JP2014133267A - 硬質被覆層がすぐれた耐酸化性、耐チッピング性、耐摩耗性を発揮する表面被覆切削工具 - Google Patents
硬質被覆層がすぐれた耐酸化性、耐チッピング性、耐摩耗性を発揮する表面被覆切削工具 Download PDFInfo
- Publication number
- JP2014133267A JP2014133267A JP2013001015A JP2013001015A JP2014133267A JP 2014133267 A JP2014133267 A JP 2014133267A JP 2013001015 A JP2013001015 A JP 2013001015A JP 2013001015 A JP2013001015 A JP 2013001015A JP 2014133267 A JP2014133267 A JP 2014133267A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- average
- hard coating
- coating layer
- dispersed particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011247 coating layer Substances 0.000 title claims abstract description 74
- 238000005520 cutting process Methods 0.000 title claims abstract description 51
- 230000003647 oxidation Effects 0.000 title abstract description 13
- 238000007254 oxidation reaction Methods 0.000 title abstract description 13
- 238000005299 abrasion Methods 0.000 title abstract 2
- 239000012071 phase Substances 0.000 claims abstract description 151
- 239000002245 particle Substances 0.000 claims abstract description 118
- 239000010410 layer Substances 0.000 claims abstract description 59
- 239000013078 crystal Substances 0.000 claims abstract description 57
- 239000000203 mixture Substances 0.000 claims abstract description 54
- 239000008385 outer phase Substances 0.000 claims abstract description 41
- 239000008384 inner phase Substances 0.000 claims abstract description 37
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 34
- 239000010936 titanium Substances 0.000 claims description 61
- 229910052719 titanium Inorganic materials 0.000 claims description 37
- 238000009826 distribution Methods 0.000 claims description 25
- 239000000758 substrate Substances 0.000 claims description 23
- 239000002131 composite material Substances 0.000 claims description 19
- 238000005229 chemical vapour deposition Methods 0.000 claims description 17
- 239000011159 matrix material Substances 0.000 claims description 15
- 150000004767 nitrides Chemical class 0.000 claims description 13
- 239000011195 cermet Substances 0.000 claims description 7
- 229910004349 Ti-Al Inorganic materials 0.000 claims description 6
- 229910004692 Ti—Al Inorganic materials 0.000 claims description 6
- 229910052582 BN Inorganic materials 0.000 claims description 5
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 238000010894 electron beam technology Methods 0.000 claims description 4
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 22
- 229910000851 Alloy steel Inorganic materials 0.000 abstract description 10
- 239000000463 material Substances 0.000 abstract description 8
- 239000006185 dispersion Substances 0.000 abstract description 5
- 229910010038 TiAl Inorganic materials 0.000 abstract 3
- 239000000843 powder Substances 0.000 description 26
- 229910052799 carbon Inorganic materials 0.000 description 21
- 238000001816 cooling Methods 0.000 description 16
- 238000005259 measurement Methods 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 230000020169 heat generation Effects 0.000 description 7
- 238000007740 vapor deposition Methods 0.000 description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000012495 reaction gas Substances 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 238000000151 deposition Methods 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000005219 brazing Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910001315 Tool steel Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000001330 spinodal decomposition reaction Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000967 As alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001887 electron backscatter diffraction Methods 0.000 description 1
- 238000002524 electron diffraction data Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
【解決手段】工具基体表面に、素地相と分散粒子相とからなる(Ti,Al)(C,N)層が被覆され、(a)素地相は、(Ti1−UAlU)(CVN1−V)[但し、U、Vは原子比で、0.65≦U≦0.95、0≦V≦0.005]という組成の立方晶構造、かつ、柱状組織の相であり、(b)分散粒子相は、分散粒子相の外側を構成する立方晶構造の外側相と、内側を構成する六方晶構造の内側相からなり、外側相の組成は、(Ti1−αAlα)(CβN1−β)[但し、α、βは原子比で、0.78≦α≦1、0≦β≦0.005]、内側相の組成は、(Ti1−γAlγ)(CδN1−δ)[但し、γ、δは原子比で、0.78≦γ≦1、0≦δ≦0.005]であり、(c)素地相の組成と、分散粒子相の外側相の組成差、(α−U)の値が0.03以上である表面被覆切削工具。
【選択図】 図1
Description
ただ、上記従来のTi−Al系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性に優れるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
しかし、上記特許文献1〜3に記載される従来の被覆工具は、硬質被覆層中にTiの窒化物相、Alの窒化物相あるいは(TiAl)N系微粒子を分散分布させることによって、耐衝撃性、耐チッピング性を向上させるものであるが、素地の強度を十分に高めることができないため、合金鋼等の高熱発生を伴うとともに、切刃に対して衝撃的・断続的な高負荷が作用する高速断続切削加工では、十分な耐チッピング性を発揮することができないという問題があった。
そこで、本発明は、合金鋼の高速断続切削加工等に供した場合であっても、すぐれた耐チッピング性、耐酸化性を発揮するとともに、長期の使用に亘ってすぐれた耐摩耗性を発揮する被覆工具を提供することを目的とするものである。
なお、この発明では、(Ti,Al)Nと(Ti,Al)CNをまとめて、(Ti,Al)(C,N)で示すことがある。
例えば、トリメチルアルミニウム(Al(CH3)3)を反応ガス成分として含有する特定組成の反応ガス中での化学蒸着により、硬質被覆層としての立方晶構造の(Ti,Al)(C,N)層を成膜した後、これを特定の冷却速度範囲となるように急冷し、スピノーダル分解による(Ti,Al)(C,N)層中における第2相のナノ分散を促進すると、
(イ)素地相と分散粒子相とからなる硬質被覆層が形成されること。
(ロ)素地相は、
組成式:(Ti1−UAlU)(CVN1−V)
で表した場合、0.65≦U≦0.95、0≦V≦0.005を満足するとともに、(但し、Uは原子比によるAl含有割合、Vは原子比によるC含有割合をそれぞれ示す。)立方晶構造を有し、かつ、平均結晶粒幅Wと平均結晶粒長さLの比として表される平均アスペクト比L/Wの値が2を超える柱状組織を示すこと。 本発明者らは、この発明の硬質被覆層が、上記(イ)、(ロ)の組織、結晶構造、組成を特徴として備えることを見出したのである。
(ハ)分散粒子相は、該分散粒子相の外側を構成する立方晶構造の外側相と、該分散粒子相の内側を構成する六方晶構造の内側相からなり、
(ニ)上記立方晶構造の外側相は、
組成式:(Ti1−αAlα)(CβN1−β)
で表した場合、0.78≦α≦1、0≦β≦0.005を満足すること(但し、αは原子比によるAl含有割合、βは原子比によるC含有割合をそれぞれ示す。)。
(ホ)上記六方晶構造の内側相は、
組成式:(Ti1−γAlγ)(CδN1−δ)
で表した場合、0.78≦γ≦1、0≦δ≦0.005を満足すること(但し、γは原子比によるAl含有割合、δは原子比によるC含有割合をそれぞれ示す。)。
(ヘ)上記素地相の組成と、上記分散粒子相の外側相の組成を比較した場合、(α−U)の値が0.03以上であること。
本発明者等は、この発明の硬質被覆層が、さらに、上記(ハ)〜(ヘ)の組織、結晶構造、組成を特徴として備えることを見出したのである。
「(1) 炭化タングステン基超硬合金、炭窒化チタン基サーメット、または立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、化学蒸着法で成膜された1〜20μmの平均層厚を有するTiとAlの複合窒化物層あるいはTiとAlの複合炭窒化物層からなる硬質被覆層が被覆形成された表面被覆切削工具において、
(a)上記硬質被覆層は、素地相と分散粒子相からなり、該素地相は、
組成式:(Ti1−UAlU)(CVN1−V)
で表した場合、Al含有割合UおよびC含有割合V(但し、U、Vは何れも原子比)は、それぞれ、0.65≦U≦0.95、0≦V≦0.005を満足する平均組成を有するとともに、立方晶構造を有し、かつ、柱状組織のTiとAlの複合窒化物相あるいはTiとAlの複合炭窒化物相からなり、
(b)上記分散粒子相は、平均粒子径が10〜100nmであって、硬質被覆層の30〜50面積%を占め、また、上記分散粒子相は、該分散粒子相の外側を構成する立方晶構造の外側相と、該分散粒子相の20面積%以下を占め、かつ、分散粒子相の内側を構成する六方晶構造の内側相からなり、上記立方晶構造の外側相を、
組成式:(Ti1−αAlα)(CβN1−β)
で表した場合、Al含有割合αおよびC含有割合β(但し、α、βは何れも原子比)は、それぞれ、0.78≦α≦1、0≦β≦0.005を満足する平均組成を有し、
また、上記六方晶構造の内側相を、
組成式:(Ti1−γAlγ)(CδN1−δ)
で表した場合、Al含有割合γおよびC含有割合δ(但し、γ、δは何れも原子比)は、それぞれ、0.78≦γ≦1、0≦δ≦0.005を満足する平均組成を有し、
(c)上記素地相の平均組成と、上記分散粒子相の外側相の平均組成を比較した場合、(α−U)の値が0.03以上であることを特徴とする表面被覆切削工具。
(2) 上記柱状組織の素地相において、基体表面と平行な面内の結晶粒幅の平均値を平均結晶粒幅Wとし、また、基体表面と垂直な方向の結晶粒長さの平均値を平均結晶粒長さLとした場合、平均結晶粒幅Wと平均結晶粒長さLの比L/Wで表される平均アスペクト比が、L/W>2であることを特徴とする前記(1)に記載の表面被覆切削工具。
(3) 上記硬質被覆層について、電界放出型走査電子顕微鏡と電子線後方散乱回折像装置を用い、立方晶構造を有する素地相と分散粒子相の外側相の結晶粒の結晶面である(110)面の法線が、工具基体表面の法線方向に対してなす傾斜角を測定し、該測定傾斜角のうち、工具基体表面の法線に対して0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して、各区分内に存在する傾斜角度数分布を求めた時、2〜15度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体の60%以上の割合を占めることを特徴とする前記(1)または(2)に記載の表面被覆切削工具。」
に特徴を有するものである。
なお、本発明における硬質被覆層は、前述のような複合窒化物層あるいは複合炭窒化物層をその本質的構成とするが、さらに、従来より知られている下部層や上部層などと併用することにより、一層すぐれた特性を創出することができる。
上記(Ti,Al)(C,N)層は、その平均層厚が1μm未満では、基体との密着性を十分確保することができず、一方、その平均層厚が20μmを越えると、高熱発生を伴い、切刃に衝撃的・断続的な高負荷が作用する高速断続切削で熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚は1〜20μmと定めた。
分散粒子相は、硬質被覆層を化学蒸着法により形成し、これを冷却する際に、スピノーダル分解によって硬質被覆層の素地内にナノ分散することによって生成する。
この分散粒子相は、変形時の転位の移動を阻止することによって硬質被覆層の強度向上に寄与し、さらに、硬度の上昇にも寄与し、被覆工具の耐摩耗性を高めるとともに靭性を改善する。
また、この発明の分散粒子相は、図2に概略を示すように、立方晶構造の外側相と六方晶構造の内側相とからなり、特に、六方晶構造の内側相が硬質被覆層の耐酸化性向上に寄与する。
つまり、この発明の被覆工具の硬質被覆層は、素地相と、外側相と内側相から構成され素地中に分散分布する分散粒子相によって、高熱発生を伴い、かつ、切れ刃に衝撃的・断続的高負荷が作用する高速断続切削加工に供した場合でも、すぐれた耐チッピング性、耐酸化性を有し、長期の使用に亘ってすぐれた耐摩耗性を発揮することができる。
以下に、素地相、分散粒子相について説明する。
硬質被覆層の素地相は、立方晶構造を有し、かつ、柱状組織として形成され、該素地相の平均組成を、
組成式:(Ti1−UAlU)(CVN1−V)
で表した場合、Al含有割合UおよびC含有割合V(但し、U、Vは何れも原子比)は、それぞれ、0.65≦U≦0.95、0≦V≦0.005を満足することが必要である。
Al含有割合U(原子比)の値が0.65未満であると、硬質被覆層に及ぼす高温硬さ低下の影響が大きく、耐摩耗性を劣化させることとなり、一方、Al含有割合U(原子比)の値が0.95を超えると、素地相の立方晶構造を維持できなくなり、素地中に軟質の六方晶構造が生成してしまい、耐摩耗性を劣化させることから、Al含有割合U(原子比)の値は0.65〜0.95と定めた。なお、Al含有割合U(原子比)の好ましい値は、0.78〜0.85である。
素地相において、C成分には層の硬さを向上させ、一方、N成分には層の高温強度を向上させる作用があるが、C成分の含有割合V(原子比)が0.005を超えると、高温強度が低下してくることから、V(原子比)の値は、0.005以下と定めた。
また、素地相は、立方晶構造を有する柱状組織相として形成するが、硬質被覆層の形成に際し、後記する化学蒸着法を採用することによって、立方晶構造を有し、かつ、柱状組織からなる素地相を形成することができる。
素地相の柱状組織に関し、基体表面と平行な面内の結晶粒幅の平均値を平均結晶粒幅Wとし、また、基体表面と垂直な方向の結晶粒長さの平均値を平均結晶粒長さLとした場合、平均結晶粒幅Wと平均結晶粒長さLの比で表される平均アスペクト比L/Wの値が、L/W>2であることが望ましく、これによって、硬質被覆相の耐摩耗性が向上されるという効果が発揮される。
これは、素地相の平均アスペクト比が2を超える柱状組織になると、摩擦による結晶粒の脱落が起きにくくなり、脱落した硬質皮膜自体による摩耗が軽減され、耐摩耗性が向上するためである。
さらに、この発明の上記硬質被覆層の素地相と分散粒子外側相について、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を、その縦断面方向から解析した場合、基体表面の法線方向に対する前記結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、法線方向に対して0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する傾斜角度数を集計したとき、2〜15度の範囲内の傾斜角区分に存在する度数の合計が、傾斜角度数分布における度数全体の60%以上の割合となる傾斜角度数分布形態を示す場合に、上記硬質被覆層は、高硬度を示すとともに、上記傾斜角度数分布形態によって一段とすぐれた靭性を発揮する。
したがって、この発明の硬質被覆層は、このような傾斜角度数分布形態を有することが望ましく、このためには、後記する化学蒸着の条件のうち、特に、成膜温度と成膜圧力を調整することが必要である。
図3に、本発明の被覆工具について測定して求めた傾斜角度数分布グラフの一例を示す。
既に述べたように、分散粒子相は、立方晶構造の外側相と六方晶構造の内側相とからなっている。
分散粒子相は平均粒子径が10〜100nmであって、硬質被覆層の30〜50面積%を占める。
さらに、硬質被覆層において、六方晶構造の内側相が占める面積割合は20面積%以下である。
ここで、分散粒子相の平均粒子径が10nm未満では、組織の均一性が高くなりすぎて、変形時の転位の移動を阻止する効果が低下してしまい、一方、平均粒子径が100nmを超えると素地相と分散粒子相の界面の歪が高くなり、界面がクラック発生の起点となり易いことから、硬質被覆層の強度向上を図るためには、分散粒子相の平均粒子径を10〜100nmと定めた。
また、分散粒子相の硬質被覆層に占める面積率が30面積%未満であると、分散粒子内側相を生成させることが難しくなること、一方、面積率が50面積%を超えると、素地に比して分散粒子相が多くなることで均一性が保てず靭性が低下傾向を示すようになることから、硬質被覆層の強度向上を図るためには、分散粒子相の面積占有率を30〜50面積%と定めた。
さらに、分散粒子相において、六方晶構造の内側相が占める面積割合が硬質被覆層に対して20面積%以下であれば、硬度の低下を抑えつつ高温強度を挙げることが出来るが、これが、20面積%を超えると硬度が低い六方晶構造が多くなるため、耐摩耗性が維持できずに劣化することから、硬質被覆層の強度向上を図るためには、硬質被覆層において、六方晶構造の内側相が占める面積割合は20面積%以下と定めた。
分散粒子相の外側相は、立方晶構造の(Ti,Al)(C,N)からなるが、その平均組成を、
組成式:(Ti1−αAlα)(CβN1−β)
で表した場合、Al含有割合αおよびC含有割合β(但し、α、βは何れも原子比)は、それぞれ、0.78≦α≦1、0≦β≦0.005を満足することが必要であると同時に、(α−U)の値が0.03以上であることが必要である。
ここで、Uは、既に述べたように、素地相の平均組成を、(Ti1−UAlU)(CVN1−V)で表した場合の、Al含有割合U(但し、Uは原子比)であって、0.65≦U≦0.95である。
これは、次のような理由による。
外側相のAl含有割合αが最大で1の場合には、外側相はAl(CβN1−β)となるが、このAlの窒化物あるいは炭窒化物は、高Al含有となって硬さ,耐酸化性が向上するので、結果として耐摩耗性,耐溶着性が改善される。一方、Al含有割合αが0.78未満になると、素地相と内側相の界面となる外側相の強度の低下によって、結晶構造が異なる分散粒子内側相と外側相での界面で破壊が生じやすくなり、靱性が低下するため、外側相のAl含有割合αは、0.78≦α≦1と定めた。
なお、外側相のC含有割合βを0≦β≦0.005とすることは、硬質被覆層の素地相の平均組成におけるC含有割合Vと同様な理由による。
さらに、(α−U)の値が0.03未満である場合、即ち、素地相におけるAl含有割合U(あるいは、Ti含有割合1−U)と、分散粒子相の外側相におけるAl含有割合α(あるいは、Ti含有割合1−α)との差が小さすぎる場合には、素地相と分散粒子相の外側相のそれぞれにおける格子定数の差が小さくなるため、転位の移動を阻止する作用が十分でなくなり、その結果、強度向上効果が小さくなることから、(α−U)の値を0.03以上と定めた。
分散粒子相の内側相は、六方晶構造の(Ti,Al)(C,N)からなるが、その平均組成を、
組成式:(Ti1−γAlγ)(CδN1−δ)
で表した場合、Al含有割合γおよびC含有割合δ(但し、γ、δは何れも原子比)は、それぞれ、0.78≦γ≦1、0≦δ≦0.005を満足することが必要である。
内側相のAl含有割合γが最大で1の場合には、内側相はAl(CδN1−δ)となり、この相の分散により膜全体の耐酸化性が増し、高温強度が向上する。このAlの窒化物あるいは炭窒化物のAl含有割合γが0.78未満になると、Al含有量が少なくなり高温強度の向上が図れなくなるため、内側相のAl含有割合γは、0.78≦α≦1と定めた。
なお、内側相のC含有割合δを0≦δ≦0.005とすることは、硬質被覆層の素地相の平均組成におけるC含有割合Vと同様な理由による。
この発明の被覆工具の硬質被覆層は、例えば、以下に述べる化学蒸着法によって(Ti,Al)(C,N)層を蒸着形成した後、所定の冷却速度で急冷することによって、所定の成分組成、組織、平均アスペクト比、傾斜角度数分布形態を備える硬質被覆層を成膜することができる。
化学蒸着するにあたって、反応ガス成分として、Al(CH3)3を添加するとともに、N2H2の添加量を低減した反応ガス雰囲気で蒸着形成することが特に望ましい。
以下に、化学蒸着の蒸着条件を示す。
反応ガス組成(容量%):
TiCl4 1.5〜4.5%、Al(CH3)3 7〜12.0%、
AlCl3 1〜10.0%、NH3 7.0〜14.0%、
N2 5.0〜10.0%、C2H40〜2.0%、N2H2 1〜3%
Ar 0〜10.0%、残りH2、
反応雰囲気温度: 700〜900 ℃、
反応雰囲気圧力: 2〜5 kPa、
上記条件の化学蒸着によって成膜した後、成膜雰囲気温度から500℃までの冷却速度範囲が10〜20℃/secの範囲となるように冷却時の圧力と冷却ガス流量を調整することによって急冷すると、本発明で定めた成分組成、組織、平均アスペクト比、傾斜角度数分布形態を備える硬質被覆層が形成される。
硬質被覆層の素地相、分散粒子の外側相の成分組成は、反応ガス組成によって調整され、TiCl4に対するAl(CH3)3,AlCl3の量が増加するとAl含有量が増加する。分散粒子の内側相の成分組成は、分散粒子の外側相に対して、成膜温度が高いほどAl量が増加する。
硬質被覆層の分散粒子相の平均粒子径、占有面積割合は冷却条件と成膜温度によって調整され、温度が高いと分散粒子の平均粒径、面積分率が増加し、冷却速度が遅いと同様の効果が得られる。たとえば、成膜温度900℃以上、且つ冷却速度10℃/sec未満になってしまうと分散粒子径が大きくなりすぎてしまう。
平均アスペクト比や傾斜角度数分布形態は成膜温度や成膜圧量の影響をうけて、成膜温度や圧力の増加によって低下する。
分散粒子内側相の面積割合は冷却条件と成膜速度また圧力によって調整され、温度が高いと分散粒子の内側相の面積分率が増加し、冷却速度が遅い場合と圧力が高い場合と同様の効果が得られる。内側相の結晶構造は反応ガス組成と冷却速度によって調整され、TiCl4に対するAl(CH3)3,AlCl3の量が減少したり、冷却速度を20℃/sec以上に早くすると六方晶は生成しない。
したがって、所望の成分組成、組織、平均アスペクト比、傾斜角度数分布形態を得るためには、適切な蒸着条件及び急冷条件を選択することが必要である。
なお、ここでは、工具基体として、WC基超硬合金及びTiCN基サーメットを用いた場合について説明するが、立方晶窒化ホウ素基超高圧焼結体を工具基体とした被覆工具にも適用できることは勿論である。
また、本発明被覆工具11〜15については、表3に示される形成条件で、表6に示される下部層および/または上部層を形成した。
なお、本発明被覆工具11〜15と同様に、比較被覆工具11〜15については、表3に示される形成条件で、表6に示される下部層および/または上部層を形成した。
なお、具体的な測定は次のとおりである。
素地相の平均Al含有割合U,平均C含有割合V、分散粒子の外側相の平均Al含有割合α,平均C含有割合β、分散粒子の内側相の平均Al含有割合γ、平均C含有割合δについては、透過型電子顕微鏡を用いて1μm×1μmの観察視野内の素地相、分散粒子相の外側相、分散粒子の内側相、それぞれをエネルギー分散型X線分光法(Energy Dispersive X-ray Spectroscopy)によって調査した。素地相の平均Al含有割合U、平均C含有割合Vは5測定点の平均値を示す。分散粒子の外側相の平均Al含有割合α、平均C含有割合β、分散粒子の内側相の平均Al含有割合γ、平均C含有割合δは5つの粒子の平均値を示す。
表7に、その結果を示す。
具体的な測定手法は、以下のとおりである。
素地相、分散粒子相の外側相、分散粒子相の内側相の結晶構造については透過型電子顕微鏡を用いて電子線回折図形を解析することにより同定した。分散粒子相の平均粒子径は1μm×1μmの測定範囲内に存在する粒子について、各々の面積を透過型電子顕微鏡の画像、画像解析により算出し、占有面積割合を算出した。また、円と仮定した際の直径を粒径とし、それらの平均値を算出した。 分散粒子相の内側相の専有面積割合も同様に算出した。
平均アスペクト比は工具基体表面と水平方向に長さ20μmの範囲に存在する硬質被覆層の柱状組織(Ti1−UAlU)(CVN1−V)層中の個々の結晶粒の工具基体表面と平行な粒子幅を測定し、測定範囲内に存在する粒子についての平均値を算出することで平均粒子幅W、工具基体表面に垂直な方向の粒子長さを測定し、測定範囲内に存在する粒子についての平均値を算出することで平均粒子長さLを求めた。
また、硬質被覆層の傾斜角度数分布については、立方晶構造のTiとAlの複合炭窒化物層からなる硬質被覆層の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射し、電子後方散乱回折像装置を用いて、工具基体と水平方向に長さ100μmに亘り硬質被覆層について0.1μm/stepの間隔で、基体表面の法線(断面研磨面における基体表面と垂直な方向)に対して、前記結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、2〜15度の範囲内に存在する度数の割合を求めた。
また、硬質被覆層の平均層厚は、走査型電子顕微鏡を用い断面測定を行い、5ヶ所の平均値を求め、その平均値を硬質被覆層の平均層厚とした。
表7に、その結果を示す。
表8に、その結果を示す。
被削材: JIS・SCM440幅100mm、長さ400mmのブロック材
回転速度: 916 min−1、
切削速度: 360 m/min、
切り込み: 1.2 mm、
一刃送り量: 0.12 mm/刃、
切削時間: 10分、
表9に、上記切削試験の結果を示す。
これに対して、比較例被覆工具1〜15については、いずれも、硬質被覆層にチッピング、欠損、剥離等の異常損傷が発生するばかりか、比較的短時間で使用寿命に至ることが明らかである。
なお、比較例被覆工具31〜35については、表3に示される形成条件で、表11に示される下部層および/または上部層を形成した。
また、その結晶構造、組織(柱状、分散粒子相の平均粒子径,平均アスペクト比)、傾斜角度数分布形態をそれぞれ測定によって求めた。
表12に、その結果を示す。
また、その結晶構造、組織(柱状、分散粒子相の平均粒子径,平均アスペクト比)、傾斜角度数分布形態をそれぞれ測定によって求めた。
表13に、その結果を示す。
被削材: JIS・SCM415(硬さ:HRC62)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 230 m/min、
切り込み: 0.12 mm、
送り: 0.15mm/rev、
切削時間: 4分、
表14に、上記切削試験の結果を示す。
これに対して、比較例被覆工具1〜15、21〜35については、いずれも、硬質被覆層にチッピング、欠損、剥離等の異常損傷が発生するばかりか、比較的短時間で使用寿命に至ることが明らかである。
Claims (3)
- 炭化タングステン基超硬合金、炭窒化チタン基サーメット、または立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、化学蒸着法で成膜された1〜20μmの平均層厚を有するTiとAlの複合窒化物層あるいはTiとAlの複合炭窒化物層からなる硬質被覆層が被覆形成された表面被覆切削工具において、
(a)上記硬質被覆層は、素地相と分散粒子相からなり、該素地相は、
組成式:(Ti1−UAlU)(CVN1−V)
で表した場合、Al含有割合UおよびC含有割合V(但し、U、Vは何れも原子比)は、それぞれ、0.65≦U≦0.95、0≦V≦0.005を満足する平均組成を有するとともに、立方晶構造を有し、かつ、柱状組織のTiとAlの複合窒化物相あるいはTiとAlの複合炭窒化物相からなり、
(b)上記分散粒子相は、平均粒子径が10〜100nmであって、硬質被覆層の30〜50面積%を占め、また、上記分散粒子相は、該分散粒子相の外側を構成する立方晶構造の外側相と、該分散粒子相の内側を構成する六方晶構造の内包粒子からなり、内包粒子は硬質被覆層に対して20面積%以下を占め、上記立方晶構造の外側相を、
組成式:(Ti1−αAlα)(CβN1−β)
で表した場合、Al含有割合αおよびC含有割合β(但し、α、βは何れも原子比)は、それぞれ、0.78≦α≦1、0≦β≦0.005を満足する平均組成を有し、
また、上記六方晶構造の内側相を、
組成式:(Ti1−γAlγ)(CδN1−δ)
で表した場合、Al含有割合γおよびC含有割合δ(但し、γ、δは何れも原子比)は、それぞれ、0.78≦γ≦1、0≦δ≦0.005を満足する平均組成を有し、
(c)上記素地相の平均組成と、上記分散粒子相の外側相の平均組成を比較した場合、(α-U)の値が0.03以上であることを特徴とする表面被覆切削工具。 - 上記柱状組織の素地相において、基体表面と平行な面内の結晶粒幅の平均値を平均結晶粒幅Wとし、また、基体表面と垂直な方向の結晶粒長さの平均値を平均結晶粒長さLとした場合、平均結晶粒幅Wと平均結晶粒長さLの比L/Wで表される平均アスペクト比が、L/W>2であることを特徴とする請求項1に記載の表面被覆切削工具。
- 上記硬質被覆層について、電界放出型走査電子顕微鏡と電子線後方散乱回折像装置を用い、立方晶構造を有する素地相と分散粒子相の外側相の結晶粒の結晶面である(110)面の法線が、工具基体表面の法線方向に対してなす傾斜角を測定し、該測定傾斜角のうち、工具基体表面の法線に対して0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して、各区分内に存在する傾斜角度数分布を求めた時、2〜15度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体の60%以上の割合を占めることを特徴とする請求項1または2に記載の表面被覆切削工具。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013001015A JP5995087B2 (ja) | 2013-01-08 | 2013-01-08 | 硬質被覆層がすぐれた耐酸化性、耐チッピング性、耐摩耗性を発揮する表面被覆切削工具 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013001015A JP5995087B2 (ja) | 2013-01-08 | 2013-01-08 | 硬質被覆層がすぐれた耐酸化性、耐チッピング性、耐摩耗性を発揮する表面被覆切削工具 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014133267A true JP2014133267A (ja) | 2014-07-24 |
JP5995087B2 JP5995087B2 (ja) | 2016-09-21 |
Family
ID=51411972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013001015A Active JP5995087B2 (ja) | 2013-01-08 | 2013-01-08 | 硬質被覆層がすぐれた耐酸化性、耐チッピング性、耐摩耗性を発揮する表面被覆切削工具 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5995087B2 (ja) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016030319A (ja) * | 2014-07-30 | 2016-03-07 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
WO2016047584A1 (ja) * | 2014-09-25 | 2016-03-31 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
WO2016047581A1 (ja) * | 2014-09-25 | 2016-03-31 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
JP2016049573A (ja) * | 2014-08-28 | 2016-04-11 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
WO2016068122A1 (ja) * | 2014-10-28 | 2016-05-06 | 三菱マテリアル株式会社 | 表面被覆切削工具 |
JP2016083766A (ja) * | 2014-10-28 | 2016-05-19 | 三菱マテリアル株式会社 | 表面被覆切削工具 |
JP2016130344A (ja) * | 2015-01-14 | 2016-07-21 | 住友電工ハードメタル株式会社 | 硬質被膜、切削工具および硬質被膜の製造方法 |
WO2016113956A1 (ja) * | 2015-01-14 | 2016-07-21 | 住友電工ハードメタル株式会社 | 硬質被膜、切削工具および硬質被膜の製造方法 |
WO2017073792A1 (ja) * | 2015-10-30 | 2017-05-04 | 三菱マテリアル株式会社 | 表面被覆切削工具およびその製造方法 |
WO2017073790A1 (ja) * | 2015-10-30 | 2017-05-04 | 三菱マテリアル株式会社 | 表面被覆切削工具およびその製造方法 |
WO2017073789A1 (ja) * | 2015-10-30 | 2017-05-04 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具およびその製造方法 |
JP2017080884A (ja) * | 2015-10-30 | 2017-05-18 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐摩耗性および耐チッピング性を発揮する表面被覆切削工具 |
JP2017080882A (ja) * | 2015-10-30 | 2017-05-18 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐摩耗性および耐チッピング性を発揮する表面被覆切削工具 |
JP2017080883A (ja) * | 2015-10-30 | 2017-05-18 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
WO2017090540A1 (ja) * | 2015-11-25 | 2017-06-01 | 三菱日立ツール株式会社 | 窒化チタンアルミニウム硬質皮膜、硬質皮膜被覆工具、及びそれらの製造方法 |
JP2017113834A (ja) * | 2015-12-24 | 2017-06-29 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具 |
WO2018051939A1 (ja) * | 2016-09-16 | 2018-03-22 | 三菱マテリアル株式会社 | 表面被覆切削工具 |
JP2018522748A (ja) * | 2015-07-27 | 2018-08-16 | ヴァルター アーゲー | TiAlNコーティングを有する工具 |
JP6565093B1 (ja) * | 2018-03-22 | 2019-08-28 | 住友電工ハードメタル株式会社 | 表面被覆切削工具およびその製造方法 |
JP6565092B1 (ja) * | 2018-03-22 | 2019-08-28 | 住友電工ハードメタル株式会社 | 表面被覆切削工具およびその製造方法 |
JP6565091B1 (ja) * | 2018-03-22 | 2019-08-28 | 住友電工ハードメタル株式会社 | 表面被覆切削工具およびその製造方法 |
WO2019181134A1 (ja) * | 2018-03-22 | 2019-09-26 | 住友電工ハードメタル株式会社 | 表面被覆切削工具およびその製造方法 |
WO2019181135A1 (ja) * | 2018-03-22 | 2019-09-26 | 住友電工ハードメタル株式会社 | 表面被覆切削工具およびその製造方法 |
WO2019181133A1 (ja) * | 2018-03-22 | 2019-09-26 | 住友電工ハードメタル株式会社 | 表面被覆切削工具およびその製造方法 |
WO2019181136A1 (ja) * | 2018-03-22 | 2019-09-26 | 住友電工ハードメタル株式会社 | 表面被覆切削工具及びその製造方法 |
JP2021115639A (ja) * | 2020-01-23 | 2021-08-10 | 三菱マテリアル株式会社 | 表面被覆切削工具 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002129306A (ja) * | 2000-10-25 | 2002-05-09 | Toshiba Tungaloy Co Ltd | 分散強化された複合硬質膜およびこれを被覆した工具 |
WO2008078592A1 (ja) * | 2006-12-25 | 2008-07-03 | Kyocera Corporation | 表面被覆工具および被切削物の加工方法 |
-
2013
- 2013-01-08 JP JP2013001015A patent/JP5995087B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002129306A (ja) * | 2000-10-25 | 2002-05-09 | Toshiba Tungaloy Co Ltd | 分散強化された複合硬質膜およびこれを被覆した工具 |
WO2008078592A1 (ja) * | 2006-12-25 | 2008-07-03 | Kyocera Corporation | 表面被覆工具および被切削物の加工方法 |
Cited By (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016030319A (ja) * | 2014-07-30 | 2016-03-07 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
JP2016049573A (ja) * | 2014-08-28 | 2016-04-11 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
US10456842B2 (en) | 2014-09-25 | 2019-10-29 | Mitsubishi Materials Corporation | Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance |
WO2016047584A1 (ja) * | 2014-09-25 | 2016-03-31 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
WO2016047581A1 (ja) * | 2014-09-25 | 2016-03-31 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
JP2016064485A (ja) * | 2014-09-25 | 2016-04-28 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
JP2016064471A (ja) * | 2014-09-25 | 2016-04-28 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
CN107073590A (zh) * | 2014-09-25 | 2017-08-18 | 三菱综合材料株式会社 | 硬质包覆层发挥优异的耐崩刀性的表面包覆切削工具 |
JP2016083766A (ja) * | 2014-10-28 | 2016-05-19 | 三菱マテリアル株式会社 | 表面被覆切削工具 |
CN107073593A (zh) * | 2014-10-28 | 2017-08-18 | 三菱综合材料株式会社 | 表面包覆切削工具 |
EP3213840A4 (en) * | 2014-10-28 | 2018-06-27 | Mitsubishi Materials Corporation | Surface-coated cutting tool |
WO2016068122A1 (ja) * | 2014-10-28 | 2016-05-06 | 三菱マテリアル株式会社 | 表面被覆切削工具 |
JP2016130344A (ja) * | 2015-01-14 | 2016-07-21 | 住友電工ハードメタル株式会社 | 硬質被膜、切削工具および硬質被膜の製造方法 |
WO2016113956A1 (ja) * | 2015-01-14 | 2016-07-21 | 住友電工ハードメタル株式会社 | 硬質被膜、切削工具および硬質被膜の製造方法 |
JP2016130343A (ja) * | 2015-01-14 | 2016-07-21 | 住友電工ハードメタル株式会社 | 硬質被膜、切削工具および硬質被膜の製造方法 |
US10434580B2 (en) | 2015-01-14 | 2019-10-08 | Sumitomo Electric Hardmetal Corp. | Hard coating, cutting tool, and method for producing hard coating |
JP7160677B2 (ja) | 2015-07-27 | 2022-10-25 | ヴァルター アーゲー | TiAlNコーティングを有する工具とその工具の製造方法 |
JP2018522748A (ja) * | 2015-07-27 | 2018-08-16 | ヴァルター アーゲー | TiAlNコーティングを有する工具 |
JP2017080882A (ja) * | 2015-10-30 | 2017-05-18 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐摩耗性および耐チッピング性を発揮する表面被覆切削工具 |
JP2017080883A (ja) * | 2015-10-30 | 2017-05-18 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
US10625347B2 (en) | 2015-10-30 | 2020-04-21 | Mitsubishi Materials Corporation | Surface-coated cutting tool with hard coating layer that exhibits excellent chipping resistance and manufacturing method thereof |
WO2017073790A1 (ja) * | 2015-10-30 | 2017-05-04 | 三菱マテリアル株式会社 | 表面被覆切削工具およびその製造方法 |
WO2017073789A1 (ja) * | 2015-10-30 | 2017-05-04 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具およびその製造方法 |
JP2017080884A (ja) * | 2015-10-30 | 2017-05-18 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐摩耗性および耐チッピング性を発揮する表面被覆切削工具 |
CN108472737A (zh) * | 2015-10-30 | 2018-08-31 | 三菱综合材料株式会社 | 硬质包覆层发挥优异的耐崩刀性的表面包覆切削工具及其制造方法 |
US10618115B2 (en) | 2015-10-30 | 2020-04-14 | Mitsubishi Materials Corporation | Surface-coated cutting tool and manufacturing method of the same |
WO2017073792A1 (ja) * | 2015-10-30 | 2017-05-04 | 三菱マテリアル株式会社 | 表面被覆切削工具およびその製造方法 |
JPWO2017090540A1 (ja) * | 2015-11-25 | 2018-09-06 | 三菱日立ツール株式会社 | 窒化チタンアルミニウム硬質皮膜、硬質皮膜被覆工具、及びそれらの製造方法 |
CN108291300B (zh) * | 2015-11-25 | 2020-09-08 | 三菱日立工具株式会社 | 氮化钛铝硬质皮膜、硬质皮膜包覆工具及它们的制造方法 |
CN108291300A (zh) * | 2015-11-25 | 2018-07-17 | 三菱日立工具株式会社 | 氮化钛铝硬质皮膜、硬质皮膜包覆工具及它们的制造方法 |
WO2017090540A1 (ja) * | 2015-11-25 | 2017-06-01 | 三菱日立ツール株式会社 | 窒化チタンアルミニウム硬質皮膜、硬質皮膜被覆工具、及びそれらの製造方法 |
US10767258B2 (en) | 2015-11-25 | 2020-09-08 | Mitsubishi Hitachi Tool Engineering, Ltd. | Hard titanium aluminum nitride coating, hard-coated tool, and their production methods |
JP2017113834A (ja) * | 2015-12-24 | 2017-06-29 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具 |
JP2018043326A (ja) * | 2016-09-16 | 2018-03-22 | 三菱マテリアル株式会社 | 表面被覆切削工具 |
CN109661286B (zh) * | 2016-09-16 | 2020-10-16 | 三菱综合材料株式会社 | 表面包覆切削工具 |
US11007578B2 (en) | 2016-09-16 | 2021-05-18 | Mitsubishi Materials Corporation | Surface-coated cutting tool |
CN109661286A (zh) * | 2016-09-16 | 2019-04-19 | 三菱综合材料株式会社 | 表面包覆切削工具 |
WO2018051939A1 (ja) * | 2016-09-16 | 2018-03-22 | 三菱マテリアル株式会社 | 表面被覆切削工具 |
JP6565092B1 (ja) * | 2018-03-22 | 2019-08-28 | 住友電工ハードメタル株式会社 | 表面被覆切削工具およびその製造方法 |
JP6565091B1 (ja) * | 2018-03-22 | 2019-08-28 | 住友電工ハードメタル株式会社 | 表面被覆切削工具およびその製造方法 |
WO2019181136A1 (ja) * | 2018-03-22 | 2019-09-26 | 住友電工ハードメタル株式会社 | 表面被覆切削工具及びその製造方法 |
WO2019181133A1 (ja) * | 2018-03-22 | 2019-09-26 | 住友電工ハードメタル株式会社 | 表面被覆切削工具およびその製造方法 |
WO2019181135A1 (ja) * | 2018-03-22 | 2019-09-26 | 住友電工ハードメタル株式会社 | 表面被覆切削工具およびその製造方法 |
KR20200118889A (ko) * | 2018-03-22 | 2020-10-16 | 스미또모 덴꼬오 하드메탈 가부시끼가이샤 | 표면 피복 절삭 공구 및 그 제조 방법 |
WO2019181134A1 (ja) * | 2018-03-22 | 2019-09-26 | 住友電工ハードメタル株式会社 | 表面被覆切削工具およびその製造方法 |
KR20200119335A (ko) * | 2018-03-22 | 2020-10-19 | 스미또모 덴꼬오 하드메탈 가부시끼가이샤 | 표면 피복 절삭 공구 및 그 제조 방법 |
KR20200119336A (ko) * | 2018-03-22 | 2020-10-19 | 스미또모 덴꼬오 하드메탈 가부시끼가이샤 | 표면 피복 절삭 공구 및 그 제조 방법 |
CN111886093A (zh) * | 2018-03-22 | 2020-11-03 | 住友电工硬质合金株式会社 | 表面被覆切削工具及其制造方法 |
US10875101B2 (en) | 2018-03-22 | 2020-12-29 | Sumitomo Electric Hardmetal Corp. | Surface-coated cutting tool and method for manufacturing same |
JP6583762B1 (ja) * | 2018-03-22 | 2019-10-02 | 住友電工ハードメタル株式会社 | 表面被覆切削工具及びその製造方法 |
CN111886093B (zh) * | 2018-03-22 | 2023-01-31 | 住友电工硬质合金株式会社 | 表面被覆切削工具及其制造方法 |
KR102350224B1 (ko) | 2018-03-22 | 2022-01-14 | 스미또모 덴꼬오 하드메탈 가부시끼가이샤 | 표면 피복 절삭 공구 및 그 제조 방법 |
KR102350221B1 (ko) | 2018-03-22 | 2022-01-14 | 스미또모 덴꼬오 하드메탈 가부시끼가이샤 | 표면 피복 절삭 공구 및 그 제조 방법 |
KR102350219B1 (ko) | 2018-03-22 | 2022-01-17 | 스미또모 덴꼬오 하드메탈 가부시끼가이샤 | 표면 피복 절삭 공구 및 그 제조 방법 |
US11274366B2 (en) | 2018-03-22 | 2022-03-15 | Sumitomo Electric Hardmetal Corp. | Surface-coated cutting tool and method for manufacturing same |
US11311945B2 (en) | 2018-03-22 | 2022-04-26 | Sumitomo Electric Hardmetal Corp. | Surface-coated cutting tool and method for manufacturing same |
US11326252B2 (en) | 2018-03-22 | 2022-05-10 | Sumitomo Electric Hardmetal Corp. | Surface-coated cutting tool and method for manufacturing same |
JP6565093B1 (ja) * | 2018-03-22 | 2019-08-28 | 住友電工ハードメタル株式会社 | 表面被覆切削工具およびその製造方法 |
JP2021115639A (ja) * | 2020-01-23 | 2021-08-10 | 三菱マテリアル株式会社 | 表面被覆切削工具 |
JP7377434B2 (ja) | 2020-01-23 | 2023-11-10 | 三菱マテリアル株式会社 | 表面被覆切削工具 |
Also Published As
Publication number | Publication date |
---|---|
JP5995087B2 (ja) | 2016-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5995087B2 (ja) | 硬質被覆層がすぐれた耐酸化性、耐チッピング性、耐摩耗性を発揮する表面被覆切削工具 | |
JP6044322B2 (ja) | 硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具 | |
JP6478100B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP5924507B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6394898B2 (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP5257535B2 (ja) | 表面被覆切削工具 | |
JP6284034B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6296294B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6391045B2 (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6590255B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP2014097536A (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP2017113835A (ja) | 硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具 | |
JP4946333B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
WO2016148056A1 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP4888771B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP5263514B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP5838789B2 (ja) | 硬質被覆層が高速断続切削ですぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP4747388B2 (ja) | 難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP5240668B2 (ja) | 硬質合金鋼の高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP5023896B2 (ja) | 表面被覆切削工具 | |
JP4888709B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6573171B2 (ja) | 硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具 | |
JP5176787B2 (ja) | 硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具 | |
JP5995076B2 (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP2018149668A (ja) | 硬質被覆層が優れた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150930 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160728 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160729 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160810 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5995087 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |