JP2014197645A - 化合物半導体装置及びその製造方法 - Google Patents
化合物半導体装置及びその製造方法 Download PDFInfo
- Publication number
- JP2014197645A JP2014197645A JP2013073401A JP2013073401A JP2014197645A JP 2014197645 A JP2014197645 A JP 2014197645A JP 2013073401 A JP2013073401 A JP 2013073401A JP 2013073401 A JP2013073401 A JP 2013073401A JP 2014197645 A JP2014197645 A JP 2014197645A
- Authority
- JP
- Japan
- Prior art keywords
- buffer layer
- layer
- compound semiconductor
- algan
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 110
- 150000001875 compounds Chemical class 0.000 title claims abstract description 102
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 46
- 239000012535 impurity Substances 0.000 claims abstract description 95
- 239000000758 substrate Substances 0.000 claims abstract description 67
- 239000000203 mixture Substances 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims description 30
- 230000007423 decrease Effects 0.000 claims description 7
- 229910002704 AlGaN Inorganic materials 0.000 abstract description 93
- 238000003475 lamination Methods 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 323
- 239000007789 gas Substances 0.000 description 55
- 239000010408 film Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000005755 formation reaction Methods 0.000 description 8
- 150000004767 nitrides Chemical class 0.000 description 8
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 8
- 238000002955 isolation Methods 0.000 description 7
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 239000000969 carrier Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000005533 two-dimensional electron gas Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- -1 for example Substances 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- JHJNPOSPVGRIAN-SFHVURJKSA-N n-[3-[(1s)-1-[[6-(3,4-dimethoxyphenyl)pyrazin-2-yl]amino]ethyl]phenyl]-5-methylpyridine-3-carboxamide Chemical class C1=C(OC)C(OC)=CC=C1C1=CN=CC(N[C@@H](C)C=2C=C(NC(=O)C=3C=C(C)C=NC=3)C=CC=2)=N1 JHJNPOSPVGRIAN-SFHVURJKSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02502—Layer structure consisting of two layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02576—N-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/76224—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/107—Substrate region of field-effect devices
- H01L29/1075—Substrate region of field-effect devices of field-effect transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/201—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
- H01L29/205—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/36—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7786—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
- H01L29/7787—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Junction Field-Effect Transistors (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
GaN系半導体デバイスでは、活性層となる窒化物層として例えばGaNを形成する場合、このGaNが厚いほど、欠陥が少なく高品質となることが確認されている。具体例として、X線ロッキングカーブ法(XRC法)により厚み200nm及び600nmのGaNについて調べた結果を図1(a),(b)に示す。
例えば図2(a)に示すように、Si基板101上にAlNのバッファ層102を介して厚いGaN層103を形成する。SiとGaNとでは、格子定数は前者の方が大きく、熱膨張係数は後者の方が大きい。そのため、活性層103を形成した後の降温時において、熱収縮により、図2(b)に示すように、下に凸形状の反りが生じる。この反りは、GaN103が厚いほど顕著となり、クラックが生じ易くなる。これは、本来バンドギャップが広く絶縁性の高い窒化物層を厚膜化することで期待されるデバイスの絶縁破壊耐圧の向上及び転位密度の低減による高品質化を図ることが制限されることを意味する。
本実施形態では、化合物半導体装置として、窒化物半導体のAlGaN/GaN・HEMTを開示する。
図3〜図4は、第1の実施形態によるAlGaN/GaN・HEMTの製造方法を工程順に示す概略断面図である。
成長用基板としては、Si基板の代わりにSiC基板等を用いても良い。Si基板やSiC基板は、結晶成長用の基板として、安価で大口径のものが適用可能であり、製造コストの大幅な低減が期待できる基板である。
化合物半導体積層構造2では、電子走行層2bの電子供給層2cとの界面近傍に2次元電子ガス(2DEG)が発生する。この2DEGは、電子走行層2bの化合物半導体(ここではGaN)と電子供給層2cの化合物半導体(ここではAlGaN)との格子定数の相違に基づいて生成される。
第1のバッファ層2a1は、不純物を含有しない化合物半導体からなる。第2のバッファ層2a2は、不純物、例えばn型不純物のSi等を含有する化合物半導体からなる。含有する不純物としては、n型不純物の代わりにFe,Mg,C等のp型不純物でも良い。第2のバッファ層2a2の化合物半導体は、隣接する層間における格子定数の可及的な整合を考慮して、第1のバッファ層2a1よりも格子定数が大きく、電子走行層2bよりも格子定数が小さいものとされる。第1のバッファ層2a1を例えばAlNで形成し、電子走行層2bを例えばGaNで形成する場合には、第2のバッファ層2a2は上記の不純物を含有する例えばAlGaNで形成することができる。
原料ガスとして、トリメチルアルミニウム(TMAl)ガス及びアンモニア(NH3)ガスの混合ガスを用いる。NH3ガスの流量は100ccm〜10LM程度とする。成長圧力は50Torr〜300Torr程度、成長温度は1000℃〜1200℃程度とする。原料ガスは、MFC(マスフローコントローラ)により流量制御されたキャリアガス(H2)により、反応炉内へ供給される。
以上により、Si基板1上に、第1のバッファ層2a1が形成される。
原料ガスとして、TMAlガス、トリメチルガリウム(TMGa)ガス及びNH3ガスの混合ガスを用いる。NH3ガスの流量は100ccm〜10LM程度とする。成長圧力は50Torr〜300Torr程度、成長温度は1000℃〜1200℃程度とする。n型不純物として例えばSiを含む例えばSiH4ガスを用い、これを所定の流量で上記の原料ガスに添加してSiをAlGaNにドーピングする。
以上により、第1のバッファ層2a1上に、第2のバッファ層2a2が形成される。第1のバッファ層2a1及び第2のバッファ層2a2から、バッファ層2aが構成される。
原料ガスとして、TMGaガス及びNH3ガスの混合ガスを用いる。NH3ガスの流量は100ccm〜10LM程度とする。成長圧力は60kPa程度以上の高圧とし、成長温度は1000℃〜1200℃程度とする。
以上により、第2のバッファ層2a2上に電子走行層2bが形成される。
AlGaNの厚みは20nm程度であり、原料ガスとして、TMAlガス、TMGaガス及びNH3ガスの混合ガスを用いる。NH3ガスの流量は100ccm〜10LM程度とする。成長圧力は50Torr〜300Torr程度、成長温度は1000℃〜1200℃程度とする。このAlGaNの厚みは20nm程度とされる。Al組成は、電子走行層2bとの格子不整合による結晶性劣化を避けるため、例えば30%程度以下とする。このAlGaNは、Si等のn型不純物を上記の原料ガスにドーピングして、n−AlGaNとしても良い。
以上により、電子走行層2b上に、電子供給層2cが形成される。
原料ガスとして、TMGaガス及びNH3ガスの混合ガスを用いる。NH3ガスの流量は100ccm〜10LM程度とする。成長圧力は50Torr〜300Torr程度、成長温度は1000℃〜1200℃程度とする。n型不純物として例えばSiを含む例えばSiH4ガスを用い、これを所定の流量で上記の原料ガスに添加してSiをドーピングする。Siのドーピング濃度は、1×1018/cm3程度〜1×1020/cm3程度、例えば5×1018/cm3程度とする。このn−GaNの厚みは数nm程度とされる。
以上により、電子供給層2c上に、キャップ層2dが形成される。
詳細には、化合物半導体積層構造2の不活性領域とする部位に、例えばアルゴン(Ar)をイオン注入する。これにより、化合物半導体積層構造2及びSi基板1の表層部分に素子分離領域3が形成される。素子分離領域3により、化合物半導体積層構造2上でAlGaN/GaN・HEMTの素子領域(トランジスタ領域)が画定される。
なお、素子分離は、上記の注入法の代わりに、例えばSTI(Shallow Trench Isolation)法を用いて行っても良い。このとき、化合物半導体積層構造2のドライエッチングには、例えば塩素系のエッチングガスを用いる。
詳細には、先ず、ソース電極及びドレイン電極を形成するためのレジストマスクを形成する。レジストを化合物半導体積層構造2上に塗布し、リソグラフィーによりレジストを加工する。以上により、キャップ層2dの表面におけるソース電極及びドレイン電極の形成予定部位を露出する開口を有するレジストマスクが形成される。
以上により、キャップ層2dとオーミックコンタクトしたソース電極4及びドレイン電極5が形成される。
詳細には、先ず、ゲート電極を形成するためレジストマスクを形成する。全面にレジストを塗布する。ここでは、蒸着法及びリフトオフ法に適した例えば庇構造2層レジストを用いる。塗布されたレジストをリソグラフィーにより加工する。以上により、キャップ総2dの表面におけるゲート電極の形成予定部位を露出する開口を有するレジストマスクが形成される。
以上により、キャップ層2d上でこれとショットキー接触するゲート電極6が形成される。
本実施形態において、Si基板上に化合物半導体積層構造の第2のバッファ層に起因して発生する反りについて、実験により調べた。ここでは特に、第2のバッファ層の形成により発生する反りのみを定量的に把握すべく、第2のバッファ層にSiをドーピングしない場合(non-dope)に反りが発生しないように条件設定をした。実験結果を図5に示す。図5は、Si基板上に化合物半導体積層構造が形成された状態における断面形状を示すプロファイルである。このように、第2のバッファ層がnon-dopeである状態を反りの基準(反りが生じていない状態)とすれば、第2のバッファ層にSiをドーピングすることにより、上に凸状態の反りが生じることが判る。この場合、第2のバッファ層にドーピングするSi濃度が高いほど、上に凸状態の反り量が増大することが確認された。このことは、第2のバッファ層にドーピングするSi濃度を高く設定することにより、活性層(電子走行層)となるGaNの更なる厚膜化を図ることができることを示している。
以下、第2の実施形態によるAlGaN/GaN・HEMTについて説明する。本実施形態では、第1の実施形態と同様にAlGaN/GaN・HEMTを開示するが、化合物半導体積層構造の第2のバッファ層が若干異なる点で第1の実施形態と相違する。
図6は、第2の実施形態によるAlGaN/GaN・HEMTの製造方法の主要工程を順に示す概略断面図である。なお、第1の実施形態と同じ構成部材等については、同符号を付して詳しい説明を省略する。
第1のバッファ層2a1は、不純物を含有しない化合物半導体からなる。第2のバッファ層13は、不純物、例えばn型不純物のSi等を含有する化合物半導体からなる。含有する不純物としては、n型不純物の代わりにFe,Mg,C等のp型不純物でも良い。第2のバッファ層13の化合物半導体は、隣接する層間における格子定数の可及的な整合を考慮して、第1のバッファ層2a1よりも格子定数が大きく、電子走行層2bよりも格子定数が小さいものとされる。第1のバッファ層2a1を例えばAlNで形成し、電子走行層2bを例えばGaNで形成する場合には、第2のバッファ層13は上記の不純物を含有する例えばAlGaNで形成することができる。
原料ガスとして、TMAlガス、TMGaガス及びNH3ガスの混合ガスを用いる。NH3ガスの流量は100ccm〜10LM程度とする。成長圧力は50Torr〜300Torr程度、成長温度は1000℃〜1200℃程度とする。n型不純物として例えばSiを含む例えばSiH4ガスを用い、その流量を例えば階段状或いは連続的に漸次減少させながら、上記の原料ガスに添加してSiをAlGaNにドーピングする。成長したAlGaNにおけるSi濃度は、その最下層部分で1×1016atoms/cm3程度〜1×1018atoms/cm3程度、好適には1×1017atoms/cm3程度とされ、その最上層部分で1×1013atoms/cm3程度とされる。
しかる後、各種の配線形成等の後工程を経て、本実施形態によるAlGaN/GaN・HEMTが形成される。
以下、第3の実施形態によるAlGaN/GaN・HEMTについて説明する。本実施形態では、第1の実施形態と同様にAlGaN/GaN・HEMTを開示するが、化合物半導体積層構造の第2のバッファ層が若干異なる点で第1の実施形態と相違する。
図8は、第3の実施形態によるAlGaN/GaN・HEMTの製造方法の主要工程を順に示す概略断面図である。なお、第1の実施形態と同じ構成部材等については、同符号を付して詳しい説明を省略する。
第1のバッファ層2a1は、不純物を含有しない化合物半導体からなる。第2のバッファ層23は、不純物として、n型(ドナー)不純物の例えばSi等に加え、p型(アクセプタ)不純物の例えばFe等を含有する化合物半導体からなる。含有するp型不純物としては、Feの代わりにMg,C等を用いたり、Fe,Mg,Cのうちの2種或いは全てを用いても良い。第2のバッファ層23の化合物半導体は、隣接する層間における格子定数の可及的な整合を考慮して、第1のバッファ層2a1よりも格子定数が大きく、電子走行層2bよりも格子定数が小さいものとされる。第1のバッファ層2a1を例えばAlNで形成し、電子走行層2bを例えばGaNで形成する場合には、第2のバッファ層23は上記の不純物を含有する例えばAlGaNで形成することができる。
原料ガスとして、TMAlガス、TMGaガス及びNH3ガスの混合ガスを用いる。NH3ガスの流量は100ccm〜10LM程度とする。成長圧力は50Torr〜300Torr程度、成長温度は1000℃〜1200℃程度とする。n型不純物として例えばSiを含む例えばSiH4ガスを、p型不純物として例えばFeを含む例えばCp2Fe(フェロセン)をそれぞれ用い、これらを所定の流量で上記の原料ガスに添加してSi及びFeをAlGaNにドーピングする。
しかる後、各種の配線形成等の後工程を経て、本実施形態によるAlGaN/GaN・HEMTが形成される。
例えば、第2の実施形態による第2のバッファ層、即ちSi基板1側から電子走行層2b側に向かうほど、Si等のn型不純物濃度が漸減するように変調される第2のバッファ層に、更にp型不純物をドーピングするようにしても良い。この場合、第2のバッファ層のFe濃度は、Si濃度と同様に、Si基板1側から電子走行層2b側に向かうほど、Fe等のp型不純物濃度が漸減するように変調される。具体的には、このp型不純物濃度は、Si基板1側から電子走行層2b側に向かって階段状に、或いは連続的に減少する。
以下、第4の実施形態によるAlGaN/GaN・HEMTについて説明する。本実施形態では、第1の実施形態と同様にAlGaN/GaN・HEMTを開示するが、化合物半導体積層構造の第2のバッファ層が若干異なる点で第1の実施形態と相違する。
図9は、第4の実施形態によるAlGaN/GaN・HEMTの製造方法の主要工程を順に示す概略断面図である。なお、第1の実施形態と同じ構成部材等については、同符号を付して詳しい説明を省略する。
第1のバッファ層2a1は、不純物を含有しない化合物半導体からなる。第2のバッファ層2a2は、不純物、例えばn型不純物のSi等を含有する化合物半導体からなる。含有する不純物としては、n型不純物の代わりにFe,Mg,C等のp型不純物でも良い。第2のバッファ層2a2の化合物半導体は、隣接する層間における格子定数の可及的な整合を考慮して、第1のバッファ層2a1よりも格子定数が大きく、電子走行層2bよりも格子定数が小さいものとされる。第1のバッファ層2a1を例えばAlNで形成し、電子走行層2bを例えばGaNで形成する場合には、第2のバッファ層2a2は上記の不純物を含有する例えばAlGaNで形成することができる。
Si等の不純物をドーピングした第2のバッファ層のAlGaNでは、その直上に電子走行層2cを形成すると、不純物濃度によっては電子走行層2cのGaNに高密度の貫通転位が導入される。そのため、トランジスタ特性の劣化が懸念される。本実施形態では、第2のバッファ層2a2上に、即ち第2のバッファ層2a2と電子走行層2bとの間にi−GaNを、例えば低圧条件及び低V/III比条件で成長し、第3のバッファ層33を形成する。第3のバッファ層33では、上記の成長条件により、電子走行層2cに比べてGaNの横方向成長が増強されており、第2のバッファ層2a2から伝搬する転位が部分的に抑制される。
原料ガスとして、TMAlガス、TMGaガス及びNH3ガスの混合ガスを用いる。NH3ガスの流量は100ccm〜10LM程度とする。成長圧力は5kPa程度〜40kPa程度、V/III比は100〜1000程度、成長温度は1000℃〜1200℃程度とする。
しかる後、各種の配線形成等の後工程を経て、本実施形態によるAlGaN/GaN・HEMTが形成される。
例えば、第2の実施形態による第2のバッファ層、即ちSi基板1側から電子走行層2b側に向かうほど、Si等のn型不純物濃度が漸減するように変調される第2のバッファ層上に、更に上記構成の第3のバッファ層を形成するようにしても良い。
また、第2及び第3の実施形態による第2のバッファ層上に、更に上記構成の第3のバッファ層を形成するようにしても良い。この場合、第2のバッファ層は、Si基板1側から電子走行層2b側に向かうほど、Si等のn型不純物濃度が漸減するように変調されると共に、Si等のn型不純物に加えてFe等のp型不純物がドーピングされたものである。
本実施形態では、第1〜第4の実施形態から選ばれた一態様のAlGaN/GaN・HEMTを適用した電源装置を開示する。
図10は、第5の実施形態による電源装置の概略構成を示す結線図である。
一次側回路41は、交流電源44と、いわゆるブリッジ整流回路45と、複数(ここでは4つ)のスイッチング素子46a,46b,46c,46dとを備えて構成される。また、ブリッジ整流回路45は、スイッチング素子46eを有している。
二次側回路42は、複数(ここでは3つ)のスイッチング素子47a,47b,47cを備えて構成される。
本実施形態では、第1〜第4の実施形態から選ばれた一態様のAlGaN/GaN・HEMTを適用した高周波増幅器を開示する。
図11は、第6の実施形態による高周波増幅器の概略構成を示す結線図である。
ディジタル・プレディストーション回路51は、入力信号の非線形歪みを補償するものである。ミキサー52aは、非線形歪みが補償された入力信号と交流信号をミキシングするものである。パワーアンプ53は、交流信号とミキシングされた入力信号を増幅するものであり、第1〜第4の実施形態から選ばれた一態様のAlGaN/GaN・HEMTを有している。なお図11では、例えばスイッチの切り替えにより、出力側の信号をミキサー52bで交流信号とミキシングしてディジタル・プレディストーション回路51に送出できる構成とされている。
第1〜第6の実施形態では、化合物半導体装置としてAlGaN/GaN・HEMTを例示した。化合物半導体装置としては、AlGaN/GaN・HEMT以外にも、以下のようなHEMTに適用できる。
本例では、化合物半導体装置として、InAlN/GaN・HEMTを開示する。
InAlNとGaNは、組成によって格子定数を近くすることが可能な化合物半導体である。この場合、上記した第1〜第6の実施形態では、第1のバッファ層がAlN、第2のバッファ層がSi等の不純物のドーピングされたAlGaN、第3のバッファ層がi−GaN、電子走行層がi−GaN、電子供給層がn−InAlN、キャップ層がn−GaNで形成される。また、この場合のピエゾ分極がほとんど発生しないため、2次元電子ガスは主にInAlNの自発分極により発生する。
本例では、化合物半導体装置として、InAlGaN/GaN・HEMTを開示する。
GaNとInAlGaNは、後者の方が前者よりも組成によって格子定数を小さくすることができる化合物半導体である。この場合、上記した第1〜第6の実施形態では、第1のバッファ層がAlN、第2のバッファ層がSi等の不純物のドーピングされたAlGaN、第3のバッファ層がi−GaN、電子走行層がi−GaN、電子供給層がn−InAlGaN、キャップ層がn−GaNで形成される。
本例では、化合物半導体装置として、AlxGa1-xN/AlyGa1-yN・HEMTを開示する。
本例のAlGaN/AlGaN・HEMTでは、電子走行層は、電子供給層のAlxGa1-xNよりもAl組成の低いAlyGa1-yN(y<x)で形成される。具体的には、電子供給層のAlGaNのAl組成が30%(x≦0.3)程度以下であるのに対して、電子走行層のAlGaNのAl組成が電子供給層よりも低い20%以下(y≦0.2、且つy<x)程度とされる。この場合、上記した第1〜第6の実施形態では、第1のバッファ層がAlN、第2のバッファ層がSi等の不純物のドーピングされたAlGaN、第3のバッファ層がi−AlGaN、キャップ層がn−GaNで形成される。
前記基板上に形成された化合物半導体積層構造と
を含み、
前記化合物半導体積層構造は、不純物を含有するバッファ層と、前記バッファ層の上方に形成された活性層とを有することを特徴とする化合物半導体装置。
前記高圧回路はトランジスタを有しており、
前記トランジスタは、
基板と、
前記基板上に形成された化合物半導体積層構造と
を含み、
前記化合物半導体積層構造は、不純物を含有するバッファ層と、前記バッファ層の上方に形成された活性層とを有することを特徴とする電源回路。
トランジスタを有しており、
前記トランジスタは、
基板と、
前記基板上に形成された化合物半導体積層構造と
を含み、
前記化合物半導体積層構造は、不純物を含有するバッファ層と、前記バッファ層の上方に形成された活性層とを有することを特徴とする高周波増幅器。
2,11,21,31 化合物半導体積層構造
2a,12,22,32,102 バッファ層
2a1 第1のバッファ層
2a2,13,23 第2のバッファ層
33 第3のバッファ層
2b 電子走行層
2c 電子供給層
2d キャップ層
3 素子分離領域
4 ソース電極
5 ドレイン電極
6 ゲート電極
41 一次側回路
42 二次側回路
43 トランス
44 交流電源
45 ブリッジ整流回路
46a,46b,46c,46d,46e,47a,47b,47c スイッチング素子
51 ディジタル・プレディストーション回路
52a,52b ミキサー
53 パワーアンプ
103 GaN層
Claims (13)
- 基板と、
前記基板上に形成された化合物半導体積層構造と
を含み、
前記化合物半導体積層構造は、不純物を含有するバッファ層と、前記バッファ層の上方に形成された活性層とを有することを特徴とする化合物半導体装置。 - 前記バッファ層は、前記不純物を含有しない第1のバッファ層と、前記第1のバッファ層の上方に形成された前記不純物を含有する第2のバッファ層とを有することを特徴とする請求項1に記載の化合物半導体装置。
- 前記第2のバッファ層は、前記第1のバッファ層よりも格子定数が大きく、前記活性層よりも格子定数が小さいことを特徴とする請求項2に記載の化合物半導体装置。
- 前記不純物は、n型不純物及びp型不純物であることを特徴とする請求項1〜3のいずれか1項に記載の化合物半導体装置。
- 前記バッファ層は、前記基板側から前記活性層側に向かうほど前記不純物の濃度が漸減することを特徴とする請求項1〜4のいずれか1項に記載の化合物半導体装置。
- 前記バッファ層は、最上部に、前記活性層と同一組成で前記活性層よりも横方向成長の割合が大きく前記不純物を含有しない第3のバッファ層を有することを特徴とする請求項1〜5のいずれか1項に記載の化合物半導体装置。
- 基板上に、不純物を含有するバッファ層と、前記バッファ層の上方に形成された活性層とを有する化合物半導体積層構造を形成することを特徴とする化合物半導体装置の製造方法。
- 前記バッファ層は、前記不純物を含有しない第1のバッファ層と、前記第1のバッファ層の上方に形成された前記不純物を含有する第2のバッファ層とを有することを特徴とする請求項7に記載の化合物半導体装置の製造方法。
- 前記第2のバッファ層は、前記第1のバッファ層よりも格子定数が大きく、前記活性層よりも格子定数が小さいことを特徴とする請求項8に記載の化合物半導体装置の製造方法。
- 前記不純物は、n型不純物及びp型不純物であることを特徴とする請求項7〜9のいずれか1項に記載の化合物半導体装置の製造方法。
- 前記バッファ層は、前記基板側から前記活性層側に向かうほど前記不純物の濃度が漸減することを特徴とする請求項7〜10のいずれか1項に記載の化合物半導体装置の製造方法。
- 前記バッファ層は、最上部に、前記活性層と同一組成で前記活性層よりも横方向成長の割合が大きく前記不純物を含有しない第3のバッファ層を有することを特徴とする請求項7〜11のいずれか1項に記載の化合物半導体装置の製造方法。
- 前記第3のバッファ層は、前記活性層よりも低圧及び低V/III比の条件で形成することを特徴とする請求項12に記載の化合物半導体装置の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013073401A JP6392498B2 (ja) | 2013-03-29 | 2013-03-29 | 化合物半導体装置及びその製造方法 |
US14/186,468 US9312341B2 (en) | 2013-03-29 | 2014-02-21 | Compound semiconductor device, power source device and high frequency amplifier and method for manufacturing the same |
TW103107206A TWI580050B (zh) | 2013-03-29 | 2014-03-04 | 化合物半導體裝置及其製造方法 |
CN201410098707.0A CN104078500B (zh) | 2013-03-29 | 2014-03-17 | 化合物半导体器件及其制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013073401A JP6392498B2 (ja) | 2013-03-29 | 2013-03-29 | 化合物半導体装置及びその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014197645A true JP2014197645A (ja) | 2014-10-16 |
JP6392498B2 JP6392498B2 (ja) | 2018-09-19 |
Family
ID=51599663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013073401A Active JP6392498B2 (ja) | 2013-03-29 | 2013-03-29 | 化合物半導体装置及びその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9312341B2 (ja) |
JP (1) | JP6392498B2 (ja) |
CN (1) | CN104078500B (ja) |
TW (1) | TWI580050B (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017168627A (ja) * | 2016-03-16 | 2017-09-21 | 住友電気工業株式会社 | 高電子移動度トランジスタ及び高電子移動度トランジスタの製造方法 |
JP2017228642A (ja) * | 2016-06-22 | 2017-12-28 | 住友電気工業株式会社 | 窒化物半導体装置及び窒化物半導体装置の製造方法 |
JP2019500755A (ja) * | 2015-12-28 | 2019-01-10 | 日本テキサス・インスツルメンツ株式会社 | Iiia−n族デバイスのための非エッチ気体冷却エピタキシャルスタック |
WO2022219861A1 (ja) * | 2021-04-15 | 2022-10-20 | ソニーグループ株式会社 | 半導体装置、及び無線通信装置 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015176936A (ja) * | 2014-03-13 | 2015-10-05 | 株式会社東芝 | 半導体装置 |
JP7007548B2 (ja) * | 2017-05-16 | 2022-01-24 | 富士通株式会社 | 化合物半導体装置及びその製造方法 |
WO2019155504A1 (ja) * | 2018-02-06 | 2019-08-15 | 日産自動車株式会社 | 半導体装置 |
TWI732593B (zh) * | 2020-06-15 | 2021-07-01 | 世界先進積體電路股份有限公司 | 半導體結構及具有半導體結構的高電子遷移率電晶體裝置 |
US11387356B2 (en) | 2020-07-31 | 2022-07-12 | Vanguard International Semiconductor Corporation | Semiconductor structure and high-electron mobility transistor device having the same |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006196490A (ja) * | 2005-01-11 | 2006-07-27 | Sony Corp | GaN系半導体発光素子及びその製造方法 |
US20060281238A1 (en) * | 2005-06-08 | 2006-12-14 | Christopher Harris | Method of manufacturing an adaptive AlGaN buffer layer |
JP2007251144A (ja) * | 2006-02-20 | 2007-09-27 | Furukawa Electric Co Ltd:The | 半導体素子 |
JP2008546175A (ja) * | 2005-05-19 | 2008-12-18 | レイセオン・カンパニー | 窒化ガリウム高電子移動度トランジスタ構造 |
JP2009231561A (ja) * | 2008-03-24 | 2009-10-08 | Nippon Telegr & Teleph Corp <Ntt> | 窒化物半導体結晶薄膜およびその作製方法、半導体装置およびその製造方法 |
US20100289067A1 (en) * | 2009-05-14 | 2010-11-18 | Transphorm Inc. | High Voltage III-Nitride Semiconductor Devices |
JP2012023314A (ja) * | 2010-07-16 | 2012-02-02 | Dowa Electronics Materials Co Ltd | Iii族窒化物エピタキシャル基板 |
JP2012033708A (ja) * | 2010-07-30 | 2012-02-16 | Sumitomo Electric Ind Ltd | 半導体装置の製造方法 |
JP2012033575A (ja) * | 2010-07-28 | 2012-02-16 | Sumitomo Electric Ind Ltd | 半導体装置 |
JP2012109345A (ja) * | 2010-11-16 | 2012-06-07 | Rohm Co Ltd | 窒化物半導体素子および窒化物半導体パッケージ |
JP2012174705A (ja) * | 2011-02-17 | 2012-09-10 | Sharp Corp | 窒化物半導体デバイス用エピタキシャルウエハとその製造方法 |
JP2012243868A (ja) * | 2011-05-17 | 2012-12-10 | Advanced Power Device Research Association | 半導体素子及びその製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100616543B1 (ko) | 2004-04-28 | 2006-08-29 | 삼성전기주식회사 | 실리콘기판 상에 질화물 단결정성장방법, 이를 이용한질화물 반도체 발광소자 및 그 제조방법 |
JP2007067077A (ja) | 2005-08-30 | 2007-03-15 | Nippon Telegr & Teleph Corp <Ntt> | 窒化物半導体素子およびその製造方法 |
JP5672868B2 (ja) * | 2010-08-31 | 2015-02-18 | 富士通株式会社 | 化合物半導体装置及びその製造方法 |
JP5919626B2 (ja) * | 2011-02-25 | 2016-05-18 | 富士通株式会社 | 化合物半導体装置及びその製造方法 |
JP5784441B2 (ja) * | 2011-09-28 | 2015-09-24 | トランスフォーム・ジャパン株式会社 | 半導体装置及び半導体装置の製造方法 |
-
2013
- 2013-03-29 JP JP2013073401A patent/JP6392498B2/ja active Active
-
2014
- 2014-02-21 US US14/186,468 patent/US9312341B2/en active Active
- 2014-03-04 TW TW103107206A patent/TWI580050B/zh active
- 2014-03-17 CN CN201410098707.0A patent/CN104078500B/zh active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006196490A (ja) * | 2005-01-11 | 2006-07-27 | Sony Corp | GaN系半導体発光素子及びその製造方法 |
JP2008546175A (ja) * | 2005-05-19 | 2008-12-18 | レイセオン・カンパニー | 窒化ガリウム高電子移動度トランジスタ構造 |
US20060281238A1 (en) * | 2005-06-08 | 2006-12-14 | Christopher Harris | Method of manufacturing an adaptive AlGaN buffer layer |
JP2007251144A (ja) * | 2006-02-20 | 2007-09-27 | Furukawa Electric Co Ltd:The | 半導体素子 |
JP2009231561A (ja) * | 2008-03-24 | 2009-10-08 | Nippon Telegr & Teleph Corp <Ntt> | 窒化物半導体結晶薄膜およびその作製方法、半導体装置およびその製造方法 |
US20100289067A1 (en) * | 2009-05-14 | 2010-11-18 | Transphorm Inc. | High Voltage III-Nitride Semiconductor Devices |
JP2012023314A (ja) * | 2010-07-16 | 2012-02-02 | Dowa Electronics Materials Co Ltd | Iii族窒化物エピタキシャル基板 |
JP2012033575A (ja) * | 2010-07-28 | 2012-02-16 | Sumitomo Electric Ind Ltd | 半導体装置 |
JP2012033708A (ja) * | 2010-07-30 | 2012-02-16 | Sumitomo Electric Ind Ltd | 半導体装置の製造方法 |
JP2012109345A (ja) * | 2010-11-16 | 2012-06-07 | Rohm Co Ltd | 窒化物半導体素子および窒化物半導体パッケージ |
JP2012174705A (ja) * | 2011-02-17 | 2012-09-10 | Sharp Corp | 窒化物半導体デバイス用エピタキシャルウエハとその製造方法 |
JP2012243868A (ja) * | 2011-05-17 | 2012-12-10 | Advanced Power Device Research Association | 半導体素子及びその製造方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019500755A (ja) * | 2015-12-28 | 2019-01-10 | 日本テキサス・インスツルメンツ株式会社 | Iiia−n族デバイスのための非エッチ気体冷却エピタキシャルスタック |
JP7068676B2 (ja) | 2015-12-28 | 2022-05-17 | テキサス インスツルメンツ インコーポレイテッド | Iiia-n族デバイスのための非エッチ気体冷却エピタキシャルスタック |
JP2017168627A (ja) * | 2016-03-16 | 2017-09-21 | 住友電気工業株式会社 | 高電子移動度トランジスタ及び高電子移動度トランジスタの製造方法 |
JP2017228642A (ja) * | 2016-06-22 | 2017-12-28 | 住友電気工業株式会社 | 窒化物半導体装置及び窒化物半導体装置の製造方法 |
WO2022219861A1 (ja) * | 2021-04-15 | 2022-10-20 | ソニーグループ株式会社 | 半導体装置、及び無線通信装置 |
Also Published As
Publication number | Publication date |
---|---|
US20140291725A1 (en) | 2014-10-02 |
TW201442241A (zh) | 2014-11-01 |
CN104078500B (zh) | 2017-10-13 |
TWI580050B (zh) | 2017-04-21 |
JP6392498B2 (ja) | 2018-09-19 |
US9312341B2 (en) | 2016-04-12 |
CN104078500A (zh) | 2014-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6392498B2 (ja) | 化合物半導体装置及びその製造方法 | |
JP6151487B2 (ja) | 化合物半導体装置及びその製造方法 | |
JP5825017B2 (ja) | 化合物半導体装置及びその製造方法 | |
JP6087552B2 (ja) | 化合物半導体装置及びその製造方法 | |
JP2015053328A (ja) | 半導体装置 | |
JP2015070064A (ja) | 半導体装置及び半導体装置の製造方法 | |
JP5672926B2 (ja) | 化合物半導体装置及びその製造方法 | |
JP2013206976A (ja) | 化合物半導体装置及びその製造方法 | |
TW201513342A (zh) | 半導體裝置及其製造方法 | |
CN111406306B (zh) | 半导体装置的制造方法、半导体装置 | |
JP6604036B2 (ja) | 化合物半導体装置及びその製造方法 | |
JP6993562B2 (ja) | 化合物半導体装置及びその製造方法 | |
JP2011171595A (ja) | 化合物半導体装置の製造方法及び化合物半導体装置 | |
US10847642B2 (en) | Compound semiconductor device and fabrication method | |
US20150287791A1 (en) | Nitride semiconductor device and nitride semiconductor substrate | |
JP2017085058A (ja) | 化合物半導体装置及びその製造方法 | |
JP6233476B2 (ja) | 化合物半導体装置 | |
JP2017139390A (ja) | 半導体装置、電源装置及び増幅器 | |
JP2015060883A (ja) | 化合物半導体装置及びその製造方法 | |
JP6376257B2 (ja) | 半導体装置 | |
JP2014042025A (ja) | 窒化物半導体素子及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151204 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160915 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160920 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170221 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170424 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170627 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170927 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20171006 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20171102 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180626 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180823 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6392498 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |