JP2014198502A - 倒立振子型車両 - Google Patents

倒立振子型車両 Download PDF

Info

Publication number
JP2014198502A
JP2014198502A JP2013074052A JP2013074052A JP2014198502A JP 2014198502 A JP2014198502 A JP 2014198502A JP 2013074052 A JP2013074052 A JP 2013074052A JP 2013074052 A JP2013074052 A JP 2013074052A JP 2014198502 A JP2014198502 A JP 2014198502A
Authority
JP
Japan
Prior art keywords
vehicle
speed
center
gravity
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013074052A
Other languages
English (en)
Other versions
JP6081270B2 (ja
Inventor
長谷川 誠
Makoto Hasegawa
誠 長谷川
慎一郎 小橋
Shinichiro Kobashi
慎一郎 小橋
信也 城倉
Shinya Jokura
信也 城倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2013074052A priority Critical patent/JP6081270B2/ja
Priority to EP14161451.1A priority patent/EP2783963B1/en
Priority to US14/225,471 priority patent/US9367066B2/en
Publication of JP2014198502A publication Critical patent/JP2014198502A/ja
Application granted granted Critical
Publication of JP6081270B2 publication Critical patent/JP6081270B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62HCYCLE STANDS; SUPPORTS OR HOLDERS FOR PARKING OR STORING CYCLES; APPLIANCES PREVENTING OR INDICATING UNAUTHORIZED USE OR THEFT OF CYCLES; LOCKS INTEGRAL WITH CYCLES; DEVICES FOR LEARNING TO RIDE CYCLES
    • B62H1/00Supports or stands forming part of or attached to cycles
    • B62H1/10Supports or stands forming part of or attached to cycles involving means providing for a stabilised ride
    • B62H1/12Supports or stands forming part of or attached to cycles involving means providing for a stabilised ride using additional wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
    • B62K11/007Automatic balancing machines with single main ground engaging wheel or coaxial wheels supporting a rider
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/12Bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • B60L2240/20Acceleration angular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/22Yaw angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/26Vehicle weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/34Stabilising upright position of vehicles, e.g. of single axle vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • B62J45/415Inclination sensors
    • B62J45/4152Inclination sensors for sensing longitudinal inclination of the cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K1/00Unicycles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Motorcycle And Bicycle Frame (AREA)

Abstract

【課題】使用者の車両操縦意図と車両動作態様との乖離の解消を図りうる倒立振子型車両を提供する。
【解決手段】基体2が第1指定方向に傾動した場合、当該傾動量に応じて算定される重心ずれ補正量Vdep_x(二点鎖線参照)により、Vofs_x(一点鎖線参照)が補正される(実線参照)。基体2の第1指定方向への傾動量が大きくなるほど、第2指定方向に対するVdep_xが増加するように決定される(図10(a)二点鎖線(t=t0〜t1)参照)。基体2の第1指定方向への傾動によって決定されるVdep_xが閾値以下に制御されている(図10(b)二点鎖線(t=t2〜t4)参照)。
【選択図】 図10

Description

本発明は、床面上を全方位に移動可能に構成されている倒立振子型車両に関する。
車両の並進速度指令に対してリミット処理を施すことにより、当該並進速度の増大を抑制する技術が提案されている(特許文献1参照)。
特開2011−063183号公報
しかし、車両の動作をフィードバック制御する際のゲインの値によっては、車両の並進速度をリミット範囲内に収めることができず、使用者が予期せぬ形態で車両が並進等する可能性がある。
そこで、本発明は、使用者の車両操縦意図と車両動作態様との乖離の解消を図りうる倒立振子型車両を提供することを目的とする。
本発明は、床面上を全方位に移動可能に構成されている移動動作部と、前記移動動作部を駆動するアクチュエータ装置と、前記移動動作部および前記アクチュエータ装置が組み付けられた基体と、鉛直方向に対して傾動自在に前記基体に組み付けられた乗員搭乗部と、前記乗員搭乗部の傾動状態を検知する傾動状態検知部と、前記傾動状態検知部による前記乗員搭乗部の傾動状態の検知結果に基づいて前記アクチュエータ装置の動作を制御するように構成されている制御装置と、を備えている倒立振子型車両(以下、単に「車両」という場合がある。)に関する。
本発明の車両は、前記制御装置が、前記乗員搭乗部の第1指定方向への傾動態様に基づいて定まる速度で、前記車両が前記第1指定方向の反対方向である第2指定方向に並進するように前記アクチュエータ装置の動作を制御するよう構成されていることを特徴とする。
本発明の車両によれば、乗員搭乗部の第1指定方向への傾動態様に基づいて定まる速度で車両を第1指定方向とは反対方向である第2指定方向への並進速度を重畳させることができる。第1指定方向が乗員の後ろ方向である場合には、後ろ方向に体重移動がされている場合には、倒立振子型車両では乗員の位置を現在の位置にバランスを取ろうとして、車両自体を第1指定方向に並進することにより前傾させるため、結果としてそのまま後方に並進してしまうことがある。しかるに、第1指定方向への速度に基づいて第2指定方向への速度成分を重畳させることができるため、第1指定方向へ移動する成分と第2指定方向に移動する成分とが相殺されることにより、そのままの状態で車両を維持させることが期待できるという効果を奏する。
本発明の車両において、前記制御装置が、前記乗員搭乗部の傾動態様に基づいて前記乗員搭乗部の傾動方向への前記車両の基本並進指令値を決定し、前記乗員搭乗部の前記第1指定方向への傾動態様に基づいて前記車両の前記第2指定方向への並進指令補正量を決定し、かつ、前記基本並進指令値を前記並進指令補正量に応じて補正した結果に基づき、前記車両の並進速度を決定するように構成されていることが好ましい。
当該構成の車両によれば、第1指定方向への傾動態様に応じて第2指定方向への並進指令補正量を決定し、かつ、前記基本指令地を前記並進指令補正量に応じて補正した結果に基づいて車両の並進速度を決定しているので、より一層、車両の傾動状態に対応したリミット制御(後方移動の場合には、そのままの位置にいつづけることができる)が可能となる。
本発明の車両において、前記制御装置が、前記乗員搭乗部の前記第1指定方向への傾動量が多くなるほど、前記第2指定方向に対する前記車両の並進指令補正量が連続的または断続的に増加するように当該並進指令補正量を決定するよう構成されていることが好ましい。
当該構成の車両によれば、第1指定方向への傾動量が大きくなるほど、第2指定方向に対する並進指令補正量を連続的または断続的に増加するようにしているので、第1指定方向への傾斜状態が大きくなったとしても、その態様を考慮して第2指定方向に対する速度を重畳させることができるので、そのままの位置に居つづけることを期待することができるという効果を奏する。
本発明の車両において、前記制御装置が、前記乗員搭乗部の前記第1指定方向への傾動量に対する、前記第2指定方向に対する前記車両の並進指令補正量の増加率が減少するように当該並進指令補正量を決定するよう構成されていることが好ましい。
当該構成の車両によれば、乗員搭乗部が第1指定方向に傾動している間、並進指令補正量が徐々に増加するものの、当該増加率の減少によって当該並進指令補正量が過大になる事態が回避される。このため、乗員搭乗部の傾動方向が第1指定方向から第2指定方向に転じた際、並進指令補正量が過大であるために車両が使用者の予期せぬほど高速で第2指定方向に並進することが防止または抑制されうる。
本発明の車両において、前記制御装置が、前記乗員搭乗部の前記第1指定方向への傾動終了後、前記第2指定方向に対する前記車両の並進指令補正量が減少するように当該並進指令補正量を決定するよう構成されていることが好ましい。
当該構成の車両によれば、乗員搭乗部の傾動方向が第1指定方向から第2指定方向等の他の方向に転じた後、当該傾動方向転換時に残存する並進指令補正量の低減の迅速化が図られる。その結果、乗員搭乗部の傾動態様に応じた使用者の意図に合致する車両の動作態様が迅速に実現されうる。
本発明の車両において、前記制御装置が、前記乗員搭乗部の前記第1指定方向への傾動終了後、前記車両の動作態様に基づいて前記並進指令補正量の減少率を調節するよう構成されていることが好ましい。
当該構成の車両によれば、乗員搭乗部の傾動方向が第1指定方向から第2指定方向等の他の方向に転じた後、当該傾動方向転換時に残存する並進指令補正量の低減態様が、車両の動作態様に応じて調節される。その結果、車両の動作態様に鑑みて並進指令補正量が、車両の並進速度の決定に対して不適当な形態で影響を及ぼす事態が回避され、車両の動作態様と使用者の意図との整合が図られうる。
本発明の車両において、前記制御装置が、前記乗員搭乗部の前記第1指定方向への傾動終了後、前記車両の並進速度または旋回速度が高くなるほど断続的または連続的に前記並進指令補正量の減少率が高くなるように当該減少率を調節するよう構成されていることが好ましい。
当該構成の車両によれば、車両が使用者の意図に合致した態様で動作している蓋然性が高いにもかかわらず、当該使用者の車両操縦意図に鑑みて、並進指令補正量が車両の動作態様に対して影響する事態が回避されうる。
本発明の車両において、前記制御装置が、前記第2指定方向に対する前記車両の並進指令補正量が閾値以下になるように当該並進指令補正量を決定するよう構成されていることが好ましい。
当該構成の車両によれば、乗員搭乗部の傾動態様に鑑みて使用者が第1指定方向に車両を並進させることを意図している蓋然性が高いにもかかわらず、第1指定方向への基本並進指令値が過度に補正されることが回避されるので、当該並進が許容されうる。
本発明の車両において、前記制御装置が、前記基本並進指令値を前記並進指令補正量に応じて補正した結果を、不感帯を有する多段リミット処理することによって前記車両の並進速度を決定するように構成されていることが好ましい。
当該構成の車両によれば、基本並進指令値が並進指令補正量に応じて補正された結果が不安定になり、車両の予期せぬ形態での並進を招来する事態がより確実に回避されうる。
本発明の第1実施形態の倒立振子型車両の外観斜視図。 第1実施形態の倒立振子型車両の側面図。 第1実施形態の倒立振子型車両の制御のための構成を示すブロック図。 図3に示す第1制御処理部の処理を示すブロック線図。 図3に示す第1制御処理部の処理に用いる倒立振子モデルを説明するための図。 図5の倒立振子モデルに関する挙動を示すブロック線図。 図4に示す重心ずれ推定部の処理を示すブロック線図。 図3に示す第2制御処理部の処理を示すブロック線図。 図9(a)は本発明の第2実施形態における第2制御処理部の要部の処理を示すブロック線図。図9(b)は本発明の第3実施形態における第2制御処理部の要部の処理を示すブロック線図。 図10(a)は重心目標速度決定処理の第1実施例に関する説明図。図10(b)は重心目標速度決定処理の第2実施例に関する説明図。 図11(a)は車両動作の第1実施例に関する説明図。図11(b)は車両動作の第2実施例に関する説明図。
[第1実施形態]
本発明の第1実施形態を図1〜図8、図10および図11を参照して説明する。図1および図2に示すように本実施形態の倒立振子型車両1は、基体2と、床面上を移動可能な第1の移動動作部3および第2の移動動作部4と、乗員が搭乗する乗員搭乗部5とを備える。
第1の移動動作部3は、図2に示す円環状の芯体6(以下、環状芯体6という)と、この環状芯体6の円周方向(軸心回り方向)に等角度間隔で並ぶようにして該環状芯体6に装着された複数の円環状のローラ7とを備える。各ローラ7は、その回転軸心を環状芯体6の円周方向に向けて環状芯体6に外挿されている。そして、各ローラ7は、環状芯体6の軸心回りに該環状芯体6と一体に回転可能とされていると共に、該環状芯体6の横断面の中心軸(環状芯体6の軸心を中心とする円周軸)回りに回転可能とされている。
これらの環状芯体6および複数のローラ7を有する第1の移動動作部3は、環状芯体6の軸心を床面と平行に向けた状態で、ローラ7(環状芯体6の下部に位置するローラ7)を介して床面上に接地される。この接地状態で、環状芯体6をその軸心回りに回転駆動することで、環状芯体6および各ローラ7の全体が輪転し、それにより第1の移動動作部3が環状芯体6の軸心と直交する方向に床面上を移動するようになっている。また、接地状態で、各ローラ7をその回転軸心回りに回転駆動することで、第1の移動動作部3が、環状芯体6の軸心方向に移動するようになっている。
さらに、環状芯体6の回転駆動と各ローラ7の回転駆動とを行なうことで、環状芯体6の軸心と直交する方向と、環状芯体6の軸心方向とに対して傾斜した方向に第1の移動動作部3が移動するようになっている。
これにより、第1の移動動作部3は、床面上を全方向に移動することが可能となっている。以降の説明では、図1および図2に示す如く、第1の移動動作部3の移動方向のうち、環状芯体6の軸心と直交する方向をX軸方向、該環状芯体6の軸心方向をY軸方向とし、鉛直方向をZ軸方向とする。なお、前方向をX軸の正方向、左方向をY軸の正方向、上方向をZ軸の正方向とする。
基体2には、第1の移動動作部3が組み付けられている。より詳しくは、基体2は、床面に接地させた第1の移動動作部3の下部を除く部分の周囲を覆うように設けられている。そして、この基体2に第1の移動動作部3の環状芯体6が、その軸心回りに回転自在に支持されている。
この場合、基体2は、第1の移動動作部3の環状芯体6の軸心を支点として、その軸心回りに(Y軸回りに)傾動自在とされていると共に、第1の移動動作部3と共に床面に対して傾くことで、第1の移動動作部3の接地部を支点として、環状芯体6の軸心と直交するX軸回りに傾動自在とされている。したがって、基体2は、鉛直方向に対して2軸回りに傾動自在とされている。
また、基体2の内部には、図2に示す如く、第1の移動動作部3を移動させる駆動力を発生する第1のアクチュエータ装置8が搭載されている。この第1のアクチュエータ装置8は、環状芯体6を回転駆動するアクチュエータとしての電動モータ8aと、各ローラ7を回転駆動するアクチュエータとしての電動モータ8bとから構成される。そして、電動モータ8a,8bは、それぞれ図示を省略する動力伝達機構を介して環状芯体6、各ローラ7に回転駆動力を付与するようにしている。なお、該動力伝達機構は公知の構造のものでよい。
第1の移動動作部3は、上記の構造と異なる構造のものであってもよい。たとえば、第1の移動動作部3およびその駆動系の構造として、PCT国際公開公報WO/2008/132778、あるいは、PCT国際公開公報WO/2008/132779にて本願出願人が提案した構造のものを採用してもよい。
また、基体2には、乗員搭乗部5が組み付けられている。この乗員搭乗部5は、乗員が着座するシートにより構成されており、その基体2の上端部に固定されている。そして、乗員は、その前後方向をX軸方向、左右方向をY軸方向に向けて、乗員搭乗部5に着座することが可能となっている。また、乗員搭乗部5(シート)は、基体2に固定されているので、基体2と一体に鉛直方向に対して傾動自在とされている。すなわち、乗員搭乗部5の傾斜状態または(ヨー軸回りの)回転状態および基体2の傾斜状態または回転状態が同等のものとして測定される。
第1の移動動作部3および基体2がX軸線およびY軸線回りに傾動しない(ピッチ方向およびロール方向の姿勢がほぼ一定に維持される)ように構成されていてもよい。この場合、乗員搭乗部5が基体2に対してボールジョイント等を介して傾動自在または回動自在に支持されるように構成されていてもよい。すなわち、乗員搭乗部5の傾斜状態または回転状態が、基体2の傾斜状態または回転状態とは別個のものとして測定される。
基体2には、さらに乗員搭乗部5に着座した乗員がその足を載せる一対の足載せ部9,9と、該乗員が把持する一対の把持部10,10とが組み付けられている。
足載せ部9,9は、基体2の両側部の下部に突設されている。なお、図1および図2では、一方側(右側)の足載せ部9の図示は省略されている。
また、把持部10,10は、乗員搭乗部5の両側にX軸方向(前後方向)に延在して配置されたバー状のものであり、それぞれ、基体2から延設されたロッド11を介して基体2に固定されている。そして、把持部10,10のうちの一方の把持部10(図では右側の把持部10)には、操作器としてのジョイスティック12が取り付けられている。
ジョイスティック12は、前後方向(X軸方向)および左右方向(Y軸方向)に揺動操作可能とされている。そして、ジョイスティック12は、その前後方向(X軸方向)の揺動量およびその揺動の向き(前向きまたは後向き)を示す操作信号を、車両1を前方または後方に移動させる前進・後進指令として出力し、左右方向(Y軸方向)の揺動量およびその揺動の向き(右向きまたは左向き)を示す操作信号を、車両1を左右方向に移動させる横移動指令として出力する。
第2の移動動作部4は、本実施形態では、所謂、オムニホイールにより構成されている。第2の移動動作部4としてのオムニホイールは、同軸心の一対の環状芯体(図示省略)と、各環状芯体に、回転軸心を該環状芯体の円周方向に向けて回転自在に外挿された複数の樽状のローラ13とを備える公知の構造のものである。
この場合、第2の移動動作部4は、その一対の環状芯体の軸心をX軸方向(前後方向)に向けて第1の移動動作部3の後方に配置され、ローラ13を介して床面に接地されている。
一対の環状芯体の一方側のローラ13と、他方側のローラ13とは、該環状芯体の周方向に位相をずらして配置されており、該一対の環状芯体の回転時に、該一対の環状芯体の一方側のローラ13と、他方側のローラ13とのうちのいずれか一方が床面に接地するようになっている。
オムニホイールにより構成された第2の移動動作部4は、基体2に連結されている。より詳しくは、第2の移動動作部4は、オムニホイール(一対の環状芯体および複数のローラ13の全体)の上部側の部分を覆う筐体14を備えており、この筐体14にオムニホイールの一対の環状芯体がその軸心回りに回転自在に軸支されている。さらに、筐体14から基体2側に延設されたアーム15が、前記第1の移動動作部3の環状芯体6の軸心回りに揺動し得るように基体2に軸支されている。これにより、第2の移動動作部4が、アーム15を介して基体2に連結されている。
そして、第2の移動動作部4は、アーム15の揺動によって前記第1の移動動作部3の環状芯体6の軸心回りに基体2に対して揺動自在とされ、これにより、第1の移動動作部3と第2の移動動作部4との両方を接地させたまま、乗員搭乗部5を基体2と共にY軸回りに傾動させることが可能となっている。
アーム15を第1の移動動作部3の環状芯体6の軸心部に軸支して、第1の移動動作部3に第2の移動動作部4を、アーム15を介して連結するようにしてもよい。
また、基体2には、アーム15の揺動範囲を制限する一対のストッパ16,16が設けられており、当該アーム15は、ストッパ16,16の間の範囲内で揺動することが可能となっている。これにより、第1の移動動作部3の環状芯体6の軸心回りでの第2の移動動作部4の揺動範囲、ひいては、基体2および乗員搭乗部5のX軸回りの傾動範囲が制限され、該基体2および乗員搭乗部5が乗員の後ろ側に過大に傾くのが防止されるようになっている。
第2の移動動作部4は、床面に押し付けられるようにバネにより付勢されていてもよい。
上記の如く第2の移動動作部4は、その一対の環状芯体の回転と、ローラ13の回転とのうちの一方または両方を行なうことで、第1の移動動作部3と同様に、床面上をX軸方向およびY軸方向を含む全方向に移動することが可能となっている。詳しくは、環状芯体の回転によって、第2の移動動作部4がY軸方向(左右方向)に移動可能とされ、ローラ13の回転によって、X軸方向(前後方向)に移動可能とされている。
また、第2の移動動作部4の筐体14には、第2の移動動作部4を駆動する第2のアクチュエータ装置としての電動モータ17を取り付けられている。この電動モータ17は、第2の移動動作部4の一対の環状芯体を回転駆動するように該一対の環状芯体に連結されている。
したがって、本実施形態では、第2の移動動作部4のX軸方向での移動は、第1の移動動作部3のX軸方向での移動に追従して従動的に行なわれ、第2の移動動作部4のY軸方向での移動は、電動モータ17により第2の移動動作部4の一対の環状芯体を回転駆動することで行なわれるようになっている。
補足すると、第2の移動動作部4は、第1の移動動作部3と同様の構造のものであってもよい。
以上が本実施形態における車両1の機構的な構成である。
図1および図2での図示は省略したが、本実施形態の車両1の基体2には、該車両1の動作制御(第1の移動動作部3および第2の移動動作部4の動作制御)のための構成として、図3に示す如く、CPU、RAM、ROM等を含む電子回路ユニットにより構成された制御装置21と、鉛直方向に対する乗員搭乗部5の傾斜角度(基体2の傾斜角度)を計測するための傾斜センサ22と、車両1のヨー軸回りの角速度を計測するためのヨーレートセンサ23とが搭載されている。
そして、制御装置21には、ジョイスティック12の出力と、傾斜センサ22およびヨーレートセンサ23の検出信号とが入力されるようになっている。入力信号は、制御装置21を構成する記憶装置にデータとして保存される。記憶装置による保存データは蓄積されてもよいが、入力があるたびに更新または上書きされてもよい。
制御装置21は、「傾斜状態検知部」を構成する傾斜センサ22の出力信号により表わされる基体2の傾斜状態の検知結果に応じて車両1のアクチュエータ装置8a、8bおよび17の動作を制御するように構成されている。
制御装置21が所定の演算処理を実行するように「構成されている」とは、制御装置21を構成する一または複数のCPU等の演算処理装置が、ROMまたはRAM等の記憶装置から必要なアプリケーションソフトウェアおよび必要なデータを読み取った上で、当該読み取りソフトウェアにしたがって当該所定の演算処理を実行するまたは必要な信号を出力するように「プログラムされていること」または「デザインされていること」を意味する。
なお、制御装置21は、相互に通信可能な複数の電子回路ユニットに構成されていてもよい。
傾斜センサ22は、たとえば加速度センサとジャイロセンサ等の角速度センサとにより構成される。そして、制御装置21は、これらの加速度センサおよび角速度センサの検出信号から、乗員搭乗部5の傾斜角度(換言すれば基体2の傾斜角度)の計測値を公知の手法を用いて取得する。その手法としては、たとえば特許4181113号記載の手法を採用することができる。
なお、本実施形態における乗員搭乗部5の傾斜角度(または基体2の傾斜角度)というのは、より詳しくは、車両1と、その乗員搭乗部5に既定の姿勢(標準姿勢)で搭乗した乗員とを併せた全体の重心が、第1の移動動作部3の接地部の直上(鉛直方向上方)に位置する状態での乗員搭乗部5(または基体2)の姿勢を基準(ゼロ)とする傾斜角度(X軸回り方向の傾斜角度とY軸回り方向の傾斜角度との組)である。
また、ヨーレートセンサ23は、ジャイロセンサ等の角速度センサにより構成される。そして、制御装置21は、その検出信号に基づいて、車両1のヨー軸回りの角速度の計測値を取得する。
また、制御装置21は、実装されるプログラム等により実現される機能(ソフトウェアにより実現される機能)またはハードウェアにより構成される機能として、上記の如く計測値を取得する機能の他、第1のアクチュエータ装置8を構成する電動モータ8a,8bを制御することで第1の移動動作部3の移動動作を制御する第1制御処理部24と、第2のアクチュエータ装置としての電動モータ17を制御することで第2の移動動作部4の移動動作を制御する第2制御処理部25と備える。
第1制御処理部24は、後述する演算処理を実行することで、第1の移動動作部3の移動速度(詳しくは、X軸方向の並進速度とY軸方向の並進速度との組)の目標値である第1目標速度を逐次算出し、第1の移動動作部3の実際の移動速度を、第1目標速度に一致させるように電動モータ8a,8bの回転速度を制御する。
この場合、電動モータ8a,8bのそれぞれの回転速度と、第1の移動動作部3の実際の移動速度との間の関係はあらかじめ定められており、第1の移動動作部3の第1目標速度に応じて、各電動モータ8a,8bの回転速度の目標値が規定されるようになっている。そして、電動モータ8a,8bの回転速度を第1目標速度に応じて規定される目標値にフィードバック制御することで、第1の移動動作部3の実際の移動速度が、第1目標速度に制御される。
第2制御処理部25は、後述する演算処理を実行することで、第2の移動動作部4の移動速度(詳しくは、Y軸方向の並進速度)の目標値である第2目標速度を逐次算出し、Y軸方向での第2の移動動作部4の実際の移動速度を、第2目標速度に一致させるように電動モータ17の回転速度を制御する。
この場合、第1の移動動作部3の場合と同様に、電動モータ17の回転速度と、Y軸方向での第2の移動動作部4の実際の移動速度との間の関係はあらかじめ定められており、第2の移動動作部4の第2目標速度に応じて、電動モータ17の回転速度の目標値が規定されるようになっている。そして、電動モータ17の回転速度を第2目標速度に応じて規定される目標値にフィードバック制御することで、Y軸方向での第2の移動動作部4の実際の移動速度が、第2目標速度に制御される。
補足すると、本実施形態では、第2の移動動作部4のX軸方向での移動は、第1の移動動作部3のX軸方向の移動に追従して従動的に行なわれる。このため、X軸方向での第2の移動動作部4の移動速度の目標値を設定する必要はない。
次に、第1制御処理部24および第2制御処理部25の処理をさらに詳細に説明する。まず、図4〜図7を参照して第1制御処理部24の処理を説明する。
第1制御処理部24は、図4に示すように、その主要な機能部として、ジョイスティック12から入力される指令(旋回指令および前進・後進指令)を車両1のX軸方向(前後方向)およびY軸方向(左右方向)の速度指令に変換する操作指令変換部31と、車両1とその乗員搭乗部5に搭乗した乗員とを併せた全体の重心(以降、車両系全体重心という)の目標速度を決定する重心目標速度決定部32と、車両系全体重心の速度を推定する重心速度推定部33と、推定した車両系全体重心の速度を目標速度に追従させつつ、乗員搭乗部5の姿勢(基体2の姿勢)を制御するように第1の移動動作部3の移動速度の目標値を決定する姿勢制御演算部34とを備える。そして、第1制御処理部24は、これらの各機能部の処理を、制御装置21の所定の演算処理周期で実行する。
なお、本実施形態では、車両系全体重心というのは、車両1の代表点の一例としての意味を持つものである。したがって、車両系全体重心の速度というのは、車両1の代表点の移動速度を意味するものである。
ここで、第1制御処理部24の各機能部の処理を具体的に説明する前に、その処理の基礎となる事項を説明しておく。車両系全体重心の動力学的な挙動(詳しくは、Y軸方向から見た挙動と、X軸方向から見た挙動)は、近似的に、図5に示すような倒立振子モデルの挙動により表現される。第1制御処理部24の処理のアルゴリズムは、この挙動を基礎として構築されている。
なお、図5の参照符号を含めて、以降の説明では、添え字“_x”はY軸方向から見た場合の変数等の参照符号を意味し、添え字“_y”はX軸方向から見た場合の変数等の参照符号を意味する。また、図5では、Y軸方向から見た場合の倒立振子モデルと、X軸方向から見た場合の倒立振子モデルとを併せて図示するために、Y軸方向から見た場合の変数の参照符号に括弧を付さないものとし、X軸方向から見た場合の変数の参照符号に括弧を付している。
Y軸方向から見た車両系全体重心の挙動を表す倒立振子モデルは、Y軸方向と平行な回転軸心を有して床面上を輪転自在な仮想的な車輪61_x(以降、仮想車輪61_xという)と、該仮想車輪61_xの回転中心から延設されて、該仮想車輪61_xの回転軸回りに(Y軸回り方向に)揺動自在なロッド62_xと、このロッド62_xの先端部(上端部)である基準部Ps_xに連結された質点Ga_xとを備える。
この倒立振子モデルでは、質点Ga_xの運動が、Y軸方向から見た車両系全体重心の運動に相当し、鉛直方向に対するロッド62_xの傾斜角度θb_x(Y軸回り方向の傾斜角度)が、乗員搭乗部5(または基体2)のY軸回り方向の傾斜角度に一致するものとされる。また、第1の移動動作部3のX軸方向の並進運動が、仮想車輪61_xの輪転によるX軸方向の並進運動に相当するものとされる。
そして、仮想車輪61_xの半径r_xと、基準部Ps_xおよび質点Ga_xの床面からの高さh_xとは、あらかじめ設定された既定値(一定値)とされる。なおr_xは、換言すれば、乗員搭乗部5(または基体2)のY軸回り方向の傾動中心の床面からの高さに相当する。このr_xは、本実施形態では、第1の移動動作部3の環状芯体6の中心軸と接地面との距離に相当する。
同様に、X軸方向から見た車両系全体重心の挙動を表す倒立振子モデルは、X軸方向と平行な回転軸心を有して床面上を輪転自在な仮想的な車輪61_y(以降、仮想車輪61_yという)と、該仮想車輪61_yの回転中心から延設されて、該仮想車輪61_yの回転軸回りに(X軸回り方向に)揺動自在なロッド62_yと、このロッド62_yの先端部(上端部)である基準部Ps_yに連結された質点Ga_yとを備える。
この倒立振子モデルでは、質点Ga_yの運動が、X軸方向から見た車両系全体重心の運動に相当し、鉛直方向に対するロッド62_yの傾斜角度θb_y(X軸回り方向の傾斜角度)が、乗員搭乗部5(または基体2)のX軸回り方向の傾斜角度に一致するものとされる。また、第1の移動動作部3のY軸方向の並進運動が、仮想車輪61_yの輪転によるY軸方向の並進運動に相当するものとされる。
そして、仮想車輪61_yの半径r_yと、基準部Ps_yおよび質点Ga_yの床面からの高さh_yとは、あらかじめ設定された既定値(一定値)とされる。なおr_yは、換言すれば、乗員搭乗部5(または基体2)のX軸回り方向の傾動中心の床面からの高さに相当する。このr_yは、本実施形態では、第1の移動動作部3のローラ7の半径に相当する。また、X軸方向で見た基準部Ps_yおよび質点Ga_yの床面からの高さh_yは、Y軸方向で見た基準部Ps_xおよび質点Ga_xの床面からの高さh_xと同じである。そこで、以降、h_x=h_y=hとおく。
ここで、Y軸方向から見た場合の基準部Ps_xと質点Ga_xとの位置関係ついて補足すると、基準部Ps_xの位置は、乗員搭乗部5に搭乗(着座)した乗員が、該乗員搭乗部5に対して不動であると仮定した場合における車両系全体重心の位置に相当している。したがって、この場合には、質点Ga_xの位置は、基準部Ps_xの位置に一致する。このことは、X軸方向から見た場合の基準部Ps_yと質点Ga_yとの位置関係ついても同様である。
ただし、実際には、乗員搭乗部5に搭乗した乗員が、その上体等を乗員搭乗部5(または基体2)に対して動かすことで、実際の車両系全体重心のX軸方向の位置およびY軸方向の位置は、一般には、それぞれ基準部Ps_x,Ps_yの位置から横方向にずれることとなる。このため、図5では、質点Ga_x,Ga_yの位置をそれぞれ、基準部Ps_x,Ps_yの位置からずらした状態で図示している。
上記のような倒立振子モデルで表現される車両系全体重心の挙動は、次式(1a)、(1b)、(2a)、(2b)により表現される。この場合、式(1a),(1b)は、Y軸方向で見た挙動、式(2a),(2b)は、X軸方向で見た挙動を表している。

Vb_x=Vw1_x+h・ωb_x ……(1a)
dVb_x/dt=(g/h)・(θb_x・(h−r_x)+Ofst_x)+ωz・Vb_y ……(1b)
Vb_y=Vw1_y+h_y・ωb_y ……(2a)
dVb_y/dt=(g/h)・(θb_y・(h−r_y)+Ofst_y)−ωz・Vb_x ……(2b)
ここで、Vb_xは、車両系全体重心のX軸方向の速度(並進速度)、Vw1_xは、仮想車輪61_xのX軸方向の移動速度(並進速度)、θb_xは乗員搭乗部5(または基体2)のY軸回り方向の傾斜角度、ωb_xはθb_xの時間的変化率(=dθb_x/dt)、Ofst_xは車両系全体重心のX軸方向の位置(質点Ga_xのX軸方向の位置)の、前記基準部Ps_xの位置からのX軸方向のずれ量、Vb_yは、車両系全体重心のY軸方向の速度(並進速度)、Vw1_yは、仮想車輪61_yのY軸方向の移動速度(並進速度)θb_yは乗員搭乗部5(または基体2)のX軸回り方向の傾斜角度、ωb_yはθb_yの時間的変化率(=dθb_y/dt)、Ofst_yは車両系全体重心のY軸方向の位置(質点Ga_yのY軸方向の位置)の、前記基準部Ps_yの位置からのY軸方向のずれ量である。また、ωzは車両1の旋回時のヨーレート(ヨー軸回り方向の角速度)、gは重力加速度定数である。なお、θb_x、ωb_xの正方向は、車両系全体重心がX軸の正方向(前向き)に傾く方向、θb_y、ωb_yの正方向は、車両系全体重心がY軸の正方向(左向き)に傾く方向である。また、ωzの正方向は、車両1を上方から見た場合に、反時計回り方向である。
なお、Vb_x、Vb_yはそれぞれ、前記基準部Ps_xのX軸方向の移動速度、前記基準部Ps_yのY軸方向の移動速度に一致する。
式(1a)の右辺第2項(=h・ωb_x)は、乗員搭乗部5のY軸回り方向の傾動によって生じる基準部Ps_xのX軸方向の並進速度成分、式(2a)右辺第2項(=h・ωb_y)は、乗員搭乗部5のX軸回り方向の傾動によって生じる基準部Ps_yのY軸方向の並進速度成分である。
補足すると、式(1a)におけるVw1_xは、詳しくは、ロッド62_xに対する(換言すれば乗員搭乗部5または基体2に対する)相対的な仮想車輪61_xの周速度である。このため、Vw1_xには、床面に対する仮想車輪61_xの接地点のX軸方向の移動速度(床面に対する第1の移動動作部3の接地点のX軸方向の移動速度)の加えて、ロッド62_xの傾動に伴う速度成分(=r_x・ωb_x)が含まれている。このことは、式(2a)におけるVw1_yについても同様である。
また、式(1b)の右辺の第1項は、車両系全体重心のX軸方向の位置(質点Ga_xのX軸方向の位置)の、仮想車輪61_xの接地部(Y軸方向から見た第1の移動動作部3の接地部)の鉛直上方位置からのずれ量(=θb_x・(h−r_x)+Ofst_x)に応じて仮想車輪61_xの接地部に作用する床反力(図5のF)のX軸方向成分(図5のF_x)によって車両系全体重心に発生するX軸方向の加速度成分、式(1b)の右辺の第2項は、ωzのヨーレートでの旋回時に車両1に作用する遠心力によって発生するX軸方向の加速度成分である。
同様に、式(2b)の右辺の第1項は、車両系全体重心のY軸方向の位置(質点Ga_yのY軸方向の位置)の、仮想車輪61_yの接地部(X軸方向から見た第1の移動動作部3の接地部)の鉛直上方位置からのずれ量(=θb_y・(h−r_y)+Ofst_y)に応じて仮想車輪61_yの接地部に作用する床反力(図5のF)のY軸方向成分(図5のF_y)によって車両系全体重心に発生するY軸方向の加速度成分、式(2b)の右辺の第2項は、ωzのヨーレートでの旋回時に車両1に作用する遠心力によって発生するY軸方向の加速度成分である。
上記の如く、式(1a)、(1b)により表現される挙動(X軸方向で見た挙動)は、ブロック線図で表現すると、図6に示すように表される。図中の1/sは積分演算を表している。
そして、図6における参照符号Aを付した演算部の処理が、式(1a)の関係式に該当しており、参照符号Bを付した演算部の処理が、式(1b)の関係式に該当している。
なお、図6中のh・θb_xは、近似的には、図5に示したDiff_xに一致する。
一方、式(2a)、(2b)により表現される挙動(Y軸方向で見た挙動)を表現するブロック線図は、図6中の添え字“_x”を“_y”に置き換え、参照符号Cを付した加算器への入力の一つである図中下側の加速度成分(遠心力によって発生する加速度成分)の符号“+”を“−”に置き換えることによって得られる。
本実施形態では、第1制御処理部24の処理のアルゴリズムは、上記の如く車両系全体重心の基準部Ps_x,Ps_yからのずれ量と、遠心力とを考慮した車両系全体重心の挙動モデル(倒立振子モデル)に基づいて構築されている。
以上を前提として、第1制御処理部24の処理をより具体的に説明する。なお、以降の説明では、Y軸方向から見た挙動に関する変数の値と、X軸方向から見た挙動に関する変数の値との組を添え字“_xy”を付加して表記する場合がある。
図4を参照して、第1制御処理部24は、制御装置21の各演算処理周期において、まず、操作指令変換部31の処理と、前記重心速度推定部33の処理とを実行する。
操作指令変換部31は、ジョイスティック12から与えられる前進・後進指令(ジョイスティック12のX軸方向での揺動量とその揺動の向きを示す操作信号)または横移動指令(ジョイスティック12のY軸方向での揺動量とその揺動の向きを示す操作信号)に応じて第1の移動動作部3の移動速度(並進速度)の基本指令値である基本速度指令Vjs_xyを決定する。
この場合、基本速度指令Vjs_xyのうち、X軸方向の基本速度指令Vjs_xは、前進・後進指令に応じて決定される。具体的には、前進・後進指令により示されるジョイスティック12の揺動量が、前方側への揺動量である場合には、X軸方向の基本速度指令Vjs_xを車両1の前進方向への速度指令とし、ジョイスティック12の揺動量が、後方側への揺動量である場合には、X軸方向の基本速度指令Vjs_xを車両1の後進方向への速度指令とする。また、この場合、X軸方向の基本速度指令Vjs_xの大きさは、ジョイスティック12の前方側または後方側への揺動量が大きいほど、既定の上限値以下で、大きくなるように決定される。
なお、ジョイスティック12の前方側または後方側への揺動量が十分に微小なものとなる所定の範囲を不感帯域として、その不感帯域内の揺動量では、X軸方向の基本速度指令Vjs_xをゼロに設定するようにしてもよい。
また、基本速度指令Vjs_xyのうち、Y軸方向の基本速度指令Vjs_yは、横移動指令に応じて決定される。具体的には、横移動指令により示されるジョイスティック12の揺動量が、右向きへの揺動量である場合には、Y軸方向の基本速度指令Vjs_yを車両1の右向きへの速度指令とし、ジョイスティック12の揺動量が、左向きへの揺動量である場合には、Y軸方向の基本速度指令Vjs_yを車両1の左向きへの速度指令とする。この場合、Y軸方向の基本速度指令Vjs_yの大きさは、ジョイスティック12の右向きまたは左向きへの揺動量が大きいほど、既定の上限値以下で、大きくなるように決定される。
なお、基本速度指令Vjs_yの大きさは、ジョイスティック12の右向きまたは左向きへの揺動量が十分に微小なものとなる所定の範囲を不感帯域として、その不感帯域内の揺動量では、Y軸方向の基本速度指令Vjs_yをゼロに設定するようにしてもよい。
また、ジョイスティック12が前後方向(X軸方向)およびY軸方向(左右方向)の両方に操作されている場合には、Y軸方向の基本速度指令Vjs_yの大きさを、ジョイスティック12の前後方向の揺動量またはX軸方向の基本速度指令Vjs_xに応じて変化させるようにしてもよい。
前記重心速度推定部33は、前記倒立振子モデルにおける前記式(1a),(2a)に表される幾何学的な(運動学的な)関係式に基づいて、車両系全体重心の速度の推定値Vb_estm1_xyを算出する。
具体的には、図4のブロック図で示す如く、第1の移動動作部3の実際の並進速度Vw1_act_xyの値と、乗員搭乗部5の傾斜角度θb_xyの実際の時間的変化率(傾斜角速度)ωb_act_xyに、車両系全体重心の高さhを乗じてなる値とを加え合せることにより、車両系全体重心の速度の推定値Vb_estm1_xyを算出する。
すなわち、車両系全体重心のX軸方向の速度の推定値Vb_estm1_xとY軸方向の速度の推定値Vb_estm1_yとがそれぞれ、次式(3a),(3b)により算出される。

Vb_estm1_x=Vw1_act_x+h・ωb_act_x ……(3a)
Vb_estm1_y=Vw1_act_y+h・ωb_act_y ……(3b)
ただし、車両系全体重心の位置の基準部Ps_xyの位置からの前記ずれ量Ofst_xy(以降、重心ずれ量Ofst_xyという)の時間的変化率は、Vb_estm1_xyに比べ十分に小さく無視できるものとした。
この場合、上記演算におけるVw1_act_x,Vw1_act_yの値としては、本実施形態では、前回の演算処理周期で姿勢制御演算部34により決定された第1の移動動作部3の移動速度の目標値Vw1_cmd_x,Vw1_cmd_y(前回値)が用いられる。
ただし、たとえば、電動モータ8a,8bのそれぞれの回転速度をロータリエンコーダ等の回転速度センサにより検出し、それらの検出値から推定したVw1_act_x,Vw1_act_yの最新値(換言すれば、Vw1_act_x,Vw1_act_yの計測値の最新値)を式(3a),(3b)の演算に用いるようにしてもよい。
また、ωb_act_x,ωb_act_yの値としては、本実施形態では、傾斜センサ22の検出信号に基づく乗員搭乗部5の傾斜角度θbの計測値の時間的変化率の最新値(換言すれば、ωb_act_x,ωb_act_yの計測値の最新値)が用いられる。
第1制御処理部24は上記の如く操作指令変換部31および重心速度推定部33の処理を実行した後、次に、図4に示す重心ずれ推定部35aの処理を実行することで、前記重心ずれ量Ofst_xyの推定値である重心ずれ量推定値Ofst_estm_xyを決定する。
重心ずれ推定部35aの処理は、図7のブロック線図により示される処理である。なお、図7は、重心ずれ量推定値Ofst_estm_xyのうちのX軸方向の重心ずれ量推定値Ofst_estm_xの決定処理を代表的に表している。左右方向全体重心ずれ量の推定値は、たとえば、図7のブロック図に示す演算によって逐次算出することができる。
具体的には、車両と乗員との全体の重心(以降、車両系全体重心ということがある)の左右方向の移動速度の第1推定値Vb_estm1_yと、第2推定値Vb_estm2_yとの偏差に、あらかじめ定めた所定値のゲインを乗じることによって、左右方向全体重心ずれ量の推定値を実際の値に収束させるように逐次決定することができる。
ここで、第1推定値Vb_estm1_yは、次式(A)により運動学的に算出される車両系全体重心の左右方向の移動速度の推定値であり、第2推定値Vb_estm2_yは次式(B)により動力学的に算出される車両系全体重心の左右方向の移動加速度DVb_estm_yを積分することにより算出される移動速度の推定値である。

Vb_estm1_y=Vw1_act_y+h・ωb_act_y ……(A)
DVb_estm_y=(θb_act_y・(h−r_y)+Ofst_estm_y(k-1))・(g/h)
−Vb_estm1_x・ωz_act ……(B)
ただし、
Vw1_act_y:第1の移動動作部の左右方向の移動速度の観測値
h:車両系全体重心の床面からの高さとしてあらかじめ定められた値
ωb_act_y:乗員搭乗部の前後方向の軸回り方向の傾動の角速度の観測値
θb_act_y:乗員搭乗部の前後方向の軸回り方向の傾斜角(鉛直方向に対する傾斜角)の観測値
r_y:乗員搭乗部の前後方向の軸回り方向の傾動中心の床面からの高さ
Ofst_estm_y(k-1):算出済の左右方向全体重心ずれ量の推定値のうちの最新値
g:重力加速度定数
Vb_estm1_x:次式(C)により算出される車両系全体重心の前後方向の移動速度の推定値
Vb_estm1_x=Vw1_act_x+h・ωb_act_x ……(C)
Vw1_act_x:第1の移動動作部の前後方向の移動速度の観測値
ωb_act_x:乗員搭乗部の左右方向の軸回り方向の傾動の角速度の観測値
ωz_act:車両のヨー軸回り方向の角速度
移動速度等の任意の状態量に関する「観測値」は、適宜のセンサによる該状態量の検出値、あるいは、該状態量と一定の相関性を有する他の一つ以上の状態量の検出値から、該相関性に基づいて推定した推定値を意味する。
図7の処理を具体的に説明すると、重心ずれ推定部35aは、傾斜センサ22の検出信号から得られた乗員搭乗部5のY軸回り方向の実際の傾斜角度θb_act_xの計測値(最新値)と、ヨーレートセンサ23の検出信号から得られた車両1の実際のヨーレートωz_actの計測値(最新値)と、重心速度推定部33により算出された車両系全体重心のY軸方向の速度の第1推定値Vb_estm1_y(最新値)と、前回の演算処理周期で決定したX軸方向の重心ずれ量推定値Ofst_estm_x(前回値)とを用いて、前記式(1b)の右辺の演算処理を演算部35a1で実行することにより、車両系全体重心のX軸方向の並進加速度の推定値DVb_estm_xを算出する。
さらに重心ずれ推定部35aは、車両系全体重心のX軸方向の並進加速度の推定値DVb_estm_xを積分する処理を演算部35a2で実行することにより、車両系全体重心のX軸方向の速度の第2推定値Vb_estm2_xを算出する。
次いで、重心ずれ推定部35aは、車両系全体重心のX軸方向の速度の第2推定値Vb_estm2_x(最新値)と、第1推定値Vb_estm1_x(最新値)との偏差を算出する処理を演算部35a3で実行する。
さらに、重心ずれ推定部35aは、この_偏差に所定値のゲイン(−Kp)を乗じる処理を演算部35a4で実行することにより、X軸方向の重心ずれ量推定値Ofst_estm_xの最新値を決定する。
Y軸方向の重心ずれ量推定値Ofst_estm_yの決定処理も上記と同様に実行される。具体的には、この決定処理を示すブロック線図は、図7中の添え字“_x”と“_y”とを入れ替え、加算器35a5への入力の一つである図中右側の加速度成分(遠心力によって発生する加速度成分)の符号“+”を“−”に置き換えることによって得られる。
このような重心ずれ推定部35aの処理によって、重心ずれ量推定値Ofst_estm_xyを逐次更新しつつ決定することによって、Ofst_estm_xyを実際の値に収束させるように決定することができる。
第1制御処理部24は、次に、図4に示す重心ずれ影響量算出部35bの処理を実行することによって、重心ずれ影響量Vofs_xyを算出する。
重心ずれ影響量Vofs_xyは、後述する姿勢制御演算部34において、車両系全体重心の位置が倒立振子モデルにおける前記基準部Ps_xyの位置からずれることを考慮せずにフィードバック制御を行った場合の車両系全体重心の目標速度に対する実際の重心速度のずれを表す。
具体的には、この重心ずれ影響量算出部35bは、新たに決定された重心ずれ量推定値Ofst_estm_xyの各成分に、(Kth_xy/(h-r_xy))/Kvb_xyという値を乗じることにより、重心ずれ影響量Vofs_xyを算出する。
なお、Kth_xyは、後述する姿勢制御演算部34の処理において、乗員搭乗部5の傾斜角度をゼロ(目標傾斜角度)に近づけるように機能する操作量成分を決定するためのゲイン値である。また、Kvb_xyは、後述する姿勢制御演算部34の処理において、車両系全体重心の目標速度Vb_cmd_xyと車両系全体重心の速度の第1推定値おけるVb_estm1_xyとの偏差をゼロに近づけるように機能する操作量成分を決定するためのゲイン値である。
第1制御処理部24は、重心ずれ補正量決定部36の処理を実行することによって、入力信号である車両系全体重心速度の推定値Vb_estm1_x(k)に基づき、X軸正方向の重心ずれ補正量Vdep_x(k)(「並進指令補正量」に相当する。)を決定する。
具体的には、−Vb_estm1_xの前回累積値Σ(k-1)および減衰係数Kdep1(0<Kdep1<1)の積に対して、(条件1)および(条件2)が満たされる場合に−Vb_estm1_x(k)×Δt(第1指定方向(X軸負方向)への基体2の今回傾動量に相当する。)が累積されることにより今回累積値Σ(k)が算定される。「−」は基体2がX軸負方向に傾動した場合のVb_estm1_x(k)の極性が負であることに鑑みて、当該傾動量を正値で表現するために乗じられている。「k」はサンプリング周期Δtを間隔とする離散的な時刻を表わしている。
(条件1)Vb_estm1_x(k)が負であること。
(条件2)前回累積値Σ(k-1)が閾値Σ_th未満であること。
(条件1)は、基体2が第1指定方向(後方向)に傾動している場合に当該傾動量に応じてΣ(k)を増加させるための条件である。(条件2)は、Σ(k)を閾値Σ_th以下になるように制御するための条件である。たとえば、Σ(k)は式(3c)または(3d)にしたがって算定される。「H」はヘヴィサイドのステップ関数である。

Σ(k)=Kdep1×Σ(k-1)
+H(Σ_th−Σ(k-1))×H(−Vb_estm1_x(k))
×(−Vb_estm1_x(k))Δt ……(3c)
Σ(k)=min{Σ_th、Kdep1×Σ(k-1)
+H(−Vb_estm1_x(k))×(−Vb_estm1_x(k))Δt} ……(3d)
今回累積値Σ(k)に対してゲイン値Kdep2が乗じられることにより、X軸方向の重心ずれ補正量Vdep_x(k)が算定される。
(Vdep_x(k)の決定処理(第1実施例))
第1実施例として、図10(a)に一点鎖線で示されているようにVofs_xが変化した場合におけるVdep_x(k)の決定処理について考察する。これは、車両全体重心系の挙動が、図11(a)に示されている倒立振子モデル(図5参照)の挙動により近似されることを意味する。
すなわち、まず時刻t=t0から時刻t=t1にかけてロッド62_xがX軸負方向に傾動して質点Ga_xがX軸負方向に移動する(一点鎖線参照)。そして、時刻t=t1から時刻t=t5にかけてロッド62_xがX軸正方向に傾動して質点Ga_xがX軸正方向に移動している(実線参照)。時刻t=t5より前の時刻t=t3において仮想車輪61_x、ひいては車両1がX軸正方向への並進を開始する(右矢印参照)。
これは、たとえば、使用者が乗員搭乗部5に着座した際に後方に若干のけぞった姿勢であったために乗員搭乗部5(または基体2)が後方向(第1指定方向)に傾動して車両系全体重心が後方にずれ、その後、使用者が前屈みになったために基体が前方向(第2指定方向)に傾動して車両系全体重心が前方向にずれた状況に相当する。
時刻t=t0から時刻t=t1までの期間においてVb_estm1_xが負値になっているため、(条件1)が満たされている。このため、H(−Vb_estm1_x(k))=1となり、(−Vb_estm1_x(k))×Δtが累積されることでΣ(k)が算定される。よって、(条件2)が満たされている限り、図10(a)に二点鎖線で示されているように重心ずれ補正量Vdep_xが徐々に増加するように決定される。その一方、減衰係数Kdep1の影響により重心ずれ補正量Vdep_xの増加率が徐々に低下している。
時刻t=t1から時刻t=t5までの期間においてVb_estm1_xが正値になっているため、条件1が満たされていない。このため、H(−Vb_estm1_x(k))=0となり、(−Vb_estm1_x(k))Δtが累積されない。その一方、Σ(k)は減衰係数Kdep1の影響によって、徐々に減少する。よって、図10(a)に二点鎖線で示されているようにVdep_xが徐々に減少するように決定される。
(Vdep_x(k)の決定処理(第2実施例))
第2実施例として、図10(b)に一点鎖線で示されているようにVofs_xが変化した場合におけるVdep_x(k)の決定処理について考察する。これは、車両全体重心系の挙動が、図11(b)に示されている倒立振子モデル(図5参照)の挙動により近似されることを意味する。
すなわち、まず時刻t=t0から時刻t=t2にかけてロッド62_xがX軸負方向に傾動して質点Ga_xがX軸負方向に移動する(一点鎖線参照)。そして、時刻t=t2から時刻t=t4にかけてロッド62_xがX軸負方向にさらに傾動して質点Ga_xがX軸負方向にさらに移動する(実線参照)。時刻t=t2後、仮想車輪61_x、ひいては車両1がX軸負方向への並進を開始する(左矢印参照)。
これは、たとえば、使用者が乗員搭乗部5に着座した状態で意図的に乗員搭乗部5を後方向(第1指定方向)に傾動させて車両系全体重心を後方にずらしている状況に相当する。
時刻t=t0から時刻t=t2までの期間においてVb_estm1_xが負値になっているため、(条件2)が満たされている限り、図10(b)に二点鎖線で示されているようにVdep_xが徐々に増加するように決定される。
時刻t=t2においてΣ(k)が閾値以上になったと仮定すると、(条件2)が満たされないため、Σ(k)は減衰係数Kdep1の影響によって減少する。その一方、Σ(k)がΣ_th未満である場合には(条件2)が満たされるため、(−Vb_estm1_x(k))Δtが累積されうる。よって、図10(a)に二点鎖線で示されているようにVdep_xが略一定に維持されるように決定される。時刻t=t2以降のVofs_xの値またはKdep1の値によってはVdep_xが徐々に減少する場合もある。
第1制御処理部24は、処理部35cの処理を実行し、重心ずれ影響量Vofs_x(「基本並進指令値」に相当する。)に対して重心ずれ補正量Vdep_xを加算することでVofs_xを補正する。
第1制御処理部24は、次に、図4に示す重心目標速度決定部32の処理を実行することによって、操作指令変換部31により決定された基本速度指令Vjs_xyと、重心ずれ影響量算出部35bにより決定された重心ずれ影響量Vofs_xyとに基づいて、制限後重心目標速度Vb_cmd_xyを算出する。重心目標速度決定部32に対して入力される重心ずれ影響量Vofs_xは、前記のように重心ずれ補正量Vdep_xの加算より補正されている。
重心目標速度決定部32は、まず、図4に示す処理部の処理を実行する。この処理部32cは、重心ずれ影響量Vofs_xyの値に関する不感帯処理とリミット処理とを実行することで、車両系全体重心の目標値のうちの重心ずれに応じた成分としての目標重心速度加算量Vb_cmd_by_ofs_xyを決定する。
具体的には、本実施形態では、重心目標速度決定部32は、X軸方向の重心ずれ影響量Vofs_xの大きさがゼロ近辺の所定の範囲である不感帯域内の値(比較的ゼロに近い値)である場合には、X軸方向の目標重心速度加算量Vb_cmd_by_ofs_xをゼロにする。
また、重心目標速度決定部32は、X軸方向の重心ずれ影響量Vofs_xの大きさが不感帯域内から逸脱した値である場合には、X軸方向の目標重心速度加算量Vb_cmd_by_ofs_xを、Vofs_xと同極性で、その大きさが、Vofs_xの大きさの増加に伴い大きくなるように決定する。ただし、目標重心速度加算量Vb_cmd_by_ofs_xの値は、所定の上限値(>0)と下限値(≦0)との間の範囲内に制限される。
Y軸方向の目標重心速度加算量Vb_cmd_by_ofs_yの決定処理も上記と同様である。
本実施形態における処理部32cは不感帯および正負一対の飽和帯を有する2段リミッタであるが、不感帯および複数対の飽和帯を有する多段リミッタであってもよい。処理部32cの処理実行は省略されてもよい。
次いで、重心目標速度決定部32は、前記操作指令変換部31により決定された基本速度指令Vjs_xyの各成分に目標重心速度加算量Vb_cmd_by_ofs_xyの各成分を加え合わせてなる目標速度V1_xyを決定する処理を図4に示す処理部32dで実行する。すなわち、V1_x=Vjs_x+Vb_cmd_by_ofs_x、V1_y=Vjs_y+Vb_cmd_by_ofs_yという処理によって、V1_xy(V1_xとV1_yとの組)を決定する。
さらに、重心目標速度決定部32は、処理部32eの処理を実行する。この処理部32eでは、第1の移動動作部3のアクチュエータ装置8としての電動モータ8a,8bのそれぞれの回転速度を、所定の許容範囲から逸脱させることのないようにするために、目標速度V1_xとV1_yとの組み合わせを制限してなる車両系全体重心の目標速度としての制限後重心目標速度Vb_cmd_xy(Vb_cmd_x,Vb_cmd_yの組)を決定するリミット処理が実行される。
この場合、処理部32dで求められた目標速度V1_x,V1_yの組が、目標速度V1_xの値を縦軸、目標速度V1_yの値を横軸とする座標系上で所定の領域(たとえば8角形状の領域)内に在る場合には、その目標速度V1_xyがそのまま制限後重心目標速度Vb_cmd_xyとして決定される。
また、処理部32dで求められた目標速度V1_x,V1_yの組が、上記座標系上の所定の領域から逸脱している場合には、該所定の領域の境界上の組に制限したものが、制限後重心目標速度Vb_cmd_xyとして決定される。
以上のごとく、基本速度指令Vjs_xyと、重心ずれ影響量Vofs_xy(または、重心ずれ)とに基づいて、重心目標速度Vb_cmd_xyが決定されるので、乗員は、操作器の操作(ジョイスティック12の操作)と、乗員の身体の姿勢の変化(体重移動)によって、車両1を操縦することができる。
以上の如く重心目標速度決定部32の処理を実行した後、第1制御処理部24は、次に、姿勢制御演算部34の処理を実行する。姿勢制御演算部34は、図4のブロック線図で示す処理によって、第1の移動動作部3の移動速度(並進速度)の目標値である第1目標速度Vw1_cmd_xyを決定する。
より詳しくは、姿勢制御演算部34は、まず、前記制限後重心目標速度Vb_cmd_xyの各成分から、重心ずれ影響量Vofs_xyの各成分を減じる処理を演算部34bで実行することにより重心ずれ補償後目標速度Vb_cmpn_cmd_xy(最新値)を決定する。
次いで、姿勢制御演算部34は、上記演算部34bと、積分演算を行う積分演算部34aとを除く演算部の処理によって、第1の移動動作部3の接地点の並進加速度の目標値である目標並進加速度DVw1_cmd_xyのうちのX軸方向の目標並進加速度DVw1_cmd_xと、Y軸方向の目標並進加速度DVw1_cmd_yとをそれぞれ次式(4a),(4b)の演算により算出する。

DVw1_cmd_x=Kvb_x・(Vb_cmpn_cmd_x−Vb_estm1_x)
−Kth_x・θb_act_x−Kw_x・ωb_act_x ……(4a)
DVw1_cmd_y=Kvb_y・(Vb_cmpn_cmd_y−Vb_estm1_y)
−Kth_y・θb_act_y−Kw_x・ωb_act_y ……(4b)
式(4a),(4b)におけるKvb_xy、Kth_xy、Kw_xyはあらかじめ設定された所定のゲイン値である。
また、式(4a)の右辺の第1項は、車両系全体重心のX軸方向の重心ずれ補償後目標速度Vb_cmpn_cmd_x(最新値)と第1推定値Vb_estm1_x(最新値)との偏差に応じたフィードバック操作量成分、第2項は、乗員搭乗部5のY軸回り方向の実際の傾斜角度θb_act_xの計測値(最新値)に応じたフィードバック操作量成分、第3項は、乗員搭乗部5のY軸回り方向の実際の傾斜角速度ωb_act_xの計測値(最新値)応じたフィードバック操作量成分である。そして、X軸方向の目標並進加速度DVw1_cmd_xは、これらのフィードバック操作量成分の合成操作量として算出される。
同様に、式(4b)の右辺の第1項は、車両系全体重心のY軸方向の重心ずれ補償後目標速度Vb_cmpn_cmd_y(最新値)と第1推定値Vb_estm1_y(最新値)との偏差に応じたフィードバック操作量成分、第2項は、乗員搭乗部5のX軸回り方向の実際の傾斜角度θb_act_yの計測値(最新値)に応じたフィードバック操作量成分、第3項は、乗員搭乗部5のX軸回り方向の実際の傾斜角速度ωb_act_yの計測値(最新値)に応じたフィードバック操作量成分である。そして、Y軸方向の目標並進加速度DVw1_cmd_yは、これらのフィードバック操作量成分の合成操作量として算出される。
次いで、姿勢制御演算部34は、積分演算部34aによって、目標並進加速度DVw1_cmd_xyの各成分を積分することによって、第1の移動動作部3の第1目標速度Vw1_cmd_xy(最新値)を決定する。
そして、第1制御処理部24は、上記の如く決定した第1目標速度Vw1_cmd_xyにしたがって第1の移動動作部3のアクチュエータ装置8としての電動モータ8a,8bを制御する。より詳しくは、第1制御処理部24は、第1目標速度Vw1_cmd_xyにより規定される各電動モータ8a,8bの回転速度の目標値に、実際の回転速度(計測値)を追従させるように、フィードバック制御処理により各電動モータ8a,8bの電流指令値を決定し、この電流指令値にしたがって、各電動モータ8a,8bの通電を行なう。
以上の処理により、前記制限後重心目標速度Vb_cmd_xyが一定値であって、車両1の運動が整定し、車両1が一定速度で直進している状態においては、車両系全体重心は、第1の移動動作部3の接地点の真上に存在する。この状態では、乗員搭乗部5の実際の傾斜角度θb_act_xyは、式(1b)、(2b)に基づいて、−Ofst_xy/(h−r_xy)となる。また、乗員搭乗部5の実際の傾斜角速度ωb_act_xyはゼロ、目標並進加速度DVw1_cmd_xyはゼロとなる。このことと、図4のブロック線図から、Vb_estm1_xyとVb_cmd_xyとが一致することが導き出される。
すなわち、第1の移動動作部3の第1目標速度Vw1_cmd_xyは、基本的には、車両系全体重心の制限後重心目標速度Vb_cmd_xyと第1推定値Vb_estm1_xyとの偏差をゼロに収束させるように決定される。
また、車両系全体重心の位置が、倒立振子モデルにおける前記基準部Ps_xyの位置からずれることの影響を補償しつつ、前記処理部32eの処理によって、第1の移動動作部3のアクチュエータ装置8としての電動モータ8a,8bのそれぞれの回転速度が、所定の許容範囲から逸脱することのないように制御される。
補足すると、前記式(4a),(4b)において、Vb_cmpn_cmd_x=Vb_cmd_x−Vofs_x=Vb_cmd_x−(Kth/h−r_x)・(1/Kvb)・Ofst_estm_x、および、Vb_cmpn_cmd_y=Vb_cmd_y−Vofs_y=Vb_cmd_y−(Kth/h−r_y)・(1/Kvb)・Ofst_estm_yであるから、式(4a),(4b)はそれぞれ、次式(4a)’、(4b)’に書き換えることができる。

DVw1_cmd_x=Kvb・(Vb_cmd_x−Vb_estm1_x)
−Kth・(Ofst_estm_x/(h−r_x)+θb_act_x)
−Kw_x・ωb_act_x ……(4a)’

DVw1_cmd_y=Kvb・(Vb_cmd_y−Vb_estm1_y)
−Kth・(Ofst_estm_y/(h−r_y)+θb_act_y)
−Kw_x・ωb_act_y ……(4b)’
この場合、式(4a)’、(4b)’の右辺第2項は、X軸方向およびY軸方向における実際の車両系全体重心の位置が、第1の移動動作部3の接地部の直上の位置になるようにするためのフィードバック操作量成分としての意味を持つ。
以上が、本実施形態における第1制御処理部24の処理の詳細である。
次に、前記第2制御処理部25の処理について図8を参照して説明する。第2制御処理部25は、その処理を概略的に言えば、車両系全体重心等の車両1の代表点もしくは第1の移動動作部3のY軸方向(乗員の左右方向)における実際の運動状態もしくは目標の運動状態、または該運動状態に関する乗員の動作状態に基づいて、車両1を旋回させることの要求(以降、旋回要求という)の有無、あるいは該旋回要求の度合いを判断する。
本実施形態では、旋回要求の有無、あるいは該旋回要求の度合いを判断する指標として、前記重心速度推定部33で算出される車両系全体重心のY軸方向の移動速度の推定値Vb_estm1_yが用いられる。なお、Vb_estm1_yは、前記基準部Ps_yのY軸方向の移動速度に一致するので、乗員搭乗部5(または基体2)に対して固定された代表点のY軸方向の移動速度の観測値としての意味を持つものである。
そして、第2制御処理部25は、旋回要求が有ると判断される場合には、車両1の旋回を行なわせるために、第2の移動動作部4のY軸方向の第2目標速度Vw2_cmd_yを、第1の移動動作部3のY軸方向の第1目標速度Vw1_cmd_yと異ならせるように決定する。
このような第2制御処理部25の処理は、具体的には次のように行なわれる。すなわち、図8を参照して、第2制御処理部25は、まず、処理部41の処理を実行する。処理部41には、重心速度推定部33で算出される車両系全体重心のY軸方向の移動速度の推定値Vb_estm1_y(最新値)が入力される。そして、処理部41は、Vb_estm1_yに応じて、不感帯処理後速度Vw1a_yを決定する。
ここで、車両1の乗員が、車両1を右側または左側に旋回させようとする場合には、通常、乗員は、乗員は自身の上体を、右側または左側に傾けることで、自身の重心を車両1の右側または左側にずらすようにする。このとき、前記第1制御処理部24の制御処理によって決定される第1の移動動作部3の左右方向の第1目標速度Vw1_cmd_yは、基本的には、右向きまたは左向きの移動速度となる。
ただし、乗員が車両1を旋回させることを意図していない場合であっても、乗員の上体のふらつきによって、乗員自身の重心が右側または左側に多少ずれる場合もある。
そこで、処理部41は、図8中に示すグラフの特性で、不感帯処理後速度Vw1a_yをVb_estm1_yに応じて決定する。具体的には、Vb_estm1_yの絶対値が比較的小さく、Vb_estm1_yが、ゼロを中心とする所定範囲Δa内の値である場合(Vb_estm1_yの絶対値があらかじめ定めた所定値以下である場合)には、処理部41は、旋回要求が無いものとみなして、Vw1a_yをゼロとする。
また、Vb_estm1_yの絶対値が比較的大きいものとなっており、Vb_estm1_yが、所定範囲Δa外の値である場合(Vb_estm1_yの絶対値があらかじめ定めた所定値よりも大きい場合)には、処理部41は、旋回要求が有るものとみなして、Vw1a_yをゼロでない値に設定する。
具体的には、処理部41は、Vw1a_yの絶対値が、既定の上限値以下で、Vb_estm1_yの絶対値の増加に伴い増加していくように、Vw1a_yをVb_estm1_yに応じて決定する。この場合、Vw1a_yの極性(向き)は、Vb_estm1_yと同じとされる。後述するように、旋回中心を望ましい位置に設定するためには、Vb_estm1_yの増加に対するVw1a_yの増加率は1が好ましい。すなわち、図8のグラフにおける不感帯と飽和領域とを除く領域では傾きは1が好ましい。
なお、図8において、処理部41の入力側の括弧付きの参照符号は、後述の変形態様に関するものである。
次いで、第2制御処理部25は、処理部42の処理を実行する。この処理部42は、Vw1a_yを、第1の移動動作部3の接地部と旋回中心とのX軸方向の距離L3で除算することによって、車両1の旋回角速度(ヨー軸回り方向の角速度)の目標値である目標旋回角速度ωz_cmd_gcを決定する。この場合、処理部42は、上記距離L3を、車両1の代表点としての車両系全体重心のX軸方向の実際の移動速度の推定値Vb_estm1_x(最新値)に応じて設定する。
なお、上記旋回中心は、より詳しくは、第1の移動動作部3と一体に床面上を並進移動する座標系で見た車両1の全体のヨー軸回り方向の回転中心を意味する。
本実施形態では、車両1の旋回は、第1の移動動作部3の接地部の後方側(ひいては、乗員搭乗部5に搭乗した乗員の後方側)の床面上の点を旋回中心として、車両1がヨー軸まわり方向に旋回するように行なわれる。そして、その旋回中心と第1の移動動作部3の接地部との間のX軸方向の距離L3は、Vb_estm1_xがゼロである場合には、旋回中心が第2の移動動作部4の接地部近辺の位置になるように設定される。たとえば、L3は、第1の移動動作部3の接地部と第2の移動動作部4の接地部との間の距離に一致もしくはほぼ一致するように設定される。
また、Vb_estm1_xが正の場合、すなわち前への移動である場合、Vb_estm1_xの大きさ(絶対値)が大きくなるに伴い、旋回中心が第2の移動動作部4の接地部側から、第1の移動動作部4の接地部側に近づいてくるように(ひいては、旋回中心のX軸方向の位置が、乗員搭乗部5に搭乗した乗員の直下の位置(乗員を床面に投影した位置)に近づいてくるように)L3が設定される。すなわち、Vb_estm1_xの大きさ(絶対値)が大きくなるに伴い、L3が小さくなっていくように設定される。ただし、L3は、既定の下限値(>0)以上の距離に制限される。
Vb_estm1_xが負の場合、すなわち後ろへの移動である場合には、L3はVb_estm1_xがゼロの場合の値と同一にするか、Vb_estm1_xの大きさ(絶対値)が大きくなるに伴い、L3が大きくなるように設定されることが好ましい。
処理部42は、このようにVb_estm1_xに応じて決定した距離L3によって、Vw1a_yを除算することにより、目標旋回角速度ωz_cmd_gcを決定する。なお、ωz_cmd_gcは、Vw1a_yが左向きの速度である場合には、左回り(反時計回り)の角速度であり、Vw1a_yが右向きの速度である場合には、右回り(時計回り)の角速度である。
次いで、第2制御処理部25は、処理部43の処理を実行する。処理部43は、処理部42で決定された目標旋回角速度ωz_cmd_gcに、第1の移動動作部3の接地部と第2の移動動作部4の接地部との間の既定の距離の(−1)倍の値(=−L)を乗じることによって、目標旋回角速度ωz_cmd_gcで車両1の旋回行なった場合における第2の移動動作部4の、第1の移動動作部3に対するY軸方向の相対移動速度ΔVw2_cmd_yを算出する。
このように決定される第2の移動動作部4のY軸方向の相対移動速度ΔVw2_cmd_yは、ωz_cmd_gc=0である場合(旋回要求が無い場合)にはゼロとなる。また、ΔVw2_cmd_yは、ωz_cmd_gcが左回りの旋回角速度である場合には、右向きの速度、ωz_cmd_gcが右回りの旋回角速度である場合には、左向きの速度である。したがって、旋回要求がある場合のΔVw2_cmd_yは、Vw1a_yまたはVb_estm1_yと逆向きの速度である。
次いで、第2制御処理部25は、処理部44の処理を実行する。この処理部44は、第2の移動動作部4のY軸方向の相対移動速度ΔVw2_cmd_yを、前記第1制御処理部24で決定された第1の移動動作部3のY軸方向の第1目標速度Vw1_cmd_y(最新値)に加えることにより、第2の移動動作部4のY軸方向の第2目標速度Vw2_cmd_yの基本値Vw2_cmda_y(最新値)を決定する。
次いで、第2制御処理部25は、処理部45の処理を実行する。この処理部45は、第2の移動動作部4のスリップを防止するためのスリップ防止処理を実行することで、第2の移動動作部4のY軸方向の第2目標速度Vw2_cmd_yを決定する。
この場合、処理部45は、基本値Vw2_cmda_yの絶対値が過大である場合等、第2の移動動作部4のスリップが発生しやすいと予測される場合に、第2の移動動作部4のY軸方向の第2目標速度Vw2_cmd_yを、基本値Vw2_cmda_yから修正した速度に設定する。そして、処理部45は、第2の移動動作部4のスリップが発生しないと予測される場合には、基本値Vw2_cmda_yをそのまま第2の移動動作部4のY軸方向の第2目標速度Vw2_cmd_yとして決定する。
なお、第2の移動動作部4を、バネ等により床面に押し付けるようにした場合等、第2の移動動作部4と床面との間の摩擦力が十分に確保できるような場合には、処理部45の処理を省略するようにしてもよい。
そして、第2制御処理部25は、上記の如く決定した第2目標速度Vw2_cmd_yにしたがって第2の移動動作部4のアクチュエータ装置としての電動モータ17を制御する。より詳しくは、第2制御処理部25は、第2目標速度Vw2_cmd_yにより規定される電動モータ17の回転速度の目標値に、実際の回転速度(計測値)を追従させるように、フィードバック制御処理により電動モータ17の電流指令値を決定し、この電流指令値にしたがって、電動モータ17の通電を行なう。
第2制御処理部25の制御処理は、以上の如く実行される。これにより、第2の移動動作部4のY軸方向の第2目標速度Vw2_cmd_yは、基本的には、相対移動速度ΔVw2_cmd_yを、第1の移動動作部3のY軸方向の第1目標速度Vw1_cmd_y(最新値)に加えた速度に決定される。
この場合、車両系全体重心のY軸方向の移動速度の推定値Vb_estm1_yの絶対値が十分に小さく、旋回要求が無いと判断される状況では、ΔVw2_cmd_y=0となるので、第2の移動動作部4のY軸方向の第2目標速度Vw2_cmd_yは、基本的には、第1の移動動作部3のY軸方向の第1目標速度Vw1_cmd_yと一致するように決定される。
一方、車両系全体重心のY軸方向の移動速度の推定値Vb_estm1_yの絶対値が比較的大きく、旋回要求が有ると判断される状況では、ΔVw2_cmd_yは、Vb_estm1_yと逆向きの速度に決定される。このため、第2の移動動作部4のY軸方向の第2目標速度Vw2_cmd_yは、基本的には、第1の移動動作部3のY軸方向の第1目標速度Vw1_cmd_yと同じ向きで、Vw1_cmd_yよりも小さい大きさの速度(ゼロもしくはゼロに近い速度)に決定されるか、または第1の移動動作部3のY軸方向の第1目標速度Vw1_cmd_yと逆向きの速度に決定される。
(作用効果)
本実施形態の車両1では、乗員搭乗部5に搭乗した乗員の身体の動きに伴う該乗員搭乗部5(または基体2)の前後方向(X軸方向)の傾動に応じて、あるいは、ジョイスティック12の前後方向の揺動操作に応じて出力される前進・後進指令に応じてX軸方向での車両1の並進移動を行なうことができる。
乗員搭乗部5に搭乗した乗員自身の重心の左右方向の移動(乗員搭乗部5に対する相対的な移動)が比較的小さく、車両系全体重心のY軸方向の移動速度の推定値Vb_estm1_yが、ゼロ近辺の所定範囲Δa内に収まるような状況では、該乗員搭乗部5(または基体2)の左右方向(Y軸方向)の微小な傾動に応じて、あるいは、ジョイスティック12の左右方向の揺動操作に応じて出力される横移動指令に応じてY軸方向での車両1の並進移動を行なうことができる。
これらの並進移動を複合して、X軸方向およびY軸方向に対して傾斜した任意の方向にも車両1の並進移動を行なうこともできる。
乗員搭乗部5に搭乗した乗員が、自身の重心を左右方向に比較的大きく移動させることによって、車両系全体重心のY軸方向の移動速度の推定値Vb_estm1_yが、ゼロ近辺の所定範囲Δaから逸脱した場合には、第2の移動動作部4のY軸方向の第2目標速度Vw2_cmd_yは、第2の移動動作部4のY軸方向の第1目標速度Vw1_cmd_yから、ΔVw2_cmd_yだけずらした速度に決定される。そして、この場合、第2目標速度Vw2_cmd_yは、車両1を第1の移動動作部3の接地部の後方側の旋回中心回りに車両1を旋回させるような速度に決定される。
このため、乗員は、自身の重心を左右方向に動かすように上体を動かすだけで、車両1を旋回させることができる。また、この場合、乗員が自身の重心を左側に動かせば、左回りに車両1が旋回するようになり、また、乗員が自身の重心を右側に動かせば、右回りに車両1が旋回するようになる。したがって、左右方向での乗員の重心の動きと、車両1の旋回方向とが整合する。
このため、乗員は、自身の上体の左右方向の動きによって車両1を容易に旋回させることできると共に、その旋回のための操縦操作を容易に習得することができる。
たとえば車両1の停車状態(第1の移動動作部3および第2の移動動作部4の移動がほぼ停止した状態)で車両1の旋回(方向転換)を行なおうとした場合には、乗員の重量と、車両1の大部分の重量とを支える第1の移動動作部3が左右方向(Y軸方向)に動くこととなるので、第1の移動動作部3に大きな摩擦力が作用するのを防止できる。そのため、車両1の旋回(方向転換)を円滑に行うことができる。
車両1を前方向(X軸の正の方向)に移動させながら、車両1の旋回を行なおうとした場合には、車両1の代表点としての車両系全体重心のX軸方向の移動速度の推定値Vb_estm1_xの大きさ(絶対値)が大きいほど、第1の移動動作部3の接地部と旋回中心との間の距離L3が小さくなるので、乗員は、車両1の旋回時の移動軌道を所望の軌道に沿わせることを容易に行なうことができる。
本実施形態では、第1制御処理部24の重心ずれ推定部35aは、図7に示した処理によって、車両系全体重心の前記重心ずれ量Ofst_xyを推定する。そのため、当該重心ずれ量を精度よく推定することができる。そして、この重心ずれ量Ofst_xyの推定値Ofst_estm_xyに応じて、前記した如く車両系全体重心の目標速度(制限後重心目標速度)Vb_cmd_xyが決定される。このため、重心ずれ量Ofst_xyが車両1の挙動に及ぼす影響を適切に補償することができる。
本実施形態の車両1では、基体2に対する第2の移動動作部4の揺動量(Y軸回り方向の揺動量)が、ストッパ16,16により規定される所定の範囲内に機構的に制限されるので、特に、乗員搭乗部5が、乗員が視認し難い後方側に過剰に傾倒するのを防止することができる。
本実施形態の車両1によれば、乗員搭乗部5の傾動に応じて算定される重心ずれ影響量Vofs_xyにより、車両1を当該傾動方向に対して並進させることができる(図4および図5参照)。たとえば、第1実施例において、乗員搭乗部5の第1指定方向(後方向)への傾動によって決定される負のVofs_x(図10(a)一点鎖線(t=t0〜t1)参照)が、補正されないまま重心目標速度決定部32に入力された場合、Vb_cmd_yが負値に決定されて車両1が後方向に並進する可能性がある。基本速度指令Vjs_xが0である場合(Vjs_x>0ではない場合)、当該可能性は高い。
しかるに、乗員搭乗部5が第1指定方向に傾動した場合、当該傾動量に応じて算定される重心ずれ補正量Vdep_x(図10(a)二点鎖線参照)により、Vofs_xが補正される(図10(a)実線参照)。乗員搭乗部5の第1指定方向への傾動量、すなわちΣ(k)が大きくなるほど、第2指定方向に対するVdep_xが増加するように決定される(図10(a)二点鎖線(t=t0〜t1)参照)。
これにより、使用者が第2指定方向(前方向)への車両1の並進を意図しているにもかかわらず、乗員搭乗部5の第1指定方向への偶発的な態様による傾動または大きな傾動に応じて、車両1が第1指定方向に予期せぬ形態で並進することが防止または抑制されうる(図11(a)一点鎖線参照)。
乗員搭乗部5の第1指定方向への傾動量Σ(k)に対する、重心ずれ補正量Vdep_xの増加率が減少するようにVdep_xが決定される(図10(a)二点鎖線(t=t0〜t1)参照)。これにより、乗員搭乗部5が第1指定方向に傾動している間、Vdep_xが過大になる事態が回避される。このため、乗員搭乗部5の傾動方向が第1指定方向から第2指定方向に転じた際、車両1が使用者の予期せぬほど高速で第2指定方向に並進することが防止または抑制されうる(図10(a)二点鎖線および実線(t=t1)参照)。
乗員搭乗部5の第1指定方向への傾動終了後、Vdep_xが減少するように決定される(図10(a)二点鎖線(t=t1〜t5)参照)。これにより、乗員搭乗部5の傾動方向が第1指定方向から第2指定方向等の他の方向に転じた後、当該傾動方向転換時に残存するVdep_xの低減の迅速化が図られる。その結果、乗員搭乗部5の傾動態様に応じた使用者の意図に合致する車両1の第2指定方向への並進等の動作態様が迅速に実現されうる。
基本速度指令Vjs_xが0である場合、車両1が第2指定方向(前方向)に並進を開始する時刻t=t3において、Vofs_x+Vdep_xが処理部32cの不感帯から正側に外れる程度に大きくなり、車両1を前方向に並進させるようなVb_cmd_xが生成されることを意味する。
乗員搭乗部5の第1指定方向への傾動量に応じた累積値Σ(k)が閾値Σ_th以下になるように制御される。たとえば、第2実施例において、乗員搭乗部5の第1指定方向への傾動によって決定されるVdep_xが閾値Kdep2×Σ_th以下に制御されている(図10(b)二点鎖線(t=t2〜t4)参照)。これにより、乗員搭乗部5の傾動態様に鑑みて使用者が第1指定方向に車両1を並進させることを意図している蓋然性が高いにもかかわらず、第1指定方向へのVofs_xが過度に補正されることが回避されるので、当該並進が許容されうる(図11(b)左矢印参照)。
基本速度指令Vjs_xが0である場合、車両1が第1指定方向(後方向)に並進を開始する時刻t=t4において、Vofs_x+Vdep_xが処理部32cの不感帯から負側に外れる程度に大きくなり、車両1を後方向に並進させるようなVb_cmd_xが生成されることを意味する。
Vofs_xがVdep_xにより補正された結果が、重心目標速度決定部32の処理部32cにおいて不感帯を有する多段リミット処理されることによってVb_cmd_xが決定される(図4参照)。これにより、当該補正後のVofs_xが不安定になり、車両1の予期せぬ形態での並進を招来する事態がより確実に回避されうる。
[第2実施形態および第3実施形態]
次に、本発明の第2実施形態および第3実施形態をそれぞれ図9(a)、図9(b)を参照して説明する。なお、第2実施形態および第3実施形態は、前記第1実施形態と第2制御処理部25の一部の処理のみが相違するものである。したがって、第2実施形態および第3実施形態の説明では、第1実施形態と同一の事項の説明を省略する。
なお、図9(a),(b)において、括弧付きの参照符号は、後述の変形態様に関するものである。
図9(a)は、第2実施形態において、第2制御処理部25が車両系全体重心のY軸方向の移動速度の推定値Vb_estm1_yに応じてVw1a_y(不感帯処理後速度の目標値)を決定する処理を示している。
この第2実施形態では、第2制御処理部25は、車両系全体重心のY軸方向の移動速度の推定値Vb_estm1_yを入力するローカットフィルタ(擬似微分フィルタ)51を備えている。第2制御処理部25は、このローカットフィルタ51の出力(Vb_estm1_yにローカット特性のフィルタリング処理を施した値)に処理部52にて所定値のゲインKdを乗じた値を、演算部53にてVb_estm1_yに加算する。
そして、第2制御処理部25は、Vb_estm1_yの代わりに、演算部53の出力を、第1実施形態と同じ処理部41に入力して、該処理部41の処理を第1実施形態と同様に行なうことで、Vw1a_yを決定する。すなわち、Vw1a_yはVb_estm1_yを位相補償回路(フィルタ)に通したものに相当する。
第2実施形態は、以上説明した以外の事項は第1実施形態と同じである。
かかる第2実施形態では、車両系全体重心のY軸方向の移動速度の推定値Vb_estm1_yの位相補償値(演算部53の出力)と、その時間的変化率に応じたものとなるローカットフィルタ51の出力とに応じてVw1a_y、ひいては、目標旋回角速度ωz_cmd_gcが決定される。
このため、乗員の上体の動きに伴う車両系全体重心のY軸方向の移動に対して、車両1の旋回挙動の応答性を高めることができる。
次に、図9(b)は、第3実施形態において、第2制御処理部25が車両系全体重心のY軸方向の移動速度の推定値Vb_estm1_yに応じてVw1a_y(不感帯処理後速度の目標値)を決定する処理を示している。
この第3実施形態では、車両系全体重心のY軸方向の移動速度の推定値Vb_estm1_yが第1実施形態と同様に、処理部41に入力されるようになっている。
また、第3実施形態では、第2制御処理部25は、第2実施形態と同じローカットフィルタ51および処理部52を備えることに加えて、さらに、処理部52の出力を入力する処理部54を備える。この処理部54は、処理部41と同様の処理を行うものである。
具体的には、処理部54の入力値の絶対値が比較的小さく、該入力値が、ゼロを中心とする所定範囲Δb内の値である場合(該入力値の絶対値があらかじめ定めた所定値以下である場合)には、処理部54は、出力値をゼロとする。
また、処理部54の入力値の絶対値が比較的大きいものとなっており、該入力値が、所定範囲b外の値である場合(該入力値の絶対値があらかじめ定めた所定値よりも大きい場合)には、処理部54は、出力値をゼロでない値に設定する。
具体的には、処理部54は、その出力値の絶対値が、既定の上限値以下で、処理部54の入力値の絶対値の増加に伴い増加していくように、処理部54の入力値に応じて出力値を決定する。この場合、処理部54の出力値の極性(向き)は、入力値と同じとされる。
そして、第3実施形態における第2制御処理部25は、処理部41の出力値と、処理部54の出力値とを演算部55で加え合わせることにより、Vw1a_yを決定する。
第3実施形態は、以上説明した以外の事項は第1実施形態と同じである。
第3実施形態では、Vw1a_yは、車両系全体重心のY軸方向の移動速度の推定値Vb_estm1_yに応じて処理部41により決定された成分と、Vb_estm1_yの時間的変化率に応じたものとなるローカットフィルタ51の出力に応じて処理部54により決定した成分とを加え合わせることによって決定される。
このため、第2実施形態と同様に、乗員の上体の動きに伴う車両系全体重心のY軸方向の移動に対して、車両1の旋回挙動の応答性を高めることができる。
[変形態様について]
次に、以上説明した各実施形態の変形態様をいくつか説明する。
前記実施形態ではX軸負方向(後方向)が「第1指定方向」として定義され、かつ、X軸正方向(前方向)が「第2指定方向」として定義されていた。これに代えてまたは加えて、X軸負方向とは異なる方向が「第1指定方向」として定義され、かつ、X軸正方向とは異なる方向が「第2指定方向」として定義されていてもよい。
たとえば、Y軸負方向(右方向)が「第1指定方向」として定義され、かつ、Y軸正方向(左方向)が「第2指定方向」として定義されていてもよい。この場合、使用者が車両1の左側から乗員搭乗部5に搭乗したために、当該搭乗初期に基体2が左方向に傾動した際、車両1が使用者の意図に反して左方向に並進することが抑制または防止されうる。
前記実施形態では式(3c)または(3d)にしたがって重心ずれ補正量Vdep_xが決定されていたが、他の実施形態として、基体2の傾動態様を表わすωb_act_xyおよびθb_act_xyのうち一方または両方を主変数とし、次の(特性1)〜(特性4)のうち(特性1)を含む任意の組み合わせを変化特性として有する任意の関数または従変数fにしたがって重心ずれ補正量Vdep_xが決定されてもよい。これにより、図10(a)および図10(b)に示されている変化特性を有するように重心ずれ補正量Vdep_xが決定されうる。
(特性1)基体2の第1指定方向への傾動量が多くなるほど、第2指定方向に対する重心ずれ補正量(Vdep_xy)が連続的または断続的に増加する。
(特性2)基体2の第1指定方向への傾動量に対する、第2指定方向に対する重心ずれ補正量Vdep_xの増加率が減少する。
(特性3)基体2の第1指定方向への傾動終了後、第2指定方向に対する重心ずれ補正量Vdep_xが減少する。
(特性4)第2指定方向に対する重心ずれ補正量Vdep_xが閾値以下になるように調節される。
式(3c)または(3d)においてKdep1の値が1以上の値(たとえば1)に設定されることにより、重心ずれ補正量Vdep_xが(特性1)および(特性4)のみを有するように決定されてもよい。さらに閾値が省略されることにより、重心ずれ補正量Vdep_xが(特性1)のみを有するように決定されてもよい。
制御装置21(または第1制御処理部24)が、基体2の第1指定方向への傾動終了後(図10(a)t=t1および図11(a)一点鎖線参照)、車両1の動作態様に基づいてVdep_xの減少率を調節するよう構成されていてもよい。具体的には、基体2の第1指定方向への傾動終了後、車両1の並進速度または旋回速度が高くなるほど断続的または連続的にVdep_xの減少率が高くなるように調節されてもよい。
たとえば、第1実施例において、車両1が前方向に並進を開始した時刻t=t3以降、図10(a)に破線で示されているように、Vdep_x(二点鎖線参照)の減少率が高く調節される。これにより、Vdep_x=0、すなわち、Vofs_xがそのまま重心目標速度決定部32に入力される状態が早期に実現される。このため、車両1を第1指定方向に並進させるという使用者の操縦意図と、車両1の動作態様との整合が早期に図られる。
車両1の起動時から一定時間が経過するまでの暖機運転期間に、その後の定常運転期間と比較して車両1の操縦感度を低下させるように制御装置21が構成されていてもよい。車両1の操縦感度低下のため、たとえば、第1制御処理部24を構成する重心目標速度決定部32の処理部32c(図4参照)の不感帯が、暖機運転期間において一時的に広げられる。これにより、暖機運転期間に車両1が動き出す事態が回避されうる。
車両1に異常が検知された場合、車両1の操縦感度を断続的または連続的に低下させるように制御装置21が構成されていてもよい。これにより、車両1に異常が発生したにもかかわらず、車両1がなおも継続して使用されたためにダメージが大きくなる事態が回避される。異常検知の有無または異常の種類をインジケータに表示させるまたはスピーカから音声出力させるように制御装置21が構成されていてもよい。
異常としては、制御装置21のノイズ由来の通信異常などのシステムエラー、車載バッテリの蓄電量の顕著な低下、車両1の構成部品の過熱、および、車両1の構成部品である電気機器への供給電流過多などがあげられる。車両1の操縦感度低下のため、たとえば、第1制御処理部24を構成する重心目標速度決定部32の処理部32eのX方向およびY方向のリミット値(図4参照)、ならびに、第2制御処理部25を構成する処理部41のY方向のリミット値(図8参照)のうち少なくとも1つが、異常検知後に徐々に0に近づくように調節される。
車両1の異常検知後の状態変化に応じて、車両1の操縦感度を元の操縦感度に近づけるように上昇させるように制御装置21が構成されていてもよい。これにより、異常発生後の車両1のメンテナンス場所などへの移動が可能または容易になる。
たとえば、バッテリの蓄電量低下が検知された後、使用者が乗員搭乗部5から降りたことが検知された場合、車両1の操縦感度が上昇されてもよい。車両1の構成部品の過熱が検知された後、当該構成部品の温度が正常温度に低下したことが確認された場合、車両1の操縦感度が上昇されてもよい。車両1の構成部品への供給電流過多が検知された後、当該電流が正常値に復帰したことが確認された場合、車両1の操縦感度が上昇されてもよい。
前記各実施形態では、第2制御処理部25の処理において、旋回要求の有無、あるいは、旋回要求の度合いを判断する指標として、前記重心速度推定部33で算出される車両系全体重心のY軸方向の移動速度の推定値Vb_estm1_yを用いるようにした。ただし、旋回要求の有無、あるいは、旋回要求の度合いを判断する指標として、Vb_estm1_y以外のパラメータを用いるようにしてもよい。
たとえば、図8、あるいは、図9(a),(b)の括弧付きの参照符号で示すように、Vb_estm1_yの代わりに、第1制御処理部24の重心ずれ影響量算出部35bで算出されるY軸方向の重心ずれ影響量Vofs_y(もしくは重心ずれ量推定値Ofst_estm_y)、あるいは、処理部32eで決定されるY軸方向の制限後速度指令V2_cmd_y、あるいは、姿勢制御演算部34で決定される第1の移動動作部3のY軸方向の第1目標速度Vw1_cmd_y、あるいは、第1の移動動作部3のY軸方向の実際の移動速度Vw1_act_yの観測値(たとえば電動モータ8bの回転速度の検出値から推定されるVw1_act_yの値)を用いて、前記実施形態と同様に、処理部41,42の処理を実行することで、車両1の目標旋回角速度ωz_cmd_gcを決定するようにしてもよい。
なお、この場合、処理部41において、その出力値をゼロとする入力パメータの値の範囲Δa(該範囲Δaの上限値および下限値の大きさ)と、範囲Δa外での該入力パラメータの値に変化に対する出力値の変化率とは、一般的には、各種類の入力パラメータ毎に設定される。このことは、図9(b)に示す処理部54においても同様である。
Vb_estm1_yの代わりの上記の如きパラメータを用いた場合であっても、前記実施形態と同様に、乗員の上体の左右方向の動きに応じて、車両1の旋回を行なわせることができる。
ここで、Vb_estm1_yの代わりに、第1制御処理部24の重心ずれ影響量算出部35bで算出されるY軸方向の重心ずれ影響量Vofs_yを用いた場合には、該Vofs_yは、Y軸方向の重心ずれ量推定値Ofst_estm_yに比例するので、Vofs_yの応じて車両1の目標旋回角速度ωz_cmd_gcを設定するということは、Y軸方向の重心ずれ量推定値Ofst_estm_yに応じて車両1の目標旋回角速度ωz_cmd_gcを設定することと同等である。
また、前記各実施形態では、車両1の旋回時における旋回中心と第1の移動動作部3の接地部との間の距離L3を、車両系全体重心の前後方向の移動速度の推定値(観測値)Vb_estm_xに応じて変化させるようにしたが、L3をあらかじめ定めた一定値にするようにしてもよい。
また、前記第1実施形態では、処理部41の入力パラメータとしての車両系全体重心のY軸方向の移動速度の推定値Vb_estm1_yがゼロ近辺の所定範囲Δa内の値である場合に、目標旋回角速度ωz_cmd_gcをゼロに設定するようにしたが、該入力パラメータが、所定範囲Δa内の値である場合にも、車両1を旋回させるように目標旋回角速度ωz_cmd_gcを設定するようにしてもよい。すなわち、Δaをゼロにしてもよい。
また、前記各実施形態では、第2の移動動作部4を第1の移動動作部3の後方側に配置したものを示したが、第2の移動動作部4を第1の移動動作部3の前方側に配置するようにしてもよい。その場合には、旋回時に、第2の移動動作部4のY軸方向の移動速度を、第1の移動動作部3のY軸方向の移動速度よりも大きくすることで、車両1の旋回を行なわせることができる。
前記各実施形態では前進・後進指令と横移動指令とを出力するための操作器として、ジョイスティック12を用いたが、ジョイスティックの代わりに、トラックボールや、タッチパッドを使用してもよく、あるいは、乗員による接触箇所を検知する荷重センサや、乗員が把持する姿勢センサ等を使用してもよい。あるいは、たとえばスマートフォン等の携帯型端末機を操作器として使用するようにすることもできる。
また、ジョイスティック12等の操作器を省略したり、あるいは、前進・後進指令だけを出力する操作器を備えるようにしてもよい。
また、第2の移動動作部4は、オムニホイール以外の構造、たとえば、第1の移動動作部3と同様の構造のものであってもよい。
また、乗員による選択スイッチ等の操作によって、乗員が自身の身体を左右方向に動かすことで車両1の旋回を行なうようにすることと、乗員がジョイスティック等の操作器を操作することで車両1の旋回を行なうようにすることとを選択的に行なうようにすることができるようにしてもよい。
1…倒立振子型車両、2…基体、3…第1の移動動作部、4…第2の移動動作部、5…乗員搭乗部、8a,8b…電動モータ(第1のアクチュエータ装置)、17…電動モータ(第2のアクチュエータ装置)、21…制御装置、22…傾斜センサ(傾動状態検知部)、32a…重心ずれ推定部(全体重心ずれ推定手段)。

Claims (9)

  1. 床面上を全方位に移動可能に構成されている移動動作部(3)(4)と、
    前記移動動作部(3)(4)を駆動するアクチュエータ装置(8a,8b)(17)と、
    前記移動動作部(3)(4)および前記アクチュエータ装置(8a,8b)(17)が組み付けられた基体(2)と、
    鉛直方向に対して傾動自在に前記基体(2)に組み付けられた乗員搭乗部(5)と、
    前記乗員搭乗部(5)の傾動状態を検知する傾動状態検知部(22)と、
    前記傾動状態検知部(22)による前記乗員搭乗部(5)の傾動状態の検知結果に基づいて前記アクチュエータ装置(8a,8b)(17)の動作を制御するように構成されている制御装置(21)と、を備えている倒立振子型車両(1)であって、
    前記制御装置(21)が、前記乗員搭乗部(5)の第1指定方向への傾動態様に基づいて定まる速度で、前記車両(1)が前記第1指定方向の反対方向である第2指定方向に並進するように前記アクチュエータ装置(8a,8b)(17)の動作を制御するよう構成されていることを特徴とする倒立振子型車両。
  2. 請求項1記載の倒立振子型車両において、
    前記制御装置(21)が、前記乗員搭乗部(5)の傾動態様に基づいて前記乗員搭乗部(5)の傾動方向への前記車両(1)の基本並進指令値を決定し、前記乗員搭乗部(5)の前記第1指定方向への傾動態様に基づいて前記車両(1)の前記第2指定方向への並進指令補正量を決定し、かつ、前記基本並進指令値を前記並進指令補正量に応じて補正した結果に基づき、前記車両(1)の並進速度を決定するように構成されていることを特徴とする倒立振子型車両。
  3. 請求項2記載の倒立振子型車両において、
    前記制御装置(21)が、前記乗員搭乗部(5)の前記第1指定方向への傾動量が多くなるほど、前記第2指定方向に対する前記車両(1)の並進指令補正量が連続的または断続的に増加するように当該並進指令補正量を決定するよう構成されていることを特徴とする倒立振子型車両。
  4. 請求項3記載の倒立振子型車両において、
    前記制御装置(21)が、前記乗員搭乗部(5)の前記第1指定方向への傾動量に対する、前記第2指定方向に対する前記車両(1)の並進指令補正量の増加率が減少するように当該並進指令補正量を決定するよう構成されていることを特徴とする倒立振子型車両。
  5. 請求項2〜4のうちいずれか1つに記載の倒立振子型車両において、
    前記制御装置(21)が、前記乗員搭乗部(5)の前記第1指定方向への傾動終了後、前記第2指定方向に対する前記車両(1)の並進指令補正量が減少するように当該並進指令補正量を決定するよう構成されていることを特徴とする倒立振子型車両。
  6. 請求項5記載の倒立振子型車両において、
    前記制御装置(21)が、前記乗員搭乗部(5)の前記第1指定方向への傾動終了後、前記車両(1)の動作態様に基づいて前記並進指令補正量の減少率を調節するよう構成されていることを特徴とする倒立振子型車両。
  7. 請求項6記載の倒立振子型車両において、
    前記制御装置(21)が、前記乗員搭乗部(5)の前記第1指定方向への傾動終了後、前記車両(1)の並進速度または旋回速度が高くなるほど断続的または連続的に前記並進指令補正量の減少率が高くなるように当該減少率を調節するよう構成されていることを特徴とする倒立振子型車両。
  8. 請求項2〜7のうちいずれか1つに記載の倒立振子型車両において、
    前記制御装置(21)が、前記第2指定方向に対する前記車両(1)の並進指令補正量が閾値以下になるように当該並進指令補正量を決定するよう構成されていることを特徴とする倒立振子型車両。
  9. 請求項2〜8のうちいずれか1つに記載の倒立振子型車両において、
    前記制御装置(21)が、前記基本並進指令値を前記並進指令補正量に応じて補正した結果を、不感帯を有する多段リミット処理することによって前記車両(1)の並進速度を決定するように構成されていることを特徴とする倒立振子型車両。
JP2013074052A 2013-03-29 2013-03-29 倒立振子型車両 Active JP6081270B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013074052A JP6081270B2 (ja) 2013-03-29 2013-03-29 倒立振子型車両
EP14161451.1A EP2783963B1 (en) 2013-03-29 2014-03-25 Inverted pendulum type vehicle
US14/225,471 US9367066B2 (en) 2013-03-29 2014-03-26 Inverted pendulum type vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013074052A JP6081270B2 (ja) 2013-03-29 2013-03-29 倒立振子型車両

Publications (2)

Publication Number Publication Date
JP2014198502A true JP2014198502A (ja) 2014-10-23
JP6081270B2 JP6081270B2 (ja) 2017-02-15

Family

ID=50345921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013074052A Active JP6081270B2 (ja) 2013-03-29 2013-03-29 倒立振子型車両

Country Status (3)

Country Link
US (1) US9367066B2 (ja)
EP (1) EP2783963B1 (ja)
JP (1) JP6081270B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017200155A1 (de) * 2017-01-09 2018-07-12 Ford Motor Company Motorangetriebener Einkaufstrolley
TWI666540B (zh) * 2017-04-12 2019-07-21 緯創資通股份有限公司 重心調整機構及其相關攝影裝置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6827163B2 (en) * 1994-05-27 2004-12-07 Deka Products Limited Partnership Non-linear control of a balancing vehicle
JP2009286323A (ja) * 2008-05-30 2009-12-10 Utsunomiya Univ 倒立振子型移動体及び教育教材
JP2011111048A (ja) * 2009-11-26 2011-06-09 Kanto Auto Works Ltd 倒立振子型四輪走行装置

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB224173A (en) 1924-05-22 1924-11-06 Brown David & Sons Ltd Improvements in or relating to tube mills, rotary kilns, rotary screens and the like
US5971091A (en) 1993-02-24 1999-10-26 Deka Products Limited Partnership Transportation vehicles and methods
US7370713B1 (en) * 1993-02-24 2008-05-13 Deka Products Limited Partnership Personal mobility vehicles and methods
US5701965A (en) * 1993-02-24 1997-12-30 Deka Products Limited Partnership Human transporter
US7090040B2 (en) 1993-02-24 2006-08-15 Deka Products Limited Partnership Motion control of a transporter
US5385210A (en) 1994-02-01 1995-01-31 Harvey; William B. Tow vehicle system
US6405816B1 (en) 1999-06-03 2002-06-18 Deka Products Limited Partnership Mechanical improvements to a personal vehicle
US6302230B1 (en) 1999-06-04 2001-10-16 Deka Products Limited Partnership Personal mobility vehicles and methods
US7740099B2 (en) * 1999-06-04 2010-06-22 Segway Inc. Enhanced control of a transporter
US7275607B2 (en) * 1999-06-04 2007-10-02 Deka Products Limited Partnership Control of a personal transporter based on user position
AU2002211908B2 (en) 2000-10-13 2006-03-02 Deka Products Limited Partnership Control of a personal transporter
EP2106886B1 (en) 2002-04-26 2011-03-23 Honda Giken Kogyo Kabushiki Kaisha Self-position estimating device for leg type movable robots
US7690452B2 (en) 2002-06-11 2010-04-06 Deka Products Limited Partnership Vehicle control by pitch modulation
JP3897293B2 (ja) 2002-07-08 2007-03-22 本田技研工業株式会社 車両の運転操作装置
JP2004129435A (ja) 2002-10-04 2004-04-22 Sony Corp 搬送装置、制御方法、及び駆動機構
JP4422415B2 (ja) 2003-01-17 2010-02-24 トヨタ自動車株式会社 2輪車
US7703568B2 (en) 2003-06-12 2010-04-27 Toyota Jidosha Kabushiki Kaisha Coaxial motorcycle
WO2005016735A1 (en) * 2003-08-18 2005-02-24 Canterprise Limited A powered unicycle
US7363993B2 (en) 2003-11-04 2008-04-29 Toyota Jidosha Kabushiki Kaisha Traveling apparatus and method for controlling thereof
JP4650327B2 (ja) 2005-04-14 2011-03-16 トヨタ自動車株式会社 同軸二輪車
JP4556831B2 (ja) 2005-10-13 2010-10-06 トヨタ自動車株式会社 走行装置及びその制御方法
US8346441B2 (en) 2005-12-28 2013-01-01 Kabushikikaisha Equos Research Motor vehicle with dynamic balancing occupant riding portion
WO2007129505A1 (ja) 2006-05-09 2007-11-15 Equos Research Co., Ltd. 車両、特性量推定装置及び搭載物判定装置
JP2008024235A (ja) * 2006-07-24 2008-02-07 Equos Research Co Ltd 車両
JP5519093B2 (ja) 2006-08-03 2014-06-11 トヨタ自動車株式会社 走行装置及び走行装置の制動制御方法
US7979179B2 (en) * 2006-08-11 2011-07-12 Segway Inc. Apparatus and method for pitch state estimation for a vehicle
JP4434186B2 (ja) 2006-09-04 2010-03-17 トヨタ自動車株式会社 移動体及び移動体の制御方法
JP5019026B2 (ja) * 2006-10-31 2012-09-05 株式会社エクォス・リサーチ 走行車両
EP2128012A4 (en) 2007-03-27 2012-04-11 Equos Res Co Ltd VEHICLE
US20100114421A1 (en) 2007-03-29 2010-05-06 Equos Research Co., Ltd. Vehicle
JP4506776B2 (ja) 2007-04-05 2010-07-21 トヨタ自動車株式会社 走行装置
JP5358432B2 (ja) 2007-04-20 2013-12-04 本田技研工業株式会社 全方向駆動装置及びそれを用いた全方向移動車
EP2138378B1 (en) 2007-04-20 2018-08-01 Honda Motor Co., Ltd. Omnidirectional driver and omnidirectional vehicle employing it
US20080271938A1 (en) * 2007-05-04 2008-11-06 Benjamin Gulak Motorized Cycle
US8240407B2 (en) * 2007-05-16 2012-08-14 Honda Motor Co., Ltd. Omni-directional vehicle
DE202007007673U1 (de) * 2007-05-30 2007-10-18 Funke, Olaf Steuerhebel für Personentransporter
WO2009004844A1 (ja) 2007-06-29 2009-01-08 Equos Research Co., Ltd. 車両
JP4867823B2 (ja) * 2007-07-09 2012-02-01 トヨタ自動車株式会社 倒立車輪型移動体、及びその制御方法
JP5013256B2 (ja) 2007-08-07 2012-08-29 株式会社エクォス・リサーチ 車両
EP2177425A4 (en) 2007-08-10 2014-06-18 Equos Res Co Ltd VEHICLE
US20090055033A1 (en) * 2007-08-23 2009-02-26 Segway Inc. Apparatus and methods for fault detection at vehicle startup
TW200934684A (en) * 2007-10-19 2009-08-16 Segway Inc Apparatus and method for controlling vehicle motion
US8352147B2 (en) * 2007-11-26 2013-01-08 Equos Research Co., Ltd. Vehicle control device
US20100235028A1 (en) 2007-12-03 2010-09-16 Shinji Ishii Traveling apparatus and method of controlling same
JP5147542B2 (ja) * 2008-05-23 2013-02-20 本田技研工業株式会社 倒立振子移動体
JP4600539B2 (ja) * 2008-07-29 2010-12-15 トヨタ自動車株式会社 走行装置、走行装置の制御方法
EP2319750B1 (en) * 2008-07-29 2013-03-27 Toyota Jidosha Kabushiki Kaisha Coaxial two-wheel vehicle and method for controlling same
JP4798181B2 (ja) * 2008-07-29 2011-10-19 トヨタ自動車株式会社 移動体、走行装置、移動体の制御方法
JP4702414B2 (ja) * 2008-07-29 2011-06-15 トヨタ自動車株式会社 同軸二輪車及び同軸二輪車の制御方法
EP2328055B1 (en) 2008-09-17 2016-11-02 Murata Manufacturing Co. Ltd. Fall prevention controller and computer program
WO2010047070A1 (ja) 2008-10-22 2010-04-29 株式会社エクォス・リサーチ 車両
US8170780B2 (en) * 2008-11-06 2012-05-01 Segway, Inc. Apparatus and method for control of a vehicle
US8249773B2 (en) 2008-11-27 2012-08-21 Toyota Jidosha Kabushiki Kaisha Vehicle and its control method
WO2010064408A1 (ja) * 2008-12-05 2010-06-10 本田技研工業株式会社 車輪及びそれを用いた摩擦式駆動装置及び全方向移動体
JP2010167807A (ja) 2009-01-20 2010-08-05 Toyota Motor Corp 走行装置及びその制御方法
JP2010167808A (ja) 2009-01-20 2010-08-05 Toyota Motor Corp 移動体
WO2010084762A1 (ja) 2009-01-26 2010-07-29 株式会社エクォス・リサーチ 車両
WO2010113439A1 (ja) 2009-03-31 2010-10-07 株式会社エクォス・リサーチ 車両
US8123240B2 (en) * 2009-07-10 2012-02-28 Bombardier Recreational Products Inc. Control system for leaning vehicle
US8800697B2 (en) 2009-09-01 2014-08-12 Ryno Motors, Inc. Electric-powered self-balancing unicycle with steering linkage between handlebars and wheel forks
JP4957769B2 (ja) * 2009-09-08 2012-06-20 トヨタ自動車株式会社 走行装置及びその制御方法
JP5177692B2 (ja) 2009-09-11 2013-04-03 独立行政法人産業技術総合研究所 一対の片足載置型移動体を組み合わせた乗用移動装置
JP5398446B2 (ja) 2009-09-18 2014-01-29 本田技研工業株式会社 駆動装置
JP2011063241A (ja) 2009-09-18 2011-03-31 Honda Motor Co Ltd 倒立振子移動体
JP5426681B2 (ja) 2009-09-18 2014-02-26 本田技研工業株式会社 倒立振子型移動体
US8353378B2 (en) 2009-09-18 2013-01-15 Honda Motor Co., Ltd. Frictional drive device and inverted pendulum type vehicle using the same
JP5436117B2 (ja) 2009-09-18 2014-03-05 本田技研工業株式会社 移動体
US8478490B2 (en) 2009-09-18 2013-07-02 Honda Motor Co., Ltd. Control device of inverted pendulum type vehicle
JP5386282B2 (ja) * 2009-09-18 2014-01-15 本田技研工業株式会社 歩行補助装置
JP5401233B2 (ja) * 2009-09-18 2014-01-29 本田技研工業株式会社 倒立振子型移動体
JP5586196B2 (ja) 2009-09-18 2014-09-10 本田技研工業株式会社 倒立振子型車両
WO2011033591A1 (ja) 2009-09-18 2011-03-24 本田技研工業株式会社 倒立振子型車両の制御装置
JP5436564B2 (ja) * 2009-09-18 2014-03-05 本田技研工業株式会社 倒立振子型車両の制御装置
JP2011068222A (ja) 2009-09-24 2011-04-07 Honda Motor Co Ltd 倒立振子型車両の制御装置
JP5484845B2 (ja) * 2009-09-24 2014-05-07 本田技研工業株式会社 電動車両
JP5208906B2 (ja) 2009-11-13 2013-06-12 本田技研工業株式会社 倒立振子型車両
ES2547959T3 (es) 2010-02-26 2015-10-09 Segway Inc. Aparato y métodos para control de un vehículo
IT1401372B1 (it) 2010-08-05 2013-07-18 Carrozzeria 71 S R L Gruppo di trasformazione applicabile a mezzi di locomozione "segway"(r)
US8467948B2 (en) 2010-09-29 2013-06-18 Honda Motor Co., Ltd. Omnidirectional moving body operation system and omnidirectional moving body operation method
US8408339B2 (en) 2010-10-12 2013-04-02 Honda Motor Co., Ltd. Frictional drive device and inverted pendulum type vehicle using the same
JP2012126224A (ja) 2010-12-15 2012-07-05 Bosch Corp 倒立振子型移動体
TWM424290U (en) 2011-08-30 2012-03-11 Cycling & Health Industry R & D Ct Auxiliary wheel assembly and monocycle using the same
JP2013129414A (ja) 2011-11-26 2013-07-04 Honda Motor Co Ltd 全方向移動車両
JP5724855B2 (ja) * 2011-12-02 2015-05-27 トヨタ自動車株式会社 倒立移動体及び角速度センサの出力値補正方法
JP5930838B2 (ja) 2012-05-14 2016-06-08 本田技研工業株式会社 倒立振子型車両
JP5813573B2 (ja) 2012-05-14 2015-11-17 本田技研工業株式会社 倒立振子型車両
JP5921950B2 (ja) 2012-05-14 2016-05-24 本田技研工業株式会社 倒立振子型車両
AU2013305694A1 (en) 2012-08-22 2015-04-09 Ryno Motors, Inc. Electric-powered self-balancing unicycle
JP5644821B2 (ja) * 2012-08-29 2014-12-24 トヨタ自動車株式会社 倒立二輪車及びその制御方法
JP2014125191A (ja) 2012-12-27 2014-07-07 Kubota Corp 重心移動により操縦可能な車両
JP5790677B2 (ja) * 2013-02-15 2015-10-07 トヨタ自動車株式会社 移動制御装置、移動体制御方法、及び制御プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6827163B2 (en) * 1994-05-27 2004-12-07 Deka Products Limited Partnership Non-linear control of a balancing vehicle
JP2009286323A (ja) * 2008-05-30 2009-12-10 Utsunomiya Univ 倒立振子型移動体及び教育教材
JP2011111048A (ja) * 2009-11-26 2011-06-09 Kanto Auto Works Ltd 倒立振子型四輪走行装置

Also Published As

Publication number Publication date
JP6081270B2 (ja) 2017-02-15
EP2783963A1 (en) 2014-10-01
US9367066B2 (en) 2016-06-14
EP2783963B1 (en) 2016-05-18
US20140297124A1 (en) 2014-10-02

Similar Documents

Publication Publication Date Title
JP5921950B2 (ja) 倒立振子型車両
JP5959928B2 (ja) 倒立振子型車両
JP5945477B2 (ja) 倒立振子型車両、及び倒立振子型車両の制御方法
JP6111119B2 (ja) 倒立振子型車両
JP6081271B2 (ja) 倒立振子型車両
JP6062785B2 (ja) 倒立振子型車両
JP6095436B2 (ja) 倒立振子型車両
CN108725666B (zh) 倒立摆车
JP6062784B2 (ja) 倒立振子型車両
JP5927032B2 (ja) 倒立振子型車両
JP6081270B2 (ja) 倒立振子型車両
JP7332536B2 (ja) 移動体の制御装置
JP5959927B2 (ja) 倒立振子型車両
JP5927031B2 (ja) 倒立振子型車両
JP5808289B2 (ja) 倒立振子型車両
WO2019167729A1 (ja) 搭乗型移動体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170118

R150 Certificate of patent or registration of utility model

Ref document number: 6081270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150