP,dCTP、dGTP)、抗体と混合した2.5Uの酵素を含む50μlの反応液中に、植物ライセートを反応液に対して2%になるように加え、94℃、2分の前反応の後、94℃、30秒→65℃、30秒→68℃、1、5分を35サイクル繰り返すスケジュールでPCR system GeneAmp9700(Applied Biosystem社製)を用いて行った。
反応終了後、5μlの反応液についてアガロース電気泳動を行い、エチジウムブロマイド染色し、紫外線照射下増幅DNA断片の増幅量を確認した。
図11は、試料として植物ライセートを用い、反応液に占めるライセートの割合を2%になるよう反応液を調製して、KOD Y7A/P36H/N210D変異体、KOD Y7A/P36H/N210D変異体にKOD−PCNA M73L/D147Aを添加したもの、Taqポリメラーゼの計3種でPCR反応を行い、得られた産物を電気泳動した結果を示す。
各写真の1はTaqポリメラーゼの結果を、2はKOD Y7A/P36H/N210Dの結果を、3はKOD Y7A/P36H/N210DにKOD−PCNA M73L/D147Aを添加したものの結果を示す。
結果、KOD Y7A/P36H/N210Dでは未精製の植物ライセートからでも増幅が確認された。さらにPCNAの変異体を添加したものは、添加なしのものより増幅量が多いしっかりしたバンドが確認された。
一方、Taqポリメラーゼでは植物ライセートから直接増幅することはできなかった(図11)。
KODの他の変異体(Y7A/V93K、P36H、P36K、P36R、V93K、V93R、Y7A/P36H、Y7A/P36R、Y7A/V93R、P36H/H147E、P36K/H147E、P36R/H147E、V93K/H147E、V93R/H147E、Y7A/P36H/H147E、Y7A/P36R/H147E、Y7A/V93K/H147E、Y7A/V93R/H147E、P36H/N210D、P36K/N210D、P36R/N210D、V93K/N210D、V93R/N210D、Y7A/P36R/N210D、Y7A/V93K/N210D、Y7A/V93R/N210D、P36H/I142R、P36R/I142R、V93K/I142R、V93R/I142R、Y7A/P36H/I142R、Y7A/P36R/I142R、P36H/D141A/E143A、P36R/D141A/E143A、V93K/D141A/E143A、V93R/D141A/E143A、Y7A/P36H/D141A/E143A、Y7A/P36R/D141A/E143A)でも同様の反応条件で、植物ライセートから増幅を確認し、dUTP存在下でもしっかりとしたバンドが確認できた。
またPCNAも、KOD−PCNA M73L/E143R、M73L/R82A/E143A、M73L/R109A/E143A、Pfu−PCNA M73L/D143R、M73L/D147A、M73L/R82A/D143A、M73L/R109A/D143Aの変異体で、同様の反応を行い、PCNA添加なしに比べ増幅量の向上が確認できた。
Pfu DNAポリメラーゼ変異体でも同様の反応条件で、植物ライセートから増幅を確認し、P36H、V93R、Y7A/P36H、Y7A/V93Kの変異体で、dUTP存在下でもしっかりとしたバンドが確認できた。
実施例4−9
糞便からの増幅
dUTP、糞便存在下で遺伝子増幅ができるかを評価した。
酵素には、KOD Y7A/P36H/N210D変異体、Taqポリメラーゼを用い、サルモネラのinvA遺伝子約700bpの増幅の違いをSYBR GREEN Iを用いたリアルタイムPCR、および融解曲線で比較した。KOD Y7A/P36H/N210D変異体にはPCR増強因子としてKOD−PCNA M73L/D147Aを添加したものも実施した。
阻害物質には10%糞便懸濁液を95℃で10分熱処理したものを用いた。
KOD Y7A/P36H/N210DのPCRは、KOD Dash(Toyobo社製)添付のBufferを用い、1×PCR Buffer、50コピーのサルモネラゲノム、4pmolのプライマー(配列番号27および28)、 2mM dTTPをdUTPに置換したdNTPs(dATP、dUTP,dCTP、dGTP) 、1/30000 SYBR GREEN I、KOD抗体と混合した0.4Uの酵素を含む20μlの反応液中に、糞便を反応液に対して0、0.1、0.25、0.5、1.0、1.5、2.0、2.5%になるように加え、95℃、30秒の前反応の後、98℃、10秒→60℃ 10秒→68℃、30秒を50サイクル繰り返すスケジュールでLightCycler2.0(Roche社)を用いて行った。KOD−PCNA M73L/D147Aは上記反応系に100ng加え、PCNAなしのものと比較した。
Taq DNAポリメラーゼはToyobo社製のものを用い、Anti−Taq High(Toyobo社製)と混合したものを用いた。反応は1×Taqに添付のBuffer(Mg別添タイプ)、50コピーのサルモネラゲノム、4pmolのプライマー(上記と同様)、 2mM dTTPをdUTPに置換したdNTPs(dATP、dUTP,dCTP、dGTP)、4mM MgSO、1/30000 SYBR GREEN I、抗体と混合した1Uの酵素を含む20μlの反応液中に、糞便を反応液に対して0、0.1、0.25、0.5、1.0、1.5、2.0、2.5%になるように加え、95℃、30秒の前反応の後、98℃、10秒→60℃ 10秒→68℃、30秒を50サイクル繰り返すスケジュールでLightCycler2.0(Roche社)を用いて行った。
それぞれ、反応終了後、融解曲線解析にて、80℃後半に出現する目的ピークを確認した。
実施例4−9のCq値を表5に示す。
表5はdUTP、糞便存在下で行ったリアルタイムPCRのCq値(LightCycler2.0のデフォルト設定)を示す。N.D.は増幅が見られず、Cq値が求められなかったことを示す。
結果、Taqポリメラーゼでは0.5%の糞便を添加すると増幅が見られなくなるところ、KOD Y7A/P36H/N210Dでは2.5%の糞便を添加しても増幅が確認された。また、PCNAありなしを比較すると、PCNAを添加したものの方が、Cq値が小さく、優れたPCR効率を示していることがわかった。
図12は、dUTP、糞便存在下でPCRを用い、得られた増幅産物の融解曲線解析の結果を示す。用いたポリメラーゼはKOD Y7A/P36H/N210D変異体、KOD Y7A/P36H/N210D変異体にKOD−PCNA M73L/D147Aを添加したもの、Taqポリメラーゼの計3種である。
1はKOD Y7A/P36H/N210Dの結果を、2はKOD Y7A/P36H/N210DにKOD−PCNA M73L/D147Aを添加したものの結果を、3はTaqポリメラーゼの結果を示す。
結果、KOD Y7A/P36H/N210DではdUTP、糞便存在下からでも増幅が確認され、糞便の添加でピークは低くなるものの、2.5%を添加しても、目的ピークを確認することができた。PCNAを添加したものでも同様に、2.5%の添加でも目的ピークを確認することができた。しかし、Taqポリメラーゼでは0.25%の添加で目的ピークが消失しており、糞便の影響で阻害を受けたことが示唆された(図12)。
KODの他の変異体(Y7A/V93K、P36H、P36K、P36R、V93K、V93R、Y7A/P36H、Y7A/P36R、Y7A/V93R、P36H/H147E、P36K/H147E、P36R/H147E、V93K/H147E、V93R/H147E、Y7A/P36H/H147E、Y7A/P36R/H147E、Y7A/V93K/H147E、Y7A/V93R/H147E、P36H/N210D、P36K/N210D、P36R/N210D、V93K/N210D、V93R/N210D、Y7A/P36R/N210D、Y7A/V93K/N210D、Y7A/V93R/N210D、P36H/I142R、P36R/I142R、V93K/I142R、V93R/I142R、Y7A/P36H/I142R、Y7A/P36R/I142R、P36H/D141A/E143A、P36R/D141A/E143A、V93K/D141A/E143A、V93R/D141A/E143A、Y7A/P36H/D141A/E143A、Y7A/P36R/D141A/E143A)でも同様に2.5%糞便が含まれる反応系で増幅を確認し、dUTP存在下でもしっかりとしたバンドが確認できた。
またPCNAも、KOD−PCNA M73L/E143R、M73L/R82A/E143A、M73L/R109A/E143A、Pfu−PCNA M73L/D143R、M73L/D147A、M73L/R82A/D143A、M73L/R109A/D143Aの変異体で、同様の反応を行い、PCNA添加なしに比べPCR効率の向上が確認できた。
Pfu DNAポリメラーゼ変異体でも同様に2.5%糞便が含まれる反応系で増幅を確認し、P36H、V93R、Y7A/P36H、Y7A/V93Kの変異体で、dUTP存在下でもしっかりとしたバンドが確認できた。
(実施例4−10)
dUTPを含む反応液を用いたPCNA添加による血液からの増幅
図9と同様、dUTPを含むPCR反応系でもPCNAの添加でクルード(血液)耐性が向上するかを評価した。
酵素には、KOD Y7A/P36H/N210D、Taqポリメラーゼを用い、HBgの1.3kbの増幅量の違いを比較した。KOD変異体にはPfu−PCNA M73L/D147A添加したものも実施した。
KOD変異体のPCRは、KOD −Plus− Ver.2(Toyobo社製)添付のBuffer、MgSOを用い、1×PCR Buffer、および1.5mM MgSO、15pmolのプライマー(配列番号13および14)、2mM dTTPをdUTPに置換したdNTPs(dATP、dUTP,dCTP、dGTP)、KOD抗体と混合した1Uの各酵素を含む50μlの反応液中に、血液を反応液に対して2%になるように加え、PCNAなしとPfu−PCNA M73L/D147Aを250ng加えたものを比較した。
Taq DNAポリメラーゼのPCRは、1×BlendTaqに添付のBuffer(Toyobo製品)、10pmolのプライマー(上記と同様)、2mM dTTPをdUTPに置換したdNTPs(dATP、dUTP,dCTP、dGTP)、抗体と混合した2.5Uの酵素を含む50μlの反応液中に、血液を反応液に対して2%になるように加えたものを用いた。
反応は94℃、2分の前反応の後、98℃、10秒→65℃、30秒→68℃、1.5分を35サイクル繰り返すスケジュールでPCR system GeneAmp9700(Applied Biosystem社)を用いて行った。
反応終了後、5μlの反応液についてアガロース電気泳動を行い、エチジウムブロマイド染色し、紫外線照射下増幅DNA断片の増幅量を確認した。
図13は、2%血液を含有する反応液を調製して、KOD Y7A/P36H/N210D変異体、およびKOD Y7A/P36H/N210D変異体にPfu−PCNA M73L/D147Aを添加したもの、TaqポリメラーゼでPCR反応を行い、得られた産物を電気泳動した結果を示す。各写真の−はPCNAなし、+はPCNAを添加したこと示す。
結果、本発明のポリメラーゼを用いれば、1.3kbと比較的長い増幅でも血液成分が含まれるクルードな条件から増幅できることが示された。またPCNAの変異体を添加したものは添加していないものと比べしっかりしたバンドが確認された(図13)。
KODの他の変異体(P36H/N210D、P36K/N210D、P36R/N210D、V93K/N210D、V93R/N210D、Y7A/P36R/N210D、Y7A/V93K/N210D、Y7A/V93R/N210D、P36H/I142R、P36R/I142R、V93K/I142R、V93R/I142R、Y7A/P36H/I142R、Y7A/P36R/I142R、P36H/D141A/E143A、P36R/D141A/E143A、V93K/D141A/E143A、V93R/D141A/E143A、Y7A/P36H/D141A/E143A、Y7A/P36R/D141A/E143A)でも同様の反応条件で、から増幅を確認し、dUTP存在下でもしっかりとしたバンドが確認できた。
またPCNAも、KOD−PCNA M73L/D147A、M73L/E143R、M73L/R82A/E143A、M73L/R109A/E143A、Pfu−PCNA M73L/D143R、M73L/R82A/D143A、M73L/R109A/D143Aの変異体で、同様の反応を行い、PCNA添加なしに比べ増幅量の向上が確認できた。
この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。
本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。
本発明によって、DNA精製の際のロスやキャリーオーバーの危険性をなくし、さらに時間・コストを削減することができる。また、dUTP/UDGコンタミネーション除去法によるコンタミネーションを防げるため、研究分野だけでなく、同じサンプルを何度も増幅する遺伝子診断などの臨床分野もしくは法医学分野、あるいは食品や環境中の微生物検査等においても広く利用することができる

Claims (18)

  1. 精製工程を経ていない生体試料を核酸増幅反応液に添加し、生体試料中の標的核酸を増幅する方法であって、増幅に用いられる酵素がファミリーBに属するDNAポリメラーゼであり、かつデオキシウリジン(dUTP)を反応液中に含んでいることを特徴とする核酸増幅法。
  2. 生体試料が、動植物組織、体液、排泄物、細胞、細菌、ウイルスのいずれかである請求項1に記載の核酸増幅法。
  3. 核酸増幅に用いられる酵素が、減少した塩基類似体検出活性を有する古細菌DNAポリメラーゼ変異体である、請求項1または2に記載の核酸増幅法。
  4. 核酸増幅に用いられる酵素が、30塩基/秒以上のDNA合成速度を有する、請求項1〜3のいずれかに記載の核酸増幅法。
  5. 古細菌DNAポリメラーゼ変異体が、以下の(a)から(c)のいずれかで示されるものであることを特徴とする、請求項3または4に記載の核酸増幅法。
    (a)配列番号1または配列番号2(Pfuの野生型配列に相当)で示されるアミノ酸配列の7、36、37、90〜97および112〜119番目に相当するアミノ酸のうち、少なくとも1つのアミノ酸の改変を有するアミノ酸配列である。
    (b)(a)で示されるアミノ酸配列においてさらに少なくとも1つのアミノ酸が改変されており、そのアミノ酸配列が(a)で示されるアミノ酸配列と80%以上同一であり、かつ、減少した塩基類似体検出活性を有するDNAポリメラーゼをコードするアミノ酸配列である。
    (c)(a)で示されるアミノ酸配列においてさらに少なくとも1つのアミノ酸が改変されており、そのアミノ酸配列が(a)で示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列であり、かつ、減少した塩基類似体検出活性を有するDNAポリメラーゼをコードするアミノ酸配列である。
  6. 古細菌DNAポリメラーゼの変異体が、配列番号1または配列番号2において、36、93番目に相当するアミノ酸のうち、少なくとも1つのアミノ酸の改変を有する、請求項3〜5のいずれかに記載の核酸増幅法。
  7. 古細菌DNAポリメラーゼの変異体が、配列番号1または配列番号2において、Y7A/V93K、Y7A/V93R、Y7A/V93Q、Y7A/P36H、Y7A/P36R、P36H/V93K、P36K、P36RまたはP36Hのいずれかの改変を有する、請求項3〜6のいずれかに記載の核酸増幅法。
  8. 古細菌DNAポリメラーゼの変異体が、配列番号1または配列番号2において、Y7A/V93K、Y7A/P36HまたはP36Hのいずれかの改変を有する、請求項3〜7のいずれかに記載の核酸増幅法。
  9. ファミリーBに属するDNAポリメラーゼがさらに3’−5’エキソヌクレアーゼ活性領域を構成するアミノ酸のいずれかに、少なくとも1つのアミノ酸の改変を有する、請求項1〜8のいずれかに記載の核酸増幅法。
  10. ファミリーBに属するDNAポリメラーゼの3’−5’エキソヌクレアーゼ活性領域への改変が、配列番号1または配列番号2における、D141、I142、E143、H147、N210及びY311に相当するアミノ酸のいずれかに、少なくとも1つのアミノ酸の改変を有する、請求項1〜9のいずれかに記載の核酸増幅法。
  11. ファミリーBに属するDNAポリメラーゼの3’−5’エキソヌクレアーゼ活性領域への改変が、配列番号1または配列番号2における、D141A/E143A、I142R、H147E、H147D、N210DまたはY311Fのいずれかである請求項1〜10のいずれかに記載の核酸増幅法。
  12. 古細菌DNAポリメラーゼの変異体が、配列番号1または配列番号2において、以下の(1)−(4)のいずれかの改変を有する、請求項3〜11のいずれかに記載の核酸増幅法。
    (1)(A)H147Eと、(B)Y7A/V93K、Y7A/V93R、Y7A/V93Q、Y7A/P36H、Y7A/P36R、P36H/V93K、P36K、P36R、P36H、V93RまたはV93Qのいずれか
    (2)(A)N210Dと、(B)Y7A/V93K、Y7A/P36H、Y7A/P36R、P36K、P36R、P36H、V93Q、V93KまたはV93Rのいずれか
    (3)(A)I142Rと、(B)Y7A/V93K、Y7A/V93R、Y7A/V93Q、Y7A/P36H、Y7A/P36R、P36R、P36H、V93K、V93RまたはV93Qのいずれか
    (4)(A)D141A/E143Aと、(B)Y7A/V93K、Y7A/P36H、Y7A/P36R、P36R、P36HまたはV93Kのいずれか
  13. さらにPCNAを前記反応液に含む請求項1〜12のいずれかに記載の核酸増幅法。
  14. PCNAが単独でDNAにロードする変異体である、請求項1〜13のいずれかに記載の核酸増幅法。
  15. PCNAが、配列番号21または配列番号22で示されるアミノ酸配列の(a)82、84、109番目に相当するアミノ酸からなるN末端領域、および(b)139、143、147番目に相当するアミノ酸からなるC末端領域のうち、少なくともひとつの改変を有する変異体である、請求項1〜14のいずれかに記載の核酸増幅法。
  16. PCNAが配列番号21または配列番号22における143番目に相当するアミノ酸を塩基性アミノ酸に改変したもの、または、82番目と143番目に相当するアミノ酸を共に中性アミノ酸に改変したもの、147番目に相当するアミノ酸を中性アミノ酸に改変したもの、109番目と143番目に相当するアミノ酸を共に中性アミノ酸に改変したもののいずれかの変異体である、請求項1〜15のいずれかに記載の核酸増幅法。
  17. 請求項1〜16のいずれかに記載の核酸増幅法を実行するための試薬。
  18. 請求項1〜16のいずれかに記載の核酸増幅法を実行するための試薬を含むキット。
JP2014061741A 2013-08-06 2014-03-25 核酸増幅法 Active JP6428997B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014061741A JP6428997B2 (ja) 2013-08-06 2014-03-25 核酸増幅法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013162988 2013-08-06
JP2013162988 2013-08-06
JP2014061741A JP6428997B2 (ja) 2013-08-06 2014-03-25 核酸増幅法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017237408A Division JP6648749B2 (ja) 2013-08-06 2017-12-12 核酸増幅法

Publications (2)

Publication Number Publication Date
JP2015050994A true JP2015050994A (ja) 2015-03-19
JP6428997B2 JP6428997B2 (ja) 2018-11-28

Family

ID=52461007

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2014061741A Active JP6428997B2 (ja) 2013-08-06 2014-03-25 核酸増幅法
JP2017237408A Active JP6648749B2 (ja) 2013-08-06 2017-12-12 核酸増幅法
JP2019208737A Pending JP2020036614A (ja) 2013-08-06 2019-11-19 核酸増幅法

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2017237408A Active JP6648749B2 (ja) 2013-08-06 2017-12-12 核酸増幅法
JP2019208737A Pending JP2020036614A (ja) 2013-08-06 2019-11-19 核酸増幅法

Country Status (2)

Country Link
JP (3) JP6428997B2 (ja)
WO (1) WO2015019658A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018085934A (ja) * 2016-11-28 2018-06-07 東洋紡株式会社 核酸増幅用組成物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6428997B2 (ja) * 2013-08-06 2018-11-28 東洋紡株式会社 核酸増幅法
EP3851542A1 (en) * 2020-01-20 2021-07-21 Tecan Genomics, Inc. Depletion of abundant uninformative sequences
CN114381442B (zh) * 2021-12-16 2023-12-01 大连博格林生物科技有限公司 一种可快速延伸的高保真dna聚合酶及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06277062A (ja) * 1992-09-11 1994-10-04 F Hoffmann La Roche Ag 血液試料中の核酸の増幅および検出
JP2002253265A (ja) * 2000-05-11 2002-09-10 Toyobo Co Ltd 改変された耐熱性dnaポリメラーゼ
JP2003284576A (ja) * 2003-03-14 2003-10-07 Toyobo Co Ltd 核酸増幅用dnaポリメラーゼ組成物
JP2004283165A (ja) * 2003-03-04 2004-10-14 Shimadzu Corp Hlaタイピング法
JP2005526510A (ja) * 2002-04-17 2005-09-08 ニューキャッスル アポン タイン大学 古細菌からのdnaポリメラーゼの変異
JP2006507012A (ja) * 2002-10-25 2006-03-02 ストラタジーン カリフォルニア 減少した塩基類似体検出活性を有するdnaポリメラーゼ
WO2007004654A1 (ja) * 2005-07-04 2007-01-11 Celestar Lexico-Sciences, Inc. 変異型pcna
JP2008228589A (ja) * 2007-03-16 2008-10-02 Toppan Printing Co Ltd 核酸の分析方法
JP2014079236A (ja) * 2012-09-28 2014-05-08 Toyobo Co Ltd 改変された耐熱性dnaポリメラーゼ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507986A (ja) * 2008-11-03 2012-04-05 カパバイオシステムズ キメラdnaポリメラーゼ
JP2014061741A (ja) * 2012-09-20 2014-04-10 Kawasaki Heavy Ind Ltd 鞍乗型車両のフレーム構造
JP6428997B2 (ja) * 2013-08-06 2018-11-28 東洋紡株式会社 核酸増幅法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06277062A (ja) * 1992-09-11 1994-10-04 F Hoffmann La Roche Ag 血液試料中の核酸の増幅および検出
JP2002253265A (ja) * 2000-05-11 2002-09-10 Toyobo Co Ltd 改変された耐熱性dnaポリメラーゼ
JP2005526510A (ja) * 2002-04-17 2005-09-08 ニューキャッスル アポン タイン大学 古細菌からのdnaポリメラーゼの変異
JP2006507012A (ja) * 2002-10-25 2006-03-02 ストラタジーン カリフォルニア 減少した塩基類似体検出活性を有するdnaポリメラーゼ
JP2004283165A (ja) * 2003-03-04 2004-10-14 Shimadzu Corp Hlaタイピング法
JP2003284576A (ja) * 2003-03-14 2003-10-07 Toyobo Co Ltd 核酸増幅用dnaポリメラーゼ組成物
WO2007004654A1 (ja) * 2005-07-04 2007-01-11 Celestar Lexico-Sciences, Inc. 変異型pcna
JP2008228589A (ja) * 2007-03-16 2008-10-02 Toppan Printing Co Ltd 核酸の分析方法
JP2014079236A (ja) * 2012-09-28 2014-05-08 Toyobo Co Ltd 改変された耐熱性dnaポリメラーゼ
JP2014079237A (ja) * 2012-09-28 2014-05-08 Toyobo Co Ltd 改変された耐熱性dnaポリメラーゼ
JP2014079235A (ja) * 2012-09-28 2014-05-08 Toyobo Co Ltd 改変された耐熱性dnaポリメラーゼ

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 74, no. 21, JPN6014035282, 2008, pages 6563 - 6569, ISSN: 0003780809 *
JOURNAL OF BACTERIOLOGY, vol. 185, no. 1, JPN6014035288, 2003, pages 210 - 220, ISSN: 0003780812 *
NATURE STRUCTURAL BIOLOGY, vol. 9, no. 12, JPN6014035284, 2002, pages 922 - 927, ISSN: 0003780810 *
PROTEIN ENG. DES. SEL., vol. 23, no. 8, JPN6013054808, 2010, pages 589 - 597, ISSN: 0003780811 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018085934A (ja) * 2016-11-28 2018-06-07 東洋紡株式会社 核酸増幅用組成物

Also Published As

Publication number Publication date
JP6648749B2 (ja) 2020-02-14
JP2020036614A (ja) 2020-03-12
JP2018042567A (ja) 2018-03-22
JP6428997B2 (ja) 2018-11-28
WO2015019658A1 (ja) 2015-02-12

Similar Documents

Publication Publication Date Title
JP6023173B2 (ja) 改良された活性を有するdnaポリメラーゼ
JP6579204B2 (ja) 改変された耐熱性dnaポリメラーゼ
JP2020036614A (ja) 核酸増幅法
JP6658796B2 (ja) 核酸増幅方法
JP7014256B2 (ja) 核酸増幅試薬
JP6741061B2 (ja) 核酸増幅法
KR101230362B1 (ko) 나노아케움 이퀴탄스 dna 중합효소의 단백질 트랜스 스플라이싱을 기반으로 한 핫―스타트 pcr 수행방법
JP7107345B2 (ja) Pcr方法
JP6798594B2 (ja) 核酸増幅の正確性を向上させる方法
JP6699560B2 (ja) Pcna単量体
JP2016119868A (ja) Thermococcuskodakaraensis由来変異型PCNA

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171003

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181016

R151 Written notification of patent or utility model registration

Ref document number: 6428997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350