WO2016113956A1 - 硬質被膜、切削工具および硬質被膜の製造方法 - Google Patents
硬質被膜、切削工具および硬質被膜の製造方法 Download PDFInfo
- Publication number
- WO2016113956A1 WO2016113956A1 PCT/JP2015/077696 JP2015077696W WO2016113956A1 WO 2016113956 A1 WO2016113956 A1 WO 2016113956A1 JP 2015077696 W JP2015077696 W JP 2015077696W WO 2016113956 A1 WO2016113956 A1 WO 2016113956A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- hard coating
- crystal
- gas
- film
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
- B23B27/148—Composition of the cutting inserts
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/56—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
- C23C30/005—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2228/00—Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
- B23B2228/04—Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner applied by chemical vapour deposition [CVD]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2228/00—Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
- B23B2228/10—Coatings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2228/00—Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
- B23B2228/10—Coatings
- B23B2228/105—Coatings with specified thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23C—MILLING
- B23C2228/00—Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
- B23C2228/10—Coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23F—MAKING GEARS OR TOOTHED RACKS
- B23F21/00—Tools specially adapted for use in machines for manufacturing gear teeth
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/536—Hardness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/50—Properties of the layers or laminate having particular mechanical properties
- B32B2307/58—Cuttability
Definitions
- the present invention relates to a hard coating, a cutting tool, and a method for manufacturing a hard coating.
- a coating for covering the surface of the base material such as cemented carbide is underway.
- a film made of a compound of titanium (Ti), aluminum (Al), and nitrogen (N) (hereinafter also referred to as “TiAlN”) can have high hardness and increase the content ratio of Al. Therefore, oxidation resistance can be improved. Since the performance of the cutting tool can be improved by coating the cutting tool with such a coating, further development of the coating is expected.
- Patent Document 1 discloses a hard film having at least one Ti 1-x Al x N hard film formed by CVD (Chemical Vapor Deposition) without performing plasma excitation.
- Ti 1-x Al x N is a multi-phase layer containing TiN x having a wurtzite structure and / or NaCl structure, and the Ti 1-x Al x N hard coating contains chlorine. The rate is in the range of 0.05 to 0.9 atomic%.
- Non-patent document 1 also discloses a similar technique.
- Non-Patent Document 2 discloses that a reaction gas is AlCl 3 , TiCl 4 , N 2 and NH 3 , a carrier gas is H 2 , a pressure of 3 kPa, and a temperature of 800 ° C. on a substrate such as WC—Co.
- a 5 ⁇ m thick Ti 0.05 Al 0.95 N film grown by CVD is disclosed.
- Ti 0.05 Al 0.95 N film of Non-Patent Document 2 has a nano-stacked structure in which self-organized cubic TiN (c-TiN) and wurtzite AlN (w-AlN) are alternately stacked, and a separation region composed of w-AlN and cubic AlN (c-AlN).
- Non-Patent Document 2 In the nanolaminate structure, the (110) plane of c-TiN and the (100) plane of w-AlN are parallel.
- the ratio of w-AlN, c-AlN (c-Al (Ti) N), and c-TiN constituting the Ti 0.05 Al 0.95 N film of Non-Patent Document 2 is 53% and 26%, respectively. And 21%.
- Non-Patent Document 2 also discloses that the hardness of the Ti 0.05 Al 0.95 N film is about 28 GPa and the compressive residual stress of c-Al (Ti) N is ⁇ 1.2 ⁇ 0.1 GPa. Yes.
- Non-Patent Document 3 discloses an evaluation of the oxidation resistance of a Ti 0.05 Al 0.95 N film having a nanolaminate structure in which self-organized c-TiN and w-AlN are alternately laminated. Yes. According to the description of Non-Patent Document 3, when a Ti 0.05 Al 0.95 N film was oxidized in the air at 700 ° C. to 1200 ° C. for 1 hour, the Ti 0.05 Al 0.95 N film had good oxidation resistance up to 1050 ° C. However, when the temperature exceeds 1100 ° C., local surface deterioration is considered to have occurred. Non-Patent Document 3 discloses that a hardness of about 29 GPa and a compressive residual stress of ⁇ 2 GPa are maintained in a Ti 0.05 Al 0.95 N film at temperatures up to 1050 ° C.
- Patent Document 2 AlCl 3 gas, TiCl 4 gas, NH 3 gas, H 2 gas and N 2 gas are introduced into a reaction vessel having a pressure of 1.3 kPa and a temperature of 800 ° C.
- a cooling rate of 10 ° C./min until the temperature reaches 200 ° C.
- TiN having a face-centered cubic lattice (fcc) structure having a thickness of 2 nm and AlN having an fcc structure having a thickness of 6 nm are alternately stacked.
- a method of forming a hard film having the above structure by a CVD method is disclosed (see paragraphs [0062] and [0063] of Patent Document 2).
- Ti 1-x Al x N hard in the film occurs large strain greater than 0.7 In addition, it is metastable as a cubic crystal, and when exposed to high temperatures, it may undergo a phase transition to a wurtzite structure and the hardness may be reduced. Therefore, when the Ti 1-x Al x N hard coating described in Patent Document 1 and Non-Patent Document 1 is used for a cutting tool, the hardness changes due to phase transition to a wurtzite structure due to fretting heat during cutting. Therefore, the wear resistance of the Ti 1-x Al x N hard coating is lowered. As a result, especially in low-speed cutting, chipping of the Ti 1-x Al x N hard coating occurs, and the life of the cutting tool cannot be extended.
- the Ti 0.05 Al 0.95 N film described in Non-Patent Document 2 and Non-Patent Document 3 has a nano-stacked structure in which self-assembled c-TiN and w-AlN are alternately stacked.
- Patent Literature 1 and Non-Patent Literature 1 there is no problem that the hardness is lowered due to the phase transition to the wurtzite structure due to the rubbing heat at the time of cutting.
- the nano-laminated structure of Ti 0.05 Al 0.95 N film described in Non-Patent Document 2 and Non-Patent Document 3 contains w-AlN having a lower hardness than c-TiN more than c-TiN.
- Patent Document 2 since the hard coating is composed only of a structure in which TiN having an fcc structure and AlN having an fcc structure are alternately laminated, the hardness of the hard coating is very high, and the resistance of the hard coating is high. Abrasion is high.
- the hard coating described in Patent Document 2 is used for a cutting tool, chipping may occur during high-speed cutting, or the chipping may occur suddenly depending on the work material, thereby extending the life of the cutting tool. There was something I could't do.
- the lattice constant of AlN having the fcc structure is about 0.412 nm to 0.405 nm
- the lattice constant of TiN having the fcc structure is about 0.424 nm
- TiN having the fcc structure and AlN having the fcc structure are alternately arranged.
- the laminated structure forms a nano-level super multi-layer structure.
- AlN having an fcc structure having a small lattice constant must always match TiN having an fcc structure having a large lattice constant, so that tensile residual stress is generated in AlN having an fcc structure.
- the above chipping and defects are considered to be caused by the tensile residual stress of AlN having an fcc structure.
- the hard film according to an aspect of the present invention includes two first crystal phases and a second crystal phase disposed between the two first crystal phases, and the two first crystal phases include: Each independently including a laminated structure in which Ti 1-x1 Al x1 N phase having a sodium chloride type crystal structure and Al x2 Ti 1-x2 N phase having a sodium chloride type crystal structure are alternately laminated,
- the Al composition ratio x1 of the Ti 1-x1 Al x1 N phase satisfies the relationship of 0.5 ⁇ x1 ⁇ 0.75, and the Al composition ratio x2 of the Al x2 Ti 1-x2 N phase is 0.75 ⁇ x2 ⁇ 0.95 is satisfied
- the stacked structure includes a portion where the Al concentration periodically changes in the stacking direction of the Ti 1-x1 Al x1 N phase and the Al x2 Ti 1-x2 N phase,
- the difference between the maximum value of the Al composition ratio x2 and the minimum value of the Al composition ratio x1 ((Al group The maximum value of the ratio
- a cutting tool according to another embodiment of the present invention is a cutting tool including a base material and the hard coating on the base material.
- a method of manufacturing a hard coating comprising: a first gas containing a titanium halide gas and an aluminum halide gas; and a second gas containing an ammonia gas on a substrate.
- FIG. 8 is an enlarged photograph of a TEM of a portion surrounded by a solid line in FIG. 7. It is an electron beam diffraction image by TEM of A region of the 2nd crystal phase of FIG. It is an electron beam diffraction image by TEM of B area
- (A) is an energy dispersive X-ray analysis (EDX) photograph of region B in FIG. 12
- (b) is a mapping result of Al element in region B in FIG. 12
- (c) is region B in FIG.
- FIG. 13A is the mapping result of the Ti element in the B region of FIG. 13A is an enlarged photograph of FIG. 13A
- FIG. 13B is an Al concentration in the stacking direction LG1 of the Ti 1-x1 Al x1 N phase and the Al x2 Ti 1-x2 N phase shown in FIG. It is a figure which shows each change of N density
- the hard film according to an aspect of the present invention includes two first crystal phases and a second crystal phase disposed between the two first crystal phases, and the two first crystals
- Each of the phases has a laminated structure in which Ti 1-x1 Al x1 N phase having a sodium chloride type crystal structure and Al x2 Ti 1-x2 N phase having a sodium chloride type crystal structure are alternately laminated.
- the Ti composition ratio x1 of the Ti 1-x1 Al x1 N phase satisfies the relationship of 0.5 ⁇ x1 ⁇ 0.75, and the Al composition ratio x2 of the Al x2 Ti 1-x2 N phase is 0.
- the stacked structure is a portion where the Al concentration periodically changes in the stacking direction of the Ti 1-x1 Al x1 N phase and the Al x2 Ti 1-x2 N phase.
- the difference between the maximum value of the Al composition ratio x2 and the minimum value of the Al composition ratio x1 is 0. Greater than 5, the second crystal phase is a hard coating comprising AlN having a wurtzite crystal structure.
- the sum of the thickness per phase of the adjacent Ti 1-x1 Al x1 N phase and the thickness per phase of the Al x2 Ti 1-x2 N phase The thickness is preferably 1 nm or more and 50 nm or less. When the total thickness is 1 nm or more, it is easy to produce a hard coating. Further, when the total thickness is 50 nm or less, the strain at the interface between the adjacent Ti 1-x1 Al x1 N phase and the Al x2 Ti 1-x2 N phase is relaxed, and Al x2 having a high Al composition ratio. A decrease in wear resistance of the hard coating due to the phase transition of the Ti 1-x2 N phase can be suppressed.
- the electron diffraction pattern of the second crystal phase by a transmission electron microscope shows a ring-shaped pattern, and X of the hard coating film by X-ray diffraction method.
- the ratio of the diffraction intensity P1 to the sum of the diffraction intensity P1 of the (200) plane of the Al x2 Ti 1-x2 N phase and the diffraction intensity P2 of the (100) plane of the second crystal phase in the line diffraction pattern is 0. It is preferably 2 or more and 1 or less.
- the second crystal phase contains AlN crystal grains having a very fine wurtzite crystal structure.
- the welding resistance of the hard coating when used for a cutting tool can be improved.
- the value of (P1) / (P1 + P2) is 0.2 or more and 1 or less, the hard coating can be made into a film having an excellent balance between high hardness and welding resistance.
- the indentation hardness of the hard coating by a nanoindentation method is 30 GPa or more.
- the wear resistance of the hard coating is improved.
- excellent performance can be achieved when cutting.
- the hard film according to an embodiment of the present invention it is preferable absolute value of the Al x2 Ti 1-x2 N phase compressive residual stress is 3GPa less than 0.3 GPa.
- the absolute value of compressive residual stress of the Al x2 Ti 1-x2 N phase is 0.3 GPa or more and 3 GPa or less, the wear resistance of the hard coating can be increased, so that chipping resistance and fracture resistance are improved. Can be improved.
- a cutting tool is a cutting tool including a base material and any one of the hard coatings on the base material.
- a first gas containing a titanium halide gas and an aluminum halide gas and a second gas containing an ammonia gas are formed on a substrate.
- the substrate is held in the holding step for a period of 30 minutes to 300 minutes.
- the hard film containing a 1st crystal phase and a 2nd crystal phase can be formed suitably.
- the base material in the second cooling step, has a cooling rate of 5 ° C./min to 10 ° C./min, higher than 200 ° C. and 400 ° C. It is preferable to be cooled to the following temperature.
- the hard film containing a 1st crystal phase and a 2nd crystal phase can be formed suitably.
- the first gas further includes hydrogen chloride gas.
- the wear resistance of the hard coating tends to be improved.
- FIG. 1 typical sectional drawing of the cutting tool of embodiment is shown.
- the cutting tool of the embodiment includes a base material 11 and a coating 50 provided on the base material 11.
- the coating 50 includes a base film 20 and a hard film 30 provided on the base film 20.
- FIG. 2 shows a schematic enlarged cross-sectional view of an example of the hard coating 30 shown in FIG.
- the hard coating 30 includes two first crystal phases 21 and a second crystal phase 22 disposed between two adjacent first crystal phases 21.
- the first crystal phase 21 and the second crystal phase 22 are completely separated without containing the atoms of each other phase.
- some of the Ti atoms of the first crystal phase 21 may be included in the second crystal phase 22, and some of the Al atoms of the second crystal phase 22 may be included in the first crystal phase 21.
- the hard coating 30 only needs to include at least two first crystal phases 21, and may include three or more first crystal phases 21.
- FIG. 3 is a schematic enlarged sectional view of an example of one first crystal phase 21 shown in FIG.
- the first crystal phase 21 includes a Ti 1-x1 Al x1 N phase 21a having a sodium chloride (NaCl) type crystal structure and an Al x2 Ti 1-x2 N having a NaCl type crystal structure. It includes a laminated structure in which the phases 21b are alternately laminated.
- the Al composition ratio x1 of the Ti 1-x1 Al x1 N phase 21a satisfies the relationship of 0.5 ⁇ x1 ⁇ 0.75
- the Al composition ratio x2 of the Al x2 Ti 1-x2 N phase is 0.75 ⁇
- the relationship x2 ⁇ 0.95 is satisfied.
- the laminated structure includes a portion where the Al concentration periodically changes in the lamination direction of the Ti 1-x1 Al x1 N phase and the Al x2 Ti 1-x2 N phase, and the Al composition ratio x2 is maximum at the location.
- the difference between the value and the minimum value of the Al composition ratio x1 is greater than 0.25.
- the difference between the maximum value of the Al composition ratio x2 and the minimum value of the Al composition ratio x1 is preferably larger than 0.27, 0.3 It is more preferable that it is larger than the above.
- a Ti 1-x1 Al x1 N phase 21a and Al x2 Ti 1-x2 N phase 21b May be completely separated without containing atoms of each other phase, and a part of atoms of Ti 1-x1 Al x1 N phase 21a may be contained in Al x2 Ti 1-x2 N phase 21b.
- a part of atoms of the Al x2 Ti 1-x2 N phase 21b may be included in the Ti 1-x1 Al x1 N phase 21a.
- the Al concentration is measured by EDX or the like as the ratio of the number of Al atoms to the total number of atoms at any one point in the laminated structure of the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b. can do.
- EDX EDX
- a continuous increase and decrease in the Al concentration in the stacking direction of the Ti 1-x1 Al x1 N phase and the Al x2 Ti 1-x2 N phase is taken as one set of cycles. This means that there are at least two sets of periods in the laminated structure of the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b.
- the Al concentration can periodically change to a shape such as a sine wave.
- the composition of the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b of the first crystal phase 21 is EDX or a three-dimensional atom probe. It can be determined by field ion microscope analysis.
- the total thickness t3 of the thickness t1 per phase of the adjacent Ti 1-x1 Al x1 N phase 21a and the thickness t2 per phase of the Al x2 Ti 1-x2 N phase 21b Is preferably 1 nm or more and 50 nm or less.
- the total thickness t3 is 1 nm or more, the hard coating 30 can be easily manufactured.
- the strain at the interface between the adjacent Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b is reduced, and the Al composition ratio It is possible to suppress a decrease in wear resistance of the hard coating 30 due to the high Al x2 Ti 1 -x2 N phase 21b phase transition.
- the total thickness of at least one set of one phase of the adjacent Ti 1-x1 Al x1 N phase 21a and one phase of the Al x2 Ti 1-x2 N phase 21b is 1 nm or more and 50 nm or less.
- the total thickness of all pairs of one phase of the adjacent Ti 1-x1 Al x1 N phase 21a and one phase of the Al x2 Ti 1-x2 N phase 21b should be 1 nm or more and 50 nm or less. Is preferable from the viewpoint of stably producing the hard coating 30 excellent in wear resistance.
- the thickness t1 per phase of the Ti 1-x1 Al x1 N phase 21a and the thickness t2 per phase of the Al x2 Ti 1-x2 N phase 21b are hard on the surface of the substrate 11, respectively.
- the coating 30 is formed, and the cross section of the hard coating 30 formed on the surface of the substrate 11 is STEM high angle scattering dark field method (HAADF-STEM) (HAADF-STEM). It can be measured by observing.
- the second crystal phase 22 includes AlN having a wurtzite crystal structure. As described above, AlN having a wurtzite type crystal structure generally has a low hardness. However, in the present embodiment, the second crystal phase 22 containing AlN having a wurtzite type crystal structure is used for the wear resistance of the hard coating 30. The function of impact relaxation of the first crystal phase 21 that contributes to the improvement of the property is exhibited. This contributes to extending the life of the cutting tool when the hard coating 30 is used for the cutting tool.
- tungsten carbide (WC) based cemented carbide, cermet, high speed steel, ceramics, cubic boron nitride sintered body or diamond sintered body can be used. It is not limited.
- a film capable of increasing the bonding strength between the base material 11 and the hard film 30 can be used, for example, a titanium nitride (TiN) film, a titanium carbonitride (TiCN) film, or a TiN film.
- TiN titanium nitride
- TiCN titanium carbonitride
- TiN film a TiN film
- a laminated film of TiCN film and TiCN film can be used.
- the cutting tool of the embodiment is not particularly limited as long as it includes the base material 11 and the hard coating 30 on the base material 11.
- a drill, an end mill, a drill cutting edge exchangeable cutting tip, and an end mill cutting edge examples thereof include an exchangeable cutting tip, a cutting edge exchangeable cutting tip for milling, a cutting edge exchangeable cutting tip for turning, a metal saw, a gear cutting tool, a reamer, or a tap.
- FIG. 4 shows a schematic cross-sectional view of an example of a CVD apparatus used for manufacturing the cutting tool of the embodiment.
- the CVD apparatus 10 includes a plurality of base material setting jigs 12 for installing the base material 11 and a reaction vessel 13 made of heat-resistant alloy steel that covers the base material setting jig 12. ing.
- a temperature control device 14 for controlling the temperature in the reaction vessel 13 is provided around the reaction vessel 13.
- a gas introduction tube 16 having a first gas introduction tube 15 and a second gas introduction tube 17 which are joined adjacent to each other extends in the vertical direction in the space inside the reaction vessel 13 and can be rotated.
- the gas introduction pipe 16 is configured such that the gas introduced into the first gas introduction pipe 15 and the gas introduced into the second gas introduction pipe 17 do not mix inside the gas introduction pipe 16.
- the gas which flows through each inside of the 1st gas introduction pipe 15 and the 2nd gas introduction pipe 17 is used for a part of each of the 1st gas introduction pipe 15 and the 2nd gas introduction pipe 17 as a base material setting jig.
- a plurality of through holes for jetting onto the base material 11 installed at 12 are provided.
- reaction vessel 13 is provided with a gas exhaust pipe 18 for exhausting the gas inside the reaction vessel 13 to the outside.
- the gas inside the reaction vessel 13 passes through the gas exhaust pipe 18, The gas is discharged from the gas outlet 19 to the outside of the reaction vessel 13.
- FIG. 5 shows a flowchart of an example of the manufacturing method of the cutting tool of the embodiment.
- the cutting tool manufacturing method of the embodiment includes an ejection step (S10), a first cooling step (S20), a holding step (S30), and a second cooling step (S40). Including S10, S20, S30, and S40.
- processes other than S10, S20, S30, and S40 may be included in the manufacturing method of the cutting tool of embodiment.
- the hard coating 30 is formed on the substrate 11 will be described. However, after forming another film such as the base film 20 on the substrate 11, the hard coating 30 is formed. Needless to say, it may be formed.
- the ejection step (S10) is performed by ejecting a first gas containing Ti halide gas and Al halide gas and a second gas containing ammonia (NH 3 ) gas onto the substrate 11.
- the ejection step (S10) can be performed, for example, as follows. First, the temperature inside the reaction vessel 13 is raised by the temperature control device 14 to raise the temperature of the substrate 11 installed in the substrate setting jig 12 inside the reaction vessel 13 to, for example, 820 ° C. to 860 ° C. Let Further, the pressure inside the reaction vessel 13 is, for example, 1 kPa to 2.5 kPa.
- a first gas containing Ti halide gas and Al halide gas is introduced into the gas introduction pipe 15 while rotating the gas introduction pipe 16 about the axis, and a second gas containing NH 3 gas is introduced.
- the gas is introduced into the gas introduction pipe 17.
- Ti halide gas for example, titanium tetrachloride (TiCl 4 ) gas or the like can be used.
- Al halide gas for example, aluminum trichloride (AlCl 3 ) gas can be used.
- the first gas preferably contains Ti halide gas and Al halide gas, and further contains hydrogen chloride (HCl) gas.
- HCl hydrogen chloride
- the wear resistance of the hard coating 30 tends to be improved.
- the first gas and the second gas may each contain a carrier gas such as nitrogen gas (N 2 gas) and / or hydrogen gas (H 2 gas).
- a 1st cooling process (S20) adjusts the preset temperature of the temperature control apparatus 14, for example, and cools the base material 11 to the temperature of 700 to 750 degreeC with a cooling rate larger than 10 degreeC / min. It can be carried out.
- the cooling rate of the base material 11 By making the cooling rate of the base material 11 higher than 10 ° C./min, the formation of AlN having a wurtzite crystal structure in the first cooling step (S20) can be suppressed.
- the cooling rate in the first cooling step (S20) is preferably 15 ° C./min or more.
- the upper limit of the cooling rate of the base material 11 in the first cooling step (S20) is preferably 30 ° C./min or less from the viewpoint of improving the adhesion of the hard coating 30.
- the temperature at which the substrate 11 is finally cooled in the first cooling step (S20) is set to 700 ° C. or higher and 750 ° C. or lower, so that the Ti 1-x1 Al x1 N phase in the holding step (S30) described later.
- the first crystal phase 21 including an alternately laminated structure of 21a and Al x2 Ti 1-x2 N phase 21b can be suitably formed.
- a zinc blende type AlN phase is used instead of the Al x2 Ti 1-x2 N phase 21b in the holding step (S30).
- the temperature exceeds 750 ° C. atoms easily move, so that a mixed crystal of the first crystal phase 21 and the second crystal phase 22 may be formed.
- a holding process (S30) is performed after the first cooling process (S20).
- the holding step (S30) can be performed, for example, by adjusting the set temperature of the temperature controller 14 and holding the temperature of the base material 11 at 700 ° C. or higher and 750 ° C. or lower.
- the first crystal phase having an alternate stacked structure of Ti 1-x1 Al x1 N phase 21a and Al x2 Ti 1-x2 N phase 21b by phase separation of Al y Ti 1-y N 21 can be formed and grown.
- the holding time of the temperature of the base material 11 in the holding step (S30) is appropriately set according to the desired thickness of the Ti 1-x1 Al x1 N phase 21a and the thickness of the Al x2 Ti 1-x2 N phase 21b. However, the time is preferably 30 minutes or more and 300 minutes or less.
- the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b are formed so that the first crystal phase 21 can sufficiently exhibit the function by setting the temperature holding time of the substrate 11 to 30 minutes or more. It can be grown sufficiently.
- the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b are not grown excessively, and a second cooling step described later.
- the second crystal phase 22 containing AlN having a wurtzite crystal structure tends to be formed.
- the temperature of the base material 11 in the holding step (S30) does not necessarily have to be a constant temperature, and the temperature of the base material 11 varies as long as it is in the range of 700 ° C. or higher and 750 ° C. or lower. You may let them.
- a 2nd cooling process (S40) is performed after a holding process (S30).
- a 2nd cooling process (S40) can be performed by adjusting the preset temperature of the temperature control apparatus 14, and reducing the temperature of the base material 11, for example.
- the cooling rate of the base material 11 in the second cooling step (S40) is slower than the cooling rate of the base material 11 in the first cooling step (S20), and AlN having a wurtzite crystal structure in the second cooling step (S40).
- the second crystal phase 22 containing can be formed at such a speed that it can be formed.
- the cooling rate of the substrate 11 in the second cooling step (S40) is preferably a cooling rate of 5 ° C./min or more and 10 ° C./min or less from the viewpoint of suppressing a decrease in the hardness of the hard coating 30.
- the temperature at which the substrate 11 is finally cooled is preferably higher than 200 ° C and not higher than 400 ° C.
- the second crystal phase 22 containing AlN having a wurtzite crystal structure is formed. It can be formed sufficiently.
- FIG. 6 an example of the binodal line and spinodal line of Al y Ti 1-y N show schematically.
- the horizontal axis of FIG. 6 shows the Al composition ratio y of the Al y Ti 1-y N, the value of the Al composition ratio y of about proceeds rightward Al y Ti 1-y N on the horizontal axis in FIG. 6 is large Become.
- shaft of FIG. 6 has shown the temperature [degreeC] of the base material 11, and the temperature of the base material 11 becomes high, so that it progresses to the upper direction of the vertical axis
- Al y Ti 1-y N Al composition ratio y is prepared gas so that 0.75, jetting the gas onto the substrate in the ejection step (S10).
- Al y Ti 1-y N is formed on the substrate by the CVD method, and the state immediately after the formation of Al y Ti 1-y N is indicated by a point ⁇ in FIG.
- the temperature of the substrate 11 is, for example, 820 ° C. to 860 ° C.
- the substrate 11 is rapidly cooled at a cooling rate greater than 10 ° C./min, and the final temperature of the substrate 11 is set to 700 ° C.
- the state at this time is indicated by a ⁇ point in FIG.
- the temperature of the ⁇ point in the region below the spinodal line 42 through the binodal line 41 at once. 700 ° C.).
- the region below the binodal line 41 indicates a region where AlN having a wurtzite crystal structure, which is a thermal equilibrium phase, is formed when cooled at a slow cooling rate.
- the region below the spinodal line 42 is a Ti 1-x1 Al x1 N having a NaCl-type crystal structure which is a non-thermal equilibrium phase due to phase separation of Al y Ti 1-y N when cooled at a high cooling rate.
- the region in which the phase 21a and the Al x2 Ti 1-x2 N phase 21b are formed is shown.
- the formation of AlN having a wurtzite crystal structure is suppressed, and the temperature of the substrate 11 is changed to Ti 1-x1 Al x1 N phase 21a and Al x2 Ti 1-x2 N. It can lead to the temperature at which phase 21b is formed.
- the temperature of the substrate 11 is held at a temperature of 700 ° C. or higher and 750 ° C. or lower.
- the phase separation of Al y Ti 1-y N causes the Ti 1-x1 Al x1 N phase 21a of the NaCl type crystal structure and the Al x2 Ti 1-x2 N phase of the NaCl type crystal structure.
- the first crystal phase 21 is formed, which is separated into 21b and includes a structure in which these are alternately stacked. Further, the thicknesses of the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b are determined according to the holding time of the substrate 11 in the holding step (S30).
- the substrate 11 is slower than the cooling rate in the first cooling step (S20), and 5 ° C./min or more to the extent that AlN having a wurtzite crystal structure is formed. It is slowly cooled to 400 ° C. at a cooling rate of 10 ° C./min or less.
- the final state of the substrate 11 in the second cooling step (S40) is indicated by a ⁇ point in FIG.
- the second crystal phase 22 containing AlN having a wurtzite crystal structure is formed.
- the Ti 1-x1 Al x1 N phase 21a having the NaCl type crystal structure and the Al x2 Ti 1-x2 N phase 21b having the NaCl type crystal structure are alternately stacked.
- a hard film 30 including one crystal phase 21 and a second crystal phase 22 containing AlN having a wurtzite type crystal structure is formed on the substrate 11, and the cutting tool of the embodiment is manufactured.
- FIG. 7 shows a TEM photograph of the hard coating 30 of the cutting tool of the embodiment manufactured as described above
- FIG. 8 shows an enlarged photograph of the TEM of the portion surrounded by the solid line in FIG.
- a Ti 1-x1 Al x1 N phase 21a having a NaCl type crystal structure and an Al x2 Ti 1 ⁇ having a NaCl type crystal structure are formed.
- the first crystal phase 21 having a structure in which x2 N phases 21b are alternately stacked is present, and the first crystal phase 21 containing AlN having a wurtzite crystal structure disposed between the two first crystal phases 21 is present. It was confirmed that two crystal phases 22 were present.
- FIG. 9 shows a TEM electron diffraction image of the A region of the second crystal phase 22 in FIG. 8 and FIG. 10 shows a TEM electron diffraction image of the B region of the first crystal phase 21 in FIG.
- the electron beam diffraction image of the A region of the second crystal phase 22 by the TEM shows a ring-shaped pattern, but as shown in FIG. 10, the TEM of the B region of the first crystal phase 21
- the electron diffraction image by shows a dot-like pattern. This indicates that a plurality of finer crystal grains are formed in the second crystal phase 22 than in the first crystal phase 21.
- the (200) plane of the Al x2 Ti 1-x2 N phase 21b in the XRD pattern of the hard coating 30 by the XRD method is preferably 0.2 or more and 1 or less.
- the second crystal phase 22 contains AlN crystal grains having a very fine wurtzite type crystal structure, and thus is hard.
- the welding resistance of the hard coating 30 when the coating 30 is used for a cutting tool can be improved.
- the hard coating 30 can be a film having an excellent balance between high hardness and welding resistance.
- the value of (P1) / (P1 + P2) is more preferably 0.95 or less, and further preferably 0.9 or less.
- FIG. 11 an example of the XRD pattern by the XRD method of the hard film 30 is shown.
- the horizontal axis in FIG. 11 indicates the diffraction angle 2 ⁇ [°]
- the vertical axis in FIG. 11 indicates the diffraction intensity [cps (count per second)].
- the diffraction intensity P1 with respect to the sum of the diffraction intensity P1 of the (200) plane of the Al x2 Ti 1-x2 N phase 21b and the diffraction intensity P2 of the (100) plane of the second crystal phase 22 is obtained.
- the ratio ((P1) / (P1 + P2)) is 0.87, and is included in the range of 0.2 to 1.
- the diffraction intensity P1 of the (200) plane of the Al x2 Ti 1-x2 N phase 21b is the intensity of the diffraction peak that appears in the range of 43 ° to 45 ° of 2 ⁇ of the horizontal axis of the XRD pattern of the hard coating 30. is there.
- the diffraction intensity P2 of the (100) plane of the second crystal phase 22 is the intensity of a diffraction peak that appears in the range of 32 ° to 35 ° of 2 ⁇ on the horizontal axis of the XRD pattern of the hard coating 30.
- FIG. 12 shows a TEM photograph of the hard coating 30 of the cutting tool of the embodiment produced as described above.
- 13A shows an EDX photograph of the B region of the first crystal phase 21 in FIG. 12
- FIG. 13B shows a mapping result of the Al element in the B region of FIG. 12
- FIG. 12 shows the mapping result of the N element in the B region of FIG. 12
- FIG. 13D shows the mapping result of the Ti element in the B region of FIG.
- FIG. 14 (a) shows an enlarged photograph of FIG. 13 (a)
- FIG. 14 (b) shows the Ti 1-x1 Al x1 N phase 21a and Al x2 Ti 1-x2 N phase 21b shown in FIG. 14 (a).
- Each change in Al concentration, N concentration, and Ti concentration measured by EDX in the stacking direction LG1 is shown.
- FIG. 14B in the B region of the first crystal phase 21 of the hard film 30 of the cutting tool of the embodiment, the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b.
- the laminated structure includes a portion where the Al concentration periodically changes in the lamination direction of the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b.
- the horizontal axis of FIG. 14B indicates the distance [nm] from the measurement start point in the stacking direction of the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b, and FIG.
- shaft of b) shows each concentration [atomic%] of Al, N, and Ti.
- FIG. 15 shows the laminated structure of the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b calculated from the measurement results by EDX in FIGS. 14 (a) to 14 (d).
- a change in the ratio of the number of Al atoms to the sum of the number of Al atoms and the number of Ti atoms in the stacking direction of the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b is shown.
- the horizontal axis in FIG. 15 indicates the distance [nm] from the measurement start point in the stacking direction of the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b, and the vertical axis in FIG.
- the ratio of the number of Al atoms to the sum of the number of Al atoms and the number of Ti atoms is shown.
- the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti of the laminated structure of the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b of the hard film of the embodiment In the stacking direction with the 1-x2 N phase 21b, the maximum value of the Al composition ratio x2 of the Al x2 Ti 1-x2 N phase 21b (X 2,6 in the example shown in FIG. 15) and Ti 1-x1 Al x1 N It was confirmed that the difference from the minimum value (X 1,7 ) of the Al composition ratio x1 of the phase 21a was larger than 0.25. Further, as shown in FIG.
- phase 21b having the maximum value of the Al composition ratio x2 (X 2,6 in the example shown in FIG. 15) and the adjacent Al x2 Ti 1-x2 N
- the spacing of phase 21b was 20 nm and 21 nm, respectively.
- the indentation hardness of the hard coating 30 by the nanoindentation method is preferably 30 GPa or more.
- the wear resistance of the hard coating 30 is improved. Excellent performance can be achieved when cutting a cutting material.
- the indentation hardness of the hard coating 30 by the nanoindentation method is measured in the thickness direction of the hard coating 30 using an ultra-fine indentation hardness tester (for example, manufactured by Elionix Co., Ltd.) that can use the nanoindentation method. It is calculated by dividing the load when the indenter is pushed in with a predetermined load (for example, 25 mN) perpendicularly to the contact area between the indenter and the hard coating 30.
- a predetermined load for example, 25 mN
- the absolute value of the compressive residual stress of the Al x2 Ti 1-x2 N phase 21b is preferably 0.3 GPa or more and 3 GPa or less.
- the absolute value of the compressive residual stress of the Al x2 Ti 1-x2 N phase 21b is not less than 0.3 GPa and not more than 3 GPa, the wear resistance of the hard coating 30 can be increased. Can be improved.
- the compressive residual stress of the Al x2 Ti 1-x2 N phase 21b depends on the thickness t1 of each adjacent Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b. By adjusting the total thickness t3 with the thickness t2, it can be set to 0.3 GPa or more and 3 GPa or less.
- compressive residual stress is a kind of internal stress (intrinsic strain) existing in the Al x2 Ti 1-x2 N phase 21b, and is a numerical value of “ ⁇ ” (minus) (unit: “GPa” in the embodiment). ")").
- the compressive residual stress of the Al x2 Ti 1-x2 N phase 21b can be measured by the sin 2 ⁇ method using an X-ray stress measurement apparatus.
- the sin 2 ⁇ method using X-rays is widely used as a method for measuring the residual stress of a polycrystalline material.
- “X-ray stress measurement method” Japan Society of Materials, 1981 stock
- the method described in detail on pages 54 to 67 of Yokendo Co., Ltd. can be used.
- the hard coating 30 may or may not contain at least one impurity selected from the group consisting of chlorine (Cl), oxygen (O), and carbon (C).
- the total thickness T1 of the hard coating 30 shown in FIG. 1 is preferably 1 ⁇ m or more and 20 ⁇ m or less.
- the total thickness T1 of the hard coating 30 is 1 ⁇ m or more, the characteristics of the hard coating 30 tend to be remarkably improved.
- the total thickness T1 of the hard coating 30 is 20 ⁇ m or less, there is a tendency that a large change is seen in the improvement of the characteristics of the hard coating 30.
- the total thickness T1 of the hard coating 30 is more preferably 2 ⁇ m or more and 15 ⁇ m or less, and further preferably 3 ⁇ m or more and 10 ⁇ m or less.
- the coating 50 may include a film other than the hard coating 30.
- a film other than the hard film 30 included in the film 50 in addition to the above-described base film 20, for example, at least one selected from the group consisting of Ti, Zr, and Hf, and N, O, C, B, CN A film made of at least one compound selected from the group consisting of BN, CO, and NO may be included.
- the coating 50 may include at least one of an ⁇ -Al 2 O 3 film and a ⁇ -Al 2 O 3 film as an oxidation resistant film.
- the film 50 may include a film other than the hard film 30 as the outermost film on the outermost surface. Further, the coating 50 may not include the base film 20.
- the total thickness T2 of the coating 50 is preferably 3 ⁇ m or more and 30 ⁇ m or less. When the total thickness T2 of the film 50 is 3 ⁇ m or more, the characteristics of the film 50 tend to be suitably exhibited. When the total thickness T2 of the coating 50 is 30 ⁇ m or less, peeling of the coating 50 during cutting tends to be suppressed.
- the total thickness T2 of the coating 50 is more preferably 5 ⁇ m or more and 20 ⁇ m or less, and preferably 7 ⁇ m or more and 15 ⁇ m or less from the viewpoint of suitably exhibiting the characteristics of the coating 50 and suppressing the peeling of the coating 50 during cutting. More preferably.
- the hard coating 30 includes a Ti 1-x1 Al x1 N (0.5 ⁇ x1 ⁇ 0.75) phase 21a having a NaCl type crystal structure and an Al x2 Ti 1-x2 N having a NaCl type crystal structure. (0.75 ⁇ x2 ⁇ 0.95) including at least two first crystal phases 21 having a laminated structure in which phases 21b are alternately laminated. Further, the laminated structure includes a portion where the Al concentration periodically changes in the lamination direction of the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b. The difference between the maximum value of the composition ratio x2 and the minimum value of the Al composition ratio x1 is greater than 0.25. Further, the laminated structure includes a second crystal phase 22 containing AlN having a wurtzite crystal structure disposed between the two first crystal phases 21.
- both the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b contained in the first crystal phase 21 have a cubic system with excellent hardness, and Ti 1-x1 Al
- a laminated structure in which x1 N phase 21a and Al x2 Ti 1-x2 N phase 21b are alternately laminated has an Al concentration in the laminating direction of Ti 1-x1 Al x1 N phase 21a and Al x2 Ti 1-x2 N phase 21b.
- the hard coating 30 is excellent because the difference between the maximum value of the Al composition ratio x2 and the minimum value of the Al composition ratio x1 is greater than 0.25 at the location. Wear resistance is developed.
- the second crystal phase 22 containing AlN having a low-hardness wurtzite type crystal structure is provided between the two first crystal phases 21, the two first crystal phases 21 receive during cutting. The impact can be mitigated by the second crystal phase 22 located between the two first crystal phases 21. Thereby, in the cutting tool provided with the hard coating 30 of the embodiment, the life of the cutting tool can be extended.
- the hard coating 30 of the embodiment forms Al y Ti 1-y N on the base material in the ejection step (S10), and the base material 11 is larger than 10 ° C./min in the first cooling step (S20).
- the first crystal phase is formed by holding the substrate at a temperature of 700 ° C. or higher and 750 ° C. or lower in the holding step (S30), and then the second cooling. It is formed only by cooling in the step (S40) at a lower cooling rate than the first cooling step (S20), and such a two-step cooling step with different cooling rates is used for forming the hard coating.
- each film of the coating is measured by observing a cross section of the coating by the STEM high angle scattering dark field method using STEM. Further, the composition of each film in the following is obtained by three-dimensional atom probe field ion microscope analysis. In addition, the presence of the first crystal phase and the second crystal phase of the hard coating in the following has been confirmed by observation using a TEM. In the following, the minimum value of the Al composition ratio x1 of the Ti 1-x1 Al x1 N phase and the maximum value of the Al composition ratio x2 of the Al x2 Ti 1-x2 N phase are calculated by EDX.
- ((maximum value of x2) ⁇ (minimum value of x1)) is the maximum value of the Al composition ratio x2 of the Al x2 Ti 1 -x2 N phase and the Al composition ratio of the Ti 1 -x1 Al x1 N phase. It is calculated by obtaining the difference from the minimum value of x1. Further, in the following, the average value of the total thickness of the adjacent Ti 1-x1 Al x1 N phase and Al x2 Ti 1-x2 N phase of the hard coating is determined by observing using TEM, and the adjacent Ti 1-x1 Al x1 The thickness per one N phase and the thickness per one Al x2 Ti 1-x2 N phase are obtained, and the average value of the total thickness is calculated.
- the electron beam diffraction image pattern in the following is an electron beam diffraction image pattern obtained from an electron beam diffraction image using a TEM of the second crystal phase of the hard coating.
- P1 / (P1 + P2) in the following is calculated from the diffraction intensity P1 of the (200) plane of the Al x2 Ti 1-x2 N phase and the diffraction intensity P2 of the (100) plane of the second crystal phase in the XRD pattern of the hard coating. is doing.
- the hardness of the hard film in the following is measured by the indentation hardness (Hv) of the hard film by a nanoindentation method using an ultra-fine indentation hardness tester manufactured by Elionix Co., Ltd.
- Hv indentation hardness
- the absolute value of the compressive residual stress of the following Al x2 Ti 1-x2 N phase is calculated by the sin 2 ⁇ method using an X-ray stress measurement apparatus.
- the base material K and the base material L shown in Table 1 below are prepared as base materials to be coated. Specifically, first, raw material powders having the blending composition (% by mass) shown in Table 1 are uniformly mixed. “Remaining” in Table 1 indicates that WC occupies the remainder of the composition (mass%). Next, the mixed powder is pressed into a predetermined shape and then sintered at 1300 to 1500 ° C. for 1 to 2 hours, whereby a base material K (base material shape: CNMG120408NUX) and a base material made of cemented carbide are obtained. L (base material shape: SEET13T3AGSN-G) is obtained.
- CNMG120408NUX is the shape of a cutting edge exchangeable cutting tip for turning, and This is the shape of a cutting edge-exchangeable cutting tip for milling.
- Sample No. 1-18 A film is formed on the surface of the base material K or the base material L by forming the base film, the hard film and the outermost film shown in the column of the structure of the film in Table 2 on the surface of the base material K or the base material L.
- cutting tools Sample Nos. 1 to 18
- Sample No. The cutting tools 1 to 14 are examples. 15 to 18 cutting tools are comparative examples.
- the base film is a film in direct contact with the surface of the substrate
- the hard coating is a film formed on the base film
- the outermost film is a film formed on the hard coating and exposed to the outside. It is a film.
- the description of the compound of Table 2 is a compound which comprises the base film, hard film, and outermost film of Table 2, and the right parenthesis of the compound means the thickness of the film.
- TiN (0.5) -TiCN (2.5) When two compounds (for example, “TiN (0.5) -TiCN (2.5)”) are described in one column of Table 2, the left side (“TiN (0.5)” ”) Means that the compound located on the side closer to the surface of the substrate, and the compound on the right side (“ TiCN (2.5) ”) is located on the side far from the surface of the substrate.
- the numerical value in parentheses means the thickness of each film.
- the column indicated by “ ⁇ ” in Table 2 means that no film is present.
- sample No. in Table 2 In the cutting tool 1, a TiN film having a thickness of 0.5 ⁇ m and a TiCN film having a thickness of 2.5 ⁇ m are laminated in this order on the surface of the substrate K, and a base film is formed thereon, which will be described later.
- a hard film having a thickness of 6.0 ⁇ m formed under the formation condition a is formed, and the hard film has a film on which the outermost film is not formed, and the total thickness of the film is 9.0 ⁇ m.
- the base film and outermost film shown in Table 2 are films formed by a conventionally known CVD method, and the formation conditions are as shown in Table 3.
- the row of “TiN (base film)” in Table 3 shows the conditions for forming a TiN film as the base film.
- the description of the TiN film (underlying film) in Table 3 is that the substrate is placed in a reaction vessel of the CVD apparatus (the environment in the reaction vessel is 6.7 kPa, 915 ° C.), and 2% by volume of TiCl 4 is contained in the reaction vessel.
- the hard coating shown in Table 2 is produced using the CVD apparatus 10 shown in FIG. 4 under any one of the formation conditions a to i shown in Table 4 and Table 5.
- the description of the formation condition a in Table 4 and Table 5 indicates that a hard film is formed as follows.
- the substrate temperature (820 ° C.), the pressure in the reaction vessel (1.5 kPa), the total gas flow rate (50 L / min) and the gas composition (TiCl 4 : 0.2% by volume, AlCl 3 ) in the column a of Table 4 : 0.7 vol%, NH 3: 2.8 by volume%, HCl: 0.3 vol%, N 2: 35.4 vol%, H 2: on a substrate under the condition of rest) Al y Ti 1-
- the 1st cooling process which cools a base material to 750 degreeC with the cooling rate of 15 degrees C / min shown in Table 5 is performed.
- the 2nd cooling process which cools a base material to 400 degreeC with the cooling rate of 8 degreeC / min is performed.
- Sample Nos. Shown in Table 2 formed as described above were used.
- the Ti 1-x1 Al x1 N (0.5 ⁇ x1 ⁇ 0.75) phase having a NaCl type crystal structure and the Al x2 Ti 1-x2 N having a NaCl type crystal structure are used.
- a wurtzite crystal including at least two first crystal phases having a stacked structure in which (0.75 ⁇ x2 ⁇ 0.95) phases are alternately stacked and disposed between the two first crystal phases.
- a second crystal phase containing AlN having a structure is formed.
- Sample No. 2 shown in Table 2 was also used.
- the laminated structure includes a portion where the Al concentration periodically changes in the lamination direction of the Ti 1-x1 Al x1 N phase and the Al x2 Ti 1-x2 N phase, At this location, the difference between the maximum value of the Al composition ratio x2 and the minimum value of the Al composition ratio x1 is greater than 0.25.
- Sample No. The minimum value of the Al composition ratio x1 of the Ti 1-x1 Al x1 N (0.5 ⁇ x1 ⁇ 0.75) phase of the hard coating of 1 to 14 and Al x2 Ti 1-x2 N (0.75 ⁇ x2 ⁇ 0) .95) shows the maximum value of the Al composition ratio x2 of the phase.
- the maximum value 0.95 of the Al composition ratio x2 of the x2 ⁇ 0.95) phase is shown.
- Table 6 shows the properties of the hard coating formed under the conditions a to i in Table 4.
- ⁇ Cutting test 1 Round bar outer periphery high-speed cutting test ⁇ Sample No. For the cutting tools 1 to 7, 15 and 16, the cutting time until the flank wear amount (Vb) reaches 0.20 mm under the cutting conditions of the following cutting test 1 is measured and the final damage form of the cutting edge is observed. . The results are shown in Table 7.
- the cutting tools Nos. 1 to 7 are sample Nos. It has been confirmed that it has a longer life compared to 15 and 16 cutting tools.
- the hard coating has a Ti 1-x1 Al x1 N (0.1 ⁇ x1 ⁇ 0.5) phase having a NaCl type crystal structure and an Al x2 Ti 1-x2 N (0.5 having a NaCl type crystal structure).
- ⁇ Cutting test 2 Round bar outer periphery low-speed cutting test ⁇ Sample No. With respect to the cutting tools 1 to 7, 15 and 16, the cutting time until the flank wear amount (Vb) reaches 0.20 mm under the cutting conditions of the following cutting test 2 is measured, and the final damage form of the cutting edge is observed. . The results are shown in Table 8.
- sample no. The cutting tools Nos. 1 to 7 have sample Nos. It has been confirmed that it has a longer life compared to 15 and 16 cutting tools.
- the hard coating has an Al x2 Ti 1-x2 N (0.5 ⁇ x2 ⁇ 0.95) phase having a NaCl type crystal structure and a second crystal phase containing AlN having a wurtzite type crystal structure; Sample No. consisting of Chipping is confirmed in 15 cutting tools.
- sample no. The cutting tools Nos. 8 to 14 are sample Nos. It has been confirmed that it has a longer life compared to 17 and 18 cutting tools.
- the hard film has a Ti 1-x1 Al x1 N (0.1 ⁇ x1 ⁇ 0.5) phase having a NaCl type crystal structure and an Al x2 Ti 1-x2 N (0. 5 ⁇ x2 ⁇ 0.95) Sample No. 1 comprising only the first crystal phase including a structure in which phases are alternately stacked. Defects have been confirmed in 18 cutting tools.
- ⁇ Cutting test 4 Block material welding resistance test ⁇ Sample No. For the cutting tools 8 to 14, 17 and 18, the cutting distance until the flank wear amount (Vb) reaches 0.20 mm is measured according to the cutting conditions of the following cutting test 4 and the final damage form of the cutting edge is observed. . The results are shown in Table 10.
- the hard film has a Ti 1-x1 Al x1 N (0.1 ⁇ x1 ⁇ 0.5) phase having a NaCl type crystal structure and an Al x2 Ti 1-x2 N (0. 5 ⁇ x2 ⁇ 0.95)
- Sample No. 1 comprising only the first crystal phase including a structure in which phases are alternately stacked. Defects have been confirmed in 18 cutting tools. Sample No. other than that Chipping has been confirmed in the cutting tools 8 to 14 and 17.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
- Drilling Tools (AREA)
- Milling, Broaching, Filing, Reaming, And Others (AREA)
Abstract
Description
最初に本発明の実施態様を列記して説明する。
以下、実施形態について説明する。なお、実施形態の説明に用いられる図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。
図1に、実施形態の切削工具の模式的な断面図を示す。図1に示すように、実施形態の切削工具は、基材11と、基材11上に設けられた被膜50とを備えている。被膜50は、下地膜20と、下地膜20上に設けられた硬質被膜30とを備えている。
図2に、図1に示す硬質被膜30の一例の模式的な拡大断面図を示す。図2に示すように、硬質被膜30は、2つの第1結晶相21と、隣り合う2つの第1結晶相21の間に配置された第2結晶相22とを含んでいる。本実施形態において、第1結晶相21と第2結晶相22との界面においては、第1結晶相21と第2結晶相22とが互いの相の原子を含まずに完全に分離していてもよく、第1結晶相21のTi原子の一部が第2結晶相22に含まれていてもよく、第2結晶相22のAl原子の一部が第1結晶相21に含まれていてもよい。なお、硬質被膜30は、第1結晶相21を少なくとも2つ含んでいればよく、第1結晶相21を3つ以上含んでいてもよい。
図3に、図2に示す1つの第1結晶相21の一例の模式的な拡大断面図を示す。図3に示すように、第1結晶相21は、塩化ナトリウム(NaCl)型の結晶構造を有するTi1-x1Alx1N相21aと、NaCl型の結晶構造を有するAlx2Ti1-x2N相21bとが交互に積層された積層構造を含んでいる。ここで、Ti1-x1Alx1N相21aのAl組成比x1は0.5≦x1≦0.75の関係を満たし、Alx2Ti1-x2N相のAl組成比x2は0.75<x2≦0.95の関係を満たしている。また、積層構造は、Ti1-x1Alx1N相とAlx2Ti1-x2N相との積層方向においてAl濃度が周期的に変化する箇所を含み、当該箇所において、Al組成比x2の最大値とAl組成比x1の最小値との差が0.25よりも大きくなっている。ここで、切削工具の長寿命化を図る観点からは、当該箇所におけるAl組成比x2の最大値とAl組成比x1の最小値との差は0.27よりも大きいことが好ましく、0.3よりも大きいことがより好ましい。
第2結晶相22は、ウルツ鉱型の結晶構造を有するAlNを含んでいる。上述のようにウルツ鉱型の結晶構造を有するAlNは一般に低硬度であるが、本実施形態においては、ウルツ鉱型の結晶構造を有するAlNを含む第2結晶相22は硬質被膜30の耐摩耗性の向上に寄与する第1結晶相21の衝撃緩和の機能を発現させる。これが、硬質被膜30を切削工具に用いた場合の切削工具の長寿命化に寄与する。
<基材>
基材11としては、たとえば、炭化タングステン(WC)基超硬合金、サーメット、高速度鋼、セラミックス、立方晶型窒化ホウ素焼結体またはダイヤモンド焼結体などを用いることができるが、特にこれらに限定されるものではない。
下地膜20としては、基材11と硬質被膜30との接合強度を高くすることが可能な膜を用いることができ、たとえば、窒化チタン(TiN)膜、炭窒化チタン(TiCN)膜またはTiN膜とTiCN膜との積層膜などを用いることができる。
実施形態の切削工具としては、基材11と、基材11上の硬質被膜30とを含むものであれば特に限定されないが、たとえば、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマまたはタップなどを挙げることができる。
図4に、実施の形態の切削工具の製造に用いられるCVD装置の一例の模式的な断面図を示す。図4に示すように、CVD装置10は、基材11を設置するための基材セット治具12の複数と、基材セット治具12を被覆する耐熱合金鋼製の反応容器13とを備えている。また、反応容器13の周囲には、反応容器13内の温度を制御するための調温装置14が設けられている。
噴出工程(S10)は、Tiのハロゲン化物ガスおよびAlのハロゲン化物ガスを含む第1ガスと、アンモニア(NH3)ガスを含む第2ガスとを基材11上に噴出することにより行われる。
次に、ガス導入管16を軸を中心にして回転させながらTiのハロゲン化物ガスおよびAlのハロゲン化物ガスを含む第1ガスをガス導入管15に導入し、NH3ガスを含む第2ガスをガス導入管17に導入する。これにより、第1ガスと第2ガスとが均一化された混合ガスを基材11の表面に向かって噴出させることができる。その結果、基材11上において、第1ガスに含まれるガス成分および第2ガスに含まれるガス成分が化学反応することによって、基材11上にAlとTiとNとを含む溶融液(以下、「AlyTi1-yN」という。)がCVD法により形成される。
噴出工程(S10)の後には第1冷却工程(S20)が行われる。第1冷却工程(S20)は、たとえば、調温装置14の設定温度を調節して、基材11を10℃/分よりも大きな冷却速度で700℃以上750℃以下の温度に冷却することにより行うことができる。
基材11の冷却速度を10℃/分よりも大きくすることによって、第1冷却工程(S20)におけるウルツ鉱型の結晶構造のAlNの形成を抑制することができる。また、第1冷却工程(S20)におけるウルツ鉱型の結晶構造のAlNの形成を抑制する観点からは、第1冷却工程(S20)における冷却速度は、15℃/分以上であることが好ましい。また、第1冷却工程(S20)における基材11の冷却速度の上限は、硬質被膜30の密着性を向上させる観点からは、30℃/分以下とすることが好ましい。
第1冷却工程(S20)の後には保持工程(S30)が行われる。保持工程(S30)は、たとえば、調温装置14の設定温度を調節して、基材11の温度を700℃以上750℃以下に保持することにより行うことができる。この保持工程(S30)において、AlyTi1-yNの相分離によって、Ti1-x1Alx1N相21aとAlx2Ti1-x2N相21bとの交互積層構造を有する第1結晶相21を形成し、成長させることができる。
保持工程(S30)の後には第2冷却工程(S40)が行われる。第2冷却工程(S40)は、たとえば、調温装置14の設定温度を調節して、基材11の温度を低下させることにより行うことができる。
次に、第2冷却工程(S40)において、基材11が第1冷却工程(S20)における冷却速度よりも遅く、かつウルツ鉱型の結晶構造のAlNが形成される程度の5℃/分以上10℃/分以下の冷却速度で400℃までゆっくり冷却される。第2冷却工程(S40)における基材11の最終的な状態が図6のγ点で示されている。
≪TEMおよびXRD≫
図7に、上記のようにして作製された実施形態の切削工具の硬質被膜30のTEM写真を示し、図8に、図7の実線で取り囲まれた部分のTEMの拡大写真を示す。
硬質被膜30のナノインデンテーション法による押し込み硬さは30GPa以上であることが好ましい。硬質被膜30のナノインデンテーション法による押し込み硬さが30GPa以上である場合には、硬質被膜30の耐摩耗性が向上し、特に硬質被膜30を備えた切削工具を用いて、耐熱合金などの難削材の切削加工を行う際に優れた性能を発揮することができる。
硬質被膜30のナノインデンテーション法による押し込み硬さは、ナノインデンテーション法が利用可能な超微小押し込み硬さ試験機(たとえば、(株)エリオニクス社製)を用いて硬質被膜30の厚さ方向に垂直に所定の荷重(たとえば25mN)で圧子を押し込んだときの荷重を圧子と硬質被膜30との接触面積で除することによって算出される。
Alx2Ti1-x2N相21bの圧縮残留応力の絶対値は0.3GPa以上3GPa以下であることが好ましい。Alx2Ti1-x2N相21bの圧縮残留応力の絶対値が0.3GPa以上3GPa以下である場合には、硬質被膜30の耐摩耗性を高くすることができるため、耐チッピング性および耐欠損性を向上させることができる。なお、Alx2Ti1-x2N相21bの圧縮残留応力は、隣り合うTi1-x1Alx1N相21aの1つ当たりの厚さt1とAlx2Ti1-x2N相21bの1つ当たりの厚さt2との合計厚さt3を調節することによって、0.3GPa以上3GPa以下とすることができる。
硬質被膜30は、塩素(Cl)、酸素(O)および炭素(C)からなる群から選択された少なくとも1種の不純物を含んでいてもよく、含んでいなくてもよい。
図1に示す硬質被膜30の総厚T1は、1μm以上20μm以下であることが好ましい。硬質被膜30の総厚T1が1μm以上である場合には、硬質被膜30の特性が顕著に向上する傾向にある。硬質被膜30の総厚T1が20μm以下である場合には、硬質被膜30の特性の向上に大きな変化が見られる傾向にある。硬質被膜30の特性を向上させる観点からは、硬質被膜30の総厚T1は、2μm以上15μm以下であることがより好ましく、3μm以上10μm以下であることがさらに好ましい。
被膜50は、硬質被膜30以外の膜を含んでいてもよい。被膜50に含まれる硬質被膜30以外の膜としては、上述した下地膜20以外にも、たとえば、Ti、ZrおよびHfからなる群から選択された少なくとも1つと、N、O、C、B、CN、BN、COおよびNOからなる群から選択された少なくとも1つとの化合物からなる膜を含んでいてもよい。また、被膜50は、耐酸化膜として、α-Al2O3膜およびκ-Al2O3膜の少なくとも一方を含んでいてもよい。たとえば、被膜50は、最表面の最外膜として、硬質被膜30以外の他の膜を含んでいてもよい。また、被膜50は、下地膜20を含んでいなくてもよい。
実施形態の硬質被膜30は、NaCl型の結晶構造を有するTi1-x1Alx1N(0.5≦x1≦0.75)相21aとNaCl型の結晶構造を有するAlx2Ti1-x2N(0.75<x2≦0.95)相21bとが交互に積層された積層構造の第1結晶相21を少なくとも2つ含んでいる。また、当該積層構造は、Ti1-x1Alx1N相21aとAlx2Ti1-x2N相21bとの積層方向においてAl濃度が周期的に変化する箇所を含んでおり、当該箇所において、Al組成比x2の最大値とAl組成比x1の最小値との差が0.25よりも大きくなっている。さらに、当該積層構造は、2つの第1結晶相21の間に配置されたウルツ鉱型の結晶構造を有するAlNを含む第2結晶相22を含んでいる。
≪基材の準備≫
まず、被膜を形成させる対象となる基材として、以下の表1に示す基材Kおよび基材Lを準備する。具体的には、まず、表1に記載の配合組成(質量%)からなる原料粉末を均一に混合する。表1中の「残り」とは、WCが配合組成(質量%)の残部を占めることを示している。次に、この混合粉末を所定の形状に加圧成形した後に、1300~1500℃で1~2時間焼結することにより、超硬合金からなる基材K(基材形状:CNMG120408NUX)および基材L(基材形状:SEET13T3AGSN-G)を得る。
基材Kまたは基材Lの表面上に、表2の被膜の構成の欄に示される下地膜、硬質被膜および最外膜を形成することによって、基材Kまたは基材Lの表面上に被膜が形成して切削工具(試料No.1~18)を作製する。なお、試料No.1~14の切削工具が実施例であり、試料No.15~18の切削工具が比較例である。
まず、表4のhの欄の基材温度(800℃)、反応容器内圧力(3kPa)、総ガス流量(60L/分)およびガス組成(TiCl4:0.15体積%、AlCl3:0.9体積%、NH3:3.3体積%、HCl:0体積%、N2:40体積%、H2:残り)の条件で基材上にAlyTi1-yNを形成する。その後、表5に示す3.5℃/分の冷却速度で基材を400℃まで冷却する。
まず、表4のiの欄の基材温度(800℃)、反応容器内圧力(1kPa)、総ガス流量(60L/分)およびガス組成(TiCl4:0.25体積%、AlCl3:0.65体積%、NH3:2.7体積%、HCl:0体積%、N2:40体積%、H2:残り)の条件で基材上にAlyTi1-yNを形成する。その後、表5に示す10℃/分の冷却速度で基材を400℃まで冷却する。
また、表6に、表4の形成条件a~iの条件で形成された硬質被膜の特性を示す。
上記のようにして作製される試料No.1~18の切削工具を用いて、以下の切削試験1~4を行う。
試料No.1~7、15および16の切削工具について、以下の切削試験1の切削条件により逃げ面摩耗量(Vb)が0.20mmとなるまでの切削時間を測定するとともに刃先の最終損傷形態を観察する。その結果を表7に示す。
被削材:FCD450丸棒
周速:300m/min
送り速度:0.15mm/rev
切込み量:1.0mm
切削液:有り
また、硬質被膜がNaCl型の結晶構造を有するTi1-x1Alx1N(0.1≦x1≦0.5)相とNaCl型の結晶構造を有するAlx2Ti1-x2N(0.5<x2≦0.95)相とが交互に積層された構造を含む第1結晶相のみからなる試料No.16の切削工具には、チッピングが確認されている。
試料No.1~7、15および16の切削工具について、以下の切削試験2の切削条件により逃げ面摩耗量(Vb)が0.20mmとなるまでの切削時間を測定するとともに刃先の最終損傷形態を観察する。その結果を表8に示す。
被削材:SCM415
周速:100m/min
送り速度:0.15mm/rev
切込み量:1.0mm
切削液:有り
また、硬質被膜が、NaCl型の結晶構造を有するAlx2Ti1-x2N(0.5<x2≦0.95)相と、ウルツ鉱型の結晶構造を有するAlNを含む第2結晶相とからなる試料No.15の切削工具には、チッピングが確認されている。
試料No.8~14、17および18の切削工具について、以下の切削試験3の切削条件により逃げ面摩耗量(Vb)が0.20mmとなるまでの切削距離を測定するとともに刃先の最終損傷形態を観察する。その結果を表9に示す。
被削材:A5083Pブロック材
周速:300m/min
送り速度:0.3mm/s
切込み量:2.0mm
切削液:有り
カッタ:WGC4160R(住友電工ハードメタル株式会社製)
試料No.8~14、17および18の切削工具について、以下の切削試験4の切削条件により逃げ面摩耗量(Vb)が0.20mmとなるまでの切削距離を測定するとともに刃先の最終損傷形態を観察する。その結果を表10に示す。
被削材:S45Cブロック材
周速:160m/min
送り速度:0.3mm/s
切込み量:2.0mm
切削液:なし
カッタ:WGC4160R(住友電工ハードメタル株式会社製)
10 CVD装置、11 基材、12 基材セット治具、13 反応容器、14 調温装置、15 第1ガス導入管、16 ガス導入管、17 第2ガス導入管、18 ガス排気管、19 ガス排気口、20 下地膜、21 第1結晶相、21a Ti1-x1Alx1N層、21b Alx2Ti1-x2N層、22 第2結晶相、30 硬質被膜、41 バイノーダル線、42 スピノーダル線、50 被膜。
Claims (10)
- 2つの第1結晶相と、
前記2つの第1結晶相の間に配置された第2結晶相と、を含み、
前記2つの第1結晶相は、それぞれ独立に、塩化ナトリウム型の結晶構造を有するTi1-x1Alx1N相と塩化ナトリウム型の結晶構造を有するAlx2Ti1-x2N相とが交互に積層された積層構造を含み、
前記Ti1-x1Alx1N相のAl組成比x1は、0.5≦x1≦0.75の関係を満たし、
前記Alx2Ti1-x2N相のAl組成比x2は、0.75<x2≦0.95の関係を満たし、
前記積層構造は、前記Ti1-x1Alx1N相と前記Alx2Ti1-x2N相との積層方向においてAl濃度が周期的に変化する箇所を含み、
前記箇所において、前記Al組成比x2の最大値と前記Al組成比x1の最小値との差が0.25よりも大きく、
前記第2結晶相は、ウルツ鉱型の結晶構造を有するAlNを含む、硬質被膜。 - 隣り合う前記Ti1-x1Alx1N相の1相当たりの厚さと前記Alx2Ti1-x2N相の1相当たりの厚さとの合計厚さは、1nm以上50nm以下である、請求項1に記載の硬質被膜。
- 前記第2結晶相の透過型電子顕微鏡による電子線回折像はリング状のパターンを示し、かつ、
前記硬質被膜のX線回折法によるX線回折パターンにおける前記Alx2Ti1-x2N相の(200)面の回折強度P1と前記第2結晶相の(100)面の回折強度P2との和に対する前記回折強度P1の比が0.2以上1以下である、請求項1または請求項2に記載の硬質被膜。 - 前記硬質被膜のナノインデンテーション法による押し込み硬さが30GPa以上である、請求項1~請求項3のいずれか1項に記載の硬質被膜。
- 前記Alx2Ti1-x2N相の圧縮残留応力の絶対値が0.3GPa以上3GPa以下である、請求項1~請求項4のいずれか1項に記載の硬質被膜。
- 基材と、
前記基材上の請求項1~請求項5のいずれか1項に記載の硬質被膜と、を含む、切削工具。 - チタンのハロゲン化物ガスおよびアルミニウムのハロゲン化物ガスを含む第1ガスと、アンモニアガスを含む第2ガスとのそれぞれを基材上に噴出する噴出工程と、
前記基材を10℃/分よりも大きな冷却速度で700℃以上750℃以下の温度に冷却する第1冷却工程と、
前記基材を700℃以上750℃以下の温度に保持する保持工程と、
前記保持工程後に前記基材を冷却する第2冷却工程とを含み、
前記第2冷却工程における前記基材の冷却速度は、前記第1冷却工程における前記基材の冷却速度よりも遅い、硬質被膜の製造方法。 - 前記保持工程において前記基材は30分以上300分以下の時間だけ保持される、請求項7に記載の硬質被膜の製造方法。
- 前記第2冷却工程において、前記基材は5℃/分以上10℃/分以下の冷却速度で、200℃よりも高く400℃以下の温度に冷却される、請求項7または請求項8に記載の硬質被膜の製造方法。
- 前記第1ガスは、塩化水素ガスをさらに含む、請求項7~請求項9のいずれか1項に記載の硬質被膜の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15877908.2A EP3091102B1 (en) | 2015-01-14 | 2015-09-30 | Cutting tool and method for making the same |
US15/117,359 US10434580B2 (en) | 2015-01-14 | 2015-09-30 | Hard coating, cutting tool, and method for producing hard coating |
CN201580014264.5A CN106103793B (zh) | 2015-01-14 | 2015-09-30 | 硬质覆膜、切削工具以及硬质覆膜的制造方法 |
KR1020167023731A KR102475051B1 (ko) | 2015-01-14 | 2015-09-30 | 경질 피막, 절삭 공구 및 경질 피막의 제조 방법 |
US16/559,282 US20200030887A1 (en) | 2015-01-14 | 2019-09-03 | Hard coating, cutting tool, and method for producing hard coating |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015005295A JP6120229B2 (ja) | 2015-01-14 | 2015-01-14 | 硬質被膜、切削工具および硬質被膜の製造方法 |
JP2015-005295 | 2015-01-14 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/117,359 A-371-Of-International US10434580B2 (en) | 2015-01-14 | 2015-09-30 | Hard coating, cutting tool, and method for producing hard coating |
US16/559,282 Continuation US20200030887A1 (en) | 2015-01-14 | 2019-09-03 | Hard coating, cutting tool, and method for producing hard coating |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016113956A1 true WO2016113956A1 (ja) | 2016-07-21 |
Family
ID=56405513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/077696 WO2016113956A1 (ja) | 2015-01-14 | 2015-09-30 | 硬質被膜、切削工具および硬質被膜の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (2) | US10434580B2 (ja) |
EP (1) | EP3091102B1 (ja) |
JP (1) | JP6120229B2 (ja) |
KR (1) | KR102475051B1 (ja) |
CN (1) | CN106103793B (ja) |
WO (1) | WO2016113956A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017170603A1 (ja) * | 2016-03-31 | 2017-10-05 | 株式会社タンガロイ | 被覆切削工具 |
WO2017175803A1 (ja) * | 2016-04-07 | 2017-10-12 | 株式会社タンガロイ | 被覆切削工具 |
CN114173974A (zh) * | 2019-10-10 | 2022-03-11 | 住友电工硬质合金株式会社 | 切削工具 |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6905807B2 (ja) * | 2016-08-29 | 2021-07-21 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性、耐剥離性を発揮する表面被覆切削工具 |
JP6481897B2 (ja) * | 2016-09-16 | 2019-03-13 | 三菱マテリアル株式会社 | 表面被覆切削工具 |
US11408065B2 (en) * | 2016-12-28 | 2022-08-09 | Sumitomo Electric Industries, Ltd. | Coating |
WO2018145815A1 (en) * | 2017-02-13 | 2018-08-16 | Oerlikon Surface Solutions Ag, Pfäffikon | High temperature stable compositionally modulated hard coatings |
EP3590637A4 (en) | 2017-02-28 | 2021-04-21 | Sumitomo Electric Hardmetal Corp. | SURFACE-COATED CUTTING TOOL AND MANUFACTURING METHOD FOR IT |
EP3590638B1 (en) | 2017-02-28 | 2024-01-17 | Sumitomo Electric Hardmetal Corp. | Surface-coated cutting tool and method for manufacturing the same |
JP6831448B2 (ja) * | 2017-02-28 | 2021-02-17 | 住友電工ハードメタル株式会社 | 表面被覆切削工具およびその製造方法 |
JP6858346B2 (ja) * | 2017-06-26 | 2021-04-14 | 三菱マテリアル株式会社 | 硬質被覆層が優れた耐チッピング性を発揮する表面被覆切削工具 |
KR102064172B1 (ko) * | 2017-09-01 | 2020-01-09 | 한국야금 주식회사 | 내마모성과 인성이 우수한 경질피막 |
WO2019065682A1 (ja) * | 2017-09-29 | 2019-04-04 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
JP7063206B2 (ja) * | 2017-09-29 | 2022-05-17 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
JP7191287B2 (ja) * | 2018-03-20 | 2022-12-19 | 三菱マテリアル株式会社 | 硬質被覆層が優れた耐チッピング性を発揮する表面被覆切削工具 |
JP6565093B1 (ja) * | 2018-03-22 | 2019-08-28 | 住友電工ハードメタル株式会社 | 表面被覆切削工具およびその製造方法 |
JP6565091B1 (ja) * | 2018-03-22 | 2019-08-28 | 住友電工ハードメタル株式会社 | 表面被覆切削工具およびその製造方法 |
JP6565092B1 (ja) * | 2018-03-22 | 2019-08-28 | 住友電工ハードメタル株式会社 | 表面被覆切削工具およびその製造方法 |
CN111886093B (zh) | 2018-03-22 | 2023-01-31 | 住友电工硬质合金株式会社 | 表面被覆切削工具及其制造方法 |
US11326252B2 (en) | 2018-03-22 | 2022-05-10 | Sumitomo Electric Hardmetal Corp. | Surface-coated cutting tool and method for manufacturing same |
WO2019181133A1 (ja) | 2018-03-22 | 2019-09-26 | 住友電工ハードメタル株式会社 | 表面被覆切削工具およびその製造方法 |
CN111971138B (zh) * | 2018-03-22 | 2023-02-21 | 住友电工硬质合金株式会社 | 表面被覆切削工具及其制造方法 |
WO2020039735A1 (ja) * | 2018-08-24 | 2020-02-27 | 住友電工ハードメタル株式会社 | 切削工具 |
JP7256947B2 (ja) * | 2018-10-11 | 2023-04-13 | 株式会社不二越 | 硬質皮膜被覆ドリル |
US20220111446A1 (en) * | 2018-12-27 | 2022-04-14 | Mitsubishi Materials Corporation | Surface-coated cutting tool |
WO2021070420A1 (ja) * | 2019-10-10 | 2021-04-15 | 住友電工ハードメタル株式会社 | 切削工具 |
JP6855672B1 (ja) * | 2019-10-10 | 2021-04-07 | 住友電工ハードメタル株式会社 | 切削工具 |
CN114173969B (zh) * | 2019-10-10 | 2024-09-13 | 住友电工硬质合金株式会社 | 切削工具 |
CN114173972B (zh) * | 2019-10-10 | 2024-05-14 | 住友电工硬质合金株式会社 | 切削工具 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008545063A (ja) | 2005-07-04 | 2008-12-11 | フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ | 硬質膜被覆された物体およびその製造方法 |
JP2011516722A (ja) * | 2008-03-12 | 2011-05-26 | ケンナメタル インコーポレイテッド | 硬質材料で被覆された物体 |
JP2013510946A (ja) * | 2009-11-12 | 2013-03-28 | フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ | 金属、超硬合金、サーメット又はセラミックスからの被覆物品並びに該物品の被覆法 |
JP2014129562A (ja) | 2012-12-28 | 2014-07-10 | Sumitomo Electric Hardmetal Corp | 表面被覆部材およびその製造方法 |
JP2014133267A (ja) * | 2013-01-08 | 2014-07-24 | Mitsubishi Materials Corp | 硬質被覆層がすぐれた耐酸化性、耐チッピング性、耐摩耗性を発揮する表面被覆切削工具 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE526338C2 (sv) * | 2002-09-04 | 2005-08-23 | Seco Tools Ab | Skär med utskiljningshärdad slitstark refraktär beläggning |
US9896767B2 (en) * | 2013-08-16 | 2018-02-20 | Kennametal Inc | Low stress hard coatings and applications thereof |
DE102014103220A1 (de) * | 2014-03-11 | 2015-09-17 | Walter Ag | TiAIN-Schichten mit Lamellenstruktur |
JP6296298B2 (ja) * | 2014-08-28 | 2018-03-20 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
JP5924507B2 (ja) * | 2014-09-25 | 2016-05-25 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
-
2015
- 2015-01-14 JP JP2015005295A patent/JP6120229B2/ja active Active
- 2015-09-30 WO PCT/JP2015/077696 patent/WO2016113956A1/ja active Application Filing
- 2015-09-30 KR KR1020167023731A patent/KR102475051B1/ko active IP Right Grant
- 2015-09-30 CN CN201580014264.5A patent/CN106103793B/zh active Active
- 2015-09-30 EP EP15877908.2A patent/EP3091102B1/en active Active
- 2015-09-30 US US15/117,359 patent/US10434580B2/en active Active
-
2019
- 2019-09-03 US US16/559,282 patent/US20200030887A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008545063A (ja) | 2005-07-04 | 2008-12-11 | フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ | 硬質膜被覆された物体およびその製造方法 |
JP2011516722A (ja) * | 2008-03-12 | 2011-05-26 | ケンナメタル インコーポレイテッド | 硬質材料で被覆された物体 |
JP2013510946A (ja) * | 2009-11-12 | 2013-03-28 | フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ | 金属、超硬合金、サーメット又はセラミックスからの被覆物品並びに該物品の被覆法 |
JP2014129562A (ja) | 2012-12-28 | 2014-07-10 | Sumitomo Electric Hardmetal Corp | 表面被覆部材およびその製造方法 |
JP2014133267A (ja) * | 2013-01-08 | 2014-07-24 | Mitsubishi Materials Corp | 硬質被覆層がすぐれた耐酸化性、耐チッピング性、耐摩耗性を発揮する表面被覆切削工具 |
Non-Patent Citations (5)
Title |
---|
"X-sen Ouryoku Sokutei Hou", 1981, YOKENDO CO., LTD., pages: 54 - 67 |
I. ENDLER ET AL.: "Novel aluminum-rich Ti Al N coatings by LPCVD", SURFACE & COATINGS TECHNOLOGY, vol. 203, 2008, pages 530 - 533 |
J. KECKES ET AL.: "Self-organized periodic soft-hard nanolamellae in polycrystalline TiAIN thin films", THIN SOLID FILMS, vol. 545, 2013, pages 29 - 32 |
J. TODT ET AL.: "Superior oxidation resistance, mechanical properties andresidual stresses of an Al-rich nanolamellar Ti Al N coating prepared by CVD", SURFACE & COATINGS TECHNOLOGY, 2014 |
See also references of EP3091102A4 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017170603A1 (ja) * | 2016-03-31 | 2017-10-05 | 株式会社タンガロイ | 被覆切削工具 |
JPWO2017170603A1 (ja) * | 2016-03-31 | 2018-12-06 | 株式会社タンガロイ | 被覆切削工具 |
WO2017175803A1 (ja) * | 2016-04-07 | 2017-10-12 | 株式会社タンガロイ | 被覆切削工具 |
JPWO2017175803A1 (ja) * | 2016-04-07 | 2018-10-25 | 株式会社タンガロイ | 被覆切削工具 |
CN114173974A (zh) * | 2019-10-10 | 2022-03-11 | 住友电工硬质合金株式会社 | 切削工具 |
CN114173974B (zh) * | 2019-10-10 | 2024-03-15 | 住友电工硬质合金株式会社 | 切削工具 |
Also Published As
Publication number | Publication date |
---|---|
EP3091102B1 (en) | 2023-03-22 |
JP2016130343A (ja) | 2016-07-21 |
EP3091102A4 (en) | 2017-09-20 |
CN106103793B (zh) | 2019-06-07 |
KR102475051B1 (ko) | 2022-12-06 |
US10434580B2 (en) | 2019-10-08 |
US20170021429A1 (en) | 2017-01-26 |
KR20170102798A (ko) | 2017-09-12 |
US20200030887A1 (en) | 2020-01-30 |
EP3091102A1 (en) | 2016-11-09 |
CN106103793A (zh) | 2016-11-09 |
JP6120229B2 (ja) | 2017-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6120229B2 (ja) | 硬質被膜、切削工具および硬質被膜の製造方法 | |
JP6238131B2 (ja) | 被膜および切削工具 | |
JP5618429B2 (ja) | 表面被覆部材およびその製造方法 | |
JP6344601B2 (ja) | 硬質被膜、切削工具および硬質被膜の製造方法 | |
WO2017122448A1 (ja) | 表面被覆切削工具およびその製造方法 | |
JP6344602B2 (ja) | 硬質被膜、切削工具および硬質被膜の製造方法 | |
JP6349581B2 (ja) | 硬質被膜、切削工具および硬質被膜の製造方法 | |
JP6206800B2 (ja) | 被膜の製造方法 | |
JP6912032B2 (ja) | 切削工具 | |
JP6583762B1 (ja) | 表面被覆切削工具及びその製造方法 | |
CN111886093B (zh) | 表面被覆切削工具及其制造方法 | |
WO2019181133A1 (ja) | 表面被覆切削工具およびその製造方法 | |
JP6143158B2 (ja) | 表面被覆部材およびその製造方法 | |
JP6565092B1 (ja) | 表面被覆切削工具およびその製造方法 | |
JP6565093B1 (ja) | 表面被覆切削工具およびその製造方法 | |
JP6565091B1 (ja) | 表面被覆切削工具およびその製造方法 | |
JP6866970B2 (ja) | 切削工具及びその製造方法 | |
JP6866969B2 (ja) | 切削工具及びその製造方法 | |
JP7135262B1 (ja) | 切削工具 | |
JP6866971B2 (ja) | 切削工具及びその製造方法 | |
WO2019181135A1 (ja) | 表面被覆切削工具およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
REEP | Request for entry into the european phase |
Ref document number: 2015877908 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015877908 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15117359 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20167023731 Country of ref document: KR Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15877908 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |