WO2016113956A1 - 硬質被膜、切削工具および硬質被膜の製造方法 - Google Patents

硬質被膜、切削工具および硬質被膜の製造方法 Download PDF

Info

Publication number
WO2016113956A1
WO2016113956A1 PCT/JP2015/077696 JP2015077696W WO2016113956A1 WO 2016113956 A1 WO2016113956 A1 WO 2016113956A1 JP 2015077696 W JP2015077696 W JP 2015077696W WO 2016113956 A1 WO2016113956 A1 WO 2016113956A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
hard coating
crystal
gas
film
Prior art date
Application number
PCT/JP2015/077696
Other languages
English (en)
French (fr)
Inventor
アノンサック パサート
隆典 出谷
Original Assignee
住友電工ハードメタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ハードメタル株式会社 filed Critical 住友電工ハードメタル株式会社
Priority to EP15877908.2A priority Critical patent/EP3091102B1/en
Priority to US15/117,359 priority patent/US10434580B2/en
Priority to CN201580014264.5A priority patent/CN106103793B/zh
Priority to KR1020167023731A priority patent/KR102475051B1/ko
Publication of WO2016113956A1 publication Critical patent/WO2016113956A1/ja
Priority to US16/559,282 priority patent/US20200030887A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/04Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner applied by chemical vapour deposition [CVD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • B23B2228/105Coatings with specified thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23C2228/10Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F21/00Tools specially adapted for use in machines for manufacturing gear teeth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/58Cuttability

Definitions

  • the present invention relates to a hard coating, a cutting tool, and a method for manufacturing a hard coating.
  • a coating for covering the surface of the base material such as cemented carbide is underway.
  • a film made of a compound of titanium (Ti), aluminum (Al), and nitrogen (N) (hereinafter also referred to as “TiAlN”) can have high hardness and increase the content ratio of Al. Therefore, oxidation resistance can be improved. Since the performance of the cutting tool can be improved by coating the cutting tool with such a coating, further development of the coating is expected.
  • Patent Document 1 discloses a hard film having at least one Ti 1-x Al x N hard film formed by CVD (Chemical Vapor Deposition) without performing plasma excitation.
  • Ti 1-x Al x N is a multi-phase layer containing TiN x having a wurtzite structure and / or NaCl structure, and the Ti 1-x Al x N hard coating contains chlorine. The rate is in the range of 0.05 to 0.9 atomic%.
  • Non-patent document 1 also discloses a similar technique.
  • Non-Patent Document 2 discloses that a reaction gas is AlCl 3 , TiCl 4 , N 2 and NH 3 , a carrier gas is H 2 , a pressure of 3 kPa, and a temperature of 800 ° C. on a substrate such as WC—Co.
  • a 5 ⁇ m thick Ti 0.05 Al 0.95 N film grown by CVD is disclosed.
  • Ti 0.05 Al 0.95 N film of Non-Patent Document 2 has a nano-stacked structure in which self-organized cubic TiN (c-TiN) and wurtzite AlN (w-AlN) are alternately stacked, and a separation region composed of w-AlN and cubic AlN (c-AlN).
  • Non-Patent Document 2 In the nanolaminate structure, the (110) plane of c-TiN and the (100) plane of w-AlN are parallel.
  • the ratio of w-AlN, c-AlN (c-Al (Ti) N), and c-TiN constituting the Ti 0.05 Al 0.95 N film of Non-Patent Document 2 is 53% and 26%, respectively. And 21%.
  • Non-Patent Document 2 also discloses that the hardness of the Ti 0.05 Al 0.95 N film is about 28 GPa and the compressive residual stress of c-Al (Ti) N is ⁇ 1.2 ⁇ 0.1 GPa. Yes.
  • Non-Patent Document 3 discloses an evaluation of the oxidation resistance of a Ti 0.05 Al 0.95 N film having a nanolaminate structure in which self-organized c-TiN and w-AlN are alternately laminated. Yes. According to the description of Non-Patent Document 3, when a Ti 0.05 Al 0.95 N film was oxidized in the air at 700 ° C. to 1200 ° C. for 1 hour, the Ti 0.05 Al 0.95 N film had good oxidation resistance up to 1050 ° C. However, when the temperature exceeds 1100 ° C., local surface deterioration is considered to have occurred. Non-Patent Document 3 discloses that a hardness of about 29 GPa and a compressive residual stress of ⁇ 2 GPa are maintained in a Ti 0.05 Al 0.95 N film at temperatures up to 1050 ° C.
  • Patent Document 2 AlCl 3 gas, TiCl 4 gas, NH 3 gas, H 2 gas and N 2 gas are introduced into a reaction vessel having a pressure of 1.3 kPa and a temperature of 800 ° C.
  • a cooling rate of 10 ° C./min until the temperature reaches 200 ° C.
  • TiN having a face-centered cubic lattice (fcc) structure having a thickness of 2 nm and AlN having an fcc structure having a thickness of 6 nm are alternately stacked.
  • a method of forming a hard film having the above structure by a CVD method is disclosed (see paragraphs [0062] and [0063] of Patent Document 2).
  • Ti 1-x Al x N hard in the film occurs large strain greater than 0.7 In addition, it is metastable as a cubic crystal, and when exposed to high temperatures, it may undergo a phase transition to a wurtzite structure and the hardness may be reduced. Therefore, when the Ti 1-x Al x N hard coating described in Patent Document 1 and Non-Patent Document 1 is used for a cutting tool, the hardness changes due to phase transition to a wurtzite structure due to fretting heat during cutting. Therefore, the wear resistance of the Ti 1-x Al x N hard coating is lowered. As a result, especially in low-speed cutting, chipping of the Ti 1-x Al x N hard coating occurs, and the life of the cutting tool cannot be extended.
  • the Ti 0.05 Al 0.95 N film described in Non-Patent Document 2 and Non-Patent Document 3 has a nano-stacked structure in which self-assembled c-TiN and w-AlN are alternately stacked.
  • Patent Literature 1 and Non-Patent Literature 1 there is no problem that the hardness is lowered due to the phase transition to the wurtzite structure due to the rubbing heat at the time of cutting.
  • the nano-laminated structure of Ti 0.05 Al 0.95 N film described in Non-Patent Document 2 and Non-Patent Document 3 contains w-AlN having a lower hardness than c-TiN more than c-TiN.
  • Patent Document 2 since the hard coating is composed only of a structure in which TiN having an fcc structure and AlN having an fcc structure are alternately laminated, the hardness of the hard coating is very high, and the resistance of the hard coating is high. Abrasion is high.
  • the hard coating described in Patent Document 2 is used for a cutting tool, chipping may occur during high-speed cutting, or the chipping may occur suddenly depending on the work material, thereby extending the life of the cutting tool. There was something I could't do.
  • the lattice constant of AlN having the fcc structure is about 0.412 nm to 0.405 nm
  • the lattice constant of TiN having the fcc structure is about 0.424 nm
  • TiN having the fcc structure and AlN having the fcc structure are alternately arranged.
  • the laminated structure forms a nano-level super multi-layer structure.
  • AlN having an fcc structure having a small lattice constant must always match TiN having an fcc structure having a large lattice constant, so that tensile residual stress is generated in AlN having an fcc structure.
  • the above chipping and defects are considered to be caused by the tensile residual stress of AlN having an fcc structure.
  • the hard film according to an aspect of the present invention includes two first crystal phases and a second crystal phase disposed between the two first crystal phases, and the two first crystal phases include: Each independently including a laminated structure in which Ti 1-x1 Al x1 N phase having a sodium chloride type crystal structure and Al x2 Ti 1-x2 N phase having a sodium chloride type crystal structure are alternately laminated,
  • the Al composition ratio x1 of the Ti 1-x1 Al x1 N phase satisfies the relationship of 0.5 ⁇ x1 ⁇ 0.75, and the Al composition ratio x2 of the Al x2 Ti 1-x2 N phase is 0.75 ⁇ x2 ⁇ 0.95 is satisfied
  • the stacked structure includes a portion where the Al concentration periodically changes in the stacking direction of the Ti 1-x1 Al x1 N phase and the Al x2 Ti 1-x2 N phase,
  • the difference between the maximum value of the Al composition ratio x2 and the minimum value of the Al composition ratio x1 ((Al group The maximum value of the ratio
  • a cutting tool according to another embodiment of the present invention is a cutting tool including a base material and the hard coating on the base material.
  • a method of manufacturing a hard coating comprising: a first gas containing a titanium halide gas and an aluminum halide gas; and a second gas containing an ammonia gas on a substrate.
  • FIG. 8 is an enlarged photograph of a TEM of a portion surrounded by a solid line in FIG. 7. It is an electron beam diffraction image by TEM of A region of the 2nd crystal phase of FIG. It is an electron beam diffraction image by TEM of B area
  • (A) is an energy dispersive X-ray analysis (EDX) photograph of region B in FIG. 12
  • (b) is a mapping result of Al element in region B in FIG. 12
  • (c) is region B in FIG.
  • FIG. 13A is the mapping result of the Ti element in the B region of FIG. 13A is an enlarged photograph of FIG. 13A
  • FIG. 13B is an Al concentration in the stacking direction LG1 of the Ti 1-x1 Al x1 N phase and the Al x2 Ti 1-x2 N phase shown in FIG. It is a figure which shows each change of N density
  • the hard film according to an aspect of the present invention includes two first crystal phases and a second crystal phase disposed between the two first crystal phases, and the two first crystals
  • Each of the phases has a laminated structure in which Ti 1-x1 Al x1 N phase having a sodium chloride type crystal structure and Al x2 Ti 1-x2 N phase having a sodium chloride type crystal structure are alternately laminated.
  • the Ti composition ratio x1 of the Ti 1-x1 Al x1 N phase satisfies the relationship of 0.5 ⁇ x1 ⁇ 0.75, and the Al composition ratio x2 of the Al x2 Ti 1-x2 N phase is 0.
  • the stacked structure is a portion where the Al concentration periodically changes in the stacking direction of the Ti 1-x1 Al x1 N phase and the Al x2 Ti 1-x2 N phase.
  • the difference between the maximum value of the Al composition ratio x2 and the minimum value of the Al composition ratio x1 is 0. Greater than 5, the second crystal phase is a hard coating comprising AlN having a wurtzite crystal structure.
  • the sum of the thickness per phase of the adjacent Ti 1-x1 Al x1 N phase and the thickness per phase of the Al x2 Ti 1-x2 N phase The thickness is preferably 1 nm or more and 50 nm or less. When the total thickness is 1 nm or more, it is easy to produce a hard coating. Further, when the total thickness is 50 nm or less, the strain at the interface between the adjacent Ti 1-x1 Al x1 N phase and the Al x2 Ti 1-x2 N phase is relaxed, and Al x2 having a high Al composition ratio. A decrease in wear resistance of the hard coating due to the phase transition of the Ti 1-x2 N phase can be suppressed.
  • the electron diffraction pattern of the second crystal phase by a transmission electron microscope shows a ring-shaped pattern, and X of the hard coating film by X-ray diffraction method.
  • the ratio of the diffraction intensity P1 to the sum of the diffraction intensity P1 of the (200) plane of the Al x2 Ti 1-x2 N phase and the diffraction intensity P2 of the (100) plane of the second crystal phase in the line diffraction pattern is 0. It is preferably 2 or more and 1 or less.
  • the second crystal phase contains AlN crystal grains having a very fine wurtzite crystal structure.
  • the welding resistance of the hard coating when used for a cutting tool can be improved.
  • the value of (P1) / (P1 + P2) is 0.2 or more and 1 or less, the hard coating can be made into a film having an excellent balance between high hardness and welding resistance.
  • the indentation hardness of the hard coating by a nanoindentation method is 30 GPa or more.
  • the wear resistance of the hard coating is improved.
  • excellent performance can be achieved when cutting.
  • the hard film according to an embodiment of the present invention it is preferable absolute value of the Al x2 Ti 1-x2 N phase compressive residual stress is 3GPa less than 0.3 GPa.
  • the absolute value of compressive residual stress of the Al x2 Ti 1-x2 N phase is 0.3 GPa or more and 3 GPa or less, the wear resistance of the hard coating can be increased, so that chipping resistance and fracture resistance are improved. Can be improved.
  • a cutting tool is a cutting tool including a base material and any one of the hard coatings on the base material.
  • a first gas containing a titanium halide gas and an aluminum halide gas and a second gas containing an ammonia gas are formed on a substrate.
  • the substrate is held in the holding step for a period of 30 minutes to 300 minutes.
  • the hard film containing a 1st crystal phase and a 2nd crystal phase can be formed suitably.
  • the base material in the second cooling step, has a cooling rate of 5 ° C./min to 10 ° C./min, higher than 200 ° C. and 400 ° C. It is preferable to be cooled to the following temperature.
  • the hard film containing a 1st crystal phase and a 2nd crystal phase can be formed suitably.
  • the first gas further includes hydrogen chloride gas.
  • the wear resistance of the hard coating tends to be improved.
  • FIG. 1 typical sectional drawing of the cutting tool of embodiment is shown.
  • the cutting tool of the embodiment includes a base material 11 and a coating 50 provided on the base material 11.
  • the coating 50 includes a base film 20 and a hard film 30 provided on the base film 20.
  • FIG. 2 shows a schematic enlarged cross-sectional view of an example of the hard coating 30 shown in FIG.
  • the hard coating 30 includes two first crystal phases 21 and a second crystal phase 22 disposed between two adjacent first crystal phases 21.
  • the first crystal phase 21 and the second crystal phase 22 are completely separated without containing the atoms of each other phase.
  • some of the Ti atoms of the first crystal phase 21 may be included in the second crystal phase 22, and some of the Al atoms of the second crystal phase 22 may be included in the first crystal phase 21.
  • the hard coating 30 only needs to include at least two first crystal phases 21, and may include three or more first crystal phases 21.
  • FIG. 3 is a schematic enlarged sectional view of an example of one first crystal phase 21 shown in FIG.
  • the first crystal phase 21 includes a Ti 1-x1 Al x1 N phase 21a having a sodium chloride (NaCl) type crystal structure and an Al x2 Ti 1-x2 N having a NaCl type crystal structure. It includes a laminated structure in which the phases 21b are alternately laminated.
  • the Al composition ratio x1 of the Ti 1-x1 Al x1 N phase 21a satisfies the relationship of 0.5 ⁇ x1 ⁇ 0.75
  • the Al composition ratio x2 of the Al x2 Ti 1-x2 N phase is 0.75 ⁇
  • the relationship x2 ⁇ 0.95 is satisfied.
  • the laminated structure includes a portion where the Al concentration periodically changes in the lamination direction of the Ti 1-x1 Al x1 N phase and the Al x2 Ti 1-x2 N phase, and the Al composition ratio x2 is maximum at the location.
  • the difference between the value and the minimum value of the Al composition ratio x1 is greater than 0.25.
  • the difference between the maximum value of the Al composition ratio x2 and the minimum value of the Al composition ratio x1 is preferably larger than 0.27, 0.3 It is more preferable that it is larger than the above.
  • a Ti 1-x1 Al x1 N phase 21a and Al x2 Ti 1-x2 N phase 21b May be completely separated without containing atoms of each other phase, and a part of atoms of Ti 1-x1 Al x1 N phase 21a may be contained in Al x2 Ti 1-x2 N phase 21b.
  • a part of atoms of the Al x2 Ti 1-x2 N phase 21b may be included in the Ti 1-x1 Al x1 N phase 21a.
  • the Al concentration is measured by EDX or the like as the ratio of the number of Al atoms to the total number of atoms at any one point in the laminated structure of the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b. can do.
  • EDX EDX
  • a continuous increase and decrease in the Al concentration in the stacking direction of the Ti 1-x1 Al x1 N phase and the Al x2 Ti 1-x2 N phase is taken as one set of cycles. This means that there are at least two sets of periods in the laminated structure of the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b.
  • the Al concentration can periodically change to a shape such as a sine wave.
  • the composition of the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b of the first crystal phase 21 is EDX or a three-dimensional atom probe. It can be determined by field ion microscope analysis.
  • the total thickness t3 of the thickness t1 per phase of the adjacent Ti 1-x1 Al x1 N phase 21a and the thickness t2 per phase of the Al x2 Ti 1-x2 N phase 21b Is preferably 1 nm or more and 50 nm or less.
  • the total thickness t3 is 1 nm or more, the hard coating 30 can be easily manufactured.
  • the strain at the interface between the adjacent Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b is reduced, and the Al composition ratio It is possible to suppress a decrease in wear resistance of the hard coating 30 due to the high Al x2 Ti 1 -x2 N phase 21b phase transition.
  • the total thickness of at least one set of one phase of the adjacent Ti 1-x1 Al x1 N phase 21a and one phase of the Al x2 Ti 1-x2 N phase 21b is 1 nm or more and 50 nm or less.
  • the total thickness of all pairs of one phase of the adjacent Ti 1-x1 Al x1 N phase 21a and one phase of the Al x2 Ti 1-x2 N phase 21b should be 1 nm or more and 50 nm or less. Is preferable from the viewpoint of stably producing the hard coating 30 excellent in wear resistance.
  • the thickness t1 per phase of the Ti 1-x1 Al x1 N phase 21a and the thickness t2 per phase of the Al x2 Ti 1-x2 N phase 21b are hard on the surface of the substrate 11, respectively.
  • the coating 30 is formed, and the cross section of the hard coating 30 formed on the surface of the substrate 11 is STEM high angle scattering dark field method (HAADF-STEM) (HAADF-STEM). It can be measured by observing.
  • the second crystal phase 22 includes AlN having a wurtzite crystal structure. As described above, AlN having a wurtzite type crystal structure generally has a low hardness. However, in the present embodiment, the second crystal phase 22 containing AlN having a wurtzite type crystal structure is used for the wear resistance of the hard coating 30. The function of impact relaxation of the first crystal phase 21 that contributes to the improvement of the property is exhibited. This contributes to extending the life of the cutting tool when the hard coating 30 is used for the cutting tool.
  • tungsten carbide (WC) based cemented carbide, cermet, high speed steel, ceramics, cubic boron nitride sintered body or diamond sintered body can be used. It is not limited.
  • a film capable of increasing the bonding strength between the base material 11 and the hard film 30 can be used, for example, a titanium nitride (TiN) film, a titanium carbonitride (TiCN) film, or a TiN film.
  • TiN titanium nitride
  • TiCN titanium carbonitride
  • TiN film a TiN film
  • a laminated film of TiCN film and TiCN film can be used.
  • the cutting tool of the embodiment is not particularly limited as long as it includes the base material 11 and the hard coating 30 on the base material 11.
  • a drill, an end mill, a drill cutting edge exchangeable cutting tip, and an end mill cutting edge examples thereof include an exchangeable cutting tip, a cutting edge exchangeable cutting tip for milling, a cutting edge exchangeable cutting tip for turning, a metal saw, a gear cutting tool, a reamer, or a tap.
  • FIG. 4 shows a schematic cross-sectional view of an example of a CVD apparatus used for manufacturing the cutting tool of the embodiment.
  • the CVD apparatus 10 includes a plurality of base material setting jigs 12 for installing the base material 11 and a reaction vessel 13 made of heat-resistant alloy steel that covers the base material setting jig 12. ing.
  • a temperature control device 14 for controlling the temperature in the reaction vessel 13 is provided around the reaction vessel 13.
  • a gas introduction tube 16 having a first gas introduction tube 15 and a second gas introduction tube 17 which are joined adjacent to each other extends in the vertical direction in the space inside the reaction vessel 13 and can be rotated.
  • the gas introduction pipe 16 is configured such that the gas introduced into the first gas introduction pipe 15 and the gas introduced into the second gas introduction pipe 17 do not mix inside the gas introduction pipe 16.
  • the gas which flows through each inside of the 1st gas introduction pipe 15 and the 2nd gas introduction pipe 17 is used for a part of each of the 1st gas introduction pipe 15 and the 2nd gas introduction pipe 17 as a base material setting jig.
  • a plurality of through holes for jetting onto the base material 11 installed at 12 are provided.
  • reaction vessel 13 is provided with a gas exhaust pipe 18 for exhausting the gas inside the reaction vessel 13 to the outside.
  • the gas inside the reaction vessel 13 passes through the gas exhaust pipe 18, The gas is discharged from the gas outlet 19 to the outside of the reaction vessel 13.
  • FIG. 5 shows a flowchart of an example of the manufacturing method of the cutting tool of the embodiment.
  • the cutting tool manufacturing method of the embodiment includes an ejection step (S10), a first cooling step (S20), a holding step (S30), and a second cooling step (S40). Including S10, S20, S30, and S40.
  • processes other than S10, S20, S30, and S40 may be included in the manufacturing method of the cutting tool of embodiment.
  • the hard coating 30 is formed on the substrate 11 will be described. However, after forming another film such as the base film 20 on the substrate 11, the hard coating 30 is formed. Needless to say, it may be formed.
  • the ejection step (S10) is performed by ejecting a first gas containing Ti halide gas and Al halide gas and a second gas containing ammonia (NH 3 ) gas onto the substrate 11.
  • the ejection step (S10) can be performed, for example, as follows. First, the temperature inside the reaction vessel 13 is raised by the temperature control device 14 to raise the temperature of the substrate 11 installed in the substrate setting jig 12 inside the reaction vessel 13 to, for example, 820 ° C. to 860 ° C. Let Further, the pressure inside the reaction vessel 13 is, for example, 1 kPa to 2.5 kPa.
  • a first gas containing Ti halide gas and Al halide gas is introduced into the gas introduction pipe 15 while rotating the gas introduction pipe 16 about the axis, and a second gas containing NH 3 gas is introduced.
  • the gas is introduced into the gas introduction pipe 17.
  • Ti halide gas for example, titanium tetrachloride (TiCl 4 ) gas or the like can be used.
  • Al halide gas for example, aluminum trichloride (AlCl 3 ) gas can be used.
  • the first gas preferably contains Ti halide gas and Al halide gas, and further contains hydrogen chloride (HCl) gas.
  • HCl hydrogen chloride
  • the wear resistance of the hard coating 30 tends to be improved.
  • the first gas and the second gas may each contain a carrier gas such as nitrogen gas (N 2 gas) and / or hydrogen gas (H 2 gas).
  • a 1st cooling process (S20) adjusts the preset temperature of the temperature control apparatus 14, for example, and cools the base material 11 to the temperature of 700 to 750 degreeC with a cooling rate larger than 10 degreeC / min. It can be carried out.
  • the cooling rate of the base material 11 By making the cooling rate of the base material 11 higher than 10 ° C./min, the formation of AlN having a wurtzite crystal structure in the first cooling step (S20) can be suppressed.
  • the cooling rate in the first cooling step (S20) is preferably 15 ° C./min or more.
  • the upper limit of the cooling rate of the base material 11 in the first cooling step (S20) is preferably 30 ° C./min or less from the viewpoint of improving the adhesion of the hard coating 30.
  • the temperature at which the substrate 11 is finally cooled in the first cooling step (S20) is set to 700 ° C. or higher and 750 ° C. or lower, so that the Ti 1-x1 Al x1 N phase in the holding step (S30) described later.
  • the first crystal phase 21 including an alternately laminated structure of 21a and Al x2 Ti 1-x2 N phase 21b can be suitably formed.
  • a zinc blende type AlN phase is used instead of the Al x2 Ti 1-x2 N phase 21b in the holding step (S30).
  • the temperature exceeds 750 ° C. atoms easily move, so that a mixed crystal of the first crystal phase 21 and the second crystal phase 22 may be formed.
  • a holding process (S30) is performed after the first cooling process (S20).
  • the holding step (S30) can be performed, for example, by adjusting the set temperature of the temperature controller 14 and holding the temperature of the base material 11 at 700 ° C. or higher and 750 ° C. or lower.
  • the first crystal phase having an alternate stacked structure of Ti 1-x1 Al x1 N phase 21a and Al x2 Ti 1-x2 N phase 21b by phase separation of Al y Ti 1-y N 21 can be formed and grown.
  • the holding time of the temperature of the base material 11 in the holding step (S30) is appropriately set according to the desired thickness of the Ti 1-x1 Al x1 N phase 21a and the thickness of the Al x2 Ti 1-x2 N phase 21b. However, the time is preferably 30 minutes or more and 300 minutes or less.
  • the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b are formed so that the first crystal phase 21 can sufficiently exhibit the function by setting the temperature holding time of the substrate 11 to 30 minutes or more. It can be grown sufficiently.
  • the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b are not grown excessively, and a second cooling step described later.
  • the second crystal phase 22 containing AlN having a wurtzite crystal structure tends to be formed.
  • the temperature of the base material 11 in the holding step (S30) does not necessarily have to be a constant temperature, and the temperature of the base material 11 varies as long as it is in the range of 700 ° C. or higher and 750 ° C. or lower. You may let them.
  • a 2nd cooling process (S40) is performed after a holding process (S30).
  • a 2nd cooling process (S40) can be performed by adjusting the preset temperature of the temperature control apparatus 14, and reducing the temperature of the base material 11, for example.
  • the cooling rate of the base material 11 in the second cooling step (S40) is slower than the cooling rate of the base material 11 in the first cooling step (S20), and AlN having a wurtzite crystal structure in the second cooling step (S40).
  • the second crystal phase 22 containing can be formed at such a speed that it can be formed.
  • the cooling rate of the substrate 11 in the second cooling step (S40) is preferably a cooling rate of 5 ° C./min or more and 10 ° C./min or less from the viewpoint of suppressing a decrease in the hardness of the hard coating 30.
  • the temperature at which the substrate 11 is finally cooled is preferably higher than 200 ° C and not higher than 400 ° C.
  • the second crystal phase 22 containing AlN having a wurtzite crystal structure is formed. It can be formed sufficiently.
  • FIG. 6 an example of the binodal line and spinodal line of Al y Ti 1-y N show schematically.
  • the horizontal axis of FIG. 6 shows the Al composition ratio y of the Al y Ti 1-y N, the value of the Al composition ratio y of about proceeds rightward Al y Ti 1-y N on the horizontal axis in FIG. 6 is large Become.
  • shaft of FIG. 6 has shown the temperature [degreeC] of the base material 11, and the temperature of the base material 11 becomes high, so that it progresses to the upper direction of the vertical axis
  • Al y Ti 1-y N Al composition ratio y is prepared gas so that 0.75, jetting the gas onto the substrate in the ejection step (S10).
  • Al y Ti 1-y N is formed on the substrate by the CVD method, and the state immediately after the formation of Al y Ti 1-y N is indicated by a point ⁇ in FIG.
  • the temperature of the substrate 11 is, for example, 820 ° C. to 860 ° C.
  • the substrate 11 is rapidly cooled at a cooling rate greater than 10 ° C./min, and the final temperature of the substrate 11 is set to 700 ° C.
  • the state at this time is indicated by a ⁇ point in FIG.
  • the temperature of the ⁇ point in the region below the spinodal line 42 through the binodal line 41 at once. 700 ° C.).
  • the region below the binodal line 41 indicates a region where AlN having a wurtzite crystal structure, which is a thermal equilibrium phase, is formed when cooled at a slow cooling rate.
  • the region below the spinodal line 42 is a Ti 1-x1 Al x1 N having a NaCl-type crystal structure which is a non-thermal equilibrium phase due to phase separation of Al y Ti 1-y N when cooled at a high cooling rate.
  • the region in which the phase 21a and the Al x2 Ti 1-x2 N phase 21b are formed is shown.
  • the formation of AlN having a wurtzite crystal structure is suppressed, and the temperature of the substrate 11 is changed to Ti 1-x1 Al x1 N phase 21a and Al x2 Ti 1-x2 N. It can lead to the temperature at which phase 21b is formed.
  • the temperature of the substrate 11 is held at a temperature of 700 ° C. or higher and 750 ° C. or lower.
  • the phase separation of Al y Ti 1-y N causes the Ti 1-x1 Al x1 N phase 21a of the NaCl type crystal structure and the Al x2 Ti 1-x2 N phase of the NaCl type crystal structure.
  • the first crystal phase 21 is formed, which is separated into 21b and includes a structure in which these are alternately stacked. Further, the thicknesses of the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b are determined according to the holding time of the substrate 11 in the holding step (S30).
  • the substrate 11 is slower than the cooling rate in the first cooling step (S20), and 5 ° C./min or more to the extent that AlN having a wurtzite crystal structure is formed. It is slowly cooled to 400 ° C. at a cooling rate of 10 ° C./min or less.
  • the final state of the substrate 11 in the second cooling step (S40) is indicated by a ⁇ point in FIG.
  • the second crystal phase 22 containing AlN having a wurtzite crystal structure is formed.
  • the Ti 1-x1 Al x1 N phase 21a having the NaCl type crystal structure and the Al x2 Ti 1-x2 N phase 21b having the NaCl type crystal structure are alternately stacked.
  • a hard film 30 including one crystal phase 21 and a second crystal phase 22 containing AlN having a wurtzite type crystal structure is formed on the substrate 11, and the cutting tool of the embodiment is manufactured.
  • FIG. 7 shows a TEM photograph of the hard coating 30 of the cutting tool of the embodiment manufactured as described above
  • FIG. 8 shows an enlarged photograph of the TEM of the portion surrounded by the solid line in FIG.
  • a Ti 1-x1 Al x1 N phase 21a having a NaCl type crystal structure and an Al x2 Ti 1 ⁇ having a NaCl type crystal structure are formed.
  • the first crystal phase 21 having a structure in which x2 N phases 21b are alternately stacked is present, and the first crystal phase 21 containing AlN having a wurtzite crystal structure disposed between the two first crystal phases 21 is present. It was confirmed that two crystal phases 22 were present.
  • FIG. 9 shows a TEM electron diffraction image of the A region of the second crystal phase 22 in FIG. 8 and FIG. 10 shows a TEM electron diffraction image of the B region of the first crystal phase 21 in FIG.
  • the electron beam diffraction image of the A region of the second crystal phase 22 by the TEM shows a ring-shaped pattern, but as shown in FIG. 10, the TEM of the B region of the first crystal phase 21
  • the electron diffraction image by shows a dot-like pattern. This indicates that a plurality of finer crystal grains are formed in the second crystal phase 22 than in the first crystal phase 21.
  • the (200) plane of the Al x2 Ti 1-x2 N phase 21b in the XRD pattern of the hard coating 30 by the XRD method is preferably 0.2 or more and 1 or less.
  • the second crystal phase 22 contains AlN crystal grains having a very fine wurtzite type crystal structure, and thus is hard.
  • the welding resistance of the hard coating 30 when the coating 30 is used for a cutting tool can be improved.
  • the hard coating 30 can be a film having an excellent balance between high hardness and welding resistance.
  • the value of (P1) / (P1 + P2) is more preferably 0.95 or less, and further preferably 0.9 or less.
  • FIG. 11 an example of the XRD pattern by the XRD method of the hard film 30 is shown.
  • the horizontal axis in FIG. 11 indicates the diffraction angle 2 ⁇ [°]
  • the vertical axis in FIG. 11 indicates the diffraction intensity [cps (count per second)].
  • the diffraction intensity P1 with respect to the sum of the diffraction intensity P1 of the (200) plane of the Al x2 Ti 1-x2 N phase 21b and the diffraction intensity P2 of the (100) plane of the second crystal phase 22 is obtained.
  • the ratio ((P1) / (P1 + P2)) is 0.87, and is included in the range of 0.2 to 1.
  • the diffraction intensity P1 of the (200) plane of the Al x2 Ti 1-x2 N phase 21b is the intensity of the diffraction peak that appears in the range of 43 ° to 45 ° of 2 ⁇ of the horizontal axis of the XRD pattern of the hard coating 30. is there.
  • the diffraction intensity P2 of the (100) plane of the second crystal phase 22 is the intensity of a diffraction peak that appears in the range of 32 ° to 35 ° of 2 ⁇ on the horizontal axis of the XRD pattern of the hard coating 30.
  • FIG. 12 shows a TEM photograph of the hard coating 30 of the cutting tool of the embodiment produced as described above.
  • 13A shows an EDX photograph of the B region of the first crystal phase 21 in FIG. 12
  • FIG. 13B shows a mapping result of the Al element in the B region of FIG. 12
  • FIG. 12 shows the mapping result of the N element in the B region of FIG. 12
  • FIG. 13D shows the mapping result of the Ti element in the B region of FIG.
  • FIG. 14 (a) shows an enlarged photograph of FIG. 13 (a)
  • FIG. 14 (b) shows the Ti 1-x1 Al x1 N phase 21a and Al x2 Ti 1-x2 N phase 21b shown in FIG. 14 (a).
  • Each change in Al concentration, N concentration, and Ti concentration measured by EDX in the stacking direction LG1 is shown.
  • FIG. 14B in the B region of the first crystal phase 21 of the hard film 30 of the cutting tool of the embodiment, the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b.
  • the laminated structure includes a portion where the Al concentration periodically changes in the lamination direction of the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b.
  • the horizontal axis of FIG. 14B indicates the distance [nm] from the measurement start point in the stacking direction of the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b, and FIG.
  • shaft of b) shows each concentration [atomic%] of Al, N, and Ti.
  • FIG. 15 shows the laminated structure of the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b calculated from the measurement results by EDX in FIGS. 14 (a) to 14 (d).
  • a change in the ratio of the number of Al atoms to the sum of the number of Al atoms and the number of Ti atoms in the stacking direction of the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b is shown.
  • the horizontal axis in FIG. 15 indicates the distance [nm] from the measurement start point in the stacking direction of the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b, and the vertical axis in FIG.
  • the ratio of the number of Al atoms to the sum of the number of Al atoms and the number of Ti atoms is shown.
  • the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti of the laminated structure of the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b of the hard film of the embodiment In the stacking direction with the 1-x2 N phase 21b, the maximum value of the Al composition ratio x2 of the Al x2 Ti 1-x2 N phase 21b (X 2,6 in the example shown in FIG. 15) and Ti 1-x1 Al x1 N It was confirmed that the difference from the minimum value (X 1,7 ) of the Al composition ratio x1 of the phase 21a was larger than 0.25. Further, as shown in FIG.
  • phase 21b having the maximum value of the Al composition ratio x2 (X 2,6 in the example shown in FIG. 15) and the adjacent Al x2 Ti 1-x2 N
  • the spacing of phase 21b was 20 nm and 21 nm, respectively.
  • the indentation hardness of the hard coating 30 by the nanoindentation method is preferably 30 GPa or more.
  • the wear resistance of the hard coating 30 is improved. Excellent performance can be achieved when cutting a cutting material.
  • the indentation hardness of the hard coating 30 by the nanoindentation method is measured in the thickness direction of the hard coating 30 using an ultra-fine indentation hardness tester (for example, manufactured by Elionix Co., Ltd.) that can use the nanoindentation method. It is calculated by dividing the load when the indenter is pushed in with a predetermined load (for example, 25 mN) perpendicularly to the contact area between the indenter and the hard coating 30.
  • a predetermined load for example, 25 mN
  • the absolute value of the compressive residual stress of the Al x2 Ti 1-x2 N phase 21b is preferably 0.3 GPa or more and 3 GPa or less.
  • the absolute value of the compressive residual stress of the Al x2 Ti 1-x2 N phase 21b is not less than 0.3 GPa and not more than 3 GPa, the wear resistance of the hard coating 30 can be increased. Can be improved.
  • the compressive residual stress of the Al x2 Ti 1-x2 N phase 21b depends on the thickness t1 of each adjacent Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b. By adjusting the total thickness t3 with the thickness t2, it can be set to 0.3 GPa or more and 3 GPa or less.
  • compressive residual stress is a kind of internal stress (intrinsic strain) existing in the Al x2 Ti 1-x2 N phase 21b, and is a numerical value of “ ⁇ ” (minus) (unit: “GPa” in the embodiment). ")").
  • the compressive residual stress of the Al x2 Ti 1-x2 N phase 21b can be measured by the sin 2 ⁇ method using an X-ray stress measurement apparatus.
  • the sin 2 ⁇ method using X-rays is widely used as a method for measuring the residual stress of a polycrystalline material.
  • “X-ray stress measurement method” Japan Society of Materials, 1981 stock
  • the method described in detail on pages 54 to 67 of Yokendo Co., Ltd. can be used.
  • the hard coating 30 may or may not contain at least one impurity selected from the group consisting of chlorine (Cl), oxygen (O), and carbon (C).
  • the total thickness T1 of the hard coating 30 shown in FIG. 1 is preferably 1 ⁇ m or more and 20 ⁇ m or less.
  • the total thickness T1 of the hard coating 30 is 1 ⁇ m or more, the characteristics of the hard coating 30 tend to be remarkably improved.
  • the total thickness T1 of the hard coating 30 is 20 ⁇ m or less, there is a tendency that a large change is seen in the improvement of the characteristics of the hard coating 30.
  • the total thickness T1 of the hard coating 30 is more preferably 2 ⁇ m or more and 15 ⁇ m or less, and further preferably 3 ⁇ m or more and 10 ⁇ m or less.
  • the coating 50 may include a film other than the hard coating 30.
  • a film other than the hard film 30 included in the film 50 in addition to the above-described base film 20, for example, at least one selected from the group consisting of Ti, Zr, and Hf, and N, O, C, B, CN A film made of at least one compound selected from the group consisting of BN, CO, and NO may be included.
  • the coating 50 may include at least one of an ⁇ -Al 2 O 3 film and a ⁇ -Al 2 O 3 film as an oxidation resistant film.
  • the film 50 may include a film other than the hard film 30 as the outermost film on the outermost surface. Further, the coating 50 may not include the base film 20.
  • the total thickness T2 of the coating 50 is preferably 3 ⁇ m or more and 30 ⁇ m or less. When the total thickness T2 of the film 50 is 3 ⁇ m or more, the characteristics of the film 50 tend to be suitably exhibited. When the total thickness T2 of the coating 50 is 30 ⁇ m or less, peeling of the coating 50 during cutting tends to be suppressed.
  • the total thickness T2 of the coating 50 is more preferably 5 ⁇ m or more and 20 ⁇ m or less, and preferably 7 ⁇ m or more and 15 ⁇ m or less from the viewpoint of suitably exhibiting the characteristics of the coating 50 and suppressing the peeling of the coating 50 during cutting. More preferably.
  • the hard coating 30 includes a Ti 1-x1 Al x1 N (0.5 ⁇ x1 ⁇ 0.75) phase 21a having a NaCl type crystal structure and an Al x2 Ti 1-x2 N having a NaCl type crystal structure. (0.75 ⁇ x2 ⁇ 0.95) including at least two first crystal phases 21 having a laminated structure in which phases 21b are alternately laminated. Further, the laminated structure includes a portion where the Al concentration periodically changes in the lamination direction of the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b. The difference between the maximum value of the composition ratio x2 and the minimum value of the Al composition ratio x1 is greater than 0.25. Further, the laminated structure includes a second crystal phase 22 containing AlN having a wurtzite crystal structure disposed between the two first crystal phases 21.
  • both the Ti 1-x1 Al x1 N phase 21a and the Al x2 Ti 1-x2 N phase 21b contained in the first crystal phase 21 have a cubic system with excellent hardness, and Ti 1-x1 Al
  • a laminated structure in which x1 N phase 21a and Al x2 Ti 1-x2 N phase 21b are alternately laminated has an Al concentration in the laminating direction of Ti 1-x1 Al x1 N phase 21a and Al x2 Ti 1-x2 N phase 21b.
  • the hard coating 30 is excellent because the difference between the maximum value of the Al composition ratio x2 and the minimum value of the Al composition ratio x1 is greater than 0.25 at the location. Wear resistance is developed.
  • the second crystal phase 22 containing AlN having a low-hardness wurtzite type crystal structure is provided between the two first crystal phases 21, the two first crystal phases 21 receive during cutting. The impact can be mitigated by the second crystal phase 22 located between the two first crystal phases 21. Thereby, in the cutting tool provided with the hard coating 30 of the embodiment, the life of the cutting tool can be extended.
  • the hard coating 30 of the embodiment forms Al y Ti 1-y N on the base material in the ejection step (S10), and the base material 11 is larger than 10 ° C./min in the first cooling step (S20).
  • the first crystal phase is formed by holding the substrate at a temperature of 700 ° C. or higher and 750 ° C. or lower in the holding step (S30), and then the second cooling. It is formed only by cooling in the step (S40) at a lower cooling rate than the first cooling step (S20), and such a two-step cooling step with different cooling rates is used for forming the hard coating.
  • each film of the coating is measured by observing a cross section of the coating by the STEM high angle scattering dark field method using STEM. Further, the composition of each film in the following is obtained by three-dimensional atom probe field ion microscope analysis. In addition, the presence of the first crystal phase and the second crystal phase of the hard coating in the following has been confirmed by observation using a TEM. In the following, the minimum value of the Al composition ratio x1 of the Ti 1-x1 Al x1 N phase and the maximum value of the Al composition ratio x2 of the Al x2 Ti 1-x2 N phase are calculated by EDX.
  • ((maximum value of x2) ⁇ (minimum value of x1)) is the maximum value of the Al composition ratio x2 of the Al x2 Ti 1 -x2 N phase and the Al composition ratio of the Ti 1 -x1 Al x1 N phase. It is calculated by obtaining the difference from the minimum value of x1. Further, in the following, the average value of the total thickness of the adjacent Ti 1-x1 Al x1 N phase and Al x2 Ti 1-x2 N phase of the hard coating is determined by observing using TEM, and the adjacent Ti 1-x1 Al x1 The thickness per one N phase and the thickness per one Al x2 Ti 1-x2 N phase are obtained, and the average value of the total thickness is calculated.
  • the electron beam diffraction image pattern in the following is an electron beam diffraction image pattern obtained from an electron beam diffraction image using a TEM of the second crystal phase of the hard coating.
  • P1 / (P1 + P2) in the following is calculated from the diffraction intensity P1 of the (200) plane of the Al x2 Ti 1-x2 N phase and the diffraction intensity P2 of the (100) plane of the second crystal phase in the XRD pattern of the hard coating. is doing.
  • the hardness of the hard film in the following is measured by the indentation hardness (Hv) of the hard film by a nanoindentation method using an ultra-fine indentation hardness tester manufactured by Elionix Co., Ltd.
  • Hv indentation hardness
  • the absolute value of the compressive residual stress of the following Al x2 Ti 1-x2 N phase is calculated by the sin 2 ⁇ method using an X-ray stress measurement apparatus.
  • the base material K and the base material L shown in Table 1 below are prepared as base materials to be coated. Specifically, first, raw material powders having the blending composition (% by mass) shown in Table 1 are uniformly mixed. “Remaining” in Table 1 indicates that WC occupies the remainder of the composition (mass%). Next, the mixed powder is pressed into a predetermined shape and then sintered at 1300 to 1500 ° C. for 1 to 2 hours, whereby a base material K (base material shape: CNMG120408NUX) and a base material made of cemented carbide are obtained. L (base material shape: SEET13T3AGSN-G) is obtained.
  • CNMG120408NUX is the shape of a cutting edge exchangeable cutting tip for turning, and This is the shape of a cutting edge-exchangeable cutting tip for milling.
  • Sample No. 1-18 A film is formed on the surface of the base material K or the base material L by forming the base film, the hard film and the outermost film shown in the column of the structure of the film in Table 2 on the surface of the base material K or the base material L.
  • cutting tools Sample Nos. 1 to 18
  • Sample No. The cutting tools 1 to 14 are examples. 15 to 18 cutting tools are comparative examples.
  • the base film is a film in direct contact with the surface of the substrate
  • the hard coating is a film formed on the base film
  • the outermost film is a film formed on the hard coating and exposed to the outside. It is a film.
  • the description of the compound of Table 2 is a compound which comprises the base film, hard film, and outermost film of Table 2, and the right parenthesis of the compound means the thickness of the film.
  • TiN (0.5) -TiCN (2.5) When two compounds (for example, “TiN (0.5) -TiCN (2.5)”) are described in one column of Table 2, the left side (“TiN (0.5)” ”) Means that the compound located on the side closer to the surface of the substrate, and the compound on the right side (“ TiCN (2.5) ”) is located on the side far from the surface of the substrate.
  • the numerical value in parentheses means the thickness of each film.
  • the column indicated by “ ⁇ ” in Table 2 means that no film is present.
  • sample No. in Table 2 In the cutting tool 1, a TiN film having a thickness of 0.5 ⁇ m and a TiCN film having a thickness of 2.5 ⁇ m are laminated in this order on the surface of the substrate K, and a base film is formed thereon, which will be described later.
  • a hard film having a thickness of 6.0 ⁇ m formed under the formation condition a is formed, and the hard film has a film on which the outermost film is not formed, and the total thickness of the film is 9.0 ⁇ m.
  • the base film and outermost film shown in Table 2 are films formed by a conventionally known CVD method, and the formation conditions are as shown in Table 3.
  • the row of “TiN (base film)” in Table 3 shows the conditions for forming a TiN film as the base film.
  • the description of the TiN film (underlying film) in Table 3 is that the substrate is placed in a reaction vessel of the CVD apparatus (the environment in the reaction vessel is 6.7 kPa, 915 ° C.), and 2% by volume of TiCl 4 is contained in the reaction vessel.
  • the hard coating shown in Table 2 is produced using the CVD apparatus 10 shown in FIG. 4 under any one of the formation conditions a to i shown in Table 4 and Table 5.
  • the description of the formation condition a in Table 4 and Table 5 indicates that a hard film is formed as follows.
  • the substrate temperature (820 ° C.), the pressure in the reaction vessel (1.5 kPa), the total gas flow rate (50 L / min) and the gas composition (TiCl 4 : 0.2% by volume, AlCl 3 ) in the column a of Table 4 : 0.7 vol%, NH 3: 2.8 by volume%, HCl: 0.3 vol%, N 2: 35.4 vol%, H 2: on a substrate under the condition of rest) Al y Ti 1-
  • the 1st cooling process which cools a base material to 750 degreeC with the cooling rate of 15 degrees C / min shown in Table 5 is performed.
  • the 2nd cooling process which cools a base material to 400 degreeC with the cooling rate of 8 degreeC / min is performed.
  • Sample Nos. Shown in Table 2 formed as described above were used.
  • the Ti 1-x1 Al x1 N (0.5 ⁇ x1 ⁇ 0.75) phase having a NaCl type crystal structure and the Al x2 Ti 1-x2 N having a NaCl type crystal structure are used.
  • a wurtzite crystal including at least two first crystal phases having a stacked structure in which (0.75 ⁇ x2 ⁇ 0.95) phases are alternately stacked and disposed between the two first crystal phases.
  • a second crystal phase containing AlN having a structure is formed.
  • Sample No. 2 shown in Table 2 was also used.
  • the laminated structure includes a portion where the Al concentration periodically changes in the lamination direction of the Ti 1-x1 Al x1 N phase and the Al x2 Ti 1-x2 N phase, At this location, the difference between the maximum value of the Al composition ratio x2 and the minimum value of the Al composition ratio x1 is greater than 0.25.
  • Sample No. The minimum value of the Al composition ratio x1 of the Ti 1-x1 Al x1 N (0.5 ⁇ x1 ⁇ 0.75) phase of the hard coating of 1 to 14 and Al x2 Ti 1-x2 N (0.75 ⁇ x2 ⁇ 0) .95) shows the maximum value of the Al composition ratio x2 of the phase.
  • the maximum value 0.95 of the Al composition ratio x2 of the x2 ⁇ 0.95) phase is shown.
  • Table 6 shows the properties of the hard coating formed under the conditions a to i in Table 4.
  • ⁇ Cutting test 1 Round bar outer periphery high-speed cutting test ⁇ Sample No. For the cutting tools 1 to 7, 15 and 16, the cutting time until the flank wear amount (Vb) reaches 0.20 mm under the cutting conditions of the following cutting test 1 is measured and the final damage form of the cutting edge is observed. . The results are shown in Table 7.
  • the cutting tools Nos. 1 to 7 are sample Nos. It has been confirmed that it has a longer life compared to 15 and 16 cutting tools.
  • the hard coating has a Ti 1-x1 Al x1 N (0.1 ⁇ x1 ⁇ 0.5) phase having a NaCl type crystal structure and an Al x2 Ti 1-x2 N (0.5 having a NaCl type crystal structure).
  • ⁇ Cutting test 2 Round bar outer periphery low-speed cutting test ⁇ Sample No. With respect to the cutting tools 1 to 7, 15 and 16, the cutting time until the flank wear amount (Vb) reaches 0.20 mm under the cutting conditions of the following cutting test 2 is measured, and the final damage form of the cutting edge is observed. . The results are shown in Table 8.
  • sample no. The cutting tools Nos. 1 to 7 have sample Nos. It has been confirmed that it has a longer life compared to 15 and 16 cutting tools.
  • the hard coating has an Al x2 Ti 1-x2 N (0.5 ⁇ x2 ⁇ 0.95) phase having a NaCl type crystal structure and a second crystal phase containing AlN having a wurtzite type crystal structure; Sample No. consisting of Chipping is confirmed in 15 cutting tools.
  • sample no. The cutting tools Nos. 8 to 14 are sample Nos. It has been confirmed that it has a longer life compared to 17 and 18 cutting tools.
  • the hard film has a Ti 1-x1 Al x1 N (0.1 ⁇ x1 ⁇ 0.5) phase having a NaCl type crystal structure and an Al x2 Ti 1-x2 N (0. 5 ⁇ x2 ⁇ 0.95) Sample No. 1 comprising only the first crystal phase including a structure in which phases are alternately stacked. Defects have been confirmed in 18 cutting tools.
  • ⁇ Cutting test 4 Block material welding resistance test ⁇ Sample No. For the cutting tools 8 to 14, 17 and 18, the cutting distance until the flank wear amount (Vb) reaches 0.20 mm is measured according to the cutting conditions of the following cutting test 4 and the final damage form of the cutting edge is observed. . The results are shown in Table 10.
  • the hard film has a Ti 1-x1 Al x1 N (0.1 ⁇ x1 ⁇ 0.5) phase having a NaCl type crystal structure and an Al x2 Ti 1-x2 N (0. 5 ⁇ x2 ⁇ 0.95)
  • Sample No. 1 comprising only the first crystal phase including a structure in which phases are alternately stacked. Defects have been confirmed in 18 cutting tools. Sample No. other than that Chipping has been confirmed in the cutting tools 8 to 14 and 17.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drilling Tools (AREA)
  • Milling, Broaching, Filing, Reaming, And Others (AREA)

Abstract

 2つの第1結晶相と、2つの第1結晶相の間に配置された第2結晶相とを含み、2つの第1結晶相は、それぞれ独立に、塩化ナトリウム型の結晶構造を有するTi1-x1Alx1N相と塩化ナトリウム型の結晶構造を有するAlx2Ti1-x2N相とが交互に積層された積層構造を含み、Ti1-x1Alx1N相のAl組成比x1は、0.5≦x1≦0.75の関係を満たし、Alx2Ti1-x2N相のAl組成比x2は、0.75<x2≦0.95の関係を満たし、積層構造はTi1-x1Alx1N相とAlx2Ti1-x2N相との積層方向においてAl濃度が周期的に変化する箇所を含み、当該箇所においてAl組成比x2の最大値とAl組成比x1の最小値との差が0.25よりも大きく、第2結晶相は、ウルツ鉱型の結晶構造を有するAlNを含む硬質被膜である。

Description

硬質被膜、切削工具および硬質被膜の製造方法
 本発明は、硬質被膜、切削工具および硬質被膜の製造方法に関する。
 従来より、超硬合金からなる切削工具を用いて、鋼および鋳物などの切削加工が行われている。このような切削工具は、切削加工時において、その刃先が高温および高圧などの過酷な環境に曝されるため、刃先が摩耗したり、欠けたりするといった問題が生じる場合が多く、その切削性能には課題がある。
 そこで、切削工具の切削性能の改善を目的として、超硬合金などの基材の表面を被覆する被膜の開発が進められている。なかでも、チタン(Ti)とアルミニウム(Al)と窒素(N)との化合物(以下、「TiAlN」ともいう。)からなる被膜は、高い硬度を有することができるとともに、Alの含有割合を高めることによって耐酸化性を高めることができる。このような被膜によって切削工具を被覆することにより、切削工具の性能の改善が可能であることから、当該被膜のさらなる開発が期待されている。
 たとえば、特許文献1には、プラズマ励起を行わずにCVD(Chemical Vapor Deposition)により作成されたTi1-xAlxN硬質被膜を少なくとも1つ有する硬質被膜が開示されている。Ti1-xAlxN硬質被膜は、x>0.75~x=0.93の化学量論係数および0.412nm~0.405nmの格子定数afccを有する立方晶NaCl構造の単相の層として存在しているか、またはTi1-xAlxN硬質被膜は、その主要な相がx>0.75~x=0.93の化学量論係数および0.412nm~0.405nmの格子定数afccを有する立方晶NaCl構造を有するTi1-xAlxNからなっている。また、別の相として、Ti1-xAlxNがウルツ鉱構造および/またはNaCl構造のTiNxとして含有されている多相の層であり、Ti1-xAlxN硬質被膜の塩素含有率が0.05~0.9原子%の範囲となっている。非特許文献1にも同様の技術が開示されている。
 また、非特許文献2には、反応ガスをAlCl3、TiCl4、N2およびNH3とし、キャリアガスをH2として、圧力3kPaおよび温度800℃の条件で、WC-Co等の基板上にCVD法により成長させた厚さ5μmのTi0.05Al0.95N膜が開示されている。非特許文献2のTi0.05Al0.95N膜は、自己組織化された立方晶のTiN(c-TiN)とウルツ鉱型のAlN(w-AlN)とが交互に積層されたナノ積層構造と、w-AlNと立方晶のAlN(c-AlN)とからなる分離領域とを有している。ナノ積層構造において、c-TiNの(110)面とw-AlNの(100)面とが平行となっている。また、非特許文献2のTi0.05Al0.95N膜を構成するw-AlNと、c-AlN(c-Al(Ti)N)と、c-TiNとの比率は、それぞれ、53%、26%および21%となっている。また、非特許文献2には、Ti0.05Al0.95N膜の硬度が約28GPaであり、c-Al(Ti)Nの圧縮残留応力が-1.2±0.1GPaであることも開示されている。
 また、非特許文献3には、自己組織化されたc-TiNとw-AlNとが交互に積層されたナノ積層構造を有するTi0.05Al0.95N膜の耐酸化性についての評価が開示されている。非特許文献3の記載によれば、Ti0.05Al0.95N膜を700℃~1200℃で1時間空気中で酸化したところ、1050℃まではTi0.05Al0.95N膜は良好な耐酸化性を有していたが、1100℃を超えると局所的な表面の劣化が生じたとされている。また、非特許文献3には、1050℃までの温度においてはTi0.05Al0.95N膜の約29GPaの硬度および-2GPaの圧縮残留応力が維持されることが開示されている。
 さらに、特許文献2には、AlCl3ガス、TiCl4ガス、NH3ガス、H2ガスおよびN2ガスを圧力1.3kPa、温度800℃の反応容器内に導入し、その後、基材の温度が200℃になるまで10℃/minの冷却速度で反応容器を冷却することによって、厚さ2nmの面心立方格子(fcc)構造のTiNと厚さ6nmのfcc構造のAlNとが交互に積層された構造の硬質被膜をCVD法で形成する方法が開示されている(特許文献2の段落[0062]および[0063]参照)。
特表2008-545063号公報 特開2014-129562号公報
I. Endler et al., "Novel aluminum-rich Ti1-xAlxN coatings by LPCVD", Surface & Coatings Technology 203 (2008) 530-533 J. Keckes et al., "Self-organized periodic soft-hard nanolamellae in polycrystalline TiAlN thin films", Thin Solid Films 545 (2013) 29-32 J. Todt et al., "Superior oxidation resistance, mechanical properties and residual stresses of an Al-rich nanolamellar Ti0.05Al0.95N coating prepared by CVD", Surface & Coatings Technology xxx (2014) xxx-xxx
 しかしながら、特許文献1および非特許文献1に記載のTi1-xAlxN硬質被膜は、Ti1-xAlxN硬質被膜中のxが0.7よりも大きく大きな歪が生じているために立方晶としては準安定であり、高温に曝された場合にはウルツ鉱型構造に相転移して硬度が低下することがあった。そのため、特許文献1および非特許文献1に記載のTi1-xAlxN硬質被膜を切削工具に用いた場合には、切削加工時の擦過熱によりウルツ鉱型構造に相転移して硬度が低下するため、Ti1-xAlxN硬質被膜の耐摩耗性が低下する。その結果、特に低速切削においては、Ti1-xAlxN硬質被膜のチッピングが生じ、切削工具の長寿命化を図ることができない。
 また、非特許文献2および非特許文献3に記載のTi0.05Al0.95N膜は、自己組織化されたc-TiNとw-AlNとが交互に積層されたナノ積層構造を有しているため、特許文献1および非特許文献1のような切削加工時の擦過熱によりウルツ鉱型構造に相転移して硬度が低下するといった問題は生じない。しかしながら、非特許文献2および非特許文献3に記載のTi0.05Al0.95N膜のナノ積層構造中には、c-TiNよりも低硬度のw-AlNがc-TiNよりも多く含まれていることから、Ti0.05Al0.95N膜全体の硬度が低くなる。そのため、非特許文献2および非特許文献3に記載のTi0.05Al0.95N膜においても耐摩耗性を十分に高くすることができず、切削工具の長寿命化を図ることができない。
 さらに、特許文献2においては、硬質被膜がfcc構造のTiNとfcc構造のAlNとが交互に積層された構造のみから構成されていることから、硬質被膜の硬度は非常に高く、硬質被膜の耐摩耗性は高い。しかしながら、特許文献2に記載の硬質被膜を切削工具に用いた場合には、高速切削でチッピングが生じたり被削材によっては突発的に欠損が生じることがあり、切削工具の長寿命化を図ることができないことがあった。その理由は明らかではないが、fcc構造のTiNとfcc構造のAlNとの間には積層方向の格子不整合に起因してfcc構造のAlNに引張残留応力が生じていることによるものと推測される。すなわち、fcc構造のAlNの格子定数は0.412nm~0.405nm程度であり、fcc構造のTiNの格子定数は0.424nm程度であって、fcc構造のTiNとfcc構造のAlNとが交互に積層された構造がナノレベルの超多層構造を構成している。そのため、格子定数の小さいfcc構造のAlNは常に格子定数の大きいfcc構造のTiNに整合しなければならないことから、fcc構造のAlNに引張残留応力が生じる。上記のチッピングや欠損は、fcc構造のAlNの引張残留応力に起因するものと考えられる。
 したがって、未だ、長寿命の切削工具の実現には至っておらず、その開発が要望されている。
 本発明の一態様に係る硬質被膜は、2つの第1結晶相と、前記2つの第1結晶相の間に配置された第2結晶相と、を含み、前記2つの第1結晶相は、それぞれ独立に、塩化ナトリウム型の結晶構造を有するTi1-x1Alx1N相と塩化ナトリウム型の結晶構造を有するAlx2Ti1-x2N相とが交互に積層された積層構造を含み、前記Ti1-x1Alx1N相のAl組成比x1は、0.5≦x1≦0.75の関係を満たし、前記Alx2Ti1-x2N相のAl組成比x2は、0.75<x2≦0.95の関係を満たし、前記積層構造は、前記Ti1-x1Alx1N相と前記Alx2Ti1-x2N相との積層方向においてAl濃度が周期的に変化する箇所を含み、前記箇所において、前記Al組成比x2の最大値と前記Al組成比x1の最小値との差((Al組成比x2の最大値)-(Al組成比x1の最小値);以下同じ。)が0.25よりも大きく、前記第2結晶相は、ウルツ鉱型の結晶構造を有するAlNを含む硬質被膜である。
 本発明の他の一態様に係る切削工具は、基材と、前記基材上の上記の硬質被膜とを含む切削工具である。
 本発明のさらに他の一態様に係る硬質被膜の製造方法は、チタンのハロゲン化物ガスおよびアルミニウムのハロゲン化物ガスを含む第1ガスと、アンモニアガスを含む第2ガスとのそれぞれを基材上に噴出する噴出工程と、前記基材を10℃/分よりも大きな冷却速度で700℃以上750℃以下の温度に冷却する第1冷却工程と、前記基材を700℃以上750℃以下の温度に保持する保持工程と、前記保持工程後に前記基材を冷却する第2冷却工程とを含み、前記第2冷却工程における前記基材の冷却速度は、前記第1冷却工程における前記基材の冷却速度よりも遅い硬質被膜の製造方法である。
 上記によれば、長寿命の切削工具を作製することが可能な硬質被膜、切削工具および硬質被膜の製造方法を提供することができる。
[規則91に基づく訂正 28.04.2016] 
実施形態の切削工具の模式的な断面図である。 図1に示す硬質被膜の一例の模式的な拡大断面図である。 図2に示す1つの第1結晶相の一例の模式的な拡大断面図である。 実施の形態の切削工具の製造に用いられるCVD装置の一例の模式的な断面図である。 実施の形態の切削工具の製造方法の一例のフローチャートである。 AlyTi1-yNのバイノーダル線およびスピノーダル線の一例を模式的に示した図である。 実施形態の切削工具の硬質被膜の透過型電子顕微鏡(TEM)写真である。 図7の実線で取り囲まれた部分のTEMの拡大写真である。 図8の第2結晶相のA領域のTEMによる電子線回折像である。 図8の第1結晶相のB領域のTEMによる電子線回折像である。 実施形態の切削工具の硬質被膜のX線回折(XRD)法によるXRDパターンの一例である。 実施形態の切削工具の硬質被膜のTEM写真である。 (a)は図12のB領域のエネルギー分散型X線分析(EDX)写真であり、(b)は図12のB領域のAl元素のマッピング結果であり、(c)は図12のB領域のN元素のマッピング結果であり、(d)は図12のB領域のTi元素のマッピング結果である。 (a)は図13(a)の拡大写真であり、(b)は(a)に示されるTi1-x1Alx1N相とAlx2Ti1-x2N相との積層方向LG1におけるAl濃度、N濃度およびTi濃度のそれぞれの変化を示す図である。 図14(a)~図14(d)から算出したTi1-x1Alx1N相とAlx2Ti1-x2N相との積層方向におけるTi1-x1Alx1N相とAlx2Ti1-x2N相との積層構造のAl原子数とTi原子数との和に対するAl原子数の割合の変化を示す図である。
 [本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。
 (1)本発明の一態様に係る硬質被膜は、2つの第1結晶相と、前記2つの第1結晶相の間に配置された第2結晶相と、を含み、前記2つの第1結晶相は、それぞれ独立に、塩化ナトリウム型の結晶構造を有するTi1-x1Alx1N相と塩化ナトリウム型の結晶構造を有するAlx2Ti1-x2N相とが交互に積層された積層構造を含み、前記Ti1-x1Alx1N相のAl組成比x1は、0.5≦x1≦0.75の関係を満たし、前記Alx2Ti1-x2N相のAl組成比x2は、0.75<x2≦0.95の関係を満たし、前記積層構造は、前記Ti1-x1Alx1N相と前記Alx2Ti1-x2N相との積層方向においてAl濃度が周期的に変化する箇所を含み、前記箇所において前記Al組成比x2の最大値と前記Al組成比x1の最小値との差が0.25よりも大きく、第2結晶相は、ウルツ鉱型の結晶構造を有するAlNを含む硬質被膜である。このような構成とすることにより、切削時に2つの第1結晶相が受ける衝撃を2つの第1結晶相の間に位置する第2結晶相によって緩和することができるため、切削工具の長寿命化を実現することができる。
 (2)本発明の一態様に係る硬質被膜において、隣り合う前記Ti1-x1Alx1N相の1相当たりの厚さと前記Alx2Ti1-x2N相の1相当たりの厚さとの合計厚さは1nm以上50nm以下であることが好ましい。当該合計厚さが1nm以上である場合には、硬質被膜の作製が容易となる。また、当該合計厚さが50nm以下である場合には、隣り合うTi1-x1Alx1N相とAlx2Ti1-x2N相との界面の歪の緩和、およびAl組成比の高いAlx2Ti1-x2N相の相転移に起因する硬質被膜の耐摩耗性の低下を抑制することができる。
 (3)本発明の一態様に係る硬質被膜においては、前記第2結晶相の透過型電子顕微鏡による電子線回折像はリング状のパターンを示し、かつ、前記硬質被膜のX線回折法によるX線回折パターンにおける前記Alx2Ti1-x2N相の(200)面の回折強度P1と前記第2結晶相の(100)面の回折強度P2との和に対する前記回折強度P1の比が0.2以上1以下であることが好ましい。第2結晶相のTEMによる電子線回折像がリング状のパターンを示す場合には、第2結晶相は、きわめて微細なウルツ鉱型の結晶構造のAlN結晶粒を含んでいるため、硬質被膜を切削工具に用いた場合における硬質被膜の耐溶着性を向上することができる。また、(P1)/(P1+P2)の値が0.2以上1以下である場合には、硬質被膜を高硬度と耐溶着性とのバランスに優れた膜とすることができる。
 (4)本発明の一態様に係る硬質被膜においては、前記硬質被膜のナノインデンテーション法による押し込み硬さが30GPa以上であることが好ましい。硬質被膜のナノインデンテーション法による押し込み硬さが30GPa以上である場合には、硬質被膜の耐摩耗性が向上し、特に硬質被膜を備えた切削工具を用いて、耐熱合金などの難削材の切削加工を行う際に優れた性能を発揮することができる。
 (5)本発明の一態様に係る硬質被膜においては、前記Alx2Ti1-x2N相の圧縮残留応力の絶対値が0.3GPa以上3GPa以下であることが好ましい。Alx2Ti1-x2N相の圧縮残留応力の絶対値が0.3GPa以上3GPa以下である場合には、硬質被膜の耐摩耗性を高くすることができるため、耐チッピング性および耐欠損性を向上させることができる。
 (6)本発明の一態様に係る切削工具は、基材と、前記基材上の上記のいずれかの硬質被膜とを含む切削工具である。このような構成とすることにより、切削時に2つの第1結晶相が受ける衝撃を2つの第1結晶相の間に位置する第2結晶相によって緩和することができるため、切削工具の長寿命化を実現することができる。
 (7)本発明の一態様に係る硬質被膜の製造方法は、チタンのハロゲン化物ガスおよびアルミニウムのハロゲン化物ガスを含む第1ガスと、アンモニアガスを含む第2ガスとのそれぞれを基材上に噴出する噴出工程と、前記基材を10℃/分よりも大きな冷却速度で700℃以上750℃以下の温度に冷却する第1冷却工程と、前記基材を700℃以上750℃以下の温度に保持する保持工程と、前記保持工程後に前記基材を冷却する第2冷却工程とを含み、前記第2冷却工程における前記基材の冷却速度は、前記第1冷却工程における前記基材の冷却速度よりも遅い硬質被膜の製造方法である。このような構成とすることにより、切削時に2つの第1結晶相が受ける衝撃を2つの第1結晶相の間に位置する第2結晶相によって緩和することができ、長寿命化を実現することができる切削工具を製造することができる。
 (8)本発明の一態様に係る硬質被膜の製造方法において、前記保持工程において前記基材は30分以上300分以下の時間だけ保持されることが好ましい。このような構成とすることにより、第1結晶相および第2結晶相を含む硬質被膜を好適に形成することができる。
 (9)本発明の一態様に係る硬質被膜の製造方法において、前記第2冷却工程において、前記基材は5℃/分以上10℃/分以下の冷却速度で、200℃よりも高く400℃以下の温度に冷却されることが好ましい。このような構成とすることにより、第1結晶相および第2結晶相を含む硬質被膜を好適に形成することができる。
 (10)本発明の一態様に係る硬質被膜の製造方法において、前記第1ガスは塩化水素ガスをさらに含むことが好ましい。この場合には、硬質被膜の耐摩耗性を向上させることができる傾向にある。
 [本発明の実施形態の詳細]
 以下、実施形態について説明する。なお、実施形態の説明に用いられる図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。
 <切削工具>
 図1に、実施形態の切削工具の模式的な断面図を示す。図1に示すように、実施形態の切削工具は、基材11と、基材11上に設けられた被膜50とを備えている。被膜50は、下地膜20と、下地膜20上に設けられた硬質被膜30とを備えている。
 <硬質被膜>
 図2に、図1に示す硬質被膜30の一例の模式的な拡大断面図を示す。図2に示すように、硬質被膜30は、2つの第1結晶相21と、隣り合う2つの第1結晶相21の間に配置された第2結晶相22とを含んでいる。本実施形態において、第1結晶相21と第2結晶相22との界面においては、第1結晶相21と第2結晶相22とが互いの相の原子を含まずに完全に分離していてもよく、第1結晶相21のTi原子の一部が第2結晶相22に含まれていてもよく、第2結晶相22のAl原子の一部が第1結晶相21に含まれていてもよい。なお、硬質被膜30は、第1結晶相21を少なくとも2つ含んでいればよく、第1結晶相21を3つ以上含んでいてもよい。
 <第1結晶相>
 図3に、図2に示す1つの第1結晶相21の一例の模式的な拡大断面図を示す。図3に示すように、第1結晶相21は、塩化ナトリウム(NaCl)型の結晶構造を有するTi1-x1Alx1N相21aと、NaCl型の結晶構造を有するAlx2Ti1-x2N相21bとが交互に積層された積層構造を含んでいる。ここで、Ti1-x1Alx1N相21aのAl組成比x1は0.5≦x1≦0.75の関係を満たし、Alx2Ti1-x2N相のAl組成比x2は0.75<x2≦0.95の関係を満たしている。また、積層構造は、Ti1-x1Alx1N相とAlx2Ti1-x2N相との積層方向においてAl濃度が周期的に変化する箇所を含み、当該箇所において、Al組成比x2の最大値とAl組成比x1の最小値との差が0.25よりも大きくなっている。ここで、切削工具の長寿命化を図る観点からは、当該箇所におけるAl組成比x2の最大値とAl組成比x1の最小値との差は0.27よりも大きいことが好ましく、0.3よりも大きいことがより好ましい。
 本実施形態において、Ti1-x1Alx1N相21aとAlx2Ti1-x2N相21bとの界面においては、Ti1-x1Alx1N相21aとAlx2Ti1-x2N相21bとが互いの相の原子を含まずに完全に分離していてもよく、Ti1-x1Alx1N相21aの原子の一部がAlx2Ti1-x2N相21bに含まれていてもよく、Alx2Ti1-x2N相21bの原子の一部がTi1-x1Alx1N相21aに含まれていてもよい。
 なお、Al濃度は、Ti1-x1Alx1N相21aとAlx2Ti1-x2N相21bとの積層構造の任意の1点の総原子数に対するAlの原子数の割合でEDX等により測定することができる。また、Al濃度が周期的に変化するとは、Ti1-x1Alx1N相とAlx2Ti1-x2N相との積層方向において連続するAl濃度の増加と減少とを周期の1セットとしたとき、Ti1-x1Alx1N相21aとAlx2Ti1-x2N相21bとの積層構造に少なくとも2セット以上の周期が存在することを意味する。また、Ti1-x1Alx1N相21aとAlx2Ti1-x2N相21bとの積層構造のTi1-x1Alx1N相21aとAlx2Ti1-x2N相21bとの積層方向において、Al濃度は、たとえば正弦波等の形状に周期的に変化し得る。
 また、第1結晶相21のTi1-x1Alx1N相21aおよびAlx2Ti1-x2N相21bがそれぞれ塩化ナトリウム型の結晶構造を有していることについては、TEMを用いた観察により確認することができる。
 また、第1結晶相21のTi1-x1Alx1N相21aおよびAlx2Ti1-x2N相21bの組成(構成元素の種類および構成元素の構成比率)については、EDXまたは3次元アトムプローブ電界イオン顕微鏡分析により求めることができる。
 第1結晶相21において、隣り合うTi1-x1Alx1N相21aの1相当たりの厚さt1とAlx2Ti1-x2N相21bの1相当たりの厚さt2との合計厚さt3は、1nm以上50nm以下であることが好ましい。当該合計厚さt3が1nm以上である場合には、硬質被膜30の作製が容易となる。また、当該合計厚さt3が50nm以下である場合には、隣り合うTi1-x1Alx1N相21aとAlx2Ti1-x2N相21bとの界面の歪の緩和、およびAl組成比の高いAlx2Ti1-x2N相21bの相転移に起因する硬質被膜30の耐摩耗性の低下を抑制することができる。
 なお、第1結晶相21において、隣り合うTi1-x1Alx1N相21aの1相とAlx2Ti1-x2N相21bの1相との少なくとも1組の合計厚さが1nm以上50nm以下であればよいが、隣り合うTi1-x1Alx1N相21aの1相とAlx2Ti1-x2N相21bの1相とのすべての組の合計厚さが1nm以上50nm以下であることが耐摩耗性に優れた硬質被膜30を安定して作製する観点からは好ましい。
 また、Ti1-x1Alx1N相21aの1相当たりの厚さt1およびAlx2Ti1-x2N相21bの1相当たりの厚さt2とは、それぞれ、基材11の表面上に硬質被膜30を形成し、基材11の表面上に形成された硬質被膜30の断面をSTEMを用いたSTEM高角度散乱暗視野法(HAADF-STEM:High-Angle Annular Dark-field Scanning Transmission Electron Microscopy)で観察することにより測定することができる。
 <第2結晶相>
 第2結晶相22は、ウルツ鉱型の結晶構造を有するAlNを含んでいる。上述のようにウルツ鉱型の結晶構造を有するAlNは一般に低硬度であるが、本実施形態においては、ウルツ鉱型の結晶構造を有するAlNを含む第2結晶相22は硬質被膜30の耐摩耗性の向上に寄与する第1結晶相21の衝撃緩和の機能を発現させる。これが、硬質被膜30を切削工具に用いた場合の切削工具の長寿命化に寄与する。
 なお、第2結晶相22の存在は、TEMを用いた観察により確認することができる。
 <基材>
 基材11としては、たとえば、炭化タングステン(WC)基超硬合金、サーメット、高速度鋼、セラミックス、立方晶型窒化ホウ素焼結体またはダイヤモンド焼結体などを用いることができるが、特にこれらに限定されるものではない。
 <下地膜>
 下地膜20としては、基材11と硬質被膜30との接合強度を高くすることが可能な膜を用いることができ、たとえば、窒化チタン(TiN)膜、炭窒化チタン(TiCN)膜またはTiN膜とTiCN膜との積層膜などを用いることができる。
 <切削工具>
 実施形態の切削工具としては、基材11と、基材11上の硬質被膜30とを含むものであれば特に限定されないが、たとえば、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマまたはタップなどを挙げることができる。
 <製造方法>
 図4に、実施の形態の切削工具の製造に用いられるCVD装置の一例の模式的な断面図を示す。図4に示すように、CVD装置10は、基材11を設置するための基材セット治具12の複数と、基材セット治具12を被覆する耐熱合金鋼製の反応容器13とを備えている。また、反応容器13の周囲には、反応容器13内の温度を制御するための調温装置14が設けられている。
 反応容器13には、隣接して接合された第1ガス導入管15と第2ガス導入管17とを有するガス導入管16が反応容器13の内部の空間を鉛直方向に延在して回転可能に設けられている。ガス導入管16においては、第1ガス導入管15に導入されたガスと、第2ガス導入管17に導入されたガスとがガス導入管16の内部で混合しない構成とされている。また、第1ガス導入管15および第2ガス導入管17とのそれぞれの一部には、第1ガス導入管15および第2ガス導入管17のそれぞれの内部を流れるガスを基材セット治具12に設置された基材11上に噴出させるための複数の貫通孔が設けられている。
 さらに、反応容器13には、反応容器13の内部のガスを外部に排気するためのガス排気管18が設けられており、反応容器13の内部のガスは、ガス排気管18を通過して、ガス排気口19から反応容器13の外部に排出される。
 図5に、実施の形態の切削工具の製造方法の一例のフローチャートを示す。図5に示すように、実施の形態の切削工具の製造方法は、噴出工程(S10)と、第1冷却工程(S20)と、保持工程(S30)と、第2冷却工程(S40)とを含んでおり、S10、S20、S30およびS40の順に行われる。なお、実施の形態の切削工具の製造方法には、S10、S20、S30およびS40以外の工程が含まれていてもよいことは言うまでもない。また、以下においては、説明の便宜のため、基材11上に硬質被膜30を形成する場合について説明するが基材11上に下地膜20等の他の膜を形成してから硬質被膜30を形成してもよいことは言うまでもない。
 <噴出工程>
 噴出工程(S10)は、Tiのハロゲン化物ガスおよびAlのハロゲン化物ガスを含む第1ガスと、アンモニア(NH3)ガスを含む第2ガスとを基材11上に噴出することにより行われる。
 噴出工程(S10)は、たとえば以下のようにして行うことができる。まず、調温装置14によって反応容器13の内部の温度を上昇させることにより、反応容器13の内部の基材セット治具12に設置された基材11の温度をたとえば820℃~860℃に上昇させる。また、反応容器13の内部の圧力は、たとえば1kPa~2.5kPaとされる。
[規則91に基づく訂正 28.04.2016] 
 次に、ガス導入管16を軸を中心にして回転させながらTiのハロゲン化物ガスおよびAlのハロゲン化物ガスを含む第1ガスをガス導入管15に導入し、NH3ガスを含む第2ガスをガス導入管17に導入する。これにより、第1ガスと第2ガスとが均一化された混合ガスを基材11の表面に向かって噴出させることができる。その結果、基材11上において、第1ガスに含まれるガス成分および第2ガスに含まれるガス成分が化学反応することによって、基材11上にAlとTiとNとを含む溶融液(以下、「AlyTi1-yN」という。)がCVD法により形成される。
 ここで、Tiのハロゲン化物ガスとしては、たとえば四塩化チタン(TiCl4)ガスなどを用いることができる。また、Alのハロゲン化物ガスとしては、たとえば三塩化アルミニウム(AlCl3)ガスなどを用いることができる。
 また、第1ガスは、Tiのハロゲン化物ガスおよびAlのハロゲン化物ガスを含むとともに、塩化水素(HCl)ガスをさらに含むことが好ましい。この場合には、硬質被膜30の耐摩耗性を向上させることができる傾向にある。また、第1ガスおよび第2ガスは、それぞれ、たとえば窒素ガス(N2ガス)および/または水素ガス(H2ガス)等のキャリアガスを含んでいてもよい。
 <第1冷却工程>
 噴出工程(S10)の後には第1冷却工程(S20)が行われる。第1冷却工程(S20)は、たとえば、調温装置14の設定温度を調節して、基材11を10℃/分よりも大きな冷却速度で700℃以上750℃以下の温度に冷却することにより行うことができる。
[規則91に基づく訂正 28.04.2016] 
 基材11の冷却速度を10℃/分よりも大きくすることによって、第1冷却工程(S20)におけるウルツ鉱型の結晶構造のAlNの形成を抑制することができる。また、第1冷却工程(S20)におけるウルツ鉱型の結晶構造のAlNの形成を抑制する観点からは、第1冷却工程(S20)における冷却速度は、15℃/分以上であることが好ましい。また、第1冷却工程(S20)における基材11の冷却速度の上限は、硬質被膜30の密着性を向上させる観点からは、30℃/分以下とすることが好ましい。
 また、第1冷却工程(S20)において基材11が最終的に冷却される温度を700℃以上750℃以下とすることによって、後述の保持工程(S30)において、Ti1-x1Alx1N相21aとAlx2Ti1-x2N相21bとの交互積層構造を含む第1結晶相21を好適に形成することができる。なお、第1冷却工程(S20)において基材11を700℃未満に冷却した場合には、保持工程(S30)においてAlx2Ti1-x2N相21bの代わりに閃亜鉛鉱型のAlN相が形成されることがあり、750℃を超えると原子が動きやすくなるため第1結晶相21と第2結晶相22との混晶が形成されることがある。
 <保持工程>
 第1冷却工程(S20)の後には保持工程(S30)が行われる。保持工程(S30)は、たとえば、調温装置14の設定温度を調節して、基材11の温度を700℃以上750℃以下に保持することにより行うことができる。この保持工程(S30)において、AlyTi1-yNの相分離によって、Ti1-x1Alx1N相21aとAlx2Ti1-x2N相21bとの交互積層構造を有する第1結晶相21を形成し、成長させることができる。
 保持工程(S30)における基材11の温度の保持時間は、所望とするTi1-x1Alx1N相21aの厚さおよびAlx2Ti1-x2N相21bの厚さに応じて適宜設定することができるが、30分以上300分以下の時間とすることが好ましい。基材11の温度の保持時間を30分以上とすることによって第1結晶相21が機能を十分に発現できる程度にTi1-x1Alx1N相21aおよびAlx2Ti1-x2N相21bを十分に成長させることができる。また、基材11の温度の保持時間を300分以下とすることによって、Ti1-x1Alx1N相21aおよびAlx2Ti1-x2N相21bを成長させすぎず、後述の第2冷却工程(S40)においてウルツ鉱型の結晶構造のAlNを含む第2結晶相22を形成することができる傾向にある。
 なお、本実施形態において、保持工程(S30)における基材11の温度は必ずしも完全に一定の温度とする必要はなく、700℃以上750℃以下の範囲内であれば基材11の温度を変動させてもよい。
 <第2冷却工程>
 保持工程(S30)の後には第2冷却工程(S40)が行われる。第2冷却工程(S40)は、たとえば、調温装置14の設定温度を調節して、基材11の温度を低下させることにより行うことができる。
 第2冷却工程(S40)における基材11の冷却速度は、第1冷却工程(S20)における基材11の冷却速度よりも遅く、第2冷却工程(S40)においてウルツ鉱型の結晶構造のAlNを含む第2結晶相22が形成することができる程度の速度とすることができる。
 第2冷却工程(S40)における基材11の冷却速度は、硬質被膜30の硬度の低下を抑制する観点からは、5℃/分以上10℃/分以下の冷却速度であることが好ましい。
 第2冷却工程(S40)において、基材11が最終的に冷却される温度は、200℃よりも高く400℃以下とすることが好ましい。第2冷却工程(S40)において基材11が最終的に冷却される温度が200℃よりも高く400℃以下である場合には、ウルツ鉱型の結晶構造のAlNを含む第2結晶相22を十分に形成することができる。
 図6に、AlyTi1-yNのバイノーダル線およびスピノーダル線の一例を模式的に示す。図6の横軸がAlyTi1-yNのAl組成比yを示しており、図6の横軸の右方向に進むほどAlyTi1-yNのAl組成比yの値が大きくなる。また、図6の縦軸が基材11の温度[℃]を示しており、図6の縦軸の上方向に進むほど基材11の温度が高くなる。
 以下、図6を参照して、噴出工程(S10)、第1冷却工程(S20)、保持工程(S30)および第2冷却工程(S40)における第1結晶相および第2結晶相の形成メカニズムの一例を推測する。
 まず、AlyTi1-yNのAl組成比yが0.75となるようにガスを調製し、噴出工程(S10)において当該ガスを基材上に噴出させる。これにより、基材上にAlyTi1-yNがCVD法により形成されるが、AlyTi1-yNが形成された直後の状態が図6のα点で示されている。図6のα点において、基材11の温度はたとえば820℃~860℃である。
 次に、第1冷却工程(S20)において基材11が10℃/分よりも大きな冷却速度で急速に冷却され、基材11の最終的な温度が700℃とされる。このときの状態が図6のβ点で示されている。第1冷却工程(S20)において、基材11が10℃/分よりも大きな冷却速度で急速に冷却されるため、バイノーダル線41を一気に突き抜けて、スピノーダル線42の下方の領域のβ点の温度(700℃)まで低下させられる。
 ここで、バイノーダル線41の下方の領域は遅い冷却速度で冷却した場合に熱的平衡相であるウルツ鉱型の結晶構造のAlNが形成される領域を示している。また、スピノーダル線42の下方の領域は、速い冷却速度で冷却した場合にAlyTi1-yNの相分離によって非熱的平衡相であるNaCl型の結晶構造のTi1-x1Alx1N相21aとAlx2Ti1-x2N相21bとが形成される領域を示している。そのため、第1冷却工程(S20)においては、ウルツ鉱型の結晶構造のAlNの形成を抑制して、基材11の温度をTi1-x1Alx1N相21aとAlx2Ti1-x2N相21bとが形成される温度にまで導くことができる。
 次に、保持工程(S30)において、基材11の温度が700℃以上750℃以下の温度に保持される。保持工程(S30)においては、AlyTi1-yNの相分離によって、NaCl型の結晶構造のTi1-x1Alx1N相21aとNaCl型の結晶構造のAlx2Ti1-x2N相21bとに分離し、これらが交互に積層された構造を含む第1結晶相21が形成される。また、保持工程(S30)における基材11の保持時間に応じてTi1-x1Alx1N相21aおよびAlx2Ti1-x2N相21bの厚さが決定される。
[規則91に基づく訂正 28.04.2016] 
 次に、第2冷却工程(S40)において、基材11が第1冷却工程(S20)における冷却速度よりも遅く、かつウルツ鉱型の結晶構造のAlNが形成される程度の5℃/分以上10℃/分以下の冷却速度で400℃までゆっくり冷却される。第2冷却工程(S40)における基材11の最終的な状態が図6のγ点で示されている。
 第2冷却工程(S40)においては、基材11がゆっくり冷却されていることから、ウルツ鉱型の結晶構造のAlNを含む第2結晶相22が形成される。
 以上のようにして、NaCl型の結晶構造を有するTi1-x1Alx1N相21aとNaCl型の結晶構造を有するAlx2Ti1-x2N相21bとが交互に積層された構造を含む第1結晶相21と、ウルツ鉱型の結晶構造のAlNを含む第2結晶相22とを含む硬質被膜30が基材11上に形成されて、実施形態の切削工具が作製される。
 <硬質被膜の特性>
 ≪TEMおよびXRD≫
 図7に、上記のようにして作製された実施形態の切削工具の硬質被膜30のTEM写真を示し、図8に、図7の実線で取り囲まれた部分のTEMの拡大写真を示す。
 図7および図8に示すように、硬質被膜30の一部の領域には、NaCl型の結晶構造を有するTi1-x1Alx1N相21aとNaCl型の結晶構造を有するAlx2Ti1-x2N相21bとが交互に積層された構造を有する第1結晶相21が存在しているとともに、2つの第1結晶相21の間に配置されたウルツ鉱型の結晶構造のAlNを含む第2結晶相22が存在していることが確認された。
 図9に、図8の第2結晶相22のA領域のTEMによる電子線回折像を示し、図10に、図8の第1結晶相21のB領域のTEMによる電子線回折像を示す。図9に示すように、第2結晶相22のA領域のTEMによる電子線回折像はリング状のパターンを示しているが、図10に示すように、第1結晶相21のB領域のTEMによる電子線回折像はドット状のパターンを示している。これは、第2結晶相22においては、第1結晶相21よりも微細な結晶粒が複数形成されていることを示している。
 さらに、第2結晶相22のTEMによる電子線回折像がリング状のパターンを示すことに加えて、硬質被膜30のXRD法によるXRDパターンにおけるAlx2Ti1-x2N相21bの(200)面の回折強度P1と、第2結晶相22の(100)面の回折強度P2との和に対する回折強度P1の比((P1)/(P1+P2))が0.2以上1以下であることが好ましい。第2結晶相22のTEMによる電子線回折像がリング状のパターンを示す場合には、第2結晶相22は、きわめて微細なウルツ鉱型の結晶構造のAlN結晶粒を含んでいるため、硬質被膜30を切削工具に用いた場合における硬質被膜30の耐溶着性を向上することができる。また、(P1)/(P1+P2)の値が0.2以上1以下である場合には、硬質被膜30を高硬度と耐溶着性とのバランスに優れた膜とすることができる。ここで、切削工具の長寿命化を図る観点からは、(P1)/(P1+P2)の値は0.95以下であることがより好ましく、0.9以下であることがさらに好ましい。
 図11に、硬質被膜30のXRD法によるXRDパターンの一例を示す。図11の横軸が回折角2θ[°]を示し、図11の縦軸が回折強度[cps(count per second)]を示している。図11に示すXRDパターンにおいては、Alx2Ti1-x2N相21bの(200)面の回折強度P1と第2結晶相22の(100)面の回折強度P2との和に対する回折強度P1の比((P1)/(P1+P2))は0.87であって、0.2以上1以下の範囲内に含まれている。
 なお、Alx2Ti1-x2N相21bの(200)面の回折強度P1は、硬質被膜30のXRDパターンの横軸の2θの43°以上45°以下の範囲内に現れる回折ピークの強度である。また、第2結晶相22の(100)面の回折強度P2は、硬質被膜30のXRDパターンの横軸の2θの32°以上35°以下の範囲内に現れる回折ピークの強度である。
 図12に、上記のようにして作製された実施形態の切削工具の硬質被膜30のTEM写真を示す。また、図13(a)に図12の第1結晶相21のB領域のEDX写真を示し、図13(b)に図12のB領域のAl元素のマッピング結果を示し、図13(c)に図12のB領域のN元素のマッピング結果を示し、図13(d)に図12のB領域のTi元素のマッピング結果を示す。
 図14(a)に図13(a)の拡大写真を示し、図14(b)に図14(a)に示されるTi1-x1Alx1N相21aとAlx2Ti1-x2N相21bとの積層方向LG1においてEDXにより測定されたAl濃度、N濃度およびTi濃度のそれぞれの変化を示す。図14(b)に示すように、実施形態の切削工具の硬質被膜30の第1結晶相21のB領域においては、Ti1-x1Alx1N相21aとAlx2Ti1-x2N相21bとの積層構造が、Ti1-x1Alx1N相21aとAlx2Ti1-x2N相21bとの積層方向において、Al濃度が周期的に変化する箇所を含んでいることが確認された。なお、図14(b)の横軸がTi1-x1Alx1N相21aとAlx2Ti1-x2N相21bとの積層方向における測定開始点からの距離[nm]を示し、図14(b)の縦軸がAl、NおよびTiのそれぞれの濃度[原子%]を示す。
 また、図15に、図14(a)~図14(d)のEDXによる測定結果から算出されたTi1-x1Alx1N相21aとAlx2Ti1-x2N相21bとの積層構造のTi1-x1Alx1N相21aとAlx2Ti1-x2N相21bとの積層方向におけるAl原子数とTi原子数との和に対するAl原子数の割合の変化を示す。なお、図15の横軸がTi1-x1Alx1N相21aとAlx2Ti1-x2N相21bとの積層方向における測定開始点からの距離[nm]を示し、図15の縦軸がAl原子数とTi原子数との和に対するAl原子数の割合を示す。
 図15に示すように、実施形態の硬質被膜のTi1-x1Alx1N相21aとAlx2Ti1-x2N相21bとの積層構造のTi1-x1Alx1N相21aとAlx2Ti1-x2N相21bとの積層方向においては、Alx2Ti1-x2N相21bのAl組成比x2の最大値(図15に示す例ではX2,6)とTi1-x1Alx1N相21aのAl組成比x1の最小値(X1,7)との差は0.25よりも大きくなることが確認された。また、図15に示すように、Al組成比x2の最大値(図15に示す例ではX2,6)を有するAlx2Ti1-x2N相21bとその両隣のAlx2Ti1-x2N相21bの間隔はそれぞれ20nmおよび21nmであった。
 ≪押し込み硬さ≫
 硬質被膜30のナノインデンテーション法による押し込み硬さは30GPa以上であることが好ましい。硬質被膜30のナノインデンテーション法による押し込み硬さが30GPa以上である場合には、硬質被膜30の耐摩耗性が向上し、特に硬質被膜30を備えた切削工具を用いて、耐熱合金などの難削材の切削加工を行う際に優れた性能を発揮することができる。
[規則91に基づく訂正 28.04.2016] 
 硬質被膜30のナノインデンテーション法による押し込み硬さは、ナノインデンテーション法が利用可能な超微小押し込み硬さ試験機(たとえば、(株)エリオニクス社製)を用いて硬質被膜30の厚さ方向に垂直に所定の荷重(たとえば25mN)で圧子を押し込んだときの荷重を圧子と硬質被膜30との接触面積で除することによって算出される。
 ≪圧縮残留応力≫
 Alx2Ti1-x2N相21bの圧縮残留応力の絶対値は0.3GPa以上3GPa以下であることが好ましい。Alx2Ti1-x2N相21bの圧縮残留応力の絶対値が0.3GPa以上3GPa以下である場合には、硬質被膜30の耐摩耗性を高くすることができるため、耐チッピング性および耐欠損性を向上させることができる。なお、Alx2Ti1-x2N相21bの圧縮残留応力は、隣り合うTi1-x1Alx1N相21aの1つ当たりの厚さt1とAlx2Ti1-x2N相21bの1つ当たりの厚さt2との合計厚さt3を調節することによって、0.3GPa以上3GPa以下とすることができる。
 ここで、「圧縮残留応力」とは、Alx2Ti1-x2N相21bに存する内部応力(固有ひずみ)の一種であって、「-」(マイナス)の数値(単位:実施形態では「GPa」を使う)で表される応力をいう。このため、圧縮残留応力が大きいという概念は、上記数値の絶対値が大きくなることを示し、また、圧縮残留応力が小さいという概念は、上記数値の絶対値が小さくなることを示す。
 Alx2Ti1-x2N相21bの圧縮残留応力は、X線応力測定装置を用いたsin2ψ法により測定することができる。このようなX線を用いたsin2ψ法は、多結晶材料の残留応力の測定方法として広く用いられているものであり、たとえば、「X線応力測定法」(日本材料学会、1981年株式会社養賢堂発行)の54~67頁に詳細に説明されている方法を用いることができる。
 ≪不純物≫
 硬質被膜30は、塩素(Cl)、酸素(O)および炭素(C)からなる群から選択された少なくとも1種の不純物を含んでいてもよく、含んでいなくてもよい。
 ≪硬質被膜の総厚≫
 図1に示す硬質被膜30の総厚T1は、1μm以上20μm以下であることが好ましい。硬質被膜30の総厚T1が1μm以上である場合には、硬質被膜30の特性が顕著に向上する傾向にある。硬質被膜30の総厚T1が20μm以下である場合には、硬質被膜30の特性の向上に大きな変化が見られる傾向にある。硬質被膜30の特性を向上させる観点からは、硬質被膜30の総厚T1は、2μm以上15μm以下であることがより好ましく、3μm以上10μm以下であることがさらに好ましい。
 <被膜>
 被膜50は、硬質被膜30以外の膜を含んでいてもよい。被膜50に含まれる硬質被膜30以外の膜としては、上述した下地膜20以外にも、たとえば、Ti、ZrおよびHfからなる群から選択された少なくとも1つと、N、O、C、B、CN、BN、COおよびNOからなる群から選択された少なくとも1つとの化合物からなる膜を含んでいてもよい。また、被膜50は、耐酸化膜として、α-Al23膜およびκ-Al23膜の少なくとも一方を含んでいてもよい。たとえば、被膜50は、最表面の最外膜として、硬質被膜30以外の他の膜を含んでいてもよい。また、被膜50は、下地膜20を含んでいなくてもよい。
 被膜50の総厚T2は、3μm以上30μm以下であることが好ましい。被膜50の総厚T2が3μm以上である場合には、被膜50の特性が好適に発揮される傾向にある。被膜50の総厚T2が30μm以下である場合には、切削加工時の被膜50の剥離を抑制することができる傾向にある。被膜50の特性を好適に発揮するとともに、切削中の被膜50の剥離を抑制する観点からは、被膜50の総厚T2は、5μm以上20μm以下であることがより好ましく、7μm以上15μm以下であることがさらに好ましい。
 <作用効果>
 実施形態の硬質被膜30は、NaCl型の結晶構造を有するTi1-x1Alx1N(0.5≦x1≦0.75)相21aとNaCl型の結晶構造を有するAlx2Ti1-x2N(0.75<x2≦0.95)相21bとが交互に積層された積層構造の第1結晶相21を少なくとも2つ含んでいる。また、当該積層構造は、Ti1-x1Alx1N相21aとAlx2Ti1-x2N相21bとの積層方向においてAl濃度が周期的に変化する箇所を含んでおり、当該箇所において、Al組成比x2の最大値とAl組成比x1の最小値との差が0.25よりも大きくなっている。さらに、当該積層構造は、2つの第1結晶相21の間に配置されたウルツ鉱型の結晶構造を有するAlNを含む第2結晶相22を含んでいる。
 このように、第1結晶相21に含まれるTi1-x1Alx1N相21aおよびAlx2Ti1-x2N相21bの双方が硬度に優れた立方晶系をとるとともに、Ti1-x1Alx1N相21aとAlx2Ti1-x2N相21bとが交互に積層された積層構造がTi1-x1Alx1N相21aとAlx2Ti1-x2N相21bとの積層方向においてAl濃度が周期的に変化する箇所を含み、当該箇所において、Al組成比x2の最大値とAl組成比x1の最小値との差が0.25よりも大きくなっていることによって硬質被膜30の優れた耐摩耗性が発現する。一方、2つの第1結晶相21の間に低硬度のウルツ鉱型の結晶構造を有するAlNを含む第2結晶相22が設けられていることによって、切削時に2つの第1結晶相21が受ける衝撃を2つの第1結晶相21の間に位置する第2結晶相22によって緩和することができる。これにより実施形態の硬質被膜30を備えた切削工具においては、切削工具の長寿命化を実現することができる。
 また、実施形態の硬質被膜30は、噴出工程(S10)において基材上にAlyTi1-yNを形成し、第1冷却工程(S20)で基材11を10℃/分よりも大きな冷却速度で700℃以上750℃以下の温度に冷却した後に保持工程(S30)で基材を700℃以上750℃以下の温度に保持することによって第1結晶相を形成し、その後、第2冷却工程(S40)で第1冷却工程(S20)よりも遅い冷却速度で冷却することによりはじめて形成されるものであり、このような冷却速度の異なる2段階の冷却工程を硬質被膜の形成に用いることすら当業者には自明ではないと考える。すなわち、製造効率の観点からは、たとえば特許文献2に記載されるように1回の冷却工程のみによって硬質被膜を製造するのが通常であり、また、実施形態の2段階の冷却工程によって2つの高硬度の第1結晶相21の間に低硬度の第2結晶相22を含む構造が形成され、この構造が切削工具の長寿命化につながることは当業者には全く自明ではないと考える。
 以下における被膜の各膜の厚さは、STEMを用いたSTEM高角度散乱暗視野法で被膜の断面を観察することにより測定されている。また、以下における被膜の各膜の組成は、3次元アトムプローブ電界イオン顕微鏡分析により求めている。また、以下における硬質被膜の第1結晶相および第2結晶相の存在はTEMを用いた観察により確認している。また、以下におけるTi1-x1Alx1N相のAl組成比x1の最小値およびAlx2Ti1-x2N相のAl組成比x2の最大値はEDXにより算出している。また、以下における((x2の最大値)-(x1の最小値))は、Alx2Ti1-x2N相のAl組成比x2の最大値とTi1-x1Alx1N相のAl組成比x1の最小値との差を求めることによって算出している。また、以下における硬質被膜の隣り合うTi1-x1Alx1N相とAlx2Ti1-x2N相の合計厚さの平均値は、TEMを用いた観察により、隣り合うTi1-x1Alx1N相の1つ当たりの厚さとAlx2Ti1-x2N相の1つ当たりの厚さとを求め、その合計厚さの平均値を算出したものである。また、以下における電子線回折像パターンは、硬質被膜の第2結晶相のTEMを用いた電子線回折像により電子線回折像パターンを求めたものである。また、以下におけるP1/(P1+P2)は硬質被膜のXRDパターンにおけるAlx2Ti1-x2N相の(200)面の回折強度P1と第2結晶相の(100)面の回折強度P2とから算出している。また、以下における硬質被膜の硬度は、(株)エリオニクス社製の超微小押し込み硬さ試験機を用いて硬質被膜のナノインデンテーション法による押し込み硬さ(Hv)を測定したものである。さらに、以下のAlx2Ti1-x2N相の圧縮残留応力の絶対値は、X線応力測定装置を用いたsin2ψ法により算出している。
 <切削工具の作製>
 ≪基材の準備≫
 まず、被膜を形成させる対象となる基材として、以下の表1に示す基材Kおよび基材Lを準備する。具体的には、まず、表1に記載の配合組成(質量%)からなる原料粉末を均一に混合する。表1中の「残り」とは、WCが配合組成(質量%)の残部を占めることを示している。次に、この混合粉末を所定の形状に加圧成形した後に、1300~1500℃で1~2時間焼結することにより、超硬合金からなる基材K(基材形状:CNMG120408NUX)および基材L(基材形状:SEET13T3AGSN-G)を得る。
 なお、CNMG120408NUXおよびSEET13T3AGSN-Gの2種類の基材形状は、それぞれ、住友電工ハードメタル株式会社製のものであり、CNMG120408NUXは旋削用の刃先交換型切削チップの形状であり、SEET13T3AGSN-Gは転削(フライス)用の刃先交換型切削チップの形状である。
Figure JPOXMLDOC01-appb-T000001
 ≪被膜の作製:試料No.1~18≫
 基材Kまたは基材Lの表面上に、表2の被膜の構成の欄に示される下地膜、硬質被膜および最外膜を形成することによって、基材Kまたは基材Lの表面上に被膜が形成して切削工具(試料No.1~18)を作製する。なお、試料No.1~14の切削工具が実施例であり、試料No.15~18の切削工具が比較例である。
Figure JPOXMLDOC01-appb-T000002
 表2において、下地膜は基材の表面と直接接する膜であり、硬質被膜は下地膜上に形成された膜であり、最外膜は硬質被膜上に形成された膜であって外部に露出する膜である。また、表2の化合物の記載は、表2の下地膜、硬質被膜および最外膜を構成する化合物であり、化合物の右の括弧は膜の厚さを意味している。また、表2の1つの欄内に2つの化合物(たとえば、「TiN(0.5)-TiCN(2.5)」)が記載されている場合には、左側(「TiN(0.5)」)の化合物が基材の表面に近い側に位置する膜であることを意味し、右側(「TiCN(2.5)」)の化合物が基材の表面から遠い側に位置する膜であることを意味しており、括弧の中の数値はそれぞれの膜の厚さを意味している。また、表2の「-」で示される欄は、膜が存在しないことを意味する。
 たとえば、表2の試料No.1の切削工具は、基材Kの表面上に0.5μmの厚さのTiN膜および2.5μmの厚さのTiCN膜がこの順序に積層されて下地膜が形成され、その上に後述する形成条件aで形成された6.0μmの厚さの硬質被膜が形成され、硬質被膜上には最外膜が形成されていない被膜を有しているとともに、被膜全体の厚さが9.0μmである切削工具を意味している。
 表2に示す下地膜および最外膜は、従来公知のCVD法によって形成された膜であり、その形成条件は表3に示す通りである。たとえば、表3の「TiN(下地膜)」の行には、下地膜としてのTiN膜の形成条件が示されている。表3のTiN膜(下地膜)の記載は、CVD装置の反応容器内(反応容器内の環境は6.7kPa、915℃)に基材を配置し、反応容器内に2体積%のTiCl4ガス、39.7体積%のN2ガスおよび残り58.3体積%のH2ガスからなる混合ガスを圧力6.7kPaおよび温度915℃の雰囲気に44.7L/分の流量で噴出することにより形成されることを意味している。なお、各形成条件によって形成される各膜の厚さは、各反応ガスを噴出する時間によって制御している。
Figure JPOXMLDOC01-appb-T000003
 また、表2に示される硬質被膜は、図4に示されるCVD装置10を用いて、表4および表5に示す形成条件a~iのいずれかの条件で作製される。たとえば、表4および表5の形成条件aの記載は、以下のように硬質被膜を形成することを示している。
 まず、表4のaの欄の基材温度(820℃)、反応容器内圧力(1.5kPa)、総ガス流量(50L/分)およびガス組成(TiCl4:0.2体積%、AlCl3:0.7体積%、NH3:2.8体積%、HCl:0.3体積%、N2:35.4体積%、H2:残り)の条件で基材上にAlyTi1-yNを形成した後に、表5に示す15℃/分の冷却速度で基材を750℃まで冷却する第1冷却工程を行う。その後、基材を750℃で90分間保持する保持工程を行った後に、8℃/分の冷却速度で基材を400℃に冷却する第2冷却工程を行う。
 以上のようにして形成される表2に示す試料No.1~14の硬質被膜においては、NaCl型の結晶構造を有するTi1-x1Alx1N(0.5≦x1≦0.75)相とNaCl型の結晶構造を有するAlx2Ti1-x2N(0.75<x2≦0.95)相とが交互に積層された積層構造の第1結晶相を少なくとも2つ含むとともに、2つの第1結晶相の間に配置されたウルツ鉱型の結晶構造を有するAlNを含む第2結晶相が形成される。また、表2に示す試料No.1~14の硬質被膜においては、当該積層構造が、Ti1-x1Alx1N相とAlx2Ti1-x2N相との積層方向においてAl濃度が周期的に変化する箇所を含んでおり、当該箇所において、Al組成比x2の最大値とAl組成比x1の最小値との差が0.25よりも大きくなっている。なお、表6に、試料No.1~14の硬質被膜のTi1-x1Alx1N(0.5≦x1≦0.75)相のAl組成比x1の最小値およびAlx2Ti1-x2N(0.75<x2≦0.95)相のAl組成比x2の最大値を示す。
 なお、表4および表5の形成条件hの記載は、以下のように硬質被膜を形成することを示している。
[規則91に基づく訂正 28.04.2016] 
 まず、表4のhの欄の基材温度(800℃)、反応容器内圧力(3kPa)、総ガス流量(60L/分)およびガス組成(TiCl4:0.15体積%、AlCl3:0.9体積%、NH3:3.3体積%、HCl:0体積%、N2:40体積%、H2:残り)の条件で基材上にAlyTi1-yNを形成する。その後、表5に示す3.5℃/分の冷却速度で基材を400℃まで冷却する。
 以上のようにして形成される表2に示す試料No.15、17の硬質被膜においては、NaCl型の結晶構造を有するTi1-x1Alx1N(0.5≦x1≦0.75)相は形成されず、NaCl型の結晶構造を有するAlx2Ti1-x2N(0.75<x2≦0.95)相と、ウルツ鉱型の結晶構造を有するAlNを含む第2結晶相とが形成される。なお、表6に、試料No.15、17の硬質被膜のAlx2Ti1-x2N(0.5<x2≦0.95)相のAl組成比x2の最大値0.85を示す。
 なお、表4および表5の形成条件iの記載は、以下のように硬質被膜を形成することを示している。
[規則91に基づく訂正 28.04.2016] 
 まず、表4のiの欄の基材温度(800℃)、反応容器内圧力(1kPa)、総ガス流量(60L/分)およびガス組成(TiCl4:0.25体積%、AlCl3:0.65体積%、NH3:2.7体積%、HCl:0体積%、N2:40体積%、H2:残り)の条件で基材上にAlyTi1-yNを形成する。その後、表5に示す10℃/分の冷却速度で基材を400℃まで冷却する。
 以上のようにして形成される表2に示す試料No.16、18の硬質被膜においては、NaCl型の結晶構造を有するTi1-x1Alx1N(0.1≦x1≦0.5)相とNaCl型の結晶構造を有するAlx2Ti1-x2N(0.5<x2≦0.95)相とが交互に積層された構造を含む第1結晶相のみが形成され、ウルツ鉱型の結晶構造を有するAlNを含む第2結晶相は形成されていない。なお、表6に、試料No.16、18の硬質被膜のTi1-x1Alx1N(0.1≦x1≦0.5)相のAl組成比x1の最小値0.25およびAlx2Ti1-x2N(0.5<x2≦0.95)相のAl組成比x2の最大値0.95を示す。
[規則91に基づく訂正 28.04.2016] 
 また、表6に、表4の形成条件a~iの条件で形成された硬質被膜の特性を示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 <切削試験>
 上記のようにして作製される試料No.1~18の切削工具を用いて、以下の切削試験1~4を行う。
 ≪切削試験1:丸棒外周高速切削試験≫
 試料No.1~7、15および16の切削工具について、以下の切削試験1の切削条件により逃げ面摩耗量(Vb)が0.20mmとなるまでの切削時間を測定するとともに刃先の最終損傷形態を観察する。その結果を表7に示す。
 なお、表7~表10の切削時間の欄の数値が大きいほど、切削工具が長寿命であることを示している。また、表7~表10の最終損傷形態の記載が、摩耗、チッピングおよび欠損の順に被膜の耐摩耗性が優れていることを示している。なお、表7~表10の最終損傷形態において、「摩耗」はチッピングおよび欠けを生じずに摩耗のみで構成される損傷形態(平滑な摩耗面を有する)を意味し、「チッピング」は仕上げ面を生成する切れ刃部に生じた微小な欠けを意味し、「欠損」は切れ刃部に生じた大きな欠けを意味している。
 ≪切削試験1の切削条件≫
 被削材:FCD450丸棒
 周速:300m/min
 送り速度:0.15mm/rev
 切込み量:1.0mm
 切削液:有り
Figure JPOXMLDOC01-appb-T000007
 表7に示すように、試料No.1~7の切削工具は、高速切削において、試料No.15および16の切削工具と比べて長寿命であることが確認されている。
[規則91に基づく訂正 28.04.2016] 
 また、硬質被膜がNaCl型の結晶構造を有するTi1-x1Alx1N(0.1≦x1≦0.5)相とNaCl型の結晶構造を有するAlx2Ti1-x2N(0.5<x2≦0.95)相とが交互に積層された構造を含む第1結晶相のみからなる試料No.16の切削工具には、チッピングが確認されている。
 ≪切削試験2:丸棒外周低速切削試験≫
 試料No.1~7、15および16の切削工具について、以下の切削試験2の切削条件により逃げ面摩耗量(Vb)が0.20mmとなるまでの切削時間を測定するとともに刃先の最終損傷形態を観察する。その結果を表8に示す。
 ≪切削試験2の切削条件≫
 被削材:SCM415
 周速:100m/min
 送り速度:0.15mm/rev
 切込み量:1.0mm
 切削液:有り
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、試料No.1~7の切削工具は、低速切削においても、試料No.15および16の切削工具と比べて長寿命であることが確認されている。
[規則91に基づく訂正 28.04.2016] 
 また、硬質被膜が、NaCl型の結晶構造を有するAlx2Ti1-x2N(0.5<x2≦0.95)相と、ウルツ鉱型の結晶構造を有するAlNを含む第2結晶相とからなる試料No.15の切削工具には、チッピングが確認されている。
 ≪切削試験3:ブロック材耐溶着性試験≫
 試料No.8~14、17および18の切削工具について、以下の切削試験3の切削条件により逃げ面摩耗量(Vb)が0.20mmとなるまでの切削距離を測定するとともに刃先の最終損傷形態を観察する。その結果を表9に示す。
 ≪切削試験3の切削条件≫
 被削材:A5083Pブロック材
 周速:300m/min
 送り速度:0.3mm/s
 切込み量:2.0mm
 切削液:有り
 カッタ:WGC4160R(住友電工ハードメタル株式会社製)
Figure JPOXMLDOC01-appb-T000009
 表9に示すように、試料No.8~14の切削工具は、高速切削において、試料No.17および18の切削工具と比べて長寿命であることが確認されている。
 また、硬質被膜が、NaCl型の結晶構造を有するTi1-x1Alx1N(0.1≦x1≦0.5)相とNaCl型の結晶構造を有するAlx2Ti1-x2N(0.5<x2≦0.95)相とが交互に積層された構造を含む第1結晶相のみからなる試料No.18の切削工具には欠損が確認されている。
 ≪切削試験4:ブロック材耐溶着性試験≫
 試料No.8~14、17および18の切削工具について、以下の切削試験4の切削条件により逃げ面摩耗量(Vb)が0.20mmとなるまでの切削距離を測定するとともに刃先の最終損傷形態を観察する。その結果を表10に示す。
 ≪切削試験4の切削条件≫
 被削材:S45Cブロック材
 周速:160m/min
 送り速度:0.3mm/s
 切込み量:2.0mm
 切削液:なし
 カッタ:WGC4160R(住友電工ハードメタル株式会社製)
Figure JPOXMLDOC01-appb-T000010
 表10に示すように、試料No.8~14の切削工具は、切削試験4においても、試料No.17および18の切削工具と比べて長寿命であることが確認されている。
 また、硬質被膜が、NaCl型の結晶構造を有するTi1-x1Alx1N(0.1≦x1≦0.5)相とNaCl型の結晶構造を有するAlx2Ti1-x2N(0.5<x2≦0.95)相とが交互に積層された構造を含む第1結晶相のみからなる試料No.18の切削工具には欠損が確認されている。それ以外の試料No.8~14および17の切削工具には、チッピングが確認されている。
 以上のように本発明の実施形態および実施例について説明を行なったが、上述の各実施形態および各実施例の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
[規則91に基づく訂正 28.04.2016] 
 10 CVD装置、11 基材、12 基材セット治具、13 反応容器、14 調温装置、15 第1ガス導入管、16 ガス導入管、17 第2ガス導入管、18 ガス排気管、19 ガス排気口、20 下地膜、21 第1結晶相、21a Ti1-x1Alx1N層、21b Alx2Ti1-x2N層、22 第2結晶相、30 硬質被膜、41 バイノーダル線、42 スピノーダル線、50 被膜。

Claims (10)

  1.  2つの第1結晶相と、
     前記2つの第1結晶相の間に配置された第2結晶相と、を含み、
     前記2つの第1結晶相は、それぞれ独立に、塩化ナトリウム型の結晶構造を有するTi1-x1Alx1N相と塩化ナトリウム型の結晶構造を有するAlx2Ti1-x2N相とが交互に積層された積層構造を含み、
     前記Ti1-x1Alx1N相のAl組成比x1は、0.5≦x1≦0.75の関係を満たし、
     前記Alx2Ti1-x2N相のAl組成比x2は、0.75<x2≦0.95の関係を満たし、
     前記積層構造は、前記Ti1-x1Alx1N相と前記Alx2Ti1-x2N相との積層方向においてAl濃度が周期的に変化する箇所を含み、
     前記箇所において、前記Al組成比x2の最大値と前記Al組成比x1の最小値との差が0.25よりも大きく、
     前記第2結晶相は、ウルツ鉱型の結晶構造を有するAlNを含む、硬質被膜。
  2.  隣り合う前記Ti1-x1Alx1N相の1相当たりの厚さと前記Alx2Ti1-x2N相の1相当たりの厚さとの合計厚さは、1nm以上50nm以下である、請求項1に記載の硬質被膜。
  3.  前記第2結晶相の透過型電子顕微鏡による電子線回折像はリング状のパターンを示し、かつ、
     前記硬質被膜のX線回折法によるX線回折パターンにおける前記Alx2Ti1-x2N相の(200)面の回折強度P1と前記第2結晶相の(100)面の回折強度P2との和に対する前記回折強度P1の比が0.2以上1以下である、請求項1または請求項2に記載の硬質被膜。
  4.  前記硬質被膜のナノインデンテーション法による押し込み硬さが30GPa以上である、請求項1~請求項3のいずれか1項に記載の硬質被膜。
  5.  前記Alx2Ti1-x2N相の圧縮残留応力の絶対値が0.3GPa以上3GPa以下である、請求項1~請求項4のいずれか1項に記載の硬質被膜。
  6.  基材と、
     前記基材上の請求項1~請求項5のいずれか1項に記載の硬質被膜と、を含む、切削工具。
  7.  チタンのハロゲン化物ガスおよびアルミニウムのハロゲン化物ガスを含む第1ガスと、アンモニアガスを含む第2ガスとのそれぞれを基材上に噴出する噴出工程と、
     前記基材を10℃/分よりも大きな冷却速度で700℃以上750℃以下の温度に冷却する第1冷却工程と、
     前記基材を700℃以上750℃以下の温度に保持する保持工程と、
     前記保持工程後に前記基材を冷却する第2冷却工程とを含み、
     前記第2冷却工程における前記基材の冷却速度は、前記第1冷却工程における前記基材の冷却速度よりも遅い、硬質被膜の製造方法。
  8.  前記保持工程において前記基材は30分以上300分以下の時間だけ保持される、請求項7に記載の硬質被膜の製造方法。
  9.  前記第2冷却工程において、前記基材は5℃/分以上10℃/分以下の冷却速度で、200℃よりも高く400℃以下の温度に冷却される、請求項7または請求項8に記載の硬質被膜の製造方法。
  10.  前記第1ガスは、塩化水素ガスをさらに含む、請求項7~請求項9のいずれか1項に記載の硬質被膜の製造方法。
PCT/JP2015/077696 2015-01-14 2015-09-30 硬質被膜、切削工具および硬質被膜の製造方法 WO2016113956A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15877908.2A EP3091102B1 (en) 2015-01-14 2015-09-30 Cutting tool and method for making the same
US15/117,359 US10434580B2 (en) 2015-01-14 2015-09-30 Hard coating, cutting tool, and method for producing hard coating
CN201580014264.5A CN106103793B (zh) 2015-01-14 2015-09-30 硬质覆膜、切削工具以及硬质覆膜的制造方法
KR1020167023731A KR102475051B1 (ko) 2015-01-14 2015-09-30 경질 피막, 절삭 공구 및 경질 피막의 제조 방법
US16/559,282 US20200030887A1 (en) 2015-01-14 2019-09-03 Hard coating, cutting tool, and method for producing hard coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015005295A JP6120229B2 (ja) 2015-01-14 2015-01-14 硬質被膜、切削工具および硬質被膜の製造方法
JP2015-005295 2015-01-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/117,359 A-371-Of-International US10434580B2 (en) 2015-01-14 2015-09-30 Hard coating, cutting tool, and method for producing hard coating
US16/559,282 Continuation US20200030887A1 (en) 2015-01-14 2019-09-03 Hard coating, cutting tool, and method for producing hard coating

Publications (1)

Publication Number Publication Date
WO2016113956A1 true WO2016113956A1 (ja) 2016-07-21

Family

ID=56405513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077696 WO2016113956A1 (ja) 2015-01-14 2015-09-30 硬質被膜、切削工具および硬質被膜の製造方法

Country Status (6)

Country Link
US (2) US10434580B2 (ja)
EP (1) EP3091102B1 (ja)
JP (1) JP6120229B2 (ja)
KR (1) KR102475051B1 (ja)
CN (1) CN106103793B (ja)
WO (1) WO2016113956A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170603A1 (ja) * 2016-03-31 2017-10-05 株式会社タンガロイ 被覆切削工具
WO2017175803A1 (ja) * 2016-04-07 2017-10-12 株式会社タンガロイ 被覆切削工具
CN114173974A (zh) * 2019-10-10 2022-03-11 住友电工硬质合金株式会社 切削工具

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6905807B2 (ja) * 2016-08-29 2021-07-21 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性、耐剥離性を発揮する表面被覆切削工具
JP6481897B2 (ja) * 2016-09-16 2019-03-13 三菱マテリアル株式会社 表面被覆切削工具
US11408065B2 (en) * 2016-12-28 2022-08-09 Sumitomo Electric Industries, Ltd. Coating
WO2018145815A1 (en) * 2017-02-13 2018-08-16 Oerlikon Surface Solutions Ag, Pfäffikon High temperature stable compositionally modulated hard coatings
EP3590637A4 (en) 2017-02-28 2021-04-21 Sumitomo Electric Hardmetal Corp. SURFACE-COATED CUTTING TOOL AND MANUFACTURING METHOD FOR IT
EP3590638B1 (en) 2017-02-28 2024-01-17 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method for manufacturing the same
JP6831448B2 (ja) * 2017-02-28 2021-02-17 住友電工ハードメタル株式会社 表面被覆切削工具およびその製造方法
JP6858346B2 (ja) * 2017-06-26 2021-04-14 三菱マテリアル株式会社 硬質被覆層が優れた耐チッピング性を発揮する表面被覆切削工具
KR102064172B1 (ko) * 2017-09-01 2020-01-09 한국야금 주식회사 내마모성과 인성이 우수한 경질피막
WO2019065682A1 (ja) * 2017-09-29 2019-04-04 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP7063206B2 (ja) * 2017-09-29 2022-05-17 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP7191287B2 (ja) * 2018-03-20 2022-12-19 三菱マテリアル株式会社 硬質被覆層が優れた耐チッピング性を発揮する表面被覆切削工具
JP6565093B1 (ja) * 2018-03-22 2019-08-28 住友電工ハードメタル株式会社 表面被覆切削工具およびその製造方法
JP6565091B1 (ja) * 2018-03-22 2019-08-28 住友電工ハードメタル株式会社 表面被覆切削工具およびその製造方法
JP6565092B1 (ja) * 2018-03-22 2019-08-28 住友電工ハードメタル株式会社 表面被覆切削工具およびその製造方法
CN111886093B (zh) 2018-03-22 2023-01-31 住友电工硬质合金株式会社 表面被覆切削工具及其制造方法
US11326252B2 (en) 2018-03-22 2022-05-10 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and method for manufacturing same
WO2019181133A1 (ja) 2018-03-22 2019-09-26 住友電工ハードメタル株式会社 表面被覆切削工具およびその製造方法
CN111971138B (zh) * 2018-03-22 2023-02-21 住友电工硬质合金株式会社 表面被覆切削工具及其制造方法
WO2020039735A1 (ja) * 2018-08-24 2020-02-27 住友電工ハードメタル株式会社 切削工具
JP7256947B2 (ja) * 2018-10-11 2023-04-13 株式会社不二越 硬質皮膜被覆ドリル
US20220111446A1 (en) * 2018-12-27 2022-04-14 Mitsubishi Materials Corporation Surface-coated cutting tool
WO2021070420A1 (ja) * 2019-10-10 2021-04-15 住友電工ハードメタル株式会社 切削工具
JP6855672B1 (ja) * 2019-10-10 2021-04-07 住友電工ハードメタル株式会社 切削工具
CN114173969B (zh) * 2019-10-10 2024-09-13 住友电工硬质合金株式会社 切削工具
CN114173972B (zh) * 2019-10-10 2024-05-14 住友电工硬质合金株式会社 切削工具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545063A (ja) 2005-07-04 2008-12-11 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ 硬質膜被覆された物体およびその製造方法
JP2011516722A (ja) * 2008-03-12 2011-05-26 ケンナメタル インコーポレイテッド 硬質材料で被覆された物体
JP2013510946A (ja) * 2009-11-12 2013-03-28 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ 金属、超硬合金、サーメット又はセラミックスからの被覆物品並びに該物品の被覆法
JP2014129562A (ja) 2012-12-28 2014-07-10 Sumitomo Electric Hardmetal Corp 表面被覆部材およびその製造方法
JP2014133267A (ja) * 2013-01-08 2014-07-24 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐酸化性、耐チッピング性、耐摩耗性を発揮する表面被覆切削工具

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE526338C2 (sv) * 2002-09-04 2005-08-23 Seco Tools Ab Skär med utskiljningshärdad slitstark refraktär beläggning
US9896767B2 (en) * 2013-08-16 2018-02-20 Kennametal Inc Low stress hard coatings and applications thereof
DE102014103220A1 (de) * 2014-03-11 2015-09-17 Walter Ag TiAIN-Schichten mit Lamellenstruktur
JP6296298B2 (ja) * 2014-08-28 2018-03-20 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP5924507B2 (ja) * 2014-09-25 2016-05-25 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008545063A (ja) 2005-07-04 2008-12-11 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ 硬質膜被覆された物体およびその製造方法
JP2011516722A (ja) * 2008-03-12 2011-05-26 ケンナメタル インコーポレイテッド 硬質材料で被覆された物体
JP2013510946A (ja) * 2009-11-12 2013-03-28 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ 金属、超硬合金、サーメット又はセラミックスからの被覆物品並びに該物品の被覆法
JP2014129562A (ja) 2012-12-28 2014-07-10 Sumitomo Electric Hardmetal Corp 表面被覆部材およびその製造方法
JP2014133267A (ja) * 2013-01-08 2014-07-24 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐酸化性、耐チッピング性、耐摩耗性を発揮する表面被覆切削工具

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"X-sen Ouryoku Sokutei Hou", 1981, YOKENDO CO., LTD., pages: 54 - 67
I. ENDLER ET AL.: "Novel aluminum-rich Ti Al N coatings by LPCVD", SURFACE & COATINGS TECHNOLOGY, vol. 203, 2008, pages 530 - 533
J. KECKES ET AL.: "Self-organized periodic soft-hard nanolamellae in polycrystalline TiAIN thin films", THIN SOLID FILMS, vol. 545, 2013, pages 29 - 32
J. TODT ET AL.: "Superior oxidation resistance, mechanical properties andresidual stresses of an Al-rich nanolamellar Ti Al N coating prepared by CVD", SURFACE & COATINGS TECHNOLOGY, 2014
See also references of EP3091102A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170603A1 (ja) * 2016-03-31 2017-10-05 株式会社タンガロイ 被覆切削工具
JPWO2017170603A1 (ja) * 2016-03-31 2018-12-06 株式会社タンガロイ 被覆切削工具
WO2017175803A1 (ja) * 2016-04-07 2017-10-12 株式会社タンガロイ 被覆切削工具
JPWO2017175803A1 (ja) * 2016-04-07 2018-10-25 株式会社タンガロイ 被覆切削工具
CN114173974A (zh) * 2019-10-10 2022-03-11 住友电工硬质合金株式会社 切削工具
CN114173974B (zh) * 2019-10-10 2024-03-15 住友电工硬质合金株式会社 切削工具

Also Published As

Publication number Publication date
EP3091102B1 (en) 2023-03-22
JP2016130343A (ja) 2016-07-21
EP3091102A4 (en) 2017-09-20
CN106103793B (zh) 2019-06-07
KR102475051B1 (ko) 2022-12-06
US10434580B2 (en) 2019-10-08
US20170021429A1 (en) 2017-01-26
KR20170102798A (ko) 2017-09-12
US20200030887A1 (en) 2020-01-30
EP3091102A1 (en) 2016-11-09
CN106103793A (zh) 2016-11-09
JP6120229B2 (ja) 2017-04-26

Similar Documents

Publication Publication Date Title
JP6120229B2 (ja) 硬質被膜、切削工具および硬質被膜の製造方法
JP6238131B2 (ja) 被膜および切削工具
JP5618429B2 (ja) 表面被覆部材およびその製造方法
JP6344601B2 (ja) 硬質被膜、切削工具および硬質被膜の製造方法
WO2017122448A1 (ja) 表面被覆切削工具およびその製造方法
JP6344602B2 (ja) 硬質被膜、切削工具および硬質被膜の製造方法
JP6349581B2 (ja) 硬質被膜、切削工具および硬質被膜の製造方法
JP6206800B2 (ja) 被膜の製造方法
JP6912032B2 (ja) 切削工具
JP6583762B1 (ja) 表面被覆切削工具及びその製造方法
CN111886093B (zh) 表面被覆切削工具及其制造方法
WO2019181133A1 (ja) 表面被覆切削工具およびその製造方法
JP6143158B2 (ja) 表面被覆部材およびその製造方法
JP6565092B1 (ja) 表面被覆切削工具およびその製造方法
JP6565093B1 (ja) 表面被覆切削工具およびその製造方法
JP6565091B1 (ja) 表面被覆切削工具およびその製造方法
JP6866970B2 (ja) 切削工具及びその製造方法
JP6866969B2 (ja) 切削工具及びその製造方法
JP7135262B1 (ja) 切削工具
JP6866971B2 (ja) 切削工具及びその製造方法
WO2019181135A1 (ja) 表面被覆切削工具およびその製造方法

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2015877908

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015877908

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15117359

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167023731

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE