JP2014523624A - リチウムイオン電池電極フィルムの多孔率の変化を生み出す方法 - Google Patents

リチウムイオン電池電極フィルムの多孔率の変化を生み出す方法 Download PDF

Info

Publication number
JP2014523624A
JP2014523624A JP2014520196A JP2014520196A JP2014523624A JP 2014523624 A JP2014523624 A JP 2014523624A JP 2014520196 A JP2014520196 A JP 2014520196A JP 2014520196 A JP2014520196 A JP 2014520196A JP 2014523624 A JP2014523624 A JP 2014523624A
Authority
JP
Japan
Prior art keywords
active material
porosity
cathode active
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014520196A
Other languages
English (en)
Inventor
カール エム. ブラウン,
ホーマン ボランディ,
ヴィクター ペベニート,
ジョセフ トーマス ホーグ,
コニー ピー. ワン,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2014523624A publication Critical patent/JP2014523624A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

リチウムイオン電池および電池セル構成要素を形成する方法および装置、より詳細には、3次元多孔性構造体を形成する堆積プロセスを使用して該電池および電池セル構成要素を製造するシステムおよび方法が提供される。1つの方法は、対向するワイヤメッシュ構造体間で導電基板をカレンダ加工することによってこの導電基板にテクスチャを付与すること、テクスチャが付与された導電基板の表面に、第1の多孔率を有するカソード活性材料の第1の層を形成すること、および第1の層の上に、第1の多孔率よりも大きい第2の多孔率を有するカソード活性材料の第2の層を形成することを含む。

Description

本発明における米国政府の権利
本発明は、DOEによって授与されたDE−AR0000063の下、米国政府の支援によってなされたものである。米国政府は本発明に関して一定の権利を有する。
本発明の実施形態は一般にリチウムイオン電池および電池セル構成要素に関し、より詳細には、3次元多孔性構造体を形成する機械プロセスおよび堆積プロセスを使用して該電池および電池セル構成要素を製造するシステムおよび方法に関する。
リチウムイオン(Liイオン)電池などの大容量エネルギー貯蔵装置は、携帯型電子機器、医療、輸送、送電網に接続された大規模エネルギー貯蔵、再生可能エネルギーの貯蔵および無停電電源(uninterrutible power supply)(UPS)を含むますます多くの用途で使用されている。
Liイオン電池セル電極を製造する1つの方法は主に、カソードとして活性の材料(以後、カソード活性材料)またはアノードとして活性の材料(以後、アノード活性材料)の粘性粉末スラリ混合物で導電性集電体の表面をスリットコーティング(slit coating)し、続いて長時間加熱して、乾燥したキャストシートを形成し、亀裂を防ぐことに基づく。溶媒を蒸発させる乾燥を実施した後の電極の厚さは最終的に、最終的な層の密度および多孔率を調整する圧縮またはカレンダ加工によって決まる。粘性スラリのスリットコーティングは、スラリの組成、形成および均質化に大きく依存する高度に発展した製造技術である。形成される活性層は、乾燥プロセスの速度および温度詳細に敏感である。
乾燥したキャストシートは金属集電体によく接着しなければならないため、スラリ混合物は通常、接着を促進する結合剤を含む。この活性シートの密度を調整し、さらに、結合した粒子の一部を金属集電体に埋め込む圧縮プロセスによって、結合の程度はさらに増す。
大部分のエネルギー貯蔵用途に関して、エネルギー貯蔵装置の充電時間およびエネルギー容量は重要なパラメータである。さらに、このようなエネルギー貯蔵装置の大きさ、重量および/または費用も重要な仕様である。
より高ローディングの電池を製造するためにはより厚い活性材料層が必要だが、活性材料層が厚くなるにつれ、Liイオンがフィルムを貫いて移動することが困難になり、活性材料の全体的な使用がより非効率になる。
したがって、当技術分野では、より速く充電できるより大容量のエネルギー貯蔵装置であって、より小型、より軽量であり、高い生産速度でより費用効果的に製造することができるエネルギー貯蔵装置が求められている。
本発明の実施形態は一般にリチウムイオン電池および電池セル構成要素に関し、より詳細には、3次元多孔性構造体を形成する堆積プロセスを使用して該電池および電池セル構成要素を製造するシステムおよび方法に関する。一実施形態では、段階的に変化するカソード構造体を形成する方法が提供される。この方法は、対向するワイヤメッシュ構造体間で導電基板をカレンダ加工することによってこの導電基板にテクスチャを付与すること、テクスチャが付与された導電基板の表面に、第1の多孔率を有するカソード活性材料の第1の層を形成すること、および第1の層の上に、第1の多孔率よりも大きい第2の多孔率を有するカソード活性材料の第2の層を形成することを含む。
他の実施形態では、段階的に変化するカソード構造体を形成する方法が提供される。この方法は、ワイヤを含み、これらのワイヤ間に開口が形成されたワイヤメッシュ構造体の表面に、第1の多孔率を有するカソード活性材料を堆積させること、およびワイヤ上のカソード活性材料を圧縮することによって、第2の多孔率を有するカソード活性材料の第1の領域を形成することを含み、開口の中に堆積したカソード活性材料は第1の多孔率を維持し、第1の多孔率は第2の多孔率よりも大きい。
他の実施形態では、段階的に変化するカソード構造体を形成する方法が提供される。この方法は、導電基板の上方に配置されたパターン形成されたマスクの開口を通してカソード活性材料を吹き付けることによって、このカソード活性材料のパターン形成された層を導電基板に形成することを含み、このパターン形成された層は複数のカソード活性フィーチャ(feature)を含み、これらの複数のカソード活性フィーチャは、これらの複数のカソード活性フィーチャ間に配置された1つまたは複数のチャネルを有し、この方法はさらに、カソード活性材料の前記パターン形成された層の上に、前記カソード活性材料のブランケット層を形成すること、および堆積したままの前記パターン形成された層およびブランケット層を圧縮して、ブランケット材料がその上に堆積した前記複数のカソード活性フィーチャを含む複数の第1の領域と、前記カソード活性フィーチャ間に配置された前記1つまたは複数のチャネル内に堆積した前記ブランケット材料を含む1つまたは複数の第2の領域とを形成することを含み、前記複数の第1の領域は第1の平均多孔率を有し、前記1つまたは複数の第2の領域は、前記第1の多孔率よりも大きい第2の平均多孔率を有する。
他の実施形態では、段階的に変化するカソード構造体を形成する方法および装置が提供される。この方法は、導電基板の表面に、第1の多孔率を有するカソード活性材料を堆積させること、およびこのカソード活性材料の領域にパターンを選択的に形成して、パターンが形成されたそれらの領域内において第2の多孔率を達成することを含む。
本発明の上記の特徴を詳細に理解することができるように、そのうちのいくつかが添付図面に示された実施形態を参照することによって、上で簡単に概説した発明のより具体的な説明を得ることができる。しかしながら、添付図面は本発明の典型的な実施形態だけを示したものであり、したがって、添付図面を、本発明の範囲を限定するものと考えるべきではない。等しく有効な別の実施形態を本発明が受け入れる可能性があるためである。
負荷に電気的に接続された、本明細書に記載された実施形態に基づくLiイオン電池セル2重層の一実施形態の略図である。 電極構造体を形成する、本明細書に記載された実施形態に基づく方法の一実施形態の概要を示すプロセス流れ図である。 本明細書に記載された実施形態に基づく電極構造体の一実施形態のさまざまな形成段階における略断面図である。 本明細書に記載された実施形態に基づく電極構造体の一実施形態のさまざまな形成段階における略断面図である。 本明細書に記載された実施形態に基づく電極構造体の一実施形態のさまざまな形成段階における略断面図である。 本明細書に記載された実施形態に基づく電極構造体の一実施形態のさまざまな形成段階における略断面図である。 本明細書に記載された実施形態に基づく他の電極構造体の一実施形態のさまざまな形成段階における略断面図である。 本明細書に記載された実施形態に基づく他の電極構造体の一実施形態のさまざまな形成段階における略断面図である。 本明細書に記載された実施形態に基づく他の電極構造体の一実施形態のさまざまな形成段階における略断面図である。 カレンダ加工プロセスにかける前の、カソード活性材料が表面に堆積した、本明細書に記載された実施形態に基づくメッシュ基板の一実施形態を示すSEM写真である。 カレンダ加工プロセス後の、カソード活性材料が表面に堆積した図5Aのメッシュ基板を示すSEM写真である。 カレンダ加工プロセス後の、カソード活性材料が表面に堆積したメッシュ基板の裏面の一実施形態を示すSEM写真である。 図6Aのメッシュ基板の表(おもて)面を示すSEM写真である。 電極構造体を形成する、本明細書に記載された実施形態に基づく方法の一実施形態の概要を示すプロセス流れ図である。 本明細書に記載された実施形態に基づく電極構造体の一実施形態のさまざまな形成段階における略断面図である。 本明細書に記載された実施形態に基づく電極構造体の一実施形態のさまざまな形成段階における略断面図である。 本明細書に記載された実施形態に基づく電極構造体の一実施形態のさまざまな形成段階における略断面図である。 本明細書に記載された実施形態に基づく電極構造体の一実施形態のさまざまな形成段階における略断面図である。 本明細書に記載された実施形態に基づく電極構造体の一実施形態のさまざまな形成段階における略断面図である。 カレンダ加工プロセス前の堆積したままのカソード活性材料の一実施形態を示すSEM写真である。 カレンダ加工プロセス後の図9Aの堆積したままのカソード活性材料を示すSEM写真である。 電極構造体を形成する、本明細書に記載された実施形態に基づく方法の一実施形態の概要を示すプロセス流れ図である。 本明細書に記載された実施形態に基づく電極構造体のさまざまな形成段階における略断面図である。 本明細書に記載された実施形態に基づく電極構造体のさまざまな形成段階における略断面図である。 本明細書に記載された実施形態に基づく電極構造体のさまざまな形成段階における略断面図である。 本明細書に記載された実施形態に基づく電極構造体のさまざまな形成段階における略断面図である。 本明細書に記載された実施形態に基づく電極構造体のさまざまな形成段階における略断面図である。 本明細書に記載された実施形態に基づく電極構造体のさまざまな形成段階における略断面図である。 本明細書に記載された実施形態に基づく電極構造体のさまざまな形成段階における略断面図である。 本明細書に記載された実施形態に基づく電極構造体のさまざまな形成段階における略断面図である。 本明細書に記載された実施形態に基づく垂直処理システムの一実施形態の略断面図である。 本明細書に記載された実施形態に基づくカソード活性材料堆積チャンバの一実施形態の上から見た略断面図である。 本明細書に記載された実施形態に基づくパターン形成チャンバの一実施形態の上から見た略断面図である。 本明細書に記載された実施形態に基づくカソード活性材料堆積チャンバの一実施形態の上から見た略断面図である。 本明細書に記載された実施形態に基づくパターン形成チャンバの他の実施形態の略断面図である。 電極の表面にセパレータを堆積させる、本明細書に記載された実施形態に基づくプロセスを示す図である。
理解を容易にするため、可能な場合には、複数の図に共通する同一の要素を表すのに同一の参照符号を使用した。特に言及しなくても、1つの実施形態に開示された要素を他の実施形態で有益に利用することが企図される。
本発明の実施形態は一般にリチウムイオン電池および電池セル構成要素に関し、より詳細には、3次元多孔性構造体を形成する機械プロセスおよび堆積プロセスを使用して該電池および電池セル構成要素を製造するシステムおよび方法に関する。
本明細書で使用されるとき、用語カレンダ加工は、堆積させた材料をローラに通し、ローラの下でその材料を、高温、高圧条件で圧縮するプロセスを指す。
Liイオン電池用の現在の電極は、カソード活性材料を堆積させるスリットコーティングプロセス、それに続く低速乾燥プロセス、およびフィルムの多孔率を決める最終的なカレンダステップを使用して製造されている。より高ローディングの電池を製造するためにはより厚い活性材料層が必要だが、この層が厚くなるにつれ、リチウムイオンがフィルムを貫いて移動することが困難になり、そのため活性材料の全体的な効率が低下する。活性材料の多孔率を段階的に変化させることによって、活性材料の全体的な効率を向上させることができると考えられている。さらに一歩進めると、フィルムの下部へのリチウムイオンの迅速な移動を可能にする高多孔率のチャネルが横方向次元において利用可能である場合には、より厚い(したがってより高ローディングの)電極を製造することができ、このような電極は非常に効率的に動作することができる。
ある種の実施形態では、活性材料(例えばニッケル(nickel)−マンガン(manganese)−コバルト(cobalt)酸化物または「NMC」)を、導電性材料(例えばカーボンブラックまたはアセチレンブラック)およびポリマー結合剤と混合して、スラリまたは「ペイント状」材料を形成する。このペイント状材料を、電界吹付け(electro−spraying)によって集電体箔の表面に吹き付けて、ブランケットカソードフィルムを形成することができる。活性材料を堆積させる前にこの集電体にテクスチャを付与して、3次元構造を形成する。
金属メッシュ(例えばステンレス鋼)を使用して、集電体の表面に3次元構造をエンボス加工により形成する。2枚のSSTメッシュ間に集電体(例えば箔)を挟み、それを一組のカレンダローラに通して、集電体の一方の面または両面にメッシュのパターンを刻印する。これによって、ピッチが約50〜100μmのパターンをエンボス加工により集電体に形成し、3次元構造を残すことができる。次いで、吹付けコーティングプロセスを使用して活性材料を堆積させ、続いて任意選択のカレンダ加工を実施する。
あるいは、金属メッシュ集電体(例えばアルミニウムメッシュ)の表面を活性材料で直接に吹付けコーティングしてもよい。この吹付けコーティングプロセスは、金属メッシュの繊維の表面に多孔性フィルムを堆積させることを可能にし、繊維の両面と縁の両方をコーティングする。カレンダプロセスの後、繊維の表面に堆積させた材料は圧縮されているが、繊維の縁のエリアはより高い多孔率を維持する。したがって、多孔率が段階的に変化するフィルムが提供される。
これらの多孔率の比は、電池のターゲット用途に応じて調整することが可能である。任意選択のカレンダ加工プロセスの後、活性材料を再び吹き付けて、パターン形成されたカソードフィルムをさらに厚くし、かつ平坦化することができる。
本明細書に記載された実施形態を実施することができる具体的な装置は限定されないが、Applied Materials,Inc.(米カリフォルニア州Santa Clara)によって販売されているウエブ(web)ベースのロールツーロールシステム(roll−to−roll system)上でそれらの実施形態を実施することが特に有益である。本明細書に記載された実施形態を実施することができる例示的なロールツーロールシステムおよび不連続基板システムが、現在US2010/0126849として公開されている、本発明の譲受人に譲渡されたLopatin他の「APPARATUS AND METHOD FOR FORMING 3D NANOSTRUCTURE ELECTRODE FOR ELECTROCHEMICAL BATTERY AND CAPACITOR」という名称の米国特許出願第12/620,788号(代理人事件整理番号APPM/012922/EES/AEP/ESONG)、現在US2011/0129732として公開されている、本発明の譲受人に譲渡された2010年7月19日出願のBachrach他の「COMPRRESSED POWDER 3D BATTERY ELECTRODE MANUFACTURING」という名称の米国特許出願第12/839,051号(代理人事件整理番号APPM/014080/EES/AEP/ESONG)、および本発明の譲受人に譲渡された2010年9月13日出願のBachrach他の「SPRAY DEPOSITION MODULE FOR AN IN−LINE PROCESSING SYSTEM」という名称の米国特許出願第12/880,564号(代理人事件整理番号APPM/015469/AEP/LES/ESONG)により詳細に記載されている。これらの文献は全て、参照によってその全体が本明細書に組み込まれる。
図1は、負荷101に電気的に接続された、本明細書に記載された一実施形態に基づくLiイオン電池セル2重層100の略図である。Liイオン電池セル2重層100の主な機能構成要素は、アノード構造体102a、102b、カソード構造体103a、103b、セパレータ層104a、104b、および集電体111a、111b、113a、113b間の領域に配置された電解液(図示せず)などである。さまざまな材料、例えば有機溶媒中のリチウム塩を電解液として使用することができる。Liイオン電池セル100は、集電体111a、111b、113aおよび113b用のリード線を有する適当なパッケージの中に、電解液と一緒に気密封止することができる。アノード構造体102a、102b、カソード構造体103a、103bおよび流体透過性のセパレータ層104a、104bは、集電体111aと113aの間に形成された領域および集電体111bと113bの間に形成された領域の電解液の中に浸すことができる。集電体113aと集電体113bの間に絶縁体層115を配置することができる。
アノード構造体102a、102bおよびカソード構造体103a、103bはそれぞれ、Liイオン電池100の半電池の役目を果たし、これらの構造体は全体として、Liイオン電池100の完全な作動2重層セルを形成する。アノード構造体102a、102bはそれぞれ、金属集電体111a、111bと、炭素ベースのインターカレーションホスト材料など、リチウムイオンを保持するための第1の電解液含有材料114(114a、114b)とを含むことができる。同様に、カソード構造体103a、103bはそれぞれ、集電体113aおよび113bと、金属酸化物など、リチウムイオンを保持するための第2の電解液含有多孔性材料112(112a、112b)とを含むことができる。集電体111a、111b、113aおよび113bは、金属などの導電性材料から製作することができる。場合によっては、アノード構造体102a、102bの構成要素とカソード構造体103a、103bの構成要素との間の直接電気接触を防ぐために、流体透過性の絶縁多孔性層、例えば誘電体層であるセパレータ層104(104a、104b)を使用することができる。
Liイオン電池100のカソード側すなわち正電極の電解液含有多孔性材料は、二酸化コバルトリチウム(LiCoO)、二酸化マンガンリチウム(LiMnO)、酸化マンガンコバルトニッケルリチウムなどのリチウム含有金属酸化物を含むことができる。この電解液含有多孔性材料は、酸化コバルトリチウムなどの層状酸化物、リン酸鉄リチウムなどのオリビン(olivine)または酸化マンガンリチウムなどのスピネル(spinel)からなることができる。非リチウム実施形態では、例示的なカソードがTiS(二硫化チタン)からなる。例示的なリチウム含有酸化物は、酸化コバルトリチウム(LiCoO)などの層状酸化物、またはLiNiCo1−2xMnO、LiNi0.5Mn1.5、Li(Ni0.8Co0.15Al0.05)O、LiMnなどの混合金属酸化物である。例示的なリン酸塩は、鉄オリビン(LiFePO)およびその異型(例えばLiFe1−xMgPO)、LiMoPO、LiCoPO、LiNiPO、Li(PO、LiVOPO、LiMPまたはLiFe1.5である。例示的なフルオロリン酸塩は、LiVPOF、LiAlPOF、LiV(PO、LiCr(PO、LiCoPOFまたはLiNiPOFである。例示的なケイ酸塩は、LiFeSiO、LiMnSiOまたはLiVOSiOである。例示的な非リチウム化合物はNa(PO)である。
Liイオン電池100のアノード側すなわち負電極の電解液含有多孔性材料は、ポリマーマトリックス中および/またはさまざまな微細粉末、例えば粒径がマイクロ規模もしくはナノ規模の粉末中に分散させた黒鉛粒子などの材料からなることができる。さらに、黒鉛マイクロビーズと一緒にまたは黒鉛マイクロビーズの代わりに、ケイ素、スズまたはチタン酸リチウム(LiTi12)のマイクロビーズを使用して、導電性コアアノード材料を提供することもできる。図1にはLiイオン電池セル2重層100が示されているが、本明細書に記載された実施形態はLiイオン電池セル2重層構造だけに限定されないことも理解すべきである。アノード構造体およびカソード構造体は直列または並列に接続することができることも理解すべきである。
集電体のテクスチャ付与および吹付け堆積
図2は、電極構造体を形成する、本明細書に記載された実施形態に基づく方法200の一実施形態の概要を示すプロセス流れ図である。この電極構造体は、横方向の多孔率勾配を有するカソード構造体350を含む。カソード構造体350は、図1に示したカソード構造体103a、103bと同様の構造体とすることができる。図3A〜3Dは、さまざまな形成段階におけるこの電極の略断面図である。
ブロック210で、基板310を用意する。基板310は集電体とすることができる。この集電体は、集電体111a、111bと同様の集電体とすることができる。図3Aには、基板310にパターンを形成し、パターン形成された基板の上にカソード活性材料330A、330Bを堆積させる前の基板310が概略的に示されている。一実施形態では、基板310が導電基板(例えば金属箔または金属シート)である。基板310の表面に絶縁コーティングを配置することができる。一実施形態では、基板310が、金属、プラスチック、黒鉛、ポリマー、炭素含有ポリマー、複合材料または他の適当な材料などの1種または数種の導電性材料を含む、ホスト基板の表面に配置された比較的に薄い導電層を含む。基板310を構成することができる金属の例は、アルミニウム(Al)、銅(Cu)、亜鉛(Zn)、ニッケル(Ni)、コバルト(Co)、パラジウム(Pd)、白金(Pt)、スズ(Sn)、ルテニウム(Ru)、ステンレス鋼、これらの合金およびこれらの混合物などである。
あるいは、基板310が、物理的気相堆積(PVD)、電気化学メッキ、無電解メッキなどを含む当技術分野で知られている手段によって表面に導電層が形成されたガラス基板、シリコン基板、プラスチックまたはポリマー基板などの非導電性のホスト基板を含んでもよい。一実施形態では、基板310がフレキシブルホスト基板から形成される。このフレキシブルホスト基板は、ポリエチレン、ポリプロピレンまたは他の適当なプラスチックもしくはポリマー材料などの軽量で安価なプラスチック材料の表面に導電層を形成したものとすることができる。一実施形態では、抵抗損を最小化するため、この導電層の厚さが約10ミクロンから15ミクロンの間である。このようなフレキシブル基板として使用するのに適した材料は、ポリイミド(例えばDuPont CorporationによるKAPTON(商標))、ポリエチレンテレフタレート(PET)、ポリアクリレート、ポリカーボネート、シリコーン、エポキシ樹脂、シリコーン官能化エポキシ樹脂、ポリエステル(例えばE.I.du Pont de Nemours & Co.によるMYLAR(商標))、Kanegaftigi Chemical Industry Company製のAPICAL AV、UBE Industries,Ltd.製のUPILEX;Sumitomo製のポリエーテルスルホン(PES)、ポリエーテルイミド(例えばGeneral Electric CompanyによるULTEM)およびポリエチレンナフタレン(PEN)などである。あるいは、ポリマーコーティングで補強された比較的に薄いガラスからこのフレキシブル基板を構築してもよい。
ある種の実施形態では、基板310が、限定はされないが、アルミニウム、ステンレス鋼、ニッケル、銅およびこれらの混合物を含む前述の導電性材料のうちのいずれかの材料を含む。基板310は、箔、フィルムまたは薄いプレートの形態を有することができる。ある種の実施形態では、基板310の厚さが概ね約1μmから約200μmである。ある種の実施形態では、基板310の厚さが概ね約5μmから約100μmである。ある種の実施形態では、基板310の厚さが概ね約10μmから約20μmである。
ある種の実施形態では、基板310にパターンを形成して3次元構造を形成する。この3次元構造は、例えばナノインプリントリソグラフィプロセスまたはエンボス加工プロセスを使用して形成することができる。
ブロック220で、2つの対向するワイヤメッシュ構造体314Aと314Bの間に基板310を配置する。図3Aに示されているように、この対向するワイヤメッシュ構造体314A、314Bは食い違い配置(staggered configuration)で配置することができる。
ワイヤメッシュ構造体314A、314Bは、アルミニウムおよびアルミニウム合金の中から選択された材料からなることができる。ワイヤメッシュ構造体314A、314Bのワイヤの直径は、約0.050マイクロメートルから約200マイクロメートルの間とすることができる。ワイヤメッシュ構造体314A、314Bのワイヤの直径は、約50マイクロメートルから約100マイクロメートルの間とすることができる。一実施形態では、ワイヤメッシュ構造体314A、314Bが、約5マイクロメートルから約200マイクロメートルの間の開口を有する。一実施形態では、ワイヤメッシュ構造体314A、314Bが、約10マイクロメートルから約100マイクロメートルの間の開口を有する。ワイヤメッシュに関して本明細書で使用されるとき、用語「開口」は、隣接する平行な2本のワイヤ間の距離を指す。このワイヤメッシュ構造体は、プロセスケミストリに適合した任意の材料を含むことができる。例示的な材料は、ステンレス鋼、普通鋼、アルミニウムなどである。
ブロック230で、対向するメッシュ構造体314Aと314Bの間に配置された基板310をカレンダ加工することによって、基板310にテクスチャを付与する。基板310を、対向するメッシュ構造体314A、314Bと一緒に、対向する一対の圧縮部材320Aと320Bの間に通すことができる。対向する一対の圧縮部材320A、320Bは、対向するメッシュ構造体314A、314Bを基板310に押し込んで、図3Bに示されているようなパターン形成された基板を形成する。任意選択で、このエンボス加工プロセス中に、基板310を加熱して基板310の可塑性を増大させてもよい。一実施形態では、このカレンダ加工プロセス中に、圧縮部材320A、320Bを加熱し、それらを使用して基板310を加熱する。カレンダ加工プロセス中に与える温度は、最終的な所望の多孔率に応じて選択、調整することができる。カレンダ加工プロセス中に加える圧力は、最終的な所望の多孔率に応じて選択、調整することができる。
ブロック240で、パターン形成された基板310の表面にカソード活性材料を吹き付けることによって、パターン形成された基板310の表面に、第1の多孔率を有するカソード活性材料の第1の層330A、330Bを形成する。このカソード活性材料は粉末の形態を有することができる。この粉末の形態はカソード活性材料の粒子を含む。例示的なカソード活性材料は、二酸化コバルトリチウム(LiCoO)、二酸化マンガンリチウム(LiMnO)、二硫化チタン(TiS)、LiNiCo1−2xMnO(NMC)、LiMn、鉄オリビン(LiFePO)およびその異型(例えばLiFe1−xMgPO)、LiMoPO、LiCoPO、Li(PO、LiVOPO、LiMP、LiFe1.5、LiVPOF、LiAlPOF、LiV(PO、LiCr(PO、LiCoPOF、LiNiPOF、Na(PO、LiFeSiO、LiMnSiO、LiVOSiOおよびこれらの混合物などである。
この粉末の粒子はナノ規模の粒子とすることができる。このナノ規模の粒子の直径は約1nmから約100nmの間とすることができる。この粉末の粒子はマイクロ規模の粒子とすることができる。この粉末の粒子は、凝集したマイクロ規模の粒子を含むことができる。このマイクロ規模の粒子の直径は約2μmから約15μmの間とすることができる。これらの粒子は一般に、カソード構造体103a、103bの第2の電解液含有材料112a、112bを形成するのに使用する成分を含む。以後、基板の表面に形成されたこの粉末の粒子を含む材料層を、堆積したままの層(as−deposited layer)と呼ぶ。
ある種の実施形態では、カソード活性材料を塗布する前に、カソード活性材料を運搬媒質(carrying medium)と混合する。一例では、この運搬媒質が、処理チャンバに入る前に微粒化された液体である。処理チャンバの壁への付着を減らすため、電気化学的ナノ粒子の周囲に運搬媒質が凝集するように運搬媒質を選択することもできる。適当な液体運搬媒質は、水、およびアルコール、炭化水素などの有機液体などである。アルコールまたは炭化水素は一般に、使用温度で約10cP以下であるなど、適度な微粒化を提供する低い粘度を有する。他の実施形態では、運搬媒質を、ヘリウム、アルゴン、窒素などの気体とすることもできる。ある種の実施形態では、粉末を覆うより厚い被覆を形成するために、より高粘度の運搬媒質を使用することが望ましいことがある。
ある種の実施形態では、この粉末を基板の表面に堆積させる前に、この粉末と基板との結合を促進するために使用する前駆体をこの粉末と混合する。基板の表面に粉末を保持するため、この前駆体は、ポリマーなどの結合剤を含むことができる。この結合剤は一般に、堆積させた層の性能の低下を防ぐある導電率を有する。一実施形態では、この結合剤が、低分子量の炭素含有ポリマーである。基板に対するナノ粒子の接着を促進するため、この低分子量ポリマーの数平均分子量を約10,000未満とすることができる。例示的な結合剤は、限定はされないが、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、水溶性結合剤およびこれらの混合物などである。一実施形態では、結合剤のキャリアとしてN−メチル−2−ピロリドン(NMP)が使用される。
カソード活性材料は、湿式塗布技法または乾式粉末塗布技法によって塗布することができる。例示的な粉末塗布技法は、限定はされないが、静電吹付け技法、溶射またはフレーム溶射技法およびこれらの組合せなどである。使用することができる他の技法は、シフティング(sifting)技法、流動層塗装(fluidized bed coating)技法、スリットコーティング技法、ロール塗布(roll coating)技法およびこれらの技法の組合せなどである。これらの技法は全て当業者に知られている。
静電吹付け法を使用して、パターン形成された基板310の上に粉末を堆積させることができる。静電吹付けは、粉末粒子を帯電させ、次いで、引力を発揮する反対極性の電荷を持つパターン形成された基板310などのコーティングするエリアに向かって、この粉末粒子を吹き付ける。吹付けストリーム中の帯電した粉末がコーティングするエリアの方へ引き寄せられるため、この静電プロセスは、スプレーしぶきおよび廃棄物を最小化するのに役立つ。
溶射またはフレーム溶射技法を使用して、パターン形成された集電体310の上に粉末を堆積させることもできる。溶射技法は、溶融した(または加熱された)材料を表面に吹き付けるコーティングプロセスである。電気的手段(例えばプラズマまたはアーク)または化学的手段(例えば燃焼炎)によって「供給材料」(コーティング前駆体)を加熱する。溶射に使用可能なコーティング材料は、金属、合金、セラミック、プラスチックおよび複合材料などである。このコーティング材料を粉末の形態で供給し、溶融状態または半溶融状態まで加熱し、マイクロメートルサイズの粒子および/またはナノメートルサイズの粒子の形態で基板に向かって加速させる。通常は、燃焼または電気アーク放電が溶射のエネルギー源として使用される。例示的な溶射技法および装置が、現在US2011/0045206として公開されている、本発明の譲受人に譲渡された2010年8月24日出願のShang他の「IN−SITU DEPOSITION OF BATTERY ACTIVE LITHIUM MATERIALS BY THERMAL SPRAYING」という名称の米国特許仮出願第12/862、244号に記載されている。この文献は参照によってその全体が本明細書に組み込まれる。
一実施形態では、電気化学的に活性の材料の層を溶射操作で基板の表面に堆積させる。本明細書に記載された電気化学的に活性の化合物またはそれらの化合物の混合物とすることができるリチウム金属酸化物などの電気化学的に活性の材料の粒子を水スラリ中に含む電気化学堆積前駆体材料を熱エネルギーに当てて、基板の表面に堆積する電気化学的に活性のナノ結晶のストリームを形成する。このスラリを、酸素および水素を含む有機化合物などの炭素含有流体、例えばイソプロピルアルコールと混合して、前駆体混合物を形成することができる。この水運搬媒質に糖を溶かして、前述の混合物に炭素を追加することができる。
この前駆体混合物は、一般式LiNiMnCoの電気化学的に活性の材料を含むことができる。この式で、w、xおよびyはそれぞれ約0.3から1.5の間であり、zは約1.5から2.5の間である。このナノ結晶は、高温気体のストリームと一緒に伴出されて処理チャンバを出る。一実施形態では、このナノ結晶が、約10m/秒から約600m/秒の間の速度、例えば約100m/秒で処理チャンバを出る。このストリームは、長さが約0.1mから1.5mの間、例えば約1mのジェットを形成する。基板は一般に、処理チャンバから約0.1mないし1.5mのところに配置される。
堆積したままで、カソード活性材料の第1の層330A、330Bの「第1の多孔率」または「高多孔率」は、同じ材料から形成された中実のフィルムと比較して少なくとも40%、45%、50%、55%、60%または65%とすることができる。カソード活性材料の第1の層330A、330Bの第1の多孔率または「高多孔率」は、同じ材料から形成された中実のフィルムと比較して最高45%、50%、55%、60%、65%または70%とすることができる。この第1の多孔率は、同じ材料から形成された中実のフィルムと比較して約40%から約70%の間とすることができる。堆積したままの層の多孔率は、さまざまなパラメータを変更することによって制御することができる。例示的なパラメータは、カソード活性材料の粒径、使用する結合剤の量、および/または吹付けプロセスを使用してカソード活性材料を堆積させる場合のカソード活性材料の速度などである。
カソード活性材料の第1の層330A、330Bの「第1の多孔率」または「低多孔率」は、同じ材料から形成された中実のフィルムと比較して少なくとも20%、25%、30%または35%とすることができる。カソード活性材料の第1の層330A、330Bの第1の多孔率または「低多孔率」は、同じ材料から形成された中実のフィルムと比較して最高25%、30%、35%または40%とすることができる。この第1の多孔率は、同じ材料から形成された中実のフィルムと比較して約20%から約40%の間とすることができる。
カソード活性材料の第1の層330A、330Bの平均厚さはそれぞれ、約10μmから約200μmの間とすることができる。一実施形態では、第1の層330A、330Bの平均厚さが約50μmから約100μmの間である。
任意選択のブロック250で、第1の層330A、330Bを圧縮プロセスにかけて、所望の多孔率を達成することができる。例示的な圧縮プロセスは、カレンダ加工プロセス、スタンピングプロセスなどである。第1の層330A、330Bの表面がパターン形成された基板310のパターンをまねるある種の実施形態では、第1の層330A、330Bの表面を平坦化することが望ましいことがある。第1の層330A、330Bの平坦化は、前述の圧縮プロセスおよび/または第1の層330A、330Bの表面への追加のカソード活性材料の堆積のうちの少なくとも一方によって達成することができる。
ブロック260で、第1の層330A、330Bの上に、第2の多孔率を有するカソード活性材料の第2の層340A、340Bを形成して、図3Dに示されているようなカソード構造体350を形成する。第2の層340A、340Bのカソード活性材料は、第1のカソード活性材料と同じ材料とし、または異なる材料とすることができる。
堆積したままで、カソード活性材料の第2の層340A、340Bの「第2の多孔率」または「高多孔率」は、同じ材料から形成された中実のフィルムと比較して少なくとも40%、45%、50%、55%、60%または65%とすることができる。ある種の実施形態では、カソード活性材料の第2の層340A、340Bの第2の多孔率または「高多孔率」が、同じ材料から形成された中実のフィルムと比較して最高45%、50%、55%、60%、65%または70%である。一実施形態では、この第2の多孔率が、同じ材料から形成された中実のフィルムと比較して約40%から約70%の間である。
カソード活性材料の第2の層340A、340Bの「第2の多孔率」または「低多孔率」は、同じ材料から形成された中実のフィルムと比較して少なくとも20%、25%、30%または35%とすることができる。カソード活性材料の第2の層340A、340Bの第2の多孔率または「低多孔率」は、同じ材料から形成された中実のフィルムと比較して最高25%、30%、35%または40%とすることができる。この第2の多孔率は、同じ材料から形成された中実のフィルムと比較して約20%から約40%の間とすることができる。ある種の実施形態では、第2の多孔率が第1の多孔率よりも大きい。ある種の実施形態では、第2の多孔率が第1の多孔率よりも小さい。
カソード活性材料の第2の層340A、340Bの平均厚さはそれぞれ約10μmから約200μmの間とすることができる。一実施形態では、第2の層340A、340Bの平均厚さが約50μmから約100μmの間である。
任意選択のブロック270で、この堆積したままの層を圧縮プロセスにかけて、所望の多孔率を達成することができる。第2の層340A、340Bの表面がパターン形成された基板310のパターンをまねるある種の実施形態では、第2の層340A、340Bの表面を平坦化することが望ましいことがある。第2の層340A、340Bの平坦化は、前述の圧縮プロセスおよび第2の層340A、340Bの表面への追加のカソード活性材料の堆積のうちの少なくとも一方によって達成することができる。
ある種の実施形態では、カソード構造体350の上にセパレータ層(図示せず)を形成する。このセパレータ層は、アノード構造体の構成要素とカソード構造体の構成要素との間の直接電気接触を防ぐ流体透過性の多孔性誘電体層である。このセパレータ層は、カソード構造体350の表面に直接に堆積させることができる。セパレータ層を堆積させる例示的なプロセスは、電界吹付け(electrospraying)プロセス、電界紡糸(electrospinning)プロセスなどである。このセパレータ層を中実のポリマー層とすることができる。セパレータ層を形成する例示的な材料は、ポリオレフィン、ポリプロピレン、ポリエチレンおよびこれらの混合物などである。
図4A〜4Cは、本明細書に記載された実施形態に基づく他の電極構造体のさまざまな形成段階における略断面図である。図4A〜4Cに示された実施形態では、基板がワイヤメッシュ構造体410である。図4Aにはワイヤメッシュ構造体410の断面が示されている。ワイヤメッシュ構造体410は、アルミニウムおよびアルミニウム合金の中から選択された材料からなることができる。ワイヤメッシュ構造体410のワイヤの直径は、約0.050マイクロメートルから約200マイクロメートルの間とすることができる。ワイヤメッシュ構造体410のワイヤの直径は、約50マイクロメートルから約100マイクロメートルの間とすることができる。ワイヤメッシュ構造体410は、約5マイクロメートルから約200マイクロメートルの間の開口を有することができる。ワイヤメッシュ構造体410は、約10マイクロメートルから約100マイクロメートルの間の開口を有することができる。
図4Bに示されているように、ワイヤメッシュ構造体410の表面にカソード活性材料を吹き付けることによって、ワイヤメッシュ構造体410の表面に、第1の多孔率を有するカソード活性材料の第1の層430を形成する。このカソード活性材料は、前述のカソード活性材料を含むことができる。このカソード活性材料は、前述の任意の堆積技法を使用して堆積させることができる。この第1の多孔率は、同じ材料から形成された中実のフィルムと比較して少なくとも40%、45%、50%、55%、60%または65%の「高多孔率」とすることができる。この第1の多孔率は、同じ材料から形成された中実のフィルムと比較して最高45%、50%、55%、60%、65%または70%の「高多孔率」とすることができる。この第1の多孔率は、同じ材料から形成された中実のフィルムと比較して約40%から約70%の間とすることができる。
カソード活性材料の第1の層430を圧縮プロセスにかける。図4Cに示されているように、ワイヤメッシュ構造体410のワイヤの直上に位置するカソード活性材料の領域440を、第1の多孔率よりも小さい第2の多孔率まで圧縮する。ワイヤメッシュ構造体のワイヤとワイヤの間に位置するカソード活性材料の領域450は、堆積したままの多孔率または第1の多孔率を維持する。この第2の多孔率は、同じ材料から形成された中実のフィルムと比較して少なくとも20%、25%、30%または35%の「低多孔率」とすることができる。この第2の多孔率は、同じ材料から形成された中実のフィルムと比較して最高25%、30%、35%または40%の「低多孔率」とすることができる。この第2の多孔率は、同じ材料から形成された中実のフィルムと比較して約20%から約40%である。ある種の実施形態では、第2の多孔率が第1の多孔率よりも小さい。
図5Aは、カレンダ加工プロセスにかける前の、カソード活性材料が表面に堆積した、本明細書に記載された実施形態に基づくメッシュ基板を示すSEM写真である。このカソード活性材料は、乾式吹付けプロセスを使用して堆積させたNMC(ニッケル−マンガン−コバルト)である。図5Bは、カレンダ加工プロセス後の、カソード活性材料が表面に堆積した図5Aのメッシュ基板を示すSEM写真である。カレンダ加工プロセス後、ワイヤの直上のNMC材料の領域は、約60%から約30%に低下した多孔率を示し、一方、カレンダ加工にさらされなかったNMC材料の領域(例えばワイヤ間の開口に堆積した材料)は60%の初期多孔率と同程度の多孔率を維持した。
図6Aは、カレンダ加工プロセス後の、カソード活性材料が表面に堆積したメッシュ基板の裏面を示すSEM写真である。このメッシュ構造体の裏面は、カレンダ加工プロセス後のメッシュの繊維と繊維の間の「高多孔率」多孔性活性材料を示す。
図6Bは、カレンダ加工プロセス後の図6Aのメッシュ基板の表(おもて)面を示すSEM写真である。このメッシュ基板の表(おもて)面は、その下のメッシュ構造体がもはや見えない高密度の低多孔率層を示す。
例:
以下の予言的で非限定的な例は、本明細書に記載された実施形態をさらに示すために提供される。しかしながら、この例が全てを包括するものであることは意図されておらず、この例が、本明細書に記載された実施形態の範囲を限定することも意図されていない。
ニッケル−マンガン−コバルト酸化物または「NMC」を、カーボンブラックまたはアセチレンブラックおよびスチレンブタジエンゴム(「SBR」)と混合して、NMCを91重量%、SBRを3重量%、カーボンブラックを6重量%含むスラリ材料を形成する。このスラリを、電界吹付けによってステンレス鋼ワイヤメッシュの表面に吹き付けて、ブランケットカソードフィルムを形成する。堆積したままで、同じ材料から形成された中実のフィルムと比較すると、このブランケットカソードフィルムは60%の初期多孔率を有する。次いで、このブランケットフィルムをカレンダ加工して、カソードフィルムの選択エリアを局所的に圧縮し、そのエリアの多孔率を低下させる。カレンダ加工プロセス後、ワイヤの直上のNMC材料の領域は、約60%から約30%に低下した多孔率を示し、一方、カレンダ加工にさらされなかったNMC材料の領域(例えばワイヤ間の開口に堆積した材料)は60%の初期多孔率と同程度の多孔率を維持した。
2ステップ堆積プロセスを使用した多孔率の変化
本明細書で使用されるとき、用語カレンダ加工は、堆積させた材料をローラに通し、ローラの下でその材料を、高温、高圧条件で圧縮するプロセスを指す。
Liイオン電池用の現在の電極は、カソード活性材料を堆積させるスリットコーティングプロセス、それに続く低速乾燥プロセス、およびフィルムの多孔率を決める最終的なカレンダステップを使用して製造されている。より高ローディングの電池を製造するためにはより厚い活性材料層が必要だが、この層が厚くなるにつれ、リチウムイオンがフィルムを貫いて移動することが困難になり、そのため活性材料の全体的な効率が低下する。活性材料の多孔率を段階的に変化させることによって、活性材料の全体的な効率を向上させることができると考えられている。さらに一歩進めると、フィルムの下部へのリチウムイオンの迅速な移動を可能にする高多孔率のチャネルが横方向次元において利用可能である場合には、より厚い(したがってより高ローディングの)電極を製造することができ、このような電極は非常に効率的に動作することができる。
図7は、電極構造体を形成する、本明細書に記載された実施形態に基づく方法700の一実施形態の概要を示すプロセス流れ図である。この電極構造体は、横方向の多孔率勾配を有するカソード構造体803を含む。カソード構造体803は、図1に示したカソード構造体103a、103bと同様の構造体とすることができる。図8A〜8Eは、さまざまな形成段階におけるこの電極の略断面図である。
ブロック710で、基板810を用意する。この基板は集電体とすることができる。この集電体は、集電体111a、111bと同様の集電体とすることができる。図8Aには、カソード活性材料を堆積させる前の基板810が概略的に示されている。一実施形態では、基板810が導電基板(例えば金属箔、金属シートおよび金属プレート)である。基板810の表面に絶縁コーティングを配置することができる。一実施形態では、基板810が、金属、プラスチック、黒鉛、ポリマー、炭素含有ポリマー、複合材料または他の適当な材料などの1種または数種の導電性材料を含む、ホスト基板の表面に配置された比較的に薄い導電層を含む。基板810を構成することができる金属の例は、アルミニウム(Al)、銅(Cu)、亜鉛(Zn)、ニッケル(Ni)、コバルト(Co)、パラジウム(Pd)、白金(Pt)、スズ(Sn)、ルテニウム(Ru)、ステンレス鋼、これらの合金およびこれらの混合物などである。一実施形態では、基板810に孔があいている。
あるいは、基板810が、物理的気相堆積(PVD)、電気化学メッキ、無電解メッキなどを含む当技術分野で知られている手段によって表面に導電層が形成されたガラス基板、シリコン基板、プラスチックまたはポリマー基板などの非導電性のホスト基板を含んでもよい。一実施形態では、基板810がフレキシブルホスト基板から形成される。このフレキシブルホスト基板は、ポリエチレン、ポリプロピレンまたは他の適当なプラスチックもしくはポリマー材料などの軽量で安価なプラスチック材料の表面に導電層を形成したものとすることができる。一実施形態では、抵抗損を最小化するため、この導電層の厚さが約10ミクロンから15ミクロンの間である。このようなフレキシブル基板として使用するのに適した材料は、ポリイミド(例えばDuPont CorporationによるKAPTON(商標))、ポリエチレンテレフタレート(PET)、ポリアクリレート、ポリカーボネート、シリコーン、エポキシ樹脂、シリコーン官能化エポキシ樹脂、ポリエステル(例えばE.I.du Pont de Nemours & Co.によるMYLAR(商標))、Kanegaftigi Chemical Industry Company製のAPICAL AV、UBE Industries,Ltd.製のUPILEX;Sumitomo製のポリエーテルスルホン(PES)、ポリエーテルイミド(例えばGeneral Electric CompanyによるULTEM)およびポリエチレンナフタレン(PEN)などである。あるいは、ポリマーコーティングで補強された比較的に薄いガラスからこのフレキシブル基板を構築してもよい。
ある種の実施形態では、基板810が、限定はされないが、アルミニウム、ステンレス鋼、ニッケル、銅およびこれらの混合物を含む前述の導電性材料のうちのいずれかの材料を含む。基板810は、箔、フィルムまたは薄いプレートの形態を有することができる。ある種の実施形態では、基板810の厚さが概ね約1μmから約200μmである。ある種の実施形態では、基板810の厚さが概ね約5μmから約100μmである。ある種の実施形態では、基板810の厚さが概ね約10μmから約20μmである。
ブロック720で、基板810の上に、パターン形成されたマスク820を配置する。このマスクは、薄層状のシャドウマスク、特に金属シートから加工されたシャドウマスクとすることができる。薄層状マスクは、コーティング粒子がマスクを通過し、コーティング粒子が基板の表面に材料のパターンを形成することを可能にするためにいくつかの開口を有する薄い金属マスクシートからなるシャドウマスクである。パターン形成されたマスク820は、プロセスケミストリおよびプロセス条件に適合した1種または数種の任意の材料を含むことができる。
パターン形成されたマスク820はワイヤメッシュ構造体とすることができる。このワイヤメッシュ構造体のワイヤの直径は、約0.050マイクロメートルから約200マイクロメートルの間とすることができる。このワイヤメッシュ構造体のワイヤの直径は、約50マイクロメートルから約100マイクロメートルの間とすることができる。このワイヤメッシュ構造体は、約5マイクロメートルから約200マイクロメートルの間の開口を有することができる。このワイヤメッシュ構造体は、約10マイクロメートルから約100マイクロメートルの間の開口を有することができる。ワイヤメッシュに関して本明細書で使用されるとき、用語「開口」は、隣接する平行な2本のワイヤ間の距離を指す。このワイヤメッシュ構造体は、プロセスケミストリに適合した任意の材料を含むことができる。例示的な材料は、ステンレス鋼、普通鋼、アルミニウムなどである。
ブロック730で、パターン形成されたマスク820の開口を通して基板の表面にカソード活性材料を吹き付けることによって、基板810の表面に、第1の多孔率を有するパターン形成されたカソード活性材料の層830を形成する。このパターン形成された堆積したままの層830は、パターン形成されたマスクのパターンによって決まる周期的な任意のタイプの構造を形成することができる。例示的なパターンは、市松模様パターンおよび反復ドットパターンなどである。
図8Cに示されているように、パターン形成された層830は、チャネル850または一連のチャネルによって分離された一連のカソード活性材料フィーチャ840a〜840dを有する。表面を通してまたは高多孔率の横方向のチャネルを通してリチウムイオンおよび電解液が電極の下部に容易に到達することができるように、これらの活性材料フィーチャの大きさはフィルムの厚さと同等とすべきである。カソード活性材料のパターン形成された層830の平均厚さは、約10μmから約200μmの間とすることができる。一実施形態では、パターン形成された層830の厚さが約50μmから約100μmの間である。このパターン形成された層は、シルクスクリーン印刷技術を含む他の堆積技法を使用して形成することができることも理解すべきである。
このカソード活性材料は粉末の形態を有することができる。この粉末の形態はカソード活性材料の粒子を含む。例示的なカソード活性材料は、二酸化コバルトリチウム(LiCoO)、二酸化マンガンリチウム(LiMnO)、二硫化チタン(TiS)、LiNiCo1−2xMnO(NMC)、LiMn、鉄オリビン(LiFePO)およびその異型(例えばLiFe1−xMgPO)、LiMoPO、LiCoPO、Li(PO、LiVOPO、LiMP、LiFe1.5、LiVPOF、LiAlPOF、LiV(PO、LiCr(PO、LiCoPOF、LiNiPOF、Na(PO、LiFeSiO、LiMnSiO、LiVOSiOおよびこれらの混合物などである。
この粉末の粒子はナノ規模の粒子とすることができる。このナノ規模の粒子の直径は約1nmから約100nmの間である。この粉末の粒子はマイクロ規模の粒子とすることができる。この粉末の粒子は、凝集したマイクロ規模の粒子を含むことができる。このマイクロ規模の粒子の直径は約2μmから約15μmの間とすることができる。これらの粒子は一般に、カソード構造体103a、103bの第2の電解液含有多孔性材料112a、112bを形成するのに使用する成分を含む。以後、基板の表面に形成されたこの粉末の粒子を含む材料層を堆積したままの層と呼ぶ。
ある種の実施形態では、カソード活性材料を塗布する前に、カソード活性材料を運搬媒質と混合する。一例では、この運搬媒質が、処理チャンバに入る前に微粒化された液体である。処理チャンバの壁への付着を減らすため、電気化学的ナノ粒子の周囲に運搬媒質が凝集するように運搬媒質を選択することもできる。適当な液体運搬媒質は、水、およびアルコール、炭化水素などの有機液体などである。アルコールまたは炭化水素は一般に、使用温度で約10cP以下であるなど、適度な微粒化を提供する低い粘度を有する。他の実施形態では、運搬媒質を、ヘリウム、アルゴン、窒素などの気体とすることもできる。ある種の実施形態では、粉末を覆うより厚い被覆を形成するために、より高粘度の運搬媒質を使用することが望ましいことがある。
ある種の実施形態では、この粉末を基板の表面に堆積させる前に、この粉末と基板との結合を促進するために使用する前駆体をこの粉末と混合する。基板の表面に粉末を保持するため、この前駆体は、ポリマーなどの結合剤を含むことができる。この結合剤は一般に、堆積させた層の性能の低下を防ぐある導電率を有する。一実施形態では、この結合剤が、低分子量の炭素含有ポリマーである。基板に対するナノ粒子の接着を促進するため、この低分子量ポリマーの数平均分子量を約10,000未満とすることができる。例示的な結合剤は、限定はされないが、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、水溶性結合剤およびこれらの混合物などである。一実施形態では、結合剤のキャリアとしてN−メチル−2−ピロリドン(NMP)が使用される。
カソード活性材料は、湿式粉末塗布技法または乾式粉末塗布技法によって塗布することができる。例示的な粉末塗布技法は、限定はされないが、静電吹付け技法、溶射またはフレーム溶射技法およびこれらの組合せなどである。使用することができる他の技法は、シフティング技法、流動層塗装技法、スリットコーティング技法、ロール塗布技法およびこれらの技法の組合せなどである。これらの技法は全て当業者に知られている。
静電吹付け法を使用して、パターン形成された基板810の上に粉末を堆積させることができる。静電吹付けは、粉末粒子を帯電させ、次いで、引力を発揮する反対極性の電荷を持つパターン形成された基板810などのコーティングするエリアに向かって、この粉末粒子を吹き付ける。吹付けストリーム中の帯電した粉末がコーティングするエリアの方へ引き寄せられるため、この静電プロセスは、スプレーしぶきおよび廃棄物を最小化するのに役立つ。
溶射またはフレーム溶射技法を使用して、パターン形成された基板810の上に粉末を堆積させることもできる。溶射技法は、溶融した(または加熱された)材料を表面に吹き付けるコーティングプロセスである。電気的手段(例えばプラズマまたはアーク)または化学的手段(例えば燃焼炎)によって「供給材料」(コーティング前駆体)を加熱する。溶射に使用可能なコーティング材料は、金属、合金、セラミック、プラスチックおよび複合材料などである。このコーティング材料を粉末の形態で供給し、溶融状態または半溶融状態まで加熱し、マイクロメートルサイズの粒子および/またはナノメートルサイズの粒子の形態で基板に向かって加速させる。通常は、燃焼または電気アーク放電が溶射のエネルギー源として使用される。例示的な溶射技法および装置が、現在US2011/0045206として公開されている、本発明の譲受人に譲渡された2010年8月24日出願のShang他の「IN−SITU DEPOSITION OF BATTERY ACTIVE LITHIUM MATERIALS BY THERMAL SPRAYING」という名称の米国特許仮出願第12/862、244号に記載されている。この文献は参照によってその全体が本明細書に組み込まれる。
一実施形態では、電気化学的に活性の材料の層を溶射操作で基板の表面に堆積させる。本明細書に記載された電気化学的に活性の化合物またはそれらの化合物の混合物とすることができるリチウム金属酸化物などの電気化学的に活性の材料の粒子を水スラリ中に含む電気化学堆積前駆体材料を熱エネルギーに当てて、基板の表面に堆積する電気化学的に活性のナノ結晶のストリームを形成する。このスラリを、酸素および水素を含む有機化合物などの炭素含有流体、例えばイソプロピルアルコールと混合して、前駆体混合物を形成することができる。この水運搬媒質に糖を溶かして、前述の混合物に炭素を追加することができる。
この前駆体混合物は、一般式LiNiMnCoの電気化学的に活性の材料を含むことができる。この式で、w、xおよびyはそれぞれ約0.3から1.5の間であり、zは約1.5から2.5の間である。このナノ結晶は、高温気体のストリームと一緒に伴出されて処理チャンバを出る。一実施形態では、このナノ結晶が、約10m/秒から約600m/秒の間の速度、例えば約100m/秒で処理チャンバを出る。このストリームは、長さが約0.1mから1.5mの間、例えば約1mのジェットを形成する。基板は一般に、処理チャンバから約0.1mないし1.5mのところに配置される。
カソード活性材料のパターン形成された層830の「第1の多孔率」または「低多孔率」は、同じ材料から形成された中実のフィルムと比較して少なくとも20%、25%、30%または35%とすることができる。カソード活性材料のパターン形成された層830の第1の多孔率または「低多孔率」は、同じ材料から形成された中実のフィルムと比較して最高25%、30%、35%または40%とすることができる。この第1の多孔率は、同じ材料から形成された中実のフィルムと比較して約20%から約40%の間とすることができる。
カソード活性材料のパターン形成された層830の「第1の多孔率」または「高多孔率」は、同じ材料から形成された中実のフィルムと比較して少なくとも40%、45%、50%、55%、60%、65%または70%とすることができる。カソード活性材料のパターン形成された層830の第1の多孔率または「高多孔率」は、同じ材料から形成された中実のフィルムと比較して最高45%、50%、55%、60%、65%、70%または75%とすることができる。この第1の多孔率は、同じ材料から形成された中実のフィルムと比較して約40%から約70%の間とすることができる。
堆積したままの層の多孔率は、さまざまなパラメータを変更することによって制御することができる。例示的なパラメータは、カソード活性材料の粒径、使用する結合剤の量、および/または吹付けプロセスを使用してカソード活性材料を堆積させる場合のカソード活性材料の速度などである。
ブロック740で、パターン形成されたマスクを除去することができる。
任意選択のブロック750で、パターン形成された堆積したままの層830を圧縮プロセスにかけて、所望の多孔率を達成する。この圧縮プロセスを、前述の任意の多孔率につなげることができる。例示的な圧縮プロセスは、カレンダ加工プロセス、スタンピングプロセスなどである。この圧縮プロセス中に、パターン形成された堆積したままの層830を加熱してもよい。カレンダ加工プロセス中に与える温度は、最終的な所望の多孔率に応じて選択、調整することができる。カレンダ加工プロセス中に加える圧力は、最終的な所望の多孔率に応じて選択、調整することができる。
ブロック760で、パターン形成されたカソード活性材料に追加のカソード活性材料を塗布して、パターン形成された層830の上にブランケット層860を形成する。ブランケット層860は、ブロック760のパターン形成された層830と同じカソード活性材料を含むことができる。ブランケット層860は、前述の堆積プロセスを使用して堆積させることができる。ブランケット層860は、第1の多孔率よりも大きい第2の多孔率を有することができる。ブランケット層860の平均厚さは約10μmから約200μmとすることができる。一実施形態では、ブランケット層860の平均厚さが約50μmから約100μmの間である。図8Dに示されているように、ブランケット層860は、カソード活性材料フィーチャ840a〜dを覆うことができ、さらに、カソード活性材料フィーチャ840a〜d間のチャネル850を埋めることができる。ブランケット層860は、その下のカソード活性材料フィーチャ840a〜dのトポグラフィ(topography)をまねることができる。
カソード活性材料のブランケット層860の「第1の多孔率」または「高多孔率」は、同じ材料から形成された中実のフィルムと比較して少なくとも40%、45%、50%、55%、60%、65%または70%とすることができる。カソード活性材料のブランケット層860の第1の多孔率または「高多孔率」は、同じ材料から形成された中実のフィルムと比較して最高45%、50%、55%、60%、65%、70%または75%とすることができる。この第1の多孔率は、同じ材料から形成された中実のフィルムと比較して約40%から約70%の間とすることができる。
ある種の実施形態では、カソード活性材料のブランケット層860の「第1の多孔率」または「低多孔率」が、同じ材料から形成された中実のフィルムと比較して少なくとも20%、25%、30%または35%である。ある種の実施形態では、カソード活性材料のパターン形成された層830の第1の多孔率または「高多孔率」が、同じ材料から形成された中実のフィルムと比較して最高25%、30%、35%または40%である。この第1の多孔率は、同じ材料から形成された中実のフィルムと比較して約20%から約40%の間である。
任意選択のブロック770で、パターン形成された堆積されたままの層830およびその上のブランケット層860を圧縮して、所望の多孔率を達成する。層830および860は、ブロック770で説明した圧縮プロセスを使用して圧縮することができる。この堆積層の圧縮は、低多孔率の領域870a〜870dおよび高多孔率の領域880a〜880eを有する横方向の多孔率勾配の形成につながる。カソード活性フィーチャの上に堆積させたブランケット材料のエリアを圧縮する程度をより大きくして、高多孔率の領域880a〜880eを形成する1つまたは複数のチャネル850の中に堆積したブランケット材料のエリアよりも低多孔率の領域870a〜870dを形成する。
低多孔率の領域870a〜870dの多孔率は、同じ材料から形成された中実のフィルムと比較して少なくとも20%、25%、30%または35%、最高25%、30%、35%または40%とすることができる。高多孔率の領域880a〜880eの多孔率は、同じ材料から形成された中実のフィルムと比較して少なくとも40%、45%、50%、55%、60%、65%または70%、最高45%、50%、55%、60%、65%、70%または75%とすることができる。
図9Aは、カレンダ加工プロセス前の堆積したままのカソード活性材料の一実施形態を示すSEM写真である。図9Aに示されているように、カレンダ加工プロセスの前には電極フィルムの厚さの変化が見て分かる。パターン形成された材料とその上のブランケット材料の両方を含む厚いエリア902が見える。ブランケット材料だけを含む薄いチャネル904も見える。
図9Bは、カレンダ加工プロセス後の図9の堆積したままのカソード活性材料を示すSEM写真である。カレンダ加工プロセス後には、高多孔率のチャネル906と、以前にはパターン形成された材料とその上の材料の両方を含む厚いエリアであった低多孔率の正方形908の両方が見える。
例:
以下の予言的で非限定的な例は、本明細書に記載された実施形態をさらに示すために提供される。しかしながら、この例が全てを包括するものであることは意図されておらず、この例が、本明細書に記載された実施形態の範囲を限定することも意図されていない。
ニッケル−マンガン−コバルト酸化物または「NMC」を、カーボンブラックまたはアセチレンブラックおよびスチレンブタジエンゴム(「SBR」)と混合して、NMCを91重量%、SBRを3重量%、カーボンブラックを6重量%含むスラリ材料を形成する。このスラリを、電界吹付けによって、アルミニウムワイヤメッシュマスクの開口を通してアルミニウム箔基板の表面に吹き付けて、パターン形成された材料を形成する。堆積したままで、同じ材料から形成された中実のフィルムと比較すると、このパターン形成されたフィルムは50%の初期多孔率を有する。次いで、このパターン形成されたフィルムの上にNMCベースのスラリを、電界吹付けによって吹き付けて、ブランケットフィルムを形成する。ブランケットフィルムの初期多孔率は約60%である。パターン形成されたフィルムおよびブランケットフィルムをカレンダ加工して、カソードフィルムの選択エリアを局所的に圧縮し、そのエリアの多孔率を低下させる。カレンダ加工プロセスの後、NMC材料のパターン形成された領域の直上のブランケットNMC材料の領域は約30%の低い多孔率を有し、一方、パターン形成された領域間に堆積したNMC材料(例えばパターン形成された離散領域間のチャネルの中に堆積した材料)の領域は60%の初期多孔率と同程度の多孔率を維持した。
カソード多孔率の3次元横方向変化
Liイオン電池用の現在の電極は、カソード活性材料を堆積させるスリットコーティングプロセス、それに続く低速乾燥プロセス、およびフィルムの多孔率を決める最終的なカレンダステップを使用して製造されている。より高ローディングの電池を製造するためにはより厚い活性材料層が必要だが、この層が厚くなるにつれ、リチウムイオンがフィルムを貫いて移動することが困難になり、そのため活性材料の全体的な効率が低下する。活性材料の多孔率を段階的に変化させることによって、活性材料の全体的な効率を向上させることができると考えられている。さらに一歩進めると、フィルムの下部へのリチウムイオンの迅速な移動を可能にする高多孔率のチャネルが横方向次元において利用可能である場合には、より厚い(したがってより高ローディングの)電極を製造することができ、このような電極は非常に効率的に動作することができる。
ある種の実施形態では、活性材料(例えばニッケル−マンガン−コバルト酸化物または「NMC」)を、導電性材料(例えばカーボンブラックまたはアセチレンブラック)およびポリマー結合剤と混合して、スラリまたは「ペイント状」材料を形成する。このペイント状材料を、電界吹付けによって集電体箔の表面に吹き付けて、ブランケットカソードフィルムを形成することができる。堆積したままで、同じ材料から形成された中実のフィルムと比較すると、このブランケットカソードフィルムは45〜75%の多孔率を有することができる。次いで、このブランケットフィルムにパターンを形成して、カソードフィルムの選択エリアを局所的に圧縮し、そのエリアの多孔率を低下させる。このブランケットフィルムには、静止プレスを使用してパターンを形成することができ、または連続プロセスのために一組のカレンダローラにパターンを刻むこともできる。このパターンの形状はラインまたはドットとすることができる。このパターンのおよその寸法はフィルムの厚さと同等とする(例えば厚さ100ミクロンのカソードフィルムに対してはフィーチャの大きさを100ミクロンにする)ことができる。このパターン形成されたカソードフィルムの圧縮されていないエリアは堆積したままの材料と同じ多孔率を有し、一方、圧縮されたエリアは、同じ材料から形成された中実のフィルムと比較すると約25〜45%の多孔率を有することができ、したがって、高多孔率の領域と低多孔率の領域とを含む横方向の多孔率勾配を生み出すことができる。これらの多孔率の比は、電池のターゲット用途に応じて調整することが可能である。このパターン形成プロセスの後、活性材料を再び吹き付けて、パターン形成されたカソードフィルムをさらに厚くし、かつ平坦化することができる。両面がコーティングされた集電体のそれぞれの面に配置したパターン形成されたダイを用いてこのパターン形成プロセスを実行して、集電体の両面を同時に加工することもできる。
図10は、電極構造体を形成する、本明細書に記載された実施形態基づく方法1000の一実施形態の概要を示すプロセス流れ図である。この電極構造体は、横方向の多孔率勾配を有するカソード構造体1103を含む。カソード構造体1103は、図1に示したカソード構造体103a、103bと同様の構造体とすることができる。図11A〜11Eは、さまざまな形成段階におけるこの電極の略断面図である。
ブロック1010で、基板1110を用意する。この基板は集電体とすることができる。この集電体は、集電体111a、111bと同様の集電体とすることができる。図11Aには、カソード活性材料1120を堆積させる前の基板1110が概略的に示されている。一実施形態では、基板1110が導電基板(例えば金属箔、金属シートまたは金属プレート)である。基板1110の表面に絶縁コーティングを配置することができる。一実施形態では、基板1110が、金属、プラスチック、黒鉛、ポリマー、炭素含有ポリマー、複合材料または他の適当な材料などの1種または数種の導電性材料を含む、ホスト基板の表面に配置された比較的に薄い導電層を含む。基板1110を構成することができる金属の例は、アルミニウム(Al)、銅(Cu)、亜鉛(Zn)、ニッケル(Ni)、コバルト(Co)、パラジウム(Pd)、白金(Pt)、スズ(Sn)、ルテニウム(Ru)、ステンレス鋼、これらの合金およびこれらの混合物などである。一実施形態では、基板1110に孔があいている。
あるいは、基板1110が、物理的気相堆積(PVD)、電気化学メッキ、無電解メッキなどを含む当技術分野で知られている手段によって表面に導電層が形成されたガラス基板、シリコン基板、プラスチックまたはポリマー基板などの非導電性のホスト基板を含んでもよい。一実施形態では、基板1110がフレキシブルホスト基板から形成される。このフレキシブルホスト基板は、ポリエチレン、ポリプロピレンまたは他の適当なプラスチックもしくはポリマー材料などの軽量で安価なプラスチック材料の表面に導電層を形成したものとすることができる。一実施形態では、抵抗損を最小化するため、この導電層の厚さが約10ミクロンから15ミクロンの間である。このようなフレキシブル基板として使用するのに適した材料は、ポリイミド(例えばDuPont CorporationによるKAPTON(商標))、ポリエチレンテレフタレート(PET)、ポリアクリレート、ポリカーボネート、シリコーン、エポキシ樹脂、シリコーン官能化エポキシ樹脂、ポリエステル(例えばE.I.du Pont de Nemours & Co.によるMYLAR(商標))、Kanegaftigi Chemical Industry Company製のAPICAL AV、UBE Industries,Ltd.製のUPILEX;Sumitomo製のポリエーテルスルホン(PES)、ポリエーテルイミド(例えばGeneral Electric CompanyによるULTEM)およびポリエチレンナフタレン(PEN)などである。あるいは、ポリマーコーティングで補強された比較的に薄いガラスからこのフレキシブル基板を構築してもよい。
ある種の実施形態では、基板1110が、限定はされないが、アルミニウム、ステンレス鋼、ニッケル、銅およびこれらの混合物を含む前述の導電性材料のうちのいずれかの材料を含む。基板1110は、箔、フィルムまたは薄いプレートの形態を有することができる。ある種の実施形態では、基板1110の厚さが概ね約1μmから約200μmである。ある種の実施形態では、基板1110の厚さが概ね約5μmから約100μmである。ある種の実施形態では、基板1110の厚さが概ね約10μmから約20μmである。
ある種の実施形態では、基板1110にパターンを形成して3次元構造を形成する。この3次元構造は、例えばナノインプリントリソグラフィプロセスまたはエンボス加工プロセスを使用して形成することができる。
ある種の実施形態では、基板310がワイヤメッシュ構造体を含む。このワイヤメッシュ構造体は、アルミニウムおよびアルミニウム合金の中から選択された材料からなることができる。このワイヤメッシュ構造体のワイヤの直径は、約0.050マイクロメートルから約200マイクロメートルの間とすることができる。このワイヤメッシュ構造体のワイヤの直径は、約0.050マイクロメートルから約200マイクロメートルの間とすることができる。このワイヤメッシュ構造体は、約10マイクロメートルから約100マイクロメートルの間の開口を有することができる。ワイヤメッシュに関して本明細書で使用されるとき、用語「開口」は、隣接する平行な2本のワイヤ間の距離を指す。このワイヤメッシュ構造体は、プロセスケミストリに適合した任意の材料を含むことができる。例示的な材料は、ステンレス鋼、普通鋼、アルミニウムなどである。このワイヤメッシュ構造体を3次元カソード構造体として使用すると、ナノインプリンティングまたはエッチングが不要となるため、ある種の実施形態では、このワイヤメッシュ構造体を3次元カソード構造体として使用することが望ましいことがある。
ブロック1020で、基板1110にカソード活性材料1120を塗布する。このカソード活性材料1120は粉末の形態を有することができる。この粉末の形態はカソード活性材料の粒子を含む。例示的なカソード活性材料は、二酸化コバルトリチウム(LiCoO)、二酸化マンガンリチウム(LiMnO)、二硫化チタン(TiS)、LiNiCo1−2xMnO(NMC)、LiMn、鉄オリビン(LiFePO)およびその異型(例えばLiFe1−xMgPO)、LiMoPO、LiCoPO、Li(PO、LiVOPO、LiMP、LiFe1.5、LiVPOF、LiAlPOF、LiV(PO、LiCr(PO、LiCoPOF、LiNiPOF、Na(PO、LiFeSiO、LiMnSiO、LiVOSiOおよびこれらの混合物などである。
一実施形態では、この粉末の粒子がナノ規模の粒子である。このナノ規模の粒子の直径は約1nmから約100nmの間とすることができる。この粉末の粒子はマイクロ規模の粒子とすることができる。この粉末の粒子は、凝集したマイクロ規模の粒子を含むことができる。このマイクロ規模の粒子の直径は約2μmから約15μmの間とすることができる。これらの粒子は一般に、カソード構造体103a、103bの第2の電解液含有材料112a、112bを形成するのに使用する成分を含む。以後、基板の表面に形成されたこの粉末の粒子を含む材料層を堆積したままの層と呼ぶ。
ある種の実施形態では、カソード活性材料1120を塗布する前に、カソード活性材料1120を運搬媒質と混合する。一例では、この運搬媒質が、処理チャンバに入る前に微粒化された液体である。処理チャンバの壁への付着を減らすため、電気化学的ナノ粒子の周囲に運搬媒質が凝集するように運搬媒質を選択することもできる。適当な液体運搬媒質は、水、およびアルコール、炭化水素などの有機液体などである。アルコールまたは炭化水素は一般に、使用温度で約10cP以下であるなど、適度な微粒化を提供する低い粘度を有する。他の実施形態では、運搬媒質を、ヘリウム、アルゴン、窒素などの気体とすることもできる。ある種の実施形態では、粉末を覆うより厚い被覆を形成するために、より高粘度の運搬媒質を使用することが望ましいことがある。
ある種の実施形態では、この粉末を基板の表面に堆積させる前に、この粉末と基板との結合を促進するために使用する前駆体をこの粉末と混合する。基板の表面に粉末を保持するため、この前駆体は、ポリマーなどの結合剤を含むことができる。この結合剤は一般に、堆積させた層の性能の低下を防ぐある導電率を有する。一実施形態では、この結合剤が、低分子量の炭素含有ポリマーである。基板に対するナノ粒子の接着を促進するため、この低分子量ポリマーの数平均分子量を約10,000未満とすることができる。例示的な結合剤は、限定はされないが、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、水溶性結合剤およびこれらの混合物などである。一実施形態では、結合剤のキャリアとしてN−メチル−2−ピロリドン(NMP)を使用される。
カソード活性材料1120は、湿式塗布技法または乾式粉末塗布技法によって塗布することができる。例示的な粉末塗布技法は、限定はされないが、シフティング技法、静電吹付け技法、溶射またはフレーム溶射技法、流動層塗装技法、スリットコーティング技法、ロール塗布技法およびこれらの技法の組合せなどである。これらの技法は全て当業者に知られている。
静電吹付け法を使用して、基板1110の上に粉末を堆積させることができる。静電吹付けは、粉末粒子を帯電させ、次いで、引力を発揮する反対極性の電荷を持つ基板1110などのコーティングするエリアに向かって、この粉末粒子を吹き付ける。吹付けストリーム中の帯電した粉末がコーティングするエリアの方へ引き寄せられるため、この静電プロセスは、スプレーしぶきおよび廃棄物を最小化するのに役立つ。
流動層塗装法を使用して、基板1110の上に粉末を堆積させることもできる。流動層システムでは、多孔性層またはスクリーンを通して空気を吹き上げて、粉末を浮遊させ、それによって流動層を形成する。コーティングする物品を流動層に挿入して、粉末コーティング粒子を露出面に付着させる。より厚いコーティングを塗布するために流動層中のコーティング粉末を帯電させることもできる。
溶射またはフレーム溶射技法を使用して、基板1110の上に粉末を堆積させることもできる。溶射技法は、溶融した(または加熱された)材料を表面に吹き付けるコーティングプロセスである。電気的手段(例えばプラズマまたはアーク)または化学的手段(例えば燃焼炎)によって「供給材料」(コーティング前駆体)を加熱する。溶射に使用可能なコーティング材料は、金属、合金、セラミック、プラスチックおよび複合材料などである。このコーティング材料を粉末の形態で供給し、溶融状態または半溶融状態まで加熱し、マイクロメートルサイズの粒子の形態で基板に向かって加速させる。通常は、燃焼または電気アーク放電が溶射のエネルギー源として使用される。例示的な溶射技法および装置が、本発明の譲受人に譲渡された2010年8月24日出願のShang他の「IN−SITU DEPOSITION OF BATTERY ACTIVE LITHIUM MATERIALS BY THERMAL SPRAYING」という名称の米国特許仮出願第12/862、244号に記載されている。この文献は参照によってその全体が本明細書に組み込まれる。
一実施形態では、電気化学的に活性の材料の層を溶射操作で基板の表面に堆積させる。本明細書に記載された電気化学的に活性の化合物またはそれらの化合物の混合物とすることができるリチウム金属酸化物などの電気化学的に活性の材料の粒子を水スラリ中に含む電気化学堆積前駆体材料を熱エネルギーに当てて、基板の表面に堆積する電気化学的に活性のナノ結晶のストリームを形成する。このスラリを、酸素および水素を含む有機化合物などの炭素含有流体、例えばイソプロピルアルコールと混合して、前駆体混合物を形成することができる。この水運搬媒質に糖を溶かして、前述の混合物に炭素を追加することができる。
堆積したままで、カソード活性材料1120の「第1の多孔率」または「高多孔率」は、同じ材料から形成された中実のフィルムと比較して少なくとも40%、45%、50%、55%、60%、65%または70%とすることができる。ある種の実施形態では、カソード活性材料の第1の多孔率が、同じ材料から形成された中実のフィルムと比較して最高45%、50%、55%、60%、65%、70%または75%である。一実施形態では、この第1の多孔率が、同じ材料から形成された中実のフィルムと比較して約40%から約75%の間である。堆積したままの層の多孔率は、さまざまなパラメータを変更することによって制御することができる。例示的なパラメータは、カソード活性材料の粒径、使用する結合剤の量、および/または吹付けプロセスを使用してカソード活性材料を堆積させる場合のカソード活性材料の速度などである。
ブロック1030で、カソード活性材料1120にパターンを形成して、カソード構造体1103を形成する。カソード活性材料1120にパターンを形成して、堆積したままのカソード活性材料中に横方向の多孔率勾配を形成する。カソード活性材料1120には、圧縮プロセスを使用してパターンを形成することができる。例示的な圧縮プロセスは、カレンダ加工プロセス、スタンピングプロセスなどである。図11Cに示されているように、カソード活性材料1120を圧縮部材1130にさらして、横方向の多孔率勾配を有する3次元構造を形成する。図11Dに示されているように、圧縮部材1130がフィルムと接触した領域のカソード活性材料1120の多孔率を低下させて、カソード活性材料1120と比較して高い密度および低い多孔率を有する圧縮された第2の領域1150a〜1150fを形成する。その結果、カソード活性材料1120の多孔率は、基板1110の表面を横切って横方向に変化する。
圧縮プロセスの後、カソード活性材料1120は、圧縮されずにカソード活性材料1120の第1の多孔率を維持した一連の第1の領域1160a〜1160fと、高い密度を有する圧縮された一連の第2の領域1150a〜1150fとに分割される。一連の第1の領域1160a〜1160fは、図11Gに示されているような連続領域を形成することができる。ある種の実施形態では、一連の第2の領域1150a〜1150fが連続領域を形成する。圧縮されたままで、第2の領域1150a〜1150fの第2の多孔率または「低多孔率」は、同じ材料から形成された中実のフィルムと比較して少なくとも20%、25%、30%、35%または40%とすることができる。圧縮された第2の領域1150a〜1150fは、同じ材料から形成された中実のフィルムと比較して最高25%、30%、35%、40%または45%の第2の多孔率または「低多孔率」を有する。この第2の多孔率は、同じ材料から形成された中実のフィルムと比較して約20%から約45%の間とすることができる。
図11Fは、本明細書に記載された実施形態に従って形成された図11Dに示したカソード構造体の一実施形態の略上面図である。図11Fに示されたカソード構造体は、高い多孔率を有する第1の領域1160a〜1160fおよび低い多孔率を有する第2の領域1150a〜1150fを表す一連のラインを有する。図11Gは、本明細書に記載された実施形態に従って形成された図11Dに示したカソード構造体の一実施形態の略上面図である。図11Gに示されたカソード構造体は、低多孔率の第2の領域1150a〜1150fおよび高多孔率の第1の領域1160を含む市松模様パターンを有する。図11Gに示されているように、高多孔率の第1の領域1160は連続領域であり、低多孔率の第2の領域1150a〜1150fは離散領域である。高多孔率の領域を離散領域とし、低多孔率の領域を連続領域とすることもできる。図11Fおよび図11Gに示したパターンは単なる例であり、所望の多孔率勾配を達成する任意のパターンを使用することができることを理解すべきである。
ブロック1040で、図11Eに示されているように、パターン形成されたカソード活性材料に追加のカソード活性材料1170を塗布する任意選択のプロセスを実行することができる。追加のカソード活性材料1170を使用してカソード構造体1103の表面を平坦化することができる。追加のカソード活性材料1170はカソード活性材料1120と同じ材料とすることができる。追加のカソード活性材料1170を、カソード活性材料1120とは異なるカソード活性材料とすることもできる。追加のカソード活性材料1170は、前述のプロセスと同じプロセスを使用して堆積させることができる。
湿式粉末塗布技法を使用する実施形態におけるカソード活性材料の乾燥を促進するため、ブロック1050で、任意選択の乾燥プロセスを実行する。使用することができる乾燥プロセスは、限定はされないが、空気乾燥プロセス、赤外線乾燥プロセスまたはマランゴニ(marangoni)乾燥プロセスを含むことができる。ある種の実施形態では、基板の表面に堆積させたときにカソード活性材料を乾燥させる。ある種の実施形態では、加熱された圧縮部材を使用してカソード活性材料にパターンを形成することによって、パターン形成プロセス中にカソード活性材料を乾燥させる。
この任意選択の乾燥プロセスはアニールプロセスを含むことができる。このアニールプロセス中に、基板を、約100℃から約250℃の範囲の温度、例えば約150℃から約190℃の間の温度まで加熱することができる。一般に、O、N、NH、N、NO、NOまたはこれらの混合物などの少なくとも1種のアニールガスを含む雰囲気中で、基板をアニールすることができる。一実施形態では、大気中で基板をアニールする。基板は、約5トルから約100トルの圧力、例えば約50トルの圧力でアニールすることができる。ある種の実施形態では、このアニールプロセスが、多孔性構造体から水分を追い出す働きをする。
図11Hを参照すると、ブロック1060で、カソード構造体1103の上にセパレータ層1180を形成することができる。一実施形態では、セパレータ層1180が、アノード構造体の構成要素とカソード構造体の構成要素との間の直接電気接触を防ぐ流体透過性の多孔性誘電体層である。セパレータ層1180は、カソード構造体1103の表面に直接に堆積させることができる。セパレータ層1180を堆積させる例示的なプロセスは、電界吹付けプロセス、電界紡糸プロセスなどである。セパレータ層1180は中実のポリマー層とすることができる。セパレータ層1180を形成する例示的な材料は、ポリオレフィン、ポリプロピレン、ポリエチレンおよびこれらの混合物などである。
図12Aは、本明細書に記載された実施形態に基づく垂直処理システム1200の一実施形態を概略的に示す。ある種の実施形態では、処理システム1200が、一列に配列された複数の処理チャンバ1210〜1234を備え、それらの処理チャンバがそれぞれ、フレキシブル導電基板1208に対して1つの処理ステップを実行するように構成される。一実施形態では、処理チャンバ1210〜1234が、それぞれのモジュール式処理チャンバが他のモジュール式処理チャンバから構造的に分離された独立型のモジュール式処理チャンバである。したがって、これらの独立型のモジュール式処理チャンバはそれぞれ、互いに影響を及ぼすことなく独立して配列し、配列し直し、交換しまたは保守することができる。ある種の実施形態では、処理チャンバ1210〜1234が、導電フレキシブル基板1208の両面を処理するように構成される。処理システム1200は、垂直に配置された導電フレキシブル基板1208を処理するように構成されているが、別の向きに配置された基板、例えば水平に配置された導電フレキシブル基板を処理するように、処理システム1200を構成することもできる。
一実施形態では、処理システム1200が、第1の状態調節プロセスを実行するように構成された第1の状態調節モジュール1210、例えばフレキシブル導電基板1208が基板パターン形成チャンバ1212に入る前に基板の少なくとも一部分を洗浄するように構成された第1の状態調節モジュール1210を備える。
ある種の実施形態では、微小構造形成プロセスの前にフレキシブル導電基板1208の塑性流れを増大させるために、フレキシブル導電基板1208が基板パターン形成チャンバ1212に入る前に基板を加熱するように、第1の状態調節モジュール1210が構成される。ある種の実施形態では、第1の状態調節モジュール1210が、フレキシブル導電基板1208の一部分を予め濡らしまたはすすぐように構成される。
基板パターン形成チャンバ1212は、活性材料を堆積させる前にフレキシブル導電基板1208にパターンを形成するように構成される。ある種の実施形態では、基板パターン形成チャンバ1212がエンボス加工チャンバである。他の実施形態では、基板パターン形成チャンバ1212がナノインプリンティングチャンバである。
基板パターン形成チャンバ1212がエンボス加工チャンバであるある種の実施形態では、導電フレキシブル基板1208の両面をエンボス加工するようにチャンバを構成することができる。ある種の実施形態では、複数のエンボス加工チャンバが使用される。ある種の実施形態では、これらの複数のエンボス加工チャンバがそれぞれ、導電フレキシブル基板1208の反対側の面をエンボス加工するように構成される。
ある種の実施形態では、処理システム1200がさらに、基板パターン形成チャンバ1212に隣接して配置された第2の状態調節チャンバ1214を備える。一例として、第2の状態調節チャンバ1214は酸化物除去プロセスを実行するように構成される。導電フレキシブル基板1208がアルミニウムを含む実施形態では、第2の状態調節チャンバを、酸化アルミニウム除去プロセスを実行するように構成することができる。
一実施形態では、処理システム1200がさらに、第2の状態調節チャンバ1214の次に配置された第2の基板パターン形成チャンバ1216を備える。一実施形態では、第2の基板パターン形成チャンバ1216が、フレキシブル導電基板1208の追加のパターン形成を実行するように構成される。
一実施形態では、処理システム1200がさらに、すすぎ流体、例えば脱イオン水を使用して、垂直に配置された導電フレキシブル基板1208の部分から残留汚染物質をすすぎ落とし除去するように構成されたすすぎチャンバ1218を備える。一実施形態では、すすぎチャンバ1218に隣接して、エアナイフを備えるチャンバ1220が配置される。
一実施形態では、処理システム1200がさらに活性材料堆積チャンバ1222を備える。ある種の実施形態では、活性材料堆積チャンバ1222が、フレキシブル導電基板1208の上にアノード活性粉末またはカソード活性粉末を堆積させるように構成された第1の吹付けコーティングチャンバである。一実施形態では、活性材料堆積チャンバ1222が、フレキシブル導電基板1208の上に形成された導電性微小構造の上に粉末を堆積させ、続いてその粉末を所望の高さまで圧縮するように構成された吹付けコーティングチャンバである。一実施形態では、粉末の堆積と粉末の圧縮が別々のチャンバで実行される。ある種の実施形態では、この活性材料堆積チャンバがさらに、フレキシブル導電基板1208の表面に活性材料を堆積させた後にその材料を乾燥させるヒータを備える。吹付けコーティングチャンバとして論じたが、活性材料堆積チャンバ1222は、前述の任意の粉末堆積プロセスを実行するように構成することができる。
一実施形態では、処理システム1200がさらに、活性材料堆積チャンバ1222に隣接して配置された乾燥チャンバ1224であって、垂直に配置された導電基板1208をアニールプロセスにかけるように構成された乾燥チャンバ1224を備える。一実施形態では、アニールチャンバ1224が、高速熱アニールプロセスなどの乾燥プロセスを実行するように構成される。
一実施形態では、処理システム1200がさらに、アニールチャンバ1224に隣接して配置された第2の活性材料堆積チャンバ1226を備える。一実施形態では、第2の活性材料堆積チャンバ1226が吹付けコーティングチャンバである。吹付けコーティングチャンバとして論じたが、活性材料堆積チャンバ1222は、前述の任意の粉末堆積プロセスを実行するように構成することができる。一実施形態では、第2の活性材料堆積チャンバ1226が、垂直に配置された導電基板1208の上に結合剤などの添加材を堆積させるように構成される。2パス吹付けコーティングプロセスが使用されるある種の実施形態では、第1のパス中に、垂直に配置された導電基板1208の上に粉末を、例えば静電吹付けプロセスを使用して堆積させるように第1の活性材料堆積チャンバ1222を構成し、第2のパスにおいて、垂直に配置された導電基板1208の上に粉末を、例えば電界吹付けプロセスまたはスリットコーティングプロセスを使用して堆積させるように第2の活性材料堆積チャンバ1226を構成されることができる。
一実施形態では、処理システム1200がさらに、第2の活性材料堆積チャンバ1226に隣接して配置された第1の乾燥チャンバ1228であって、垂直に配置された導電基板1208を乾燥プロセスにかけるように構成された第1の乾燥チャンバ1228を備える。一実施形態では、第1の乾燥チャンバ1228が、空気乾燥プロセス、赤外線乾燥プロセス、マランゴニ乾燥プロセスなどの乾燥プロセスを実行するように構成される。
一実施形態では、処理システム1200がさらに、第1の乾燥チャンバ1228に隣接して配置された圧縮チャンバ1230であって、垂直に配置された導電基板1208をカレンダ加工プロセスにかけて、堆積させた活性材料を圧縮するように構成された圧縮チャンバ1230を備える。一実施形態では、圧縮チャンバ1230が、前述のカレンダ加工プロセスまたはスタンピングプロセスによって粉末を圧縮するように構成される。
一実施形態では、処理システム1200がさらに、圧縮チャンバ1230に隣接して配置された第3の活性材料堆積チャンバ1232を備える。吹付けコーティングチャンバとして論じたが、第3の活性材料堆積チャンバ1232は、前述の任意の粉末堆積プロセスを実行するように構成することができる。一実施形態では、第3の活性材料堆積チャンバ1232が、垂直に配置された導電基板の上にセパレータ層を堆積させるように構成される。
一実施形態では、処理システム1200がさらに、第3の活性材料堆積チャンバ1232に隣接して配置された第2の乾燥チャンバ1234であって、垂直に配置された導電基板1208を乾燥プロセスにさらすように構成された第2の乾燥チャンバ1234を備える。一実施形態では、第2の乾燥チャンバ1234が、空気乾燥プロセス、赤外線乾燥プロセス、マランゴニ乾燥プロセスなどの乾燥プロセスを実行するように構成される。
繰出しロール1240および巻取りロール1242によって、垂直に配置された導電基板1208の部分をそれぞれのチャンバを通して流線形にすることができるように、処理チャンバ1210〜1234は一般に一列に配置される。一実施形態では、処理チャンバ1210〜1234がそれぞれ別個の繰出しロールおよび巻取りロールを有する。一実施形態では、基板の移動中に、繰出しロールと巻取りロールを同時に作動させて、フレキシブル導電基板1208のそれぞれの部分を1チャンバ分、前方へ移動させる。
カソード構造体を形成するある種の実施形態では、チャンバ1214を、酸化アルミニウム除去を実行するように構成されたチャンバに置き換える。カソード構造体を形成するある種の実施形態では、チャンバ1216を、アルミニウム電解エッチングチャンバに置き換える。
ある種の実施形態では、垂直処理システム1200が追加の処理チャンバをさらに備える。この追加の処理チャンバは、電気化学メッキチャンバ、無電解メッキチャンバ、化学気相堆積チャンバ、プラズマ加速化学気相堆積チャンバ、原子層堆積チャンバ、すすぎチャンバ、アニールチャンバ、乾燥チャンバ、吹付けコーティングチャンバおよびこれらのチャンバの組合せを含む処理チャンバのグループの中から選択された1つまたは複数の処理チャンバを含むことができる。このインライン処理システムに追加のチャンバを含めること、またはこのインライン処理システムのチャンバの数を減らすことができることも理解すべきである。さらに、図12Aに示した処理の流れは単なる例であること、および異なる順序で実行される別の処理の流れを実行するために処理チャンバを配列し直すことができることを理解すべきである。
垂直に配置された基板を処理するシステムとして論じたが、異なる向き、例えば水平な向きを有する基板に対して同じプロセスを実行することができることも理解すべきである。本明細書に記載された実施形態と一緒に使用することができる水平処理システムの詳細が、現在US2010−0126849として公開されている、本発明の譲受人に譲渡されたLopatin他の「APPARATUS AND METHOD FOR FORMING 3D NANOSTRUCTURE ELECTRODE FOR ELECTROCHEMICAL BATTERY AND CAPACITOR」という名称の米国特許出願第12/620,788号に開示されており、この文献の図5A〜5C、6A〜6E、7A〜7Cおよび8A〜8Dならびにこれらの図に対応する本文は、参照によって本明細書に組み込まれる。ある種の実施形態では、この垂直に配置された基板が垂直面に対して傾いている。例えば、ある種の実施形態では、この基板を、垂直面から約1度ないし約20度傾ける。
図12Bは、活性材料堆積チャンバ1222の一実施形態の略側面図であり、活性材料堆積チャンバ1222は、活性材料堆積チャンバ1222内でフレキシブル基板1208を平行移動させるように構成されており、フレキシブル基板1208の移動経路を挟んで配置された対向する粉末ディスペンサ1260a、1260bを有する。活性材料堆積チャンバ1222は、湿式または乾式粉末塗布技法を実行するように構成することができる。活性材料堆積チャンバ1222は、限定はされないが、シフティング技法、静電吹付け技法、溶射またはフレーム溶射技法、流動層塗装技法、ロール塗布技法およびこれらの技法の組合せを含む粉末塗布技法を実行するように構成することができる。これらの技法は全て当業者に知られている。
フレキシブル基板1208または基板が、第1の開口1262を通ってこのチャンバに入り、粉末ディスペンサ1260aと1260bの間を移動する。粉末ディスペンサ1260a、1260bは、フレキシブル基板1208の表面の導電性微小構造の上に粉末を堆積させる。粉末ディスペンサ1260aと1260bの間を基板が移動するときに基板を均一にカバーするため、一実施形態では、粉末ディスペンサ1260a、1260bがそれぞれ、フレキシブル導電基板1208の経路を横切る向きに配置された複数の分配ノズルを備える。フレキシブル導電基板1208は、巻取りロールおよび繰出しロール(図示せず)によって移動することができる。ある種の実施形態では、複数のノズルを備える粉末ディスペンサ1260a、1260bなどの粉末ディスペンサが、全てのノズルが直線構成をとるようにまたは都合のよい他の構成をとるように構成される。フレキシブル導電基板1208を完全にカバーするために、フレキシブル導電基板1208を横切ってディスペンサを平行移動させ、同時に活性材料を吹き付けること、もしくはディスペンサ1260aと1260bの間でフレキシブル導電基板1208を平行移動させること、またはその両方を、前述の方法と同様の方法に従って実施することができる。粉末を電界にさらすことが望ましいある種の実施形態では、活性材料堆積チャンバ1222がさらに電源(図示せず)、例えばRF源またはDC源を備える。活性材料で覆われた基板1208は、後続の処理のために第2の開口1266を通って活性材料堆積チャンバ1222を出る。
図12Cは、本明細書に記載された実施形態に基づくパターン形成チャンバ1230の一実施形態の上から見た略断面図である。ある種の実施形態では、活性材料を堆積させた後に、フレキシブル導電基板1208が、第1の開口1250を通ってパターン形成チャンバ1230に入り、パターン形成チャンバ1230内で、一対の圧縮部材1252a、1252b、例えばカレンダロータリプレスを使用する一対の円筒形圧縮ダイによってエンボス加工またはパターン形成される。フレキシブル導電基板1208の表面に堆積した活性材料にパターンを形成するため、フレキシブル導電基板1208は、この一対の圧縮部材1252a、1252bを通して引っ張られる。一実施形態では、巻取りロールおよび繰出しロール(図示せず)によってフレキシブル導電基板1208が移動し、第2の開口1256を通ってパターン形成チャンバ1230を出る。一実施形態では、この圧縮プロセス中に、圧縮部材1252a、1252bが、活性材料とフレキシブル導電基板1208の両方を圧縮する。ある種の実施形態では、パターン形成チャンバ1230がさらに、活性材料を乾燥させるためのヒータ1255a、1255bを備える。ある種の実施形態では、活性材料を圧縮している間に活性材料を乾燥させるため、さらに圧縮部材1252a、1252bがヒータを備える。
一実施形態では、圧縮部材1252aおよび1252bが、彫刻された対をなす2本の硬いロールを含む。圧縮部材1252aおよび1252bは、プロセスケミストリに適合した任意の材料を含むことができる。一実施形態では、圧縮部材1252aおよび1252bがステンレス鋼を含む。ある種の実施形態では、圧縮部材1252aおよび1252bの幅および直径が、フレキシブル導電基板の幅、活性材料の厚さ、所望のパターン深さならびに材料の引張強度および硬さのうちのいずれかによって決定される。
ある種の実施形態では、圧縮部材1252aおよび1252bがそれぞれ雄型および雌型回転ダイ部分を含み、圧縮部材1252aおよび1252bのそれぞれの雄型回転ダイ部分が、フレキシブル導電基板1208の両面に所望のパターンを形成することができるような態様で互いにずらして配置される。圧縮部材1252aおよび1252bは、雄型および雌型回転ダイ部分を含むものとして図示されているが、活性材料に所望のパターンを形成する知られている任意の圧縮装置を本発明の実施形態と一緒に使用することができることを理解すべきである。例えば、ある種の実施形態では、圧縮部材1252aが雄型回転ダイであり、圧縮部材1252bが、対をなす雌型回転ダイである。ある種の実施形態では、圧縮部材1252aが雄型回転ダイを含み、圧縮部材1252bが変形可能な回転ダイを含む。一実施形態では、この変形可能な回転ダイがエラストマ特性を有する。ある種の実施形態では、パターン形成チャンバ1230が数組の圧縮部材を備える。例えば、一実施形態では、パターン形成チャンバ1230内に追加の一組の回転ダイ(図示せず)が含まれる。この追加の一組の雄型および雌型回転ダイは、この追加の一組の回転ダイが、フレキシブル導電基板1208の反対側の面に反対パターンを形成するような態様で、元からある一組の雄型および雌型回転ダイとは逆に配置することができる。
使用するローラダイに応じて、フレキシブル導電基板1208の表面にさまざまな形状のパターンを形成することができることも理解すべきである。例えば、これらのパターンは、鋭い縁を持つ正方形の形状および縁が「丸められた」(鋭い角を持たない湾曲した)形状、例えば半円、円錐および円筒形の形状を含む、所望の形状を有することができる。
図12Dは、本明細書に記載された実施形態に基づくカソード活性材料堆積チャンバ1232の一実施形態の上から見た略断面図である。チャンバ1232は、図12Bに示したチャンバ1222と同様のチャンバである。パターン形成されたカソード活性材料が表面に堆積したフレキシブル導電基板1208は、開口1282を通ってチャンバ232に入り、パターン形成チャンバ1232内を平行移動し、パターン形成されたカソード活性材料の上に追加のカソード活性材料を堆積させ、第2の開口1286を通ってチャンバ1232を出る。
図12Eは、カソード活性材料にパターンを形成する、本明細書に記載された実施形態に基づくパターン形成チャンバ1292の他の実施形態の略断面図である。粉末ディスペンサ1260a、1260bから粉末を堆積させた後、フレキシブル導電基板1208は、第1の開口1293を通ってパターン形成チャンバ1292に入り、そこで、一対のスタンピング部材1294a、1294bによって、堆積させた粉末にパターンを形成する。スタンピング部材1294a、1294bは、堆積したままの粉末と接触し、その粉末を圧縮するように構成されている。フレキシブル導電基板1208は、巻取りロールおよび繰出しロール(図示せず)によって移動することができ、第2の開口1296を通ってパターン形成チャンバ1292を出る。
例:
以下の予言的で非限定的な例は、本明細書に記載された実施形態をさらに示すために提供される。しかしながら、この例が全てを包括するものであることは意図されておらず、この例が、本明細書に記載された実施形態の範囲を限定することも意図されていない。
ニッケル−マンガン−コバルト酸化物または「NMC」を、カーボンブラックまたはアセチレンブラックおよびスチレンブタジエンゴム(「SBR」)と混合して、NMCを91重量%、SBRを3重量%、カーボンブラックを6重量%含むスラリ材料を形成する。このスラリを、電界吹付けによってアルミニウム集電体箔の表面に吹き付けて、ブランケットカソードフィルムを形成する。堆積したままで、同じ材料から形成された中実のフィルムと比較すると、このブランケットカソードフィルムは60%の多孔率を有する。次いで、このブランケットフィルムにパターンを形成して、カソードフィルムの選択エリアを局所的に圧縮し、そのエリアの多孔率を低下させる。このブランケットフィルムに、パターン形成された一組のカレンダローラを使用してパターンを形成する。形成されたパターンは、図11Gに示されているような市松模様の形状を有することができる。このパターン形成されたカソードフィルムの圧縮されていないエリアは堆積したままの材料と同じ多孔率を有し、一方、圧縮されたエリアは、同じ材料から形成された中実のフィルムと比較すると約30%の多孔率を有し、したがって、高多孔率の領域と低多孔率の領域とを含む横方向の多孔率勾配を生み出す。
吹付け有機/無機セパレータ
図13は、電極の表面にセパレータを堆積させる、本明細書に記載された実施形態に基づくプロセスを示す。半乾燥吹付けによって堆積させたセパレータが機能することを証明するため、(74μmのベースラインカソードの表面に)半乾燥吹付けによって堆積させた30μmのポリビニルアルコール(「PVA」)(10重量%溶液)セパレータを使用してコインセルを製作した。最初の観察によれば、電解液は、セパレータおよびその下の電極層を完全に濡らすことができていた。しかしながら、カソードの上にPVAを吹き付けたときに電極の縁が露出したため、最初のサイクル中にセルは短絡した。
この限界を克服するため、マスクを使用して、カソード層の1cmのエリアを個々に吹付けによって形成し、周囲の十分な空間に余分のセパレータ材料を堆積させた。この1cmの電極の上にセパレータを吹き付けた後、>1cmのエリアを切り抜くと、カソードのどのエリアも露出しないことが保証された。図13を参照されたい。このプロセスは、電池の全体の組立てラインにセパレータモジュールを組み込むときに有用であると考えられる。
この方法では、マスクを使用して集電体の表面に所望の電極を堆積させる。1つの例示的なプロセスは1cmの円形電極を含む。図13のブロックAで、1cmの孔1302a〜cを有するマスク1300をカットによって製作する。図13のブロックBで、ドクターブレード、吹付けまたは電極を堆積させる実行可能な任意の方法を含む電極堆積プロセスを使用して、集電体1304の表面に活性材料を、前もってカットしておいたマスクを使用して吹き付ける。所望の電極エリア1306a〜c間には、後に個々の電極にカットするのに十分な空間が残されている。次いで、図13のブロックCで、電極エリア1306a〜c、電極エリア1306a〜cの縁および集電体1304の上にセパレータ材料1310を直接に堆積させて、セパレータで覆われた電極1312a〜1312cを形成する。セパレータを直接に形成する方法は、電界紡糸、吹付け、粉末コーティング、浸漬塗装、ドクターブレード法または実行可能な他の方法を含む。材料は、ポリマー、無機物、ポリマーと無機物の複合材料などである。最後に、この時点で、一体化されたセパレータアセンブリを持つ電極をカットし、または、このアセンブリの上に他の電極を直接に堆積させ、次いでカットすることができる。
図13に記載されたプロセスを使用してコインセルを製作した。(52μmのベースラインカソードの表面に)半乾燥吹付けによって堆積させたPVAセパレータの厚さは28μmであった。縁は露出していなかった。しかしながら、このセルも最初のサイクル中に短絡した。現時点では、半乾燥吹付けポリマーセパレータによる細孔が大きすぎる可能性があることが指摘されているが、明確な結論を得るための追加の試験が進行中である。無機−有機層を半乾燥吹付けによって堆積させ、電界紡糸によって形成した繊維層と結合することが望ましいことがある。電界紡糸によって形成した層は必要な細孔径(下記参照)を提供し、無機層は機械的強度を提供する。
以上は本発明の実施形態を対象としているが、本発明の基本的な範囲を逸脱しない範囲で、本発明の他の追加の実施形態を考案することができる。

Claims (15)

  1. 段階的に変化するカソード構造体を形成する方法であって、
    対向するワイヤメッシュ構造体間で導電基板をカレンダ加工することによって前記導電基板にテクスチャを付与すること、
    テクスチャが付与された前記導電基板の表面に、第1の多孔率を有するカソード活性材料の第1の層を形成すること、および
    前記第1の層の上に、前記第1の多孔率よりも大きい第2の多孔率を有するカソード活性材料の第2の層を形成すること
    を含む方法。
  2. カソード活性材料の前記第2の層を堆積させる前に、カソード活性材料の前記第1の層をカレンダ加工すること、および
    堆積したままのこれらの層をカレンダ加工して所望の多孔率を達成すること
    をさらに含む、請求項1に記載の方法。
  3. 対向するメッシュ構造体間で前記導電基板をカレンダ加工することが、前記導電基板に熱を加えることをさらに含む、請求項2に記載の方法。
  4. テクスチャが付与された前記基板のピッチが約50ミクロンから約100ミクロンの間である、請求項3に記載の方法。
  5. 前記導電基板がアルミニウムを含み、前記第1のカソード活性材料および前記第2のカソード活性材料が、二酸化コバルトリチウム(LiCoO)、二酸化マンガンリチウム(LiMnO)、二硫化チタン(TiS)、LiNiCo1−2xMnO、LiMn、LiFePO、LiFe1−xMgPO、LiMoPO、LiCoPO、Li(PO、LiVOPO、LiMP、LiFe1.5、LiVPOF、LiAlPOF、LiV(PO、LiCr(PO、LiCoPOF、LiNiPOF、Na(PO、LiFeSiO、LiMnSiO、LiVOSiO、LiNiOおよびこれらの混合物を含むグループの中から独立に選択される、請求項1に記載の方法。
  6. 前記第1の多孔率が、同じ材料から形成された中実のフィルムと比較して約20%から約35%の間であり、前記第2の多孔率が、同じ材料から形成された中実のフィルムと比較して約40%から約70%の間である、請求項1に記載の方法。
  7. 第1の多孔性層を堆積させることが、静電吹付けプロセスを実行することを含む、請求項1に記載の方法。
  8. 段階的に変化するカソード構造体を形成する方法であって、
    導電基板の上方に配置されたパターン形成されたマスクの開口を通してカソード活性材料を吹き付けることによって、前記カソード活性材料のパターン形成された層を前記導電基板に形成することと、前記パターン形成された層が複数のカソード活性フィーチャを含み、前記複数のカソード活性フィーチャが、前記複数のカソード活性フィーチャ間に配置された1つまたは複数のチャネルを有し、
    カソード活性材料の前記パターン形成された層の上に、前記カソード活性材料のブランケット層を形成することと、
    堆積したままの前記パターン形成された層およびブランケット層を圧縮して、ブランケット材料がその上に堆積した前記複数のカソード活性フィーチャを含む複数の第1の領域と、前記カソード活性フィーチャ間に配置された前記1つまたは複数のチャネル内に堆積した前記ブランケット材料を含む1つまたは複数の第2の領域とを形成することと
    を含み、前記複数の第1の領域が第1の平均多孔率を有し、前記1つまたは複数の第2の領域が、前記第1の多孔率よりも大きい第2の平均多孔率を有する
    方法。
  9. 前記複数の第1の領域および前記1つまたは複数の第2の領域が、前記導電基板の表面に関して横方向の多孔率勾配を形成する、請求項8に記載の方法。
  10. ブランケット層を形成することが、前記パターン形成された層の上に前記カソード活性材料を吹き付けることを含む、請求項9に記載の方法。
  11. 前記パターン形成されたマスクが、直径が約50マイクロメートルから100マイクロメートルの間のワイヤを有するワイヤメッシュ構造体を含み、前記ワイヤメッシュ構造体が、約5マイクロメートルから約200マイクロメートルの間の開口を有する、請求項10に記載の方法。
  12. 堆積したままの前記パターン形成された層を圧縮することが、堆積したままの前記パターン形成された層およびブランケット層をカレンダ加工することを含む、請求項8に記載の方法。
  13. 前記第1の平均多孔率が、同じ材料から形成された中実のフィルムと比較して約20%から約35%の間であり、前記第2の平均多孔率が、同じ材料から形成された中実のフィルムと比較して約40%から約70%の間である、請求項8に記載の方法。
  14. 前記導電基板がアルミニウムを含み、前記第1のカソード活性材料および前記第2のカソード活性材料がLiNiCo1−2xMnOである、請求項8に記載の方法。
  15. 前記1つまたは複数のチャネルが前記導電基板の表面を露出させる、請求項8に記載の方法。
JP2014520196A 2011-07-12 2012-06-25 リチウムイオン電池電極フィルムの多孔率の変化を生み出す方法 Pending JP2014523624A (ja)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201161507067P 2011-07-12 2011-07-12
US201161507059P 2011-07-12 2011-07-12
US201161507048P 2011-07-12 2011-07-12
US61/507,048 2011-07-12
US61/507,059 2011-07-12
US61/507,067 2011-07-12
US201161508570P 2011-07-15 2011-07-15
US61/508,570 2011-07-15
PCT/US2012/044022 WO2013009457A2 (en) 2011-07-12 2012-06-25 Methods to fabricate variations in porosity of lithium ion battery electrode films

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016225663A Division JP6525944B6 (ja) 2011-07-12 2016-11-21 リチウムイオン電池電極フィルムの多孔率の変化を生み出す方法

Publications (1)

Publication Number Publication Date
JP2014523624A true JP2014523624A (ja) 2014-09-11

Family

ID=47506786

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014520196A Pending JP2014523624A (ja) 2011-07-12 2012-06-25 リチウムイオン電池電極フィルムの多孔率の変化を生み出す方法
JP2016225663A Active JP6525944B6 (ja) 2011-07-12 2016-11-21 リチウムイオン電池電極フィルムの多孔率の変化を生み出す方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016225663A Active JP6525944B6 (ja) 2011-07-12 2016-11-21 リチウムイオン電池電極フィルムの多孔率の変化を生み出す方法

Country Status (6)

Country Link
US (1) US8927068B2 (ja)
JP (2) JP2014523624A (ja)
KR (1) KR101948147B1 (ja)
CN (1) CN103650214B (ja)
TW (1) TWI562439B (ja)
WO (1) WO2013009457A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016079821A1 (ja) * 2014-11-19 2016-05-26 株式会社日立製作所 リチウムイオン電池およびその製造方法
JP2017098235A (ja) * 2015-11-12 2017-06-01 三洋化成工業株式会社 リチウムイオン電池

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110168550A1 (en) * 2010-01-13 2011-07-14 Applied Materials, Inc. Graded electrode technologies for high energy lithium-ion batteries
WO2014149258A1 (en) 2013-03-15 2014-09-25 Applied Materials, Inc. Apparatus and method for tuning a plasma profile using a tuning electrode in a processing chamber
JP2016510941A (ja) * 2013-03-15 2016-04-11 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated より厚い電極製造を可能にするための多層電池電極設計
US20140328729A1 (en) 2013-05-06 2014-11-06 Liang-Yuh Chen Apparatus for Preparing a Material of a Battery Cell
DE102013106114B4 (de) 2013-06-12 2019-05-09 Heraeus Quarzglas Gmbh & Co. Kg Lithium-Ionen-Zelle für eine Sekundärbatterie
TWI570752B (zh) * 2013-12-11 2017-02-11 財團法人工業技術研究院 儲能元件與超級電容器元件
DE102013114233A1 (de) 2013-12-17 2015-06-18 Westfälische Wilhelms-Universität Münster Oberflächenmodifikation einer Lithiummetallelektrode
EP3213361B1 (en) 2014-10-27 2020-10-21 Dragonfly Energy Corp. Processes for the manufacture of conductive particle films for lithium ion batteries and lithium ion batteries
US10332078B2 (en) * 2015-01-07 2019-06-25 Star Micronics Co., Ltd. Electronic receipt issuing system
WO2016125063A1 (en) * 2015-02-03 2016-08-11 Koninklijke Philips N.V. Electronically lockable wearable device
JP6335211B2 (ja) * 2015-05-05 2018-05-30 アイメック・ヴェーゼットウェーImec Vzw 薄膜固体電池の製造方法
CN107615557A (zh) * 2015-05-15 2018-01-19 应用材料公司 制造薄膜电池中的锂沉积工艺中使用的掩蔽装置、用于锂沉积工艺的设备、制造薄膜电池的电极的方法和薄膜电池
KR101937897B1 (ko) 2015-06-12 2019-01-14 주식회사 엘지화학 양극 합제 및 이를 포함하는 이차전지
CN108370025B (zh) 2015-11-16 2023-09-01 氢氦锂有限公司 用于储能,催化,光伏和传感器应用的合成表面官能化酸化金属氧化物材料
US10181617B2 (en) * 2015-12-14 2019-01-15 Johnson Controls Technology Company Patterned crimp for battery collector attachment
US10476080B2 (en) 2016-01-19 2019-11-12 Samsung Electronics Co., Ltd. Electrode containing both anion-absorbing and cation-absorbing active materials
DE102016214010A1 (de) * 2016-07-29 2018-02-01 Bayerische Motoren Werke Aktiengesellschaft Elektrode für sekundäre Energiespeicherzelle und Verfahren zur Herstellung derselben
KR102278443B1 (ko) 2016-08-11 2021-07-16 삼성에스디아이 주식회사 이차 전지
US10847780B2 (en) * 2016-09-16 2020-11-24 Pacesetter, Inc. Battery electrode and methods of making
JP6443421B2 (ja) * 2016-10-12 2018-12-26 トヨタ自動車株式会社 電極の製造方法
WO2018093945A1 (en) 2016-11-15 2018-05-24 Hheli, Llc. A surface-functionalized, acidified metal oxide material in an acidified electrolyte system or an acidified electrode system
US10343552B2 (en) 2017-02-08 2019-07-09 Samsung Electronics Co., Ltd. Heterogeneous electrical energy storage system
WO2018191289A1 (en) 2017-04-10 2018-10-18 HHeLI, LLC Battery with novel components
KR20200004417A (ko) 2017-05-17 2020-01-13 에이치헬리, 엘엘씨 산성화 캐소드와 리튬 애노드를 가진 배터리
KR102420592B1 (ko) * 2017-05-18 2022-07-13 주식회사 엘지에너지솔루션 리튬 이차전지용 음극의 제조방법
US10978731B2 (en) 2017-06-21 2021-04-13 HHeLI, LLC Ultra high capacity performance battery cell
US11165090B2 (en) 2017-09-22 2021-11-02 HHeLI, LLC Construction of ultra high capacity performance battery cells
US20200266418A1 (en) * 2018-03-23 2020-08-20 EnPower, Inc. Gap section multilayer electrode profile
KR102632805B1 (ko) 2018-09-10 2024-02-02 에이치헬리, 엘엘씨 초고용량 성능 배터리 셀의 사용 방법
KR20200030852A (ko) 2018-09-13 2020-03-23 에스케이이노베이션 주식회사 다층 전극 및 이를 포함하는 리튬 이차전지
CN109560249A (zh) * 2018-11-30 2019-04-02 中国科学院过程工程研究所 一种双层结构正极极片、及其制备方法和用途
CN111490225B (zh) * 2019-01-29 2021-10-15 中南大学 一种层级多孔极片及其制备方法和应用
CN117505141A (zh) 2019-05-16 2024-02-06 蜻蜓能源公司 用于电化学电池的干粉涂层的系统和方法
US11376559B2 (en) 2019-06-28 2022-07-05 eJoule, Inc. Processing system and method for producing a particulate material
US11673112B2 (en) 2020-06-28 2023-06-13 eJoule, Inc. System and process with assisted gas flow inside a reaction chamber
US11121354B2 (en) 2019-06-28 2021-09-14 eJoule, Inc. System with power jet modules and method thereof
CN110931728B (zh) * 2019-10-29 2021-06-15 大连博融新材料有限公司 氟磷酸钒锂-磷酸氧钒锂复合正极材料、其制备方法及用途
CN111725479B (zh) * 2020-07-16 2021-08-03 深圳市信宇人科技股份有限公司 锂离子电池极片及其制备方法
US20220069312A1 (en) * 2020-08-26 2022-03-03 GM Global Technology Operations LLC Method and system to create variable densities within battery electrodes
US11688843B2 (en) * 2020-08-31 2023-06-27 GM Global Technology Operations LLC Calendered electrode and method of making same
US11552284B2 (en) * 2020-10-29 2023-01-10 GM Global Technology Operations LLC Battery electrode having network of interconnected high porosity regions and method of manufacturing the same
US20230027323A1 (en) * 2021-07-20 2023-01-26 GM Global Technology Operations LLC Electrode coating using a porous current collector
DE102021212552A1 (de) 2021-11-08 2023-05-11 Volkswagen Aktiengesellschaft Batteriezelle sowie Verfahren zur Herstellung einer solchen Batteriezelle
EP4261912A1 (de) * 2022-04-13 2023-10-18 Blackstone Technology Holding AG Verfahren zur herstellung einer elektrode sowie zugehörige elektrode für einen energiespeicher

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116575A (ja) * 1997-06-23 1999-01-22 Mitsubishi Chem Corp 二次電池用電極材およびそれを用いた二次電池
JP2002151055A (ja) * 2000-08-28 2002-05-24 Nissan Motor Co Ltd リチウムイオン二次電池
JP2007214038A (ja) * 2006-02-10 2007-08-23 Toyota Motor Corp 非水系二次電池、電極、非水系二次電池の製造方法、及び、電極の製造方法
JP2011124028A (ja) * 2009-12-09 2011-06-23 Hitachi Zosen Corp 全固体リチウムイオン二次電池の製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1091553A (zh) * 1992-11-20 1994-08-31 国家标准公司 电池电极的基质及其制造方法
CN1180250A (zh) * 1996-08-27 1998-04-29 纽约州立大学研究基金会 基于聚偏氟乙烯和碳混合物的气体扩散电极
US6566004B1 (en) * 2000-08-31 2003-05-20 General Motors Corporation Fuel cell with variable porosity gas distribution layers
AU2002241629A1 (en) * 2000-10-20 2002-06-03 Massachusetts Institute Of Technology Reticulated and controlled porosity battery structures
US7662265B2 (en) * 2000-10-20 2010-02-16 Massachusetts Institute Of Technology Electrophoretic assembly of electrochemical devices
CA2455819C (en) 2001-07-27 2013-07-23 Massachusetts Institute Of Technology Battery structures, self-organizing structures and related methods
US20040053100A1 (en) * 2002-09-12 2004-03-18 Stanley Kevin G. Method of fabricating fuel cells and membrane electrode assemblies
EP1652246B1 (en) * 2003-07-31 2016-10-12 Nissan Motor Company Limited Secondary cell electrode and fabrication method, and secondary cell, complex cell, and vehicle
US20050064291A1 (en) 2003-09-18 2005-03-24 Matsushita Electric Industrial Co., Ltd. Battery and non-aqueous electrolyte secondary battery using the same
JP2005116509A (ja) 2003-09-18 2005-04-28 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極とこれを用いた非水電解質二次電池
GB2412484B (en) * 2004-07-27 2006-03-22 Intellikraft Ltd Improvements relating to electrode structures in batteries
JP4625926B2 (ja) * 2005-03-18 2011-02-02 独立行政法人産業技術総合研究所 リチウムイオン二次電池用電極材料及びその製造方法並びに二次電池
JP2007095541A (ja) * 2005-09-29 2007-04-12 Toshiba Corp 燃料電池
US20100261049A1 (en) * 2009-04-13 2010-10-14 Applied Materials, Inc. high power, high energy and large area energy storage devices
US9209464B2 (en) 2009-09-24 2015-12-08 Corning Incorporated Current collectors having textured coating
US20110129732A1 (en) 2009-12-01 2011-06-02 Applied Materials, Inc. Compressed powder 3d battery electrode manufacturing
US20110168550A1 (en) 2010-01-13 2011-07-14 Applied Materials, Inc. Graded electrode technologies for high energy lithium-ion batteries
JP2011175739A (ja) * 2010-02-23 2011-09-08 Hitachi Ltd リチウム二次電池及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116575A (ja) * 1997-06-23 1999-01-22 Mitsubishi Chem Corp 二次電池用電極材およびそれを用いた二次電池
JP2002151055A (ja) * 2000-08-28 2002-05-24 Nissan Motor Co Ltd リチウムイオン二次電池
JP2007214038A (ja) * 2006-02-10 2007-08-23 Toyota Motor Corp 非水系二次電池、電極、非水系二次電池の製造方法、及び、電極の製造方法
JP2011124028A (ja) * 2009-12-09 2011-06-23 Hitachi Zosen Corp 全固体リチウムイオン二次電池の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016079821A1 (ja) * 2014-11-19 2016-05-26 株式会社日立製作所 リチウムイオン電池およびその製造方法
JP2017098235A (ja) * 2015-11-12 2017-06-01 三洋化成工業株式会社 リチウムイオン電池

Also Published As

Publication number Publication date
KR101948147B1 (ko) 2019-02-14
US8927068B2 (en) 2015-01-06
US20130017340A1 (en) 2013-01-17
CN103650214B (zh) 2016-04-20
TW201312837A (zh) 2013-03-16
JP6525944B6 (ja) 2019-06-26
JP6525944B2 (ja) 2019-06-05
CN103650214A (zh) 2014-03-19
KR20140057265A (ko) 2014-05-12
JP2017084793A (ja) 2017-05-18
WO2013009457A2 (en) 2013-01-17
TWI562439B (en) 2016-12-11
WO2013009457A3 (en) 2013-04-25

Similar Documents

Publication Publication Date Title
JP6525944B6 (ja) リチウムイオン電池電極フィルムの多孔率の変化を生み出す方法
KR101728875B1 (ko) 압축된 파우더 3차원 배터리 전극 제조
TWI518972B (zh) 用於高能量鋰離子電池的分段電極技術
US9871240B2 (en) Electrospinning for integrated separator for lithium-ion batteries
US20120219841A1 (en) Lithium ion cell design apparatus and method
JP6120092B2 (ja) 大容量プリズムリチウムイオン合金アノードの製造
US20130189577A1 (en) Apparatus and method for hot coating electrodes of lithium-ion batteries
US20110217585A1 (en) Integrated composite separator for lithium-ion batteries
KR101808204B1 (ko) 인-라인 프로세싱 시스템을 위한 분사 증착 모듈
JP2016510939A (ja) リチウムイオン電池の吹付けコーティングプロセスのための電極表面粗さ制御
Clara et al. c12) Patent Application Publication
Pebenito et al. c12) Patent Application Publication

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170207