JP2014132652A - 半導体レーザ素子 - Google Patents

半導体レーザ素子 Download PDF

Info

Publication number
JP2014132652A
JP2014132652A JP2013250740A JP2013250740A JP2014132652A JP 2014132652 A JP2014132652 A JP 2014132652A JP 2013250740 A JP2013250740 A JP 2013250740A JP 2013250740 A JP2013250740 A JP 2013250740A JP 2014132652 A JP2014132652 A JP 2014132652A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
semiconductor layer
layer
substrate
algan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013250740A
Other languages
English (en)
Other versions
JP6197614B2 (ja
Inventor
Takashi Miyoshi
隆 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2013250740A priority Critical patent/JP6197614B2/ja
Publication of JP2014132652A publication Critical patent/JP2014132652A/ja
Application granted granted Critical
Publication of JP6197614B2 publication Critical patent/JP6197614B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/3013AIIIBV compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • H01S5/3213Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities asymmetric clading layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/18Semiconductor lasers with special structural design for influencing the near- or far-field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • H01S5/2031Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers characterized by special waveguide layers, e.g. asymmetric waveguide layers or defined bandgap discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Geometry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】 窒化物半導体からなる基板を用いた半導体レーザ素子において、良好に光を閉じ込め、FFPのリップルを低減することができる半導体レーザ素子を提供する。
【解決手段】 GaNからなる基板の上に、窒化物半導体からなり屈折率が基板よりも高い発光層を有する半導体レーザ素子であって、基板と発光層との間に、基板の側から順に、AlGaNからなる第1窒化物半導体層と、第1窒化物半導体層よりAl組成比が大きいAlGaNからなる第2窒化物半導体層と、InGaNからなる第3窒化物半導体層と、第1窒化物半導体層よりAl組成比が大きいAlGaNからなり、且つ、第2窒化物半導体層より膜厚が大きい第4窒化物半導体層と、を有する。
【選択図】図1

Description

本発明は、半導体レーザ素子に関する。
基板の上に窒化物半導体層を積層した半導体レーザ素子では、活性層を、活性層よりも屈折率の小さい層で挟むことで光を閉じ込めている(例えば、特許文献1及び2)。
特開2003−060314号公報 特開2007−214557号公報
このような窒化物半導体からなる基板を用いた半導体レーザ素子においては、FFP(far field pattern)のリップルのさらなる低減が求められている。このようなリップルは、基板における光の漏れに起因しており、リップルを低減するためには、基板に抜ける光を低減すればよい。
本発明の実施形態の半導体レーザ素子は、
GaNからなる基板の上に、窒化物半導体からなり屈折率が基板よりも高い発光層を有する半導体レーザ素子であって、
基板と発光層との間に、基板の側から順に、
AlGaNからなる第1窒化物半導体層と、
第1窒化物半導体層よりAl組成比が大きいAlGaNからなる第2窒化物半導体層と、
InGaNからなる第3窒化物半導体層と、
第1窒化物半導体層よりAl組成比が大きいAlGaNからなり、且つ、第2窒化物半導体層より膜厚が大きい第4窒化物半導体層と、
を有する。
また、本発明の別の実施形態の半導体レーザ素子は、
AlGaNからなる基板の上に、窒化物半導体からなり屈折率が基板よりも高い発光層を有する半導体レーザ素子であって、
基板と発光層との間に、基板の側から順に、
AlGaNからなる第1窒化物半導体層と、
第1窒化物半導体層よりAl組成比が大きいAlGaNからなる第2窒化物半導体層と、
InGaNからなる第3窒化物半導体層と、
第1窒化物半導体層よりAl組成比が大きいAlGaNからなり、且つ、第2窒化物半導体層より膜厚が大きい第4窒化物半導体層と、
を有する。
本発明によれば、窒化物半導体からなる基板を用いた半導体レーザ素子において、良好に光を閉じ込め、FFPのリップルを低減することができる。
図1は、本発明の一実施形態を説明する模式的な断面図である。 図2は、第1〜4窒化物半導体層の屈折率を示す模式図である。 図3は、本発明の一実施形態における変形例を説明する模式的な断面図である。 図4は、実施例1の半導体レーザ素子の屈折率と電界強度とのシミュレーション結果を示すグラフである。 図5は、比較例1の半導体レーザ素子の屈折率と電界強度とのシミュレーション結果を示すグラフである。 図6は、実施例1および比較例1の半導体レーザ素子の屈折率と電界強度とのシミュレーション結果を示すグラフである。 図7は、実施例1の半導体レーザ素子の垂直方向FFPを示すグラフである。 図8は、比較例1の半導体レーザ素子の垂直方向FFPを示すグラフである。
以下、本件発明の実施形態について図面を参照しながら説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための方法を例示するものであって、本発明を以下の実施形態に特定するものではない。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。
図1は本発明の一実施形態を説明する模式的な断面図であり、半導体レーザ素子100の共振器方向と垂直な方向における断面を示す。半導体レーザ素子100は、窒化物半導体からなる基板1の上に、窒化物半導体からなる発光層を有する。半導体レーザ素子100は、基板1の側から順に、n側窒化物半導体層2と、活性層3と、p側窒化物半導体層4とが設けられている。活性層3は、例えば図2に示すように、障壁層3b,3c,3dと井戸層(発光層)3aとが交互に配置されている。p側窒化物半導体層4の表面にはリッジ4aが設けられ、リッジ4aに対応する活性層3及びその近傍に導波路領域が形成されている。リッジ4aの側面とリッジ4aの側面から連続するp側窒化物半導体層4の表面には第1絶縁膜5aが設けられており、第1絶縁膜5a上には第1絶縁膜5aの一部を被覆する第2絶縁膜5bが設けられている。p側窒化物半導体層4の表面にはp電極6およびパッド電極7が設けられ、基板1の裏面にはn電極8が設けられている。
発光層を含む活性層3と基板1との間には、基板1の側から順に、第1窒化物半導体層21、第2窒化物半導体層22、第3窒化物半導体層23、第4窒化物半導体層24を含む。図2は、各層の屈折率を示す模式図である。なお、図2の模式図は、屈折率を説明するためのものであり、後述する実施例1とは層構成や膜厚が一部異なる。また、p側窒化物半導体層4および第5,6窒化物半導体層25,26は省略した。
図2に示すように、屈折率は、第1〜4窒化物半導体層21〜24のいずれも発光層3aより低いが、その中で第3窒化物半導体層23が最も高い屈折率を有している。さらに、第2窒化物半導体層22および第4窒化物半導体層24の屈折率は、第1窒化物半導体層21の屈折率よりも低い。また、基板1の屈折率は、発光層3aの屈折率より低く、第1窒化物半導体層21の屈折率よりも高い。
図4に、後述する実施例1の半導体レーザ素子における屈折率と電界強度とのシミュレーション結果を示す。図4におけるn側窒化物半導体層2の層構造は、図3に示す層構造と対応しており、図4における横軸は、半導体層の最上面(p電極側)を0nmとしたときの積層方向における膜厚、すなわち、半導体層の最上面(p電極側)を0nmとしたときの深さ方向の位置をその位置より上にある半導体層の膜の厚さで示しており、数字が大きいほど基板に近い。右側の縦軸は屈折率を示し、左側の縦軸は電界強度を示す。電界強度は、最大値を1として相対値で示す。電界強度は光の強度に対応するものであり、基板における電界強度の低減は、基板へ抜ける光の低減を示す。すなわち、基板における電界強度が低くなっていれば、基板へ抜ける光が低減されたことを示す。なお、後述するように、実施例1の半導体レーザ素子では、基板に接して設けられた第6窒化物半導体層26は、基板と同じ屈折率の層であるので、第6窒化物半導体層26と基板間での電界強度差は極めて小さく、第6窒化物半導体層26において電界強度が低減されていれば、同じように基板において電界強度が低減されていると考えることができる。
本実施形態では、基板1の上に第1窒化物半導体層21が設けられ、この第1窒化物半導体層21と発光層との間にさらに第2〜4窒化物半導体層22〜24が特定の順序で設けられている。以上のように構成された実施形態の半導体レーザ素子では、図2に示すような屈折率分布になる。以上の構成において、発光層を含む活性層3からの光は、活性層3とAlGaNからなる低屈折率の第4窒化物半導体層24との屈折率差によって閉じ込められ、さらに、InGaNからなる第3窒化物半導体層23とAlGaNからなる第2窒化物半導体層22との屈折率差によって閉じ込められる。第3窒化物半導体層23は、InGaNからなる高屈折率の層であるので第3窒化物半導体層23内における電界強度の減衰は小さく光が溜まりやすい。このことは、図4の電界強度を示すグラフにおいて、第3窒化物半導体層23に対応する部分でグラフの傾きが小さくなっていることから理解できる。このように、第3窒化物半導体層23を第2窒化物半導体層22の発光層側に設けることで、第3窒化物半導体層23と第2窒化物半導体層22との屈折率差によって光を効果的に閉じ込めることが可能になる。言い換えると、第2窒化物半導体層22を設けたことによる光の閉じ込め量を大きくすることができる。尚、図4に示すように、活性層3と第4窒化物半導体層24の間に、例えば、活性層3との間の屈折率差が小さいInGaNからなる第5窒化物半導体層25を設けた場合であっても、活性層3と第5窒化物半導体層25間の屈折率差が小さいので、発光層を含む活性層3からの光は、第5窒化物半導体層25と第4窒化物半導体層24との屈折率差によって閉じ込められる。以上のように、特定の順序で設けられた第2〜4窒化物半導体層22〜24を含む本実施形態の構成によれば、基板に達する電界強度が効率的に減衰されるので、基板1への光の抜けを低減することができ、FFPのリップルを低減することができる。
本実施形態では、第4窒化物半導体層24の膜厚を第2窒化物半導体層22の膜厚より大きくし、第4窒化物半導体層24と第2窒化物半導体層22との間に第3窒化物半導体層23を配置している。上述のように第3窒化物半導体層23が光の溜まりやすい層であることを利用してFFPのリップルを低減することができるが、一方で、第3窒化物半導体層23を活性層(発光層)の近くに配置すると、電界強度のピーク位置が第3窒化物半導体層23側へ移動し、つまり電界強度のピーク位置が基板1側へ移動する。加えて、第3窒化物半導体層23が電界強度のピークの近くにあるため、第3窒化物半導体層23における電界強度が極めて大きくなる。このため、FFPの対称性が崩れる虞がある。
そこで、本実施形態では、第4窒化物半導体層24の膜厚を第2窒化物半導体層22より大きくし、これらの間に第3窒化物半導体層23を配置する。これによって、第2窒化物半導体層22による光閉じ込め効果を得ることができると共に、第3窒化物半導体層23の活性層(発光層)への過度の接近を防止でき、電界強度ピーク位置の基板1側への移動を抑制することができる。よって、FFPのリップルを効果的に低減することができると共にFFPの対称性を維持することができる。加えて、第4窒化物半導体層24は低屈折率の層であるため、電界強度を第3窒化物半導体層23に到達するまでに減衰させることができ、第3窒化物半導体層23における電界強度の過度の集中を防止することができる。この点も電界強度ピーク位置の基板1側への移動抑制のために好ましい。
また、電界強度のピーク位置が基板1側へ移動すると、ピーク位置の発光層からのずれが大きくなり、発光層における電界強度が小さくなるため、閾値の上昇や量子効率の低下を引き起こすことがある。本実施形態では、上述の構成によって電界強度ピーク位置の基板1側への移動を抑制することができるので、閾値の上昇や量子効率の低下を抑制することができる。
また、半導体層を積層する前の基板1表面には通常、加工時に発生するスクラッチ等のダメージ層、表面汚染による不純物等が存在している。このような基板1上に直接Al組成比が大きいAlGaNを積層すると、AlGaNはAl組成比の増加に伴って表面マイグレーションが低下するために、基板1表面に存在するダメージ層や不純物の影響を受けやすく表面平坦性が悪化する。このような表面平坦性の悪化は、その上に成長される層に影響を及ぼし、レーザ素子の量子効率の低下や、信頼性の低下、歩留まりの低下を引き起こす。そこで、本実施形態では、低屈折率のAlGaN層である第2窒化物半導体層22、つまりAl組成比が大きいAlGaN層である第2窒化物半導体層22の基板1側に、第2窒化物半導体層22よりもAl組成比が小さいAlGaN層である第1窒化物半導体層21を設ける。これによって、基板1表面のスクラッチや不純物等による第2窒化物半導体層22への影響を緩和することができ、その上の発光層側の層へ影響が引き継がれることを抑制できるため、レーザ素子の量子効率低下や信頼性低下、歩留り低下を抑制することができる。
また、基板1と第2窒化物半導体層22の格子定数差が大きいと、クラックが発生しやすい。このため、本実施形態では、GaNからなる基板1とAl組成比が大きいAlGaNからなる第2窒化物半導体層22との間に、基板1の格子定数と第2窒化物半導体層22の格子定数の間の格子定数を有するAl組成比が小さいAlGaN層である第1窒化物半導体層21を設ける。これによって、クラックの発生を抑制することができる。基板1がAlGaNである場合も同様である。つまり、Al組成比が小さいAlGaNからなる基板1とAl組成比が高いAlGaNからなる第2窒化物半導体層22との間に、Al組成比が基板1より大きく第2窒化物半導体層22より小さいAlGaNからなる第1窒化物半導体層21を設けることで、クラックの発生を抑制することができる。
図5は、比較例1の半導体レーザ素子について、屈折率および電界強度のシミュレーション結果を示す図である。比較例1は、実施例1における第3窒化物半導体層23および第2窒化物半導体層22の配置を入れ替えた以外は、実施例1と同様である。また、図6は、図4に示した実施例1の屈折率および電界強度と、図5に示した比較例1の屈折率および電界強度とを1つの図に表したグラフである。図6において、太線が実施例1であり、細線が比較例1である。電界強度は発光強度に対応するものであり、基板における電界強度の低減は、基板へ抜ける光の低減を示す。なお、実施例1および比較例1の半導体レーザ素子では、第6窒化物半導体層26は基板に接して設けられた基板と同じ屈折率の層であるので、第6窒化物半導体層26における電界強度の低減を基板における電界強度の低減とみなすことができる。
尚、実施例1および比較例1において、p側窒化物半導体層4は、活性層側から比較的Al組成比の大きいMgドープのAlGaN層、GaN層、比較的Al組成比の大きいMgドープのAlGaN層、MgドープAlGaN/AlGaN超格子層、MgドープGaN層を備えている。
図6において破線の円で囲み示した部分が、第6窒化物半導体層26における電界強度である。これに着目すると、実施例1の構成とすることで、比較例1の場合よりも第6窒化物半導体層26における電界強度が低減していることがわかる。第6窒化物半導体層26における電界強度の低減はつまり基板における電界強度の低減であって、基板へ抜ける光の低減に対応する。よって、実施例1の構成とすることで、比較例1よりも基板へ抜ける光を低減させることができる。これについてさらに詳しく説明すると、以下のとおりである。
図4〜6に示すように、低屈折率の第2窒化物半導体層22および第4窒化物半導体層24において電界強度が減衰することと、その減衰曲線の傾き(すなわち減衰率)は、実施例1のレーザ素子および比較例1のレーザ素子の間に差はない。また、高屈折率の第3窒化物半導体層23において電界強度が停滞するという傾向は、実施例1および比較例1のレーザ素子に共通している。すなわち、第3窒化物半導体層23において実施例1では、減衰曲線の傾き(減衰率)が小さくなっており、比較例1ではむしろ増加している。しかし、実施例1のレーザ素子は、第2窒化物半導体層22が第3窒化物半導体層23の基板1側に配置されているので、これによって第3窒化物半導体層23に溜まった電界強度を大きく減衰させることができる。したがって、実施例1のレーザ素子は、比較例1よりも、基板1に達するまでに電界強度を低減することができ、基板への光の抜けを低減することが可能となっている。また、実施例1では、第3窒化物半導体層23の発光層側に設ける第4窒化物半導体層24の膜厚を第2窒化物半導体層22よりも厚くしており、電界強度のピーク位置はほぼ移動しておらず、比較例1とほぼ同様の位置で維持されている。
以下、各部材について詳述する。
(基板1)
基板1としては、GaNまたはAlGaNを用いる。典型的にはGaNを用いる。GaNまたはAlGaNのような窒化物半導体基板を用いる場合は、サファイア基板のような異種基板を用いる場合と比較して、基板上に形成された窒化物半導体層と基板との屈折率差が小さいため、窒化物半導体層と基板との屈折率差による光の反射が少なく、光が基板へしみ出しやすい。そこで、本実施形態では、第1〜4窒化物半導体層21〜24を設けることにより窒化物半導体層内に光を閉じ込めて、基板への光の漏れを抑制し、リップルを低減している。
また、基板としてGaN基板またはAlGaN基板を用いる場合に、発振波長(ピーク波長)を480nm以上とするなど長波長化させた半導体レーザ素子では、発光層からの光に対する基板の吸収量が低下し、基板へしみ出した光が基板で吸収されず素子外へ取り出されやすい。これは以下の理由による。つまり、発光層のバンドギャップエネルギーが大きく(InGaN発光層の場合はIn組成比が小さく)、基板とのバンドギャップエネルギー差が小さい場合は、発光層からの光が基板に吸収されやすく、光が基板へしみ出したとしても基板で吸収され、素子外へ取り出され難い。しかし、発光層のバンドギャップエネルギーが小さく(InGaN発光層の場合はIn組成比が大きく)、基板とのバンドギャップエネルギー差が大きいほど、発光層からの光は基板で吸収され難く、基板へしみ出した光は基板で吸収されずに素子外へ取り出されやすい。
よって、発振波長が480nm以上の半導体レーザ素子においてGaN基板またはAlGaN基板を用いる場合は特に、リップル対策として基板への光の漏れを低減することが重要であるので、本実施形態の第1〜4窒化物半導体層21〜24を設けることが好ましい。また、例えば発光層がInGaNであれば、基板としてGaNを用いる場合の方がAlGaNを用いる場合よりも基板と発光層とのバンドギャップエネルギーが近い。つまり、GaN基板を用いる場合の方が、発振波長が480nm以上であるか否かで基板における発光層からの光の吸収量が変化しやすい。このため、GaN基板を用いる場合に本実施形態の第1〜4窒化物半導体層21〜24を設けることがより好ましい。
また、基板1の厚みは、通常、発光層および第1〜4窒化物半導体層21〜24を含む半導体積層部よりも厚い。このため基板1への光の漏れがFFPに影響を与えやすく、本実施形態のように基板1への光の漏れを低減することでFFPのリップルを低減することができる。基板1の厚みは、具体的には30μm以上とすることが好ましく、さらには50μm以上とすることが好ましい。また、基板1の厚みの上限は劈開ができる程度の厚みとすることが好ましく、具体的には150μm以下とすることが好ましく、さらには100μm以下とすることが好ましい。
(第1〜4窒化物半導体層21〜24)
図1に示す半導体レーザ素子では、基板1上に、基板1の側から順に、第1〜4窒化物半導体層21〜24が互いに接して設けられている。第1,2窒化物半導体層21,22はAlGaNからなり、基板1よりも低屈折率である。AlGaNはAl組成比が大きいほど低屈折率である。第2窒化物半導体層22を構成するAlGaNは、第1窒化物半導体層21を構成するAlGaNよりもAl組成比が大きいものとし、第2窒化物半導体層22を低屈折率の層とする。具体的には、第2窒化物半導体層22は、AlGa1−XN(0<X<1)とする。第2窒化物半導体層22は、AlGa1−XN(0.04<X≦0.1)であることが好ましく、さらにはAlGa1−XN(0.06≦X≦0.1)であることが好ましい。第1窒化物半導体層21は、AlGa1−YN(0<Y<X)であり、AlGa1−YN(0<Y≦0.04)であることが好ましい。このような組成範囲は、半導体レーザ素子の発振波長が480nm以上である場合に特に好ましく、さらには好ましくは480〜550nm、より好ましくは505〜550nmのピーク波長のレーザ光を発振する半導体レーザ素子に用いる。また、第4窒化物半導体層24の材料は、第2窒化物半導体層22と同じ組成範囲のAlGaNを用いることができる。さらには、第4窒化物半導体層24および第2窒化物半導体層22は実質的に同じ組成のAlGaNからなる層とすることができる。
第2,4窒化物半導体層22,24に用いるようなAl組成比が大きいAlGaN層を単層で設けて十分な光閉じ込め効果を得ようとすると、ある程度厚くする必要があるが、そうするとクラックが発生しやすい。本実施形態のように第4窒化物半導体層24および第2窒化物半導体層22の2層に分割して設けることで、比較的薄膜で十分な光閉じ込め効果を得ることができる。典型的には、同程度の光閉じ込め効果を得るための膜厚は、第4窒化物半導体層24および第2窒化物半導体層22の合計膜厚が、単層で設ける場合と同程度かそれよりも小さい膜厚でよい。このため、良好に光を閉じ込めるとともに、クラックの発生を抑制することができる。
また、Al組成比が大きいAlGaNからなる第2窒化物半導体層22は、その膜厚を大きくするとクラックが発生しやすい。しかしながら、InGaNからなる第3窒化物半導体層23の上に設けられる第4窒化物半導体層24であれば、第2窒化物半導体層22と同程度にAl組成比が大きいAlGaNとした場合であっても、クラックを発生させずに膜厚を大きくすることができる。よって、リップルの低減およびクラックの発生抑制のためには、第4窒化物半導体層24の膜厚を第2窒化物半導体層22の膜厚よりも大きくすることが好ましく、第4窒化物半導体層24は、第2窒化物半導体層22と同様に、第1窒化物半導体層21よりAl組成比が大きいAlGaNとすることが好ましい。
さらには、2層のAlGaN層に挟まれた第3窒化物半導体層をInGaNとすることで、AlGaN層の応力を緩和することができ、クラックの発生をさらに抑制することができる。第3窒化物半導体層23は、InGa1−ZN(0<Z<1)であり、好ましくはInGa1−ZN(0.02≦Z≦0.06)とする。このような組成範囲は、第2,4窒化物半導体層22,24を上述の組成範囲のAlGa1−XNで構成する場合に特に適している。また、第3窒化物半導体層23は、活性層3を構成する井戸層3a(発光層)がInGa1−aN(0<a<1)であり、最も基板側に配置された障壁層3bがInGa1−bN(0≦b<a)である場合に、InGa1−ZN(b≦Z<a)とすることが好ましい。
半導体レーザ素子が後述する量子井戸構造の活性層3を有する場合には、第1,2,4窒化物半導体層21,22,24は、少なくとも発光層(井戸層3a)よりも屈折率が低い層である。光閉じ込めの効果を得るためには、障壁層3b〜3dよりも屈折率が低い層であることが好ましい。障壁層が複数ある場合には、最も基板側の障壁層3bよりも低屈折率であることが好ましく、障壁層3b〜3dのいずれの層よりも低屈折率であることがさらに好ましい。また、第2,4窒化物半導体層22,24をこのような低屈折率の層とする一方で、第1窒化物半導体層21を障壁層3b〜3dと同程度かそれよりも屈折率が高い層とすることもできる。また、第3窒化物半導体層23は、基板1より屈折率が高く、且つ発光層3aより屈折率が低い層とすることができ、障壁層3b〜3dよりも屈折率が高い層としてもよい。
第1〜4窒化物半導体層21〜24を光を閉じ込めるための層とし、その効果を得るためには、第1〜4窒化物半導体層21〜24をある程度の厚みを有する層とすることが好ましく、具体的にはそれぞれ10nmより大きいことが好ましい。さらに、第2窒化物半導体層22は、100nm以上の膜厚であることが好ましく、1μm以下の膜厚とすることができる。上述の組成範囲のAlGaNを用いる場合は、このような膜厚範囲とすることでクラックの発生を抑制することができる。さらに好ましくは、300nm以上、800nm以下とする。第4窒化物半導体層24の膜厚は、第2窒化物半導体層22と同様の膜厚範囲で設定することができる。このような膜厚範囲とすることで、第2窒化物半導体層22と同様の組成範囲を採用してAl組成比の高いAlGaN層とした場合にクラックの発生を抑制することができるので好ましい。また、第4窒化物半導体層24の膜厚は第2窒化物半導体層22の膜厚よりも大きいことが好ましく、その膜厚の差は、例えば10nm以上、さらには200nm以上とすることができる。
第1窒化物半導体層21は、その膜厚が第2,4窒化物半導体層22,24の少なくとも一方の膜厚よりも大きいことが好ましい。第1窒化物半導体層21は第2窒化物半導体層22よりも高屈折率であるため、好ましくは、第1窒化物半導体層21の膜厚を第2窒化物半導体層22の膜厚よりも大きくし、光の閉じ込め作用を向上させる。第4の窒化物半導体層24に対しても同様であり、第1窒化物半導体層21の膜厚を第4窒化物半導体層24の膜厚より大きくすることで光の閉じ込め作用を向上させることができ、好ましい。さらに好ましくは、第1窒化物半導体層21の膜厚を、第2,4窒化物半導体層22,24の膜厚を合計した合計膜厚よりも大きい膜厚とする。第1窒化物半導体層21の膜厚は、好ましくは100nm以上、さらに好ましくは500nm以上、より一層好ましくは1μm以上とする。また、第1窒化物半導体層21の膜厚は、5μm以下であることが好ましく、さらには3μm以下であることが好ましい。
第3窒化物半導体層23は、光が溜まりやすい程度に大きい膜厚を有することが好ましく、具体的には50nm以上、さらには100nm以上であることが好ましく、1μm以下とすることができる。第3窒化物半導体層23に光を溜めることで、これと接する第2窒化物半導体層22との屈折率差によって効率的に光を閉じ込めることができる。また、第3窒化物半導体層23における光の過度の集中を避けるためには、第3窒化物半導体層23の膜厚は少なくとも第2窒化物半導体層22の膜厚よりも小さいことが好ましく、さらには第1,2,4窒化物半導体層21,22,24のいずれの膜厚よりも小さいことが好ましい。具体的には300nm以下とすることができる。
第1〜4窒化物半導体層21〜24と活性層3との間や、第1〜4窒化物半導体層21〜24と基板1との間に、別の層を設けることもできる。図3は、本実施形態における変形例を説明する模式的な断面図である。図3に示すように、半導体レーザ素子は、第4窒化物半導体層24と活性層3(発光層3a)との間に第5窒化物半導体層25を設けてもよく、また、第1窒化物半導体層21と基板1との間に第6窒化物半導体層26を設けてもよい。第5窒化物半導体層25は、活性層3のうち最も基板側の障壁層3bに接して設けることができ、この障壁層よりもバンドギャップエネルギーの大きい層とすることができる。第6窒化物半導体層26は、基板1と同じ組成とすることができる。
上述のように本実施形態の構成を用いてクラックの発生を抑制することで、基板の採用の幅が広がるという利点もある。GaNなどの窒化物半導体からなる基板としては、例えば高転位密度領域と低転位密度領域とが混在した基板が知られているが、このような基板のうち、高転位密度領域がストライプ状に分布している基板であれば、クラックが発生したとしても高転位密度領域によってその進展が阻止されるため、歩留まりへの影響は小さい。しかし、高転位密度領域がドット状に分布している基板や、高転位密度領域が存在しない基板を用いる場合は、基板中の高転位密度領域の割合が小さいかもしくは存在しないため、クラックが広範囲に進展しやすい。クラックの発生を抑制することによって、このような基板を用いた場合においても、高転位密度領域がストライプ状に分布している基板を用いた場合と同程度の歩留まりを維持することが可能となる。
(n側窒化物半導体層2、p側窒化物半導体層4)
p側窒化物半導体層4は、Mg等のp型不純物が含有されたp型窒化物半導体層を含み、n側窒化物半導体層2は、Si等のn型不純物が含有されたn型窒化物半導体層を含む。第1〜4窒化物半導体層21〜24は、上述したようにある程度の厚みを有することが好ましいため、例えばn側窒化物半導体層2として設ける場合は、Si等のn型不純物が含有されたn型窒化物半導体層であることが好ましい。
(活性層3)
活性層3は発光層を含む層であり、井戸層(発光層)と、これを挟む障壁層とを備えた量子井戸構造とすることが好ましく、例えば図2に示すように、複数の障壁層3b,3c,3dと複数の井戸層3aとが交互に積層された多重量子井戸構造とすることができる。井戸層としては、InGa1−aN(0<a<1)を用いることができ、障壁層としては、井戸層よりバンドギャップエネルギーが大きいInGaN、GaN、又はAlGaN等を用いることができる。
本実施形態の半導体レーザ素子は、その発振波長(ピーク波長)が480nm以上であることが好ましく、さらに好ましくは480〜550nm、より好ましくは505〜550nmとする。ピーク波長が480nm以上のレーザ光を発振するレーザ素子の井戸層としては、InGa1−aN(0.18≦a<1)を用いることが好ましく、ピーク波長が480〜550nmのレーザ光を発振するレーザ素子の井戸層としては、InGa1−aN(0.18≦a≦0.35)を用いることが好ましく、ピーク波長が505〜550nmのレーザ光を発振するレーザ素子の井戸層としては、InGa1−aN(0.2≦a≦0.35)を用いることが好ましい。このとき、障壁層としては、InGa1−bN(0≦b<0.18)を用いることが好ましい。
半導体レーザ素子の発振波長が長くなると、屈折率の波長分散により光を閉じ込めにくくなる。窒化物半導体の波長に対する屈折率の変化は正規分布様であってそのピーク位置は組成によって異なっており、同じ波長域における波長に対する屈折率の変化の度合いは組成によって異なる。例えば、GaNもAl0.1Ga0.9Nも共に、400nmの波長に対する屈折率より500nmの波長に対する屈折率の方が小さいが、その減少の度合いはGaNの方が大きい。つまり、400nmから500nmにかけてGaNの屈折率は大きく減少し、Al0.1Ga0.9Nの屈折率は小さく減少する。GaNの屈折率はAl0.1Ga0.9Nよりも大きいので、波長が長くなるほどGaNとAl0.1Ga0.9Nとの屈折率差は縮小し、400nmの波長に対する場合よりも500nmの波長に対する場合の方が屈折率差は小さくなる。
このような屈折率の波長分散のため、発振波長が長くなるほど各層間の屈折率差を大きくすることが難しく、光閉じ込めが弱くなる傾向がある。よって、本実施形態の構成は特に、発振波長が480nm以上、さらに好ましくは480〜550nm、より好ましくは505〜550nmの半導体レーザ素子に用いることが好ましい。
また、このようなIn組成比が大きいInGaNからなる井戸層を用いる場合には、この井戸層と主な障壁層(例えば膜厚数nm程度のGaN層)との間に、これらの間の格子定数を有するIn組成比小のInGaNを設けることができる。このInGaNの厚みは例えば数オングストローム程度である。また、井戸層の基板側にSiドープ層(例えば膜厚10nm程度のSiドープGaN層)を設ける場合は、このSiドープ層の基板1側に同組成のアンドープ層(例えば膜厚数nm程度のGaN層)を設けることができる。このアンドープ層はSiドープ層で挟まれていてもよい。例えば、基板1上にn型窒化物半導体層を形成後、数百nmのIn0.03Ga0.97N、1nm程度のSiドープGaN、数nmのGaN、10nm程度のSiドープGaN、数オングストロームのIn0.15Ga0.85N、数nmのIn0.25Ga0.75N(井戸層)、数オングストロームのIn0.15Ga0.85N、数nmのGaN、をこの順に形成することができる。
(実施例1)
実施例1として、n型GaN基板上に発光層を有し、ピーク波長が約505nmのレーザ光を発振する半導体レーザ素子を作製した。下面(n型GaN基板の裏面)にはn電極が設けられ、上面にはp電極が設けられている。実施例1の半導体レーザ素子は、基板1の側から順に、SiドープGaN層(第6窒化物半導体層26)、約2000nmのSiドープAl0.018Ga0.982N層(第1窒化物半導体層21)、約400nmのSiドープAl0.08Ga0.92N層(第2窒化物半導体層22)、約150nmのSiドープIn0.05Ga0.95N層(第3窒化物半導体層23)、約600nmのSiドープAl0.08Ga0.92N層(第4窒化物半導体層24)、SiドープGaN層(第5窒化物半導体層25)、SiドープInGaN障壁層、SiドープGaN障壁層、In0.25Ga0.75N井戸層(発光層)、GaN障壁層、In0.25Ga0.75N井戸層(発光層)、InGaN障壁層、MgドープAlGaN層、GaN層、MgドープAlGaN層、MgドープAlGaN/AlGaN超格子層、MgドープGaN層、を備える。
図4および図5に、実施例1および比較例1の半導体レーザ素子の屈折率と電界強度とのシミュレーション結果を示す。比較例1の半導体レーザ素子は、第2窒化物半導体層および第3窒化物半導体層の位置を入れ替えた以外は実施例1と同様である。なお、数nm〜十数nm程度の薄膜であるため図4および図5では判別し難いが、井戸層(発光層)は2層あり、最表面(膜厚0nm近傍)にはMgドープGaN層がある。図4および図5に示すように、第1窒化物半導体層21の下に設けられた第6窒化物半導体層26における電界強度は、実施例1が約2×10−7であり、比較例1が約4.7×10−7である。実施例1の構造とすることで、第6窒化物半導体層26における電界強度を比較例1の半分以下とすることができ、基板への光のしみ出しを低減することができる。
なお、実施例1および比較例1のレーザ素子において、第6窒化物半導体層26はGaN基板の上面に接して設けられたGaN層であり、つまり、基板と接する基板と同じ屈折率の層である。このため、第6窒化物半導体層26による電界強度の変化は極めて小さく、第6窒化物半導体層26における電界強度の低減を基板における電界強度の低減とみなすことができる。
また、実施例1および比較例1の半導体レーザ素子における半導体層積層方向のFFP、つまり活性層3(発光層)に対して垂直方向のFFPを測定した。実施例1の半導体レーザ素子における垂直方向FFPを図7に示し、比較例1の半導体レーザ素子における垂直方向FFPを図8に示す。図7および図8において、左側がp電極側であり、右側がGaN基板側である。比較例1の半導体レーザ素子では20度付近に大きなリップルが確認されたが、実施例1の半導体レーザ素子とすることでリップルを低減することができた。
100 半導体レーザ素子
1 基板
2 n側窒化物半導体層
21 第1窒化物半導体層
22 第2窒化物半導体層
23 第3窒化物半導体層
24 第4窒化物半導体層
25 第5窒化物半導体層
26 第6窒化物半導体層
3 活性層
3a 井戸層(発光層)、3b,3c,3d 障壁層
4 p側窒化物半導体層
4a リッジ
5a 第1絶縁膜、5b 第2絶縁膜
6 p電極
7 パッド電極
8 n電極

Claims (9)

  1. GaNからなる基板の上に、窒化物半導体からなり屈折率が前記基板よりも高い発光層を有する半導体レーザ素子であって、
    前記基板と前記発光層との間に、前記基板の側から順に、
    AlGaNからなる第1窒化物半導体層と、
    前記第1窒化物半導体層よりAl組成比が大きいAlGaNからなる第2窒化物半導体層と、
    InGaNからなる第3窒化物半導体層と、
    前記第1窒化物半導体層よりAl組成比が大きいAlGaNからなり、且つ、前記第
    2窒化物半導体層より膜厚が大きい第4窒化物半導体層と、を有することを特徴とする半導体レーザ素子。
  2. AlGaNからなる基板の上に、窒化物半導体からなり屈折率が前記基板よりも高い発光層を有する半導体レーザ素子であって、
    前記基板と前記発光層との間に、前記基板の側から順に、
    前記基板よりAl組成比が大きいAlGaNからなる第1窒化物半導体層と、
    前記第1窒化物半導体層よりAl組成比が大きいAlGaNからなる第2窒化物半導体層と、
    InGaNからなる第3窒化物半導体層と、
    前記第1窒化物半導体層よりAl組成比が大きいAlGaNからなり、且つ、前記第
    2窒化物半導体層より膜厚が大きい第4窒化物半導体層と、を有することを特徴とする半導体レーザ素子。
  3. 前記半導体レーザ素子は、ピーク波長が480nm以上のレーザ光を発振する半導体レーザ素子であることを特徴とする請求項1又は2に記載の半導体レーザ素子。
  4. 前記第2窒化物半導体層及び前記第4窒化物半導体層は、膜厚が100nm以上であることを特徴とする請求項1〜3のいずれか1項に記載の半導体レーザ素子。
  5. 前記第3窒化物半導体層は、膜厚が50nm以上であることを特徴とする請求項4に記載の半導体レーザ素子。
  6. 前記第1窒化物半導体層は、膜厚が100nm以上であることを特徴とする請求項5に記載の半導体レーザ素子。
  7. 前記第1窒化物半導体層の膜厚は、前記第2窒化物半導体層及び前記第4窒化物半導体層の膜厚よりも大きいことを特徴とする請求項1〜6のいずれか1項に記載の半導体レーザ素子。
  8. 前記第1窒化物半導体層の膜厚は、前記第2窒化物半導体層及び前記第4窒化物半導体層の合計膜厚よりも大きいことを特徴とする請求項1〜7のいずれか1項に記載の半導体レーザ素子。
  9. 前記発光層は井戸層であり、前記井戸層を挟む障壁層をさらに有し、
    前記第1窒化物半導体層、前記第2窒化物半導体層及び前記第4窒化物半導体層は、前記障壁層より屈折率が低いことを特徴とする請求項1〜8のいずれか1項に記載の半導体レーザ素子。
JP2013250740A 2012-12-06 2013-12-04 半導体レーザ素子 Active JP6197614B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013250740A JP6197614B2 (ja) 2012-12-06 2013-12-04 半導体レーザ素子

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012267105 2012-12-06
JP2012267105 2012-12-06
JP2013250740A JP6197614B2 (ja) 2012-12-06 2013-12-04 半導体レーザ素子

Publications (2)

Publication Number Publication Date
JP2014132652A true JP2014132652A (ja) 2014-07-17
JP6197614B2 JP6197614B2 (ja) 2017-09-20

Family

ID=49667082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013250740A Active JP6197614B2 (ja) 2012-12-06 2013-12-04 半導体レーザ素子

Country Status (4)

Country Link
US (1) US9065252B2 (ja)
EP (1) EP2741381B1 (ja)
JP (1) JP6197614B2 (ja)
CN (1) CN103855604B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019091801A (ja) * 2017-11-14 2019-06-13 シャープ株式会社 窒化物半導体レーザ素子

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085790A1 (fr) * 2002-04-04 2003-10-16 Sharp Kabushiki Kaisha Dispositif laser a semi-conducteur
JP2007059488A (ja) * 2005-08-22 2007-03-08 Rohm Co Ltd 半導体レーザ
JP2009117695A (ja) * 2007-11-08 2009-05-28 Nichia Corp 半導体レーザ素子

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RO109906B1 (ro) * 1994-09-09 1995-06-30 Prahova Iulian Basara Petrescu Dioda laser, de mare putere
JP2820140B2 (ja) * 1996-12-13 1998-11-05 日本電気株式会社 窒化ガリウム系半導体レーザ
JP3434162B2 (ja) 1997-02-17 2003-08-04 日亜化学工業株式会社 窒化物半導体素子
JP4492013B2 (ja) 1997-02-17 2010-06-30 日亜化学工業株式会社 窒化物半導体素子
JP4712169B2 (ja) 1999-09-10 2011-06-29 シャープ株式会社 窒化物系半導体レーザ素子および光学式情報再生装置
JP2002190635A (ja) 2000-12-20 2002-07-05 Sharp Corp 半導体レーザ素子およびその製造方法
JP4251529B2 (ja) * 2001-02-14 2009-04-08 シャープ株式会社 窒化物半導体レーザ素子およびそれを用いた光学式情報再生装置
JP4075324B2 (ja) 2001-05-10 2008-04-16 日亜化学工業株式会社 窒化物半導体素子
JP3797151B2 (ja) * 2001-07-05 2006-07-12 ソニー株式会社 レーザダイオード、光学ピックアップ装置、光ディスク装置および光通信装置
JP3644446B2 (ja) 2002-08-09 2005-04-27 松下電器産業株式会社 窒化物半導体素子
JP3805295B2 (ja) 2002-09-19 2006-08-02 株式会社東芝 窒化物半導体レーザ
JP4337520B2 (ja) 2002-11-25 2009-09-30 日亜化学工業株式会社 リッジ導波路型半導体レーザ
TWI303909B (en) 2002-11-25 2008-12-01 Nichia Corp Ridge waveguide semiconductor laser diode
KR20070080696A (ko) 2006-02-08 2007-08-13 삼성전자주식회사 질화물계 반도체 레이저 다이오드
US8548023B2 (en) * 2007-11-08 2013-10-01 Nichia Corporation Semiconductor laser element
WO2010027016A1 (ja) * 2008-09-05 2010-03-11 シャープ株式会社 窒化物半導体発光素子および半導体発光素子
KR101698629B1 (ko) 2009-07-31 2017-01-20 니치아 카가쿠 고교 가부시키가이샤 질화물 반도체 레이저 다이오드
JP2011210951A (ja) * 2010-03-30 2011-10-20 Sanyo Electric Co Ltd 窒化物系半導体レーザ素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085790A1 (fr) * 2002-04-04 2003-10-16 Sharp Kabushiki Kaisha Dispositif laser a semi-conducteur
JP2007059488A (ja) * 2005-08-22 2007-03-08 Rohm Co Ltd 半導体レーザ
JP2009117695A (ja) * 2007-11-08 2009-05-28 Nichia Corp 半導体レーザ素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019091801A (ja) * 2017-11-14 2019-06-13 シャープ株式会社 窒化物半導体レーザ素子

Also Published As

Publication number Publication date
CN103855604A (zh) 2014-06-11
CN103855604B (zh) 2019-06-07
EP2741381A2 (en) 2014-06-11
EP2741381A3 (en) 2016-01-13
EP2741381B1 (en) 2020-05-06
US9065252B2 (en) 2015-06-23
US20140161145A1 (en) 2014-06-12
JP6197614B2 (ja) 2017-09-20

Similar Documents

Publication Publication Date Title
JP4902682B2 (ja) 窒化物半導体レーザ
JP5963004B2 (ja) 窒化物半導体発光素子
JP2013038394A (ja) 半導体レーザ素子
JP5795010B2 (ja) オプトエレクトロニクス半導体チップ
KR20080035217A (ko) 반도체 광전 소자
JP6941771B2 (ja) 半導体発光素子
JP2015509669A (ja) 導波光効果を低減させる低屈折率材料層を有する発光ダイオード
KR20110106879A (ko) 복수의 mqw 영역을 포함하는 mqw 레이저 구조
KR20140040106A (ko) 평형 변형의 레이저 다이오드
JP2010080757A (ja) 半導体発光素子
JP2007214221A (ja) 窒化物半導体レーザ素子
JP6195205B2 (ja) 半導体レーザ
US20130082295A1 (en) Light-emitting element including light-emitting layer sandwiched between two semiconductor layers
JP2002124737A (ja) 窒化物系半導体レーザ素子
JP2011124521A (ja) 半導体レーザおよびその製造方法
JP6197614B2 (ja) 半導体レーザ素子
JP2013102043A (ja) 半導体レーザ素子、及び、半導体レーザ素子の作製方法
JP5408487B2 (ja) 半導体発光素子
JP2010034221A (ja) 端面発光型半導体レーザおよびその製造方法
JP6490334B2 (ja) 半導体レーザ素子
JP2012104764A (ja) 半導体発光素子
JP5822458B2 (ja) 半導体レーザ素子
WO2023153035A1 (ja) 窒化物系半導体発光素子
US20230402821A1 (en) Nitride semiconductor light-emitting element
WO2024070351A1 (ja) 窒化物系半導体発光素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170807

R150 Certificate of patent or registration of utility model

Ref document number: 6197614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250