JP2014125980A - エンジンの制御装置及び制御方法 - Google Patents

エンジンの制御装置及び制御方法 Download PDF

Info

Publication number
JP2014125980A
JP2014125980A JP2012283622A JP2012283622A JP2014125980A JP 2014125980 A JP2014125980 A JP 2014125980A JP 2012283622 A JP2012283622 A JP 2012283622A JP 2012283622 A JP2012283622 A JP 2012283622A JP 2014125980 A JP2014125980 A JP 2014125980A
Authority
JP
Japan
Prior art keywords
amount
egr
combustion chamber
combustion
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012283622A
Other languages
English (en)
Inventor
Yoji Maeda
洋史 前田
Takashi Shinjo
崇 新城
Koichi Ashida
耕一 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2012283622A priority Critical patent/JP2014125980A/ja
Publication of JP2014125980A publication Critical patent/JP2014125980A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】EGRガスと燃焼活性化成分が燃焼室に流入する量やタイミングにズレがあっても、燃焼状態を悪化させることことなく高EGR率での運転を可能として燃費を向上し得る制御装置を提供する。
【解決手段】排気の一部を吸気管(2)に還流するEGR通路(8)と、EGR通路(8)を流れるEGRガスの量を調整し得るEGR弁(9)と、EGR領域でEGR弁(9)を流れるEGRガスの量を制御するEGRガス量制御手段(21)と、EGR領域で燃焼室に水素を供給する水素供給手段(31)と、燃焼室に供給されるEGRガス量と燃焼室に供給される水素の量に応じて燃焼室での燃焼開始時期または点火エネルギーを制御する燃焼開始時期・点火エネルギー制御手段(21)とを備える。
【選択図】図1

Description

この発明は内燃機関(以下「エンジン」という。)の制御装置及び制御方法、特にEGR装置を備えるものに関する。
EGR通路にあって炭化水素添加手段により添加された炭化水素を水素分子に改質する改質触媒を備えるものがある(特許文献1参照)。このものでは、EGR領域でエンジン燃焼を活性化する成分(水素分子)を生成し、この成分を酸化することなく燃焼室に供給する。この燃焼活性化成分の供給で燃焼安定性を良くし、その燃焼安定性を良くした分だけEGR率を大きくして高EGR率の燃焼を成立させ、高EGR率とすることによって燃費を向上させるようにしている。
特開2005−98226号公報
ところで、EGR領域でEGRガスだけでなく、水素分子などの燃焼活性化成分を燃焼室に供給する場合、EGRガスと燃焼活性化成分が燃焼室に流入する量やタイミングにズレによって、燃焼状態が悪化することがある。燃焼状態が悪化すると失火やノッキングが起こる。しかしながら、上記特許文献1の技術では、こうした点については一切記載がない。
そこで本発明は、EGRガスと燃焼活性化成分が燃焼室に流入する量やタイミングのズレがあっても、燃焼状態を悪化させることことなく高EGR率での運転を可能として燃費を向上し得る制御装置を提供することを目的とする。
本発明のエンジンの制御装置は、排気の一部を吸気管に還流するEGR通路と、前記EGR通路を流れるEGRガスの量を調整し得るEGR弁と、EGR領域で前記EGR弁を流れるEGRガスの量を制御するEGRガス量制御手段と、前記EGR領域で燃焼室に水素を供給する水素供給手段とを備えている。本発明のエンジンの制御装置は、さらに燃焼室に供給される前記EGRガス量と燃焼室に供給される水素の量に応じて燃焼室での燃焼開始時期または点火エネルギーを制御する燃焼開始時期・点火エネルギー制御手段を備えるものである。
本発明によれば、燃焼室に供給されるEGRガス量と燃焼室に供給される水素の量に応じて燃焼室での燃焼開始時期または燃焼室内の混合気に与える点火エネルギーを制御するので、EGRガスと燃焼活性化成分が燃焼室に流入する量やタイミングにズレがあっても、燃焼状態を悪化させることなく高EGR率での運転を可能として燃費を向上できる。
本発明の第1実施形態のガソリンエンジンの概略構成図である。 エンジンの運転領域図である。 第1実施形態のEGR弁開口面積の算出を説明するためのフローチャートである。 目標エンジントルクの特性図である。 目標EGR率の特性図である。 第1実施形態の改質燃料インジェクタの燃料噴射パルス幅、点火時期指令値の算出を説明するためのフローチャートである。 第1実施形態の改質燃料インジェクタの燃料噴射パルス幅、点火時期指令値の算出を説明するためのフローチャートである。 点火時期補正量の特性図である。 第2実施形態の改質燃料インジェクタの燃料噴射パルス幅、点火時期指令値、点火コイル通電時間の算出を説明するためのフローチャートである。 第2実施形態の改質燃料インジェクタの燃料噴射パルス幅、点火時期指令値、点火コイル通電時間の算出を説明するためのフローチャートである。 第2実施形態の通電時間補正量の特性図である。
以下、本発明の実施形態を図面に基づき説明する。
(第1実施形態)
図1は本発明の第1実施形態のガソリンエンジン1の概略構成図である。図1において、空気(新気)は吸気管2を経て燃焼室(図示しない)に供給される。空気の量は電制スロットル弁11により調整される。燃料タンク13からの燃料(ガソリン)は燃料供給通路16を介して吸気管2に設けた各気筒の燃料インジェクタ12に供給され、燃料インジェクタ12より各気筒の吸気ポートに向けて噴射供給される。この噴射された燃料は、吸気管2を流れる空気と混合しつつ気化し、燃焼室に流入して混合気を形成する。なお、本発明では、後述するように燃料改質器31の上流にも燃料インジェクタ33を設けるので、両者を区別するため、各気筒の吸気ポートに設ける燃料インジェクタ12を「メイン燃料インジェクタ」という。なお、吸気管2に過給装置3を備えているが、なくてもかまわない。
シリンダ5内に供給された混合気に対して各気筒の点火プラグ14で火花点火を行うことで混合気が燃焼し、その燃焼圧力がピストンを押し下げる仕事をしてクランクシャフトを回転駆動する。点火装置15は点火コイルとパワートランジスタとで構成され、パワートランジスタが点火コイルの一次側電流を切断したタイミングで2次側の高電圧電流が点火プラグ14に供給される。つまり、パワートランジスタがOFFとなるタイミングが点火時期である。パワートランジスタがONとなっている間は、点火コイルの一次側とバッテリとが接続され、バッテリからの電力が点火コイルの一次側に蓄えられる。
燃焼の終わったガスは排気として排気管6に出される。排気に含まれる有害三成分は三元触媒7によって浄化した後に大気に放出する。三元触媒7は、排気中の有害三成分(CO、HC、NOx)を無害の成分(CO2、H2O及びN2)にする触媒である。例えばPtとRhの混合物またはPtとPdとRhの混合物をアルミナに担持させたもので構成する。
排気の一部は三元触媒7の上流で分岐し、過給装置3上流の吸気管2に合流するEGR通路8を介して吸気管2に戻される。EGR通路8を流れるEGRガス量を調整するためEGR弁9を備える。EGR弁9はアクチュエータ10により駆動される。吸気管2に合流する直前のEGR通路8にはEGRガスを冷却する冷却器36を備えている。
エンジンコントローラ21には、アクセルセンサ22からのアクセル開度ACC、クランク角センサ23からのクランク角、エアフローメータ24からの吸入空気量Qaの各信号が入力されている。エンジンコントローラ21では、電制スロットル弁11を介してエンジン1に供給する空気の量を、各気筒のメイン燃料インジェクタ12を介してエンジン1に供給する燃料供給量を調整(制御)する。また、各気筒の点火装置15、点火プラグ14を介して点火時期を制御する。
上記の三元触媒7は、排気の空燃比が理論空燃比付近で振れることによって排気中の有害三成分を効率よく浄化できるため、理論空燃比の混合気が得られるように各気筒のメイン燃料インジェクタ12に与える燃料噴射パルス幅Tm[ms]を定めている。さらに、エンジンコントローラ21では、三元触媒7の上流側の空燃比センサ25、三元触媒7の下流側の酸素センサ26からの信号に基づいて、三元触媒7の酸素ストレージ量が目標値となるようにフィードバック制御する。
また、エンジンコントローラ21では、エンジンの負荷と回転速度Neとから定まる運転条件がEGR領域にある場合に、アクチュエータ10を介してEGR弁9を開くと共に目標EGR率が得られるようにEGR弁開度(EGRガスの流量)を制御する。
EGR弁9下流のEGR通路8には、燃料改質器31を備える。燃料改質器31は円柱状に形成され、EGR通路8に介装されている。燃料改質器31の直ぐ上流には、燃料改質器31に炭化水素を噴射供給するための燃料インジェクタ33を備える。この燃料インジェクタ33を上記のメイン燃料インジェクタ12と区別するため、「改質燃料インジェクタ」という。
改質燃料インジェクタ33(炭化水素添加手段)よりEGR通路8を流れる排気(EGRガス)に添加する燃料としては、ガソリン、軽油、メタノール等の任意の液状の炭化水素を使用できる。本実施形態のエンジンはガソリンエンジンであるので、燃料タンク13からの燃料であるガソリンを燃料供給通路17を介して改質燃料インジェクタ33に供給している。ただし、改質燃料インジェクタ33に供給する液状の炭化水素と、メイン燃料インジェクタ12に供給する液状の炭化水素とが異なる炭化水素であってもよい。
EGR通路8を流れる排気に炭化水素を添加する炭化水素添加手段として燃料噴射弁を示したが、ベンチュリを用いた燃料霧化手段であってよい。あるいは液状のガソリンを加熱することで蒸発させるガソリン気化手段等でよい。また、改質燃料インジェクタ33と燃料改質器31の間に燃料蒸発器32を設け、EGR通路8を流れる排気に添加する液状の炭化水素の気化を排気の熱を利用して行ってもよい。
燃料改質器31に含まれる改質触媒は、EGR通路8を流れる排気中に添加した炭化水素(HC)にクラッキング、ラジカル化、CO生成水素生成等の軽質化を行わせることによって水素分子(H2)を得る任意の触媒でよい。こうした改質触媒として、例えばRh/ZrO2系触媒やRh/CeO2系触媒といったHC改質触媒を用いることができる。
以下では、改質触媒がHC改質触媒である場合で説明する。ここで、HC改質触媒とは、次の(1)式の反応に対して触媒作用を有する任意の触媒をいう
HC+H2O→CO2+H2 …(1)
HC改質触媒は、当該技術分野で知られる任意の適当な量で、ウォッシュコート等の任意の手段によって、粉末のまたは成型された担体に担持させることができる。また触媒を担持した担体をスラリーとして用いて、ハニカム状に成型された基材にコーティングして乾燥及び焼成したもの、この担体をペレット状に成型したものとしても使用できる。
燃料改質器31に含まれるHC改質触媒の触媒温度Tcatが閾値Tth1未満となったときには、HC改質触媒が不活性状態となり、燃料改質できなくなる。このHC改質触媒の温度低下を防止するため、燃料改質器31の外周に温度調整装置34を備える。温度調整装置34としては、例えば電気ヒータであってよい。HC改質触媒の触媒温度Tcatが閾値Tth1未満となったときには、エンジンコントローラ21が温度調整装置34を作動させ、HC改質触媒の触媒温度Tcatが閾値Tth1以上となるようにする。
また、改質燃料インジェクタ33と燃料改質器31との間のEGR通路8に2次空気を導入する2次空気供給装置35を備える。この2次空気供給装置35もHC改質触媒の触媒温度Tcatを上昇させるためのものである。すなわち、2次空気供給装置35より2次空気をHC改質触媒に供給すれば、HC改質触媒が2次空気中の酸素を用いてEGRガス中の未燃炭化水素を燃焼させるので、この燃焼熱でHC改質触媒の温度が上昇する。
図2はエンジンの運転領域図である。EGR領域は、図2に示したように、低回転速度域、低負荷域、高回転速度域、高負荷域を除いた残りの領域に予め設定している。このEGR領域の中の限られた領域にHC改質触媒が燃料改質を行う領域(この領域を以下単に「改質領域」という。)を設定している。
このように、改質領域でHC改質触媒による改質によって得られる水素分子を燃焼室に供給し、この水素分子で燃焼室内の混合気の燃焼速度を速めることにより、燃焼安定度を確保できるEGR率の上限を高めることで、高EGR率での運転を制御を実現している。例えば、改質領域内に1つの定常の運転条件を定めると、その定常の運転条件での新気量が定まる。水素分子を導入しない場合に、この新気量に対してどのくらいのEGRガス量を導入できるか、つまり目標EGR率が定まる。ここで、燃焼室に同じEGRガス量を供給する条件で、燃焼室に水素分子を供給すれば、水素分子を供給しない場合より燃焼速度が速まり、その分、燃焼状態が安定化する。燃焼速度が速まって燃焼状態が安定化する分だけEGRガス量(目標EGR率)を増やすことができ、目標EGR率の上限を高めることができる。このようにして、改質領域では、運転条件毎にEGRガス量(目標EGR率)、燃焼室に供給する水素分子の量(目標値)が定まるので、運転条件に応じた目標EGR率のマップと運転条件に応じた水素分子の量の目標値のマップを作成することができる。ここで、運転条件はエンジン負荷と回転速度から定まるので、燃焼室に供給する水素分子の量の目標値tQH2は、エンジンの負荷と回転速度をパラメータとするマップにして記憶させておく。
しかしながら、改質領域でEGRガスだけでなく、水素分子などの燃焼活性化成分を燃焼室に供給するのであるから、EGRガスと燃焼活性化成分が燃焼室に流入する量やタイミングにズレが生じ得る。たとえば、改質領域において過渡的にEGRガス量が増える場合に、EGRガス量に対する水素分子の量の燃焼室への供給遅れが生じることがある。このときには、燃焼室に供給される水素分子の量の実際値(以下、単に「実際値」ともいう。)が燃焼室に供給される水素分子の量の目標値(以下、単に「目標値」ともいう。)未満となり、実際値が目標値に到達するまでの遅れ期間で燃焼状態が悪化する。
これに対処するため、エンジンコントローラ21では、燃焼室に供給されるEGRガス量と燃焼室に供給される水素の量に応じて点火時期(燃焼室での燃焼開始時期)を制御する。具体的には、改質領域でEGRガス量に対する水素分子の量の燃焼室への供給遅れが生じる場合に、この供給遅れに応じこの供給遅れに伴う燃焼悪化が抑制される側に点火時期を進角補正(制御)する。
ここで、燃焼室に供給される水素分子の量の実際値QH2を検出する水素センサ27を設ける。すると、水素センサ27により検出される水素分子の量の実際値QH2が水素分子の量の目標値tQH2に満たない場合に、EGRガス量に対する水素分子の量の燃焼室への供給遅れが生じていると判定することができる。
EGRガス量に対する水素分子の量の燃焼室への供給遅れに伴う燃焼悪化を抑制するには、点火時期を進角補正することである。点火時期を進角補正すると、その分、燃焼状態良くなる。つまり、過渡的にEGRガス量が増加することによってEGRガス量に対する水素分子の量の燃焼室への供給遅れが生じる場合であってかつ実際値QH2が目標値tQH2に満たない場合に、水素分子が足りない状態でも燃焼が安定するように点火時期を進ませる。
エンジンコントーラ21で行われるこの制御を以下のフローチャートに基づいて説明する。
まず、図3のフローは、EGR弁要求開口面積Aevfを算出するためのもので、一定時間毎(例えば10ms毎)に実行する。
ステップ1では、目標エンジントルクtTe[Nm]とエンジン回転速度Ne[rpm]を読み込む。ここで、目標エンジントルクtTeはアクセルセンサ22により検出されるアクセル開度ACCから図4を内容とするテーブルを検索することにより算出する。図4に限らず、アクセル開度ACCとエンジン回転速度Neから所定のマップを検索することにより目標エンジントルクtTeを算出するようにしてもかまわない。エンジン回転速度Neはクランク角センサ23により検出されるクランク角に基づいて算出する。目標エンジントルクはエンジンの負荷相当値である。エンジンの負荷相当値としては、エアフローメータ24により検出される吸入空気量を用いることができる。
ステップ2では、目標エンジントルクtTeとエンジン回転速度Neから図2を内容とするマップを検索することにより、tTeとNeから定まるエンジンの運転条件がEGR領域にあるか否かをみる。運転条件がEGR領域にないときにはステップ5に進み、EGR弁要求開口面積Aevf=0とする。
ステップ2でEGR領域にあるときにはステップ3に進み、目標エンジントルクtTeとエンジン回転速度Neから図5を内容とするマップを検索することにより、目標EGR率Megrを算出する。本発明では、EGR領域の中でも改質領域になると燃焼室に水素分子を供給するので、改質領域では、燃焼室に水素分子を供給しない場合より燃焼室内での燃焼が安定する。従って、改質領域においては、燃焼室に水素分子を供給しない場合より高いEGR率を設定している。
ステップ4ではこの目標EGR率Megrとエアフローメータ24により検出される吸入空気量に基づいてEGR弁要求開口面積Aevfを算出する。このEGR弁要求開口面積Aevfの算出方法は公知である(例えば特開平10−205394号公報、特開平9−217658号公報参照)。
図示しないフローでは、このようにして算出したEGR弁要求開口面積Aevfが得られるようにアクチュエータ10に指令値を与える。これによって、EGR領域において、目標EGR率が得られるようにEGR弁開口面積が制御される。
次に、図6A、図6Bのフローは、改質燃料インジェクタの燃料噴射パルス幅Tr、点火時期指令値ADVを算出するためのもので、一定時間毎(例えば10ms毎)に実行する。
図6Aのステップ11では、図3のステップ1と同じに、目標エンジントルクtTe[Nm]とエンジン回転速度Ne[rpm]を読み込む。
ステップ12では、目標エンジントルクtTeとエンジン回転速度Neから図2を内容とするマップを検索することにより、tTeとNeから定まるエンジンの運転条件が改質領域にあるか否かをみる。運転条件が改質領域にないときには今回の処理をそのまま終了する。
ステップ12で改質領域にあるときにはステップ13に進み、触媒温度センサ27(図1参照)により検出される触媒温度Tcatと閾値Tth1を比較することにより、燃料改質器31に含まれるHC改質触媒による燃料改質が可能か否かを判断する。ここで、HC改質触媒の活性は触媒温度Tcatに依存し、触媒温度Tcatが低いときにはHC改質触媒が不活性状態となり、燃料改質できない。閾値Tth1はHC改質触媒によるある程度の燃料改質が見込める温度である。予め設定しておく。触媒温度Tcatが閾値Tth1未満であるときにはHC改質触媒の活性化の不足で炭化水素を水素分子に改質できないと判断し、ステップ14に進む。ステップ14では、触媒温度を高めるため、温度調整装置34を作動させる(温度調整装置34が電気ヒータである場合には電気ヒータをONとする)かまたはHC改質触媒を昇温させる制御を行って、今回の処理を終了する。
触媒昇温制御としては、例えば、2次空気供給装置35を作動させてEGR通路8に2次空気を導入することによりEGRガス中の酸素を増やし、EGRガス中の未燃炭化水素HCをHC改質触媒で燃焼させる。このとき、改質用燃料インジェクタ33から小量の燃料を噴射してもよい。あるいは、空燃比を理論空燃比よりもリーン側の空燃比に切換え、このリーン空燃比の混合気を燃焼させることで、排気を高温化することもできる。
ステップ14の操作によってHC改質触媒が昇温しステップ13で触媒温度Tcatが閾値Tth1以上になれば、HC改質触媒が活性化したと判断し、ステップ15以降に進む。
ステップ15では、HC改質触媒により燃料改質を行わせるため、改質用燃料噴射パルス幅TrA[ms]を改質燃料インジェクタの燃料噴射パルス幅Tr[ms]に入れる。ここで、エンジン回転速度Neとエンジン負荷とから定まる運転条件が同じであれば、上記(1)式より改質用燃料噴射パルス幅TrAが大きくなるほど(つまり炭化水素の量が多くなるほど)、HC改質触媒により得られる水素分子の量が増加する。運転条件に応じて燃焼室に供給される水素分子の量の目標値tQH2が得られれば良いのであるから、改質用燃料噴射パルス幅TrAとしては、この目標値tQH2に対応した量を、エンジン回転速度Neとエンジン負荷とに応じて設定しておく。
ステップ16では、目標エンジントルクtTeと回転速度Neとから所定のマップを検索することにより、基本点火時期ADV0[degBTDC]を算出する。ここで、基本点火時期ADV0は、次のようにして定めている。すなわち、改質領域内に1つの定常の運転条件を定めると、その定常の運転条件での新気量が定まり、これから目標EGR率Megr及び燃焼室に供給される水素分子の量の目標値tQH2が定まることを前述した。すると、新気量、目標EGR率Megr及び燃焼室に供給される水素分子の量の目標値tQH2の3つ量で最適な燃焼が得られるときの点火時期が定まる。これら3つ量で最適な燃焼が得られるときの点火時期が基本点火時期ADV0である。基本点火時期ADV0は、エンジン負荷と回転速度Neとに応じて予め求めておき、目標エンジントルクtTeと回転速度Neとをパラメータとするマップにして記憶させておく。
図6Bのステップ17〜23は、改質領域で過渡的にEGRガス量が増加することによってEGRガス量に対する水素分子の量の燃焼室への供給遅れが生じることに対処するものである。すなわち、改質領域での定常の運転条件では、燃焼室に目標値tQH2の水素分子が供給されるため、燃焼室に水素分子を供給しない場合より高い目標EGR率でエンジン1が運転され、これによって燃費の向上が図られる。定常の運転条件では、燃焼室に供給される水素分子の実際値QH2は目標値tQH2とほぼ一致する(EGRガス量に対する水素分子の量の燃焼室への供給遅れは生じない)。
一方、アクセルペダルを急に踏み込んで加速を行うような過渡時に運転点が改質領域の中で急激に移動すれば、これに合わせて目標EGR率Megrが急に増大し、これに伴って燃焼室に供給されるEGRガス量が増える。運転点が改質領域の中で急激に移動すれば、燃焼室に供給される水素分子の量の目標値tQH2が増大するので、改質燃料インジェクタ33の燃料噴射パルス幅Trが大きくなり、EGR通路3に供給される炭化水素の量が増える。
しかしながら、HC改質触媒により得られる水素分子の量の実際値QH2は、応答良く増えてくれず、目標値tQH2からの遅れが生じてしまう。この遅れは暫く続き、過渡が終了すればHC改質触媒により得られる水素分子の量の実際値QH2が目標値tQH2と再び一致する。このように目標値tQH2に対して実際値QH2の増大が遅れ、実際値QH2が再び目標値tQH2と一致するまでの期間で燃焼状態が悪くなる。
この過渡的に生じる燃焼状態の悪化を抑制するため、本実施形態では、点火時期を進角補正する。点火時期を基本点火時期ADV0より進角させることで、燃焼室内における混合気の燃焼開始時期を早めて燃焼速度を高め、燃焼室に供給される水素分子の量が目標値に満たない状態でも燃焼を安定させるのである。
図6Bのステップ17では、目標エンジントルクtTe(エンジンの負荷)と回転速度Neとをパラメータとするマップ(図示しない)を検索することにより燃焼室に供給される水素分子の量の目標値tQHを算出する。このマップでは、目標値tQH2は改質領域においてのみ正の値で格納されている。
図6Bのステップ18では、燃焼室に供給される水素分子の量の実際値QH2を検出または算出する。ここでは、過給装置3の下流に設けてある水素センサ27によって燃焼室に供給される水素分子の量の実際値QH2を検出する。冷却器36下流のEGR通路8に酸素センサ28を設けておけば、この酸素センサ28の出力から燃焼室に供給される水素分子の量の実際値QH2を算出することができる。触媒温度センサ29により検出される触媒温度と改質用燃料インジェクタ33の燃料噴射パルス幅Trとから燃焼室に供給される水素分子の量の実際値QH2を算出することもできる。
ステップ19では、このように検出または算出した燃焼室に供給される水素分子の量の実際値QH2と、ステップ17で得ている目標値tQH2を比較する。実際値QH2が目標値tQH2以上であれば、改質領域においてエンジン1の運転条件は定常状態にあり、実際値QH2が目標値tQH2と一致している、つまりEGRガス量に対する水素分子の量の燃焼室への供給遅れが生じていないと判断する。このときにはステップ20に進み、図6Aのステップ16で得ている基本点火時期ADV0をそのまま点火時期指令値ADV[degBTDC]に入れる。
一方、図6Bのステップ19で実際値QH2が目標値tQH2に満たないときには、EGRガス量に対する水素分子の量の燃焼室への供給遅れが生じていると判断する。このときにはステップ21、22、23に進む。
ステップ21では、実際値QH2と目標値tQH2との差分値ΔQを、
ΔQ=tQH2−QH2 …(1)
の式により算出する。(1)式の差分値は正の値である。
ステップ22では、この差分値ΔQから図7を内容とするテーブルを検索することにより点火時期補正量HOS1[deg]を算出する。図7に示したように点火時期補正量HOS1は差分値ΔQが大きくなるほど大きくなる正の値である。
ステップ23では基本点火時期ADV0にこの点火時期補正量HOS1を加算した値を点火時期指令値ADVとする、つまり次式により点火時期指令値ADVを算出する。
ADV=ADV0+HOS1 …(2)
点火時期指令値ADVは圧縮上死点から進角側に計測する値であるため、基本点火時期ADV0に点火時期補正量HOS1を加算することは、基本点火時期ADV0より点火時期補正量HOS1だけ進角させた値を点火時期指令値とすることを意味する。
図6Aのステップ12でエンジンの運転条件が改質領域にあり、かつ図6Aのステップ13で触媒温度Tcatが活性温度に到達していても、水素分子の量の実際値QH2が水素分子の量の目標値tQH2に満たないことがある。この場合には両者の差分値ΔQに応じて点火時期を進角側に補正することで、燃焼室内における燃焼開始時期を早めて燃焼速度を高め、燃焼室に供給される水素分子の量が目標値に満たない状態でも燃焼を安定させるのである。
図6Bのステップ19で実際値QH2が目標値tQH2に満たない場合に、図6Bのステップ21〜23の操作を次回以降も繰り返している間にやがて過渡が終了するので、ステップ19で実際値QH2が目標値tQH2に到達する。これによって、EGRガス量に対する水素分子の量の燃焼室への供給遅れが解消され、定常の運転条件に戻ったと判断できることから、点火時期の進角補正を終了するためステップ19よりステップ20に進む。ステップ20では基本点火時期ADVをそのまま点火時期指令値ADVに入れる。
図6Bのステップ24〜26は燃焼室の実際の燃焼状態を確かめる部分である。ステップ24では燃焼室内の燃焼状態を検出する。例えば筒内圧センサ30を設けておき、この筒内圧センサ30により検出される燃焼圧を燃焼状態を表す物理量とする。燃焼圧は、この値が高いほど燃焼状態が良好であり、この値が低いほど燃焼状態が不良であることを表す。あるいはエンジン回転速度Neに基づいて一定時間当たりの回転速度の変動量ΔNeを算出し、この一定時間当たりの回転速度の変動量ΔNeを燃焼状態を表す物理量とする。一定時間当たりの回転速度の変動量ΔNeは、この値が大きいほど燃焼状態が不良であり、この値が小さいほど燃焼状態が良好であることを表す。
ステップ25では燃焼状態に基づいて燃焼が安定しているか否かをみる。例えば、燃焼圧を燃焼状態を表す物理量とするときにはこの燃焼圧と予め定めた閾値を比較する。燃焼圧が閾値以上であるときには燃焼が安定していると、燃焼圧が閾値未満であるときには燃焼が不安定であると判断する。
また、一定時間当たりの回転速度の変動量ΔNeを燃焼状態を表す物理量とするときにはこの一定時間当たりの回転速度の変動量ΔNeと予め定めた閾値を比較する。一定時間当たりの回転速度の変動量ΔNeが閾値以下であるときには燃焼が安定していると、一定時間当たりの回転速度の変動量ΔNeが閾値を超えているときには燃焼が不安定であると判断する。燃焼が安定しているときにはステップ27に進む。
一方、ステップ25で燃焼が不安定であると判断したときにはステップ26に進み、次式により点火時期の進角補正を行った後、ステップ27に進む。
ADV=ADVz+HOS2 …(3)
ただし、ADVz:ADVの前回値、
HOS2:進角補正量(一定値)、
燃焼が不安定な場合に、点火時期を進角させれば燃焼室で燃焼するガスの割合が高くなり、その分燃焼速度が早くなって燃焼が安定する。ステップ26での操作を繰り返せばやがて燃焼が安定する。このときには、ステップ25よりステップ27に進む。
ステップ27では、上記のようにして算出した改質燃料インジェクタ33の燃料噴射パルス幅Trと点火時期指令値ADVを出力する。図示しないフローでは、改質領域において改質燃料インジェクタ33の燃料噴射パルス幅Trを改質燃料インジェクタ33に与える。これによって、改質燃料インジェクタ33が所定のタイミングで燃料噴射パルス幅Trだけ開き、炭化水素をEGR通路8に供給する。
図示しないフローでは、点火時期指令値ADVを、点火コイルとパワートランジスタとで構成される点火装置15に与える。これによって、点火時期指令値ADVのとき、パワートランジスタが点火コイルの一次側電流を切断して、2次側の高電圧電流を点火プラグ14に供給する。
ここで、第1実施形態の作用効果を説明する。
第1実施形態によれば、排気の一部を吸気管2に還流するEGR通路8と、EGR通路8を流れるEGRガスの量を調整し得るEGR弁9と、EGR領域でEGR弁9を流れるEGRガスの量を制御するエンジンコントローラ21(EGRガス量制御手段)と、EGR領域で燃焼室に水素を供給する水素供給手段(31、33)と、燃焼室に供給されるEGRガス量と燃焼室に供給される水素の量に応じて点火時期指令値ADV(燃焼室での燃焼開始時期)を制御するエンジンコントローラ21(燃焼開始時期制御手段)(図6Aのステップ12、図6Bのステップ17〜23参照)とを備えるので、EGRガスと燃焼活性化成分が燃焼室に流入する量やタイミングにズレがあっても、燃焼状態を悪化させることなく高EGR率での運転を可能として燃費を向上できる。
第1実施形態によれば、水素供給手段は、理論空燃比の条件でEGR通路8を流れる排気に炭化水素を添加する改質燃料インジェクタ33(炭化水素添加手段)と、EGR通路8にあって改質燃料インジェクタ33により添加された炭化水素を水素分子に改質するHC改質触媒(改質触媒)とから構成されるので、HC改質触媒により得た水素分子を燃焼させることなく燃焼室に供給できる。
過渡的にEGRガス量に対する水素分子の量の燃焼室への供給遅れがあると、この供給遅れがある期間で燃焼状態が悪くなる。第1実施形態によれば、燃焼開始時期・点火エネルギー制御手段は、EGRガス量に対する水素分子(水素)の量の燃焼室への供給遅れが生じる場合に、この供給遅れに応じこの供給遅れに伴う燃焼悪化が抑制される側に点火時期(燃焼開始時期)を制御するので(図6Bのステップ17〜23参照)、供給遅れの期間であっても良好な燃焼状態を維持できる。
第1実施形態によれば、過渡的にEGRガス量が増加することによってEGRガス量に対する水素分子(水素)の量の燃焼室への供給遅れが生じる場合に、供給遅れに応じた制御は、点火時期(燃焼開始時期)を進めることであるので(図6Bのステップ19〜23参照)、水素分子の量の実際値QH2が目標値tQH2に満たない場合で合っても、良好な燃焼状態へと回復させることができる。
(第2実施形態)
図8A、図8Bのフローは第2実施形態の改質燃料インジェクタの燃料噴射パルス幅Tr、点火時期指令値ADV、点火コイルの通電時間ΔTを算出するためのもので、一定時間毎(例えば10ms毎)に実行する。第1実施形態の図6A、図6Bと同一部分には同一の符号を付している。
第1実施形態では、実際値QH2が目標値tQH2未満である場合に点火時期を進角側に補正することで、燃焼室内における燃焼開始時期を早めて燃焼速度を上昇させ燃焼状態を改善した。
しかしながら、過渡的であるとはいえ点火時期を基本点火時期ADV0より進角側に補正すると、点火時期が最適でなくなり、点火時期を進角補正する期間においてエンジントルクが基本点火時期ADV0のときより低下する。この過渡時に一時的に生じるエンジントルクの低下を抑制するには、点火時期は基本点火時期ADV0のままで点火エネルギーを増大させてやればよい。そこで、第2実施形態では、実際値QH2が目標値tQH2未満である場合に、水素分子の量の不足による燃焼状態の悪化を点火コイルの通電時間を増加側に補正することによって抑制する。点火コイルの通電時間を増加側に補正すれば点火エネルギーが増加し、これによって燃焼室に供給される水素分子の量が目標値より不足する状態での燃焼の悪化が抑制されるのである。以下、第1実施形態と相違する部分を説明すると、相違点は主にステップ31〜37である。
図8Aのステップ31では、目標エンジントルクtTeと回転速度Neとから所定のマップを検索することにより、基本点火コイル通電時間ΔT0[ms]を算出する。このマップでは、特に改質領域で、運転条件が相違しても望みの点火エネルギーが得られるように基本点火コイル通電時間ΔT0が設定されている。
図8Bのステップ19で実際値QH2が目標値tQH2以上であるときには、改質領域においてエンジン1の運転条件は定常状態にあり、実際値QH2が目標値tQH2と一致している。つまり、EGRガス量に対する水素分子の量の燃焼室への供給遅れが生じていないと判断してステップ32に進み、基本点火コイル通電時間ΔT0[ms]をそのまま点火コイル通電時間ΔT[ms]に入れる。
一方、図8Bのステップ19で実際値QH2が目標値tQH2に満たないときには、EGRガス量に対する水素分子の量の燃焼室への供給遅れが生じていると判断する。このときにはステップ21、33、34に進む。
ステップ21では、実際値QH2と目標値tQH2との差分値ΔQを上記の(1)式により算出する。
ステップ33では、この差分値ΔQから図9を内容とするテーブルを検索することにより通電時間補正量HOS3[ms]を算出する。図9に示したように通電時間補正量HOS3は差分値ΔQが大きくなるほど大きくなる正の値である。
ステップ34では基本点火コイル通電時間ΔT0にこの通電時間補正量HOS3を加算した値を点火コイル通電時間ΔTとする、つまり次式により点火コイル通電時間ΔTを算出する。
ΔT=Δt0+HOS3 …(4)
図8Aのステップ12で運転条件が改質領域にあり、かつ図8Aのステップ13で触媒温度Tcatが触媒が改質し得る活性温度に到達していても、水素分子の量の実際値QH2が水素分子の量の目標値tQH2に満たないことがある。この場合にはステップ33、34で差分値ΔQに応じて点火コイル通電時間を増量側に補正することで、点火エネルギーを増大し、その増大分で燃焼速度が低下するのを抑制する。これによって、実際値QH2が目標値tQH2から不足している場合にも燃焼状態が悪くならないようにするのである。
実際値QH2が目標値tQH2に満たない状態は過渡的なものであるので、暫くすれば実際値QH2が目標値tQH2へと復帰する。このときにはステップ19よりステップ32に進んで基本点火コイル通電時間ΔT0をそのまま点火コイル通電時間ΔTに入れる。
図8Bのステップ20では基本点火時期ADV0をそのまま点火時期指令値ADVとする。
図8Bのステップ37では、改質燃料インジェクタ33の燃料噴射パルス幅Tr、点火時期指令値ADV、点火コイル通電時間ΔTを出力する。
図示しないフローでは、改質領域において改質燃料インジェクタ33の燃料噴射パルス幅Trを改質燃料インジェクタ33に与える。これによって、改質燃料インジェクタ33が所定のタイミングで燃料噴射パルス幅Trだけ開き、炭化水素をEGR通路8に供給する。
図示しないフローでは、点火時期指令値ADVと点火コイル通電時間ΔTを、点火コイルとパワートランジスタとで構成される点火装置15に与える。これによって、点火時期指令値ADVのとき、パワートランジスタが点火コイルの一次側電流を切断して、2次側の高電圧電流を点火プラグに供給する。また、点火コイル通電時間ΔTの間、パワートランジスタがON状態となって点火コイルの一次側とバッテリとが接続され、バッテリからの電力が点火コイルの一次側に蓄えられる。
第2実施形態によれば、 排気の一部を吸気管2に還流するEGR通路8と、EGR通路8を流れるEGRガスの量を調整し得るEGR弁9と、EGR領域でEGR弁9を流れるEGRガスの量を制御するエンジンコントローラ21(EGRガス量制御手段)と、EGR領域で燃焼室に水素を供給する水素供給手段(31、33)と、燃焼室に供給されるEGRガス量と燃焼室に供給される水素の量に応じて点火コイル通電時間ΔT(点火エネルギー)を制御するエンジンコントローラ21(燃焼開始時期制御手段)(図8Aのステップ12、図8Bのステップ19、21、33、34、32参照)とを備えるので、第1実施形態と同様に、EGRガスと燃焼活性化成分が燃焼室に流入する量やタイミングにズレがあっても、燃焼状態を悪化させることなく高EGR率での運転を可能として燃費を向上できる。
第2実施形態によれば、燃焼開始時期・点火エネルギー制御手段は、EGRガス量に対する水素分子(水素)の量の燃焼室への供給遅れが生じる場合に、供給遅れに応じこの供給遅れに伴う燃焼悪化が抑制される側に点火エネルギーを制御するので(図8Bのステップ19、21、33、34参照)、水素分子の供給遅れの期間での燃焼悪化を抑制することができる。従って、EGRガス量に対する水素分子の量の燃焼室への供給遅れが生じる期間でのエンジントルクの低下を抑制できる。
実施形態では、エンジン燃焼を活性化する成分が、HC改質触媒により得られる水素分子であったが、これに限られるものでなく、水素イオンであってもよい。水素イオンを生成するにはプラズマ生成装置を用いればよい。水素分子は電気分解や透過分離膜などによっても生成することができる。あるいは純水素分子を供給するようにしてもかまわない。
また、実施形態では、水素分子を生成する位置がEGR通路であるが、これに限定されるものでもない。水素分子や水素イオンを生成する位置を吸気管2や燃料供給通路17としてもかまわない。
実施形態では、燃焼室に供給される水素分子(水素)の量を水素センサ27によって検出する場合や酸素センサ28の出力から燃焼室に供給される水素分子の量を算出する場合で説明した。また、触媒温度センサ29により検出される触媒温度と改質用燃料インジェクタ33の燃料噴射パルス幅Trとから燃焼室に供給される水素分子の量を算出する場合で説明した。本発明は、これらの場合に限られず、さらに次のような場合であってもかまわない。すなわち、燃焼室に供給される水素の量に相関のあるEGRガス中の水素を除く他の成分(例えばCO、CH4、CO2、O2など)を検出するセンサからの検出値に基づいて燃焼室に供給される水素分子の量を算出する。あるいは、燃焼室のイオン電流を計測することによって燃焼室に供給される水素分子の量を算出する。
1 エンジン
2 吸気管
21 エンジンコントローラ(EGRガス量制御手段、燃焼開始時期制御手段)
25 触媒温度センサ
27 水素センサ
28 酸素センサ
29 触媒温度センサ
30 筒内圧センサ
31 燃料改質器(改質触媒、水素供給手段)
33 改質燃料インジェクタ33(水素供給手段、炭化水素添加手段)

Claims (7)

  1. 排気の一部を吸気管に還流するEGR通路と、
    前記EGR通路を流れるEGRガスの量を調整し得るEGR弁と、
    EGR領域で前記EGR弁を流れるEGRガスの量を制御するEGRガス量制御手段と、
    前記EGR領域で燃焼室に水素を供給する水素供給手段と、
    燃焼室に供給される前記EGRガス量と燃焼室に供給される水素の量に応じて燃焼室での燃焼開始時期または点火エネルギーを制御する燃焼開始時期・点火エネルギー制御手段と
    を備えることを特徴とするエンジンの制御装置。
  2. 前記水素供給手段は、
    前記理論空燃比の条件でEGR通路を流れる排気に炭化水素を添加する炭化水素添加手段と、
    前記EGR通路にあって前記炭化水素添加手段により添加された炭化水素を水素分子に改質する改質触媒とから構成されることを特徴とする請求項1に記載のエンジンの制御装置。
  3. 燃焼開始時期・点火エネルギー制御手段は、前記EGRガス量に対する前記水素の量の燃焼室への供給遅れが生じる場合に、この供給遅れに応じこの供給遅れに伴う燃焼悪化が抑制される側に前記燃焼開始時期または前記点火エネルギーを制御することを特徴とする請求項1または2に記載のエンジンの制御装置。
  4. 過渡的に前記EGRガス量が増加することによって前記EGRガス量に対する前記水素の量の燃焼室への供給遅れに伴う燃焼悪化が生じる場合に、前記供給遅れに応じた制御は、前記燃焼開始時期を進めることであることを特徴とする請求項3に記載のエンジンの制御装置。
  5. 燃焼室に供給される前記水素の量を検出するかまたは算出することを特徴とする請求項1から3までのいずれか一つに記載のエンジンの制御装置。
  6. 燃焼室に供給される前記水素の量を、
    センサにより検出するか、
    センサにより検出される検出値に基づいて算出するか、
    燃焼室に供給される前記水素の量に相関のある前記EGRガス中の水素を除く他の成分を検出するセンサからの検出値に基づいて算出するか、
    燃焼室のイオン電流を計測することによって算出するか
    の少なくとも一つによって求めることを特徴とする請求項1から4までのいずれか一つに記載のエンジンの制御装置。
  7. 排気の一部を吸気管に還流するEGR通路と、
    前記EGR通路を流れるEGRガスの量を調整し得るEGR弁と、
    EGR領域で前記EGR弁を流れるEGRガスの量を制御するEGRガス量制御手段と、
    前記EGR領域で燃焼室に水素を供給する水素供給手段と
    を備え、
    燃焼室に供給される前記EGRガス量と燃焼室に供給される水素の量に応じて燃焼室での燃焼開始時期または点火エネルギーを制御する燃焼開始時期・点火エネルギー制御処理手順を含むことを特徴とするエンジンの制御方法。
JP2012283622A 2012-12-26 2012-12-26 エンジンの制御装置及び制御方法 Pending JP2014125980A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012283622A JP2014125980A (ja) 2012-12-26 2012-12-26 エンジンの制御装置及び制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012283622A JP2014125980A (ja) 2012-12-26 2012-12-26 エンジンの制御装置及び制御方法

Publications (1)

Publication Number Publication Date
JP2014125980A true JP2014125980A (ja) 2014-07-07

Family

ID=51405674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012283622A Pending JP2014125980A (ja) 2012-12-26 2012-12-26 エンジンの制御装置及び制御方法

Country Status (1)

Country Link
JP (1) JP2014125980A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056734A (ja) * 2014-09-10 2016-04-21 三菱電機株式会社 内燃機関のegr流量推定装置、及び内燃機関の制御装置
JP2016070131A (ja) * 2014-09-29 2016-05-09 本田技研工業株式会社 内燃機関の制御装置
WO2017191708A1 (ja) * 2016-05-06 2017-11-09 株式会社日立製作所 パワートレインシステム
JP2018009493A (ja) * 2016-07-13 2018-01-18 日産自動車株式会社 内燃機関の排気浄化触媒の暖機方法
JP2018053845A (ja) * 2016-09-30 2018-04-05 日立オートモティブシステムズ株式会社 内燃機関制御装置
KR20180044353A (ko) * 2015-09-18 2018-05-02 닛산 지도우샤 가부시키가이샤 내연 기관의 제어 장치 및 내연 기관의 제어 방법
KR20180053356A (ko) * 2015-09-18 2018-05-21 닛산 지도우샤 가부시키가이샤 내연 기관의 제어 장치 및 내연 기관의 제어 방법
JP6406417B1 (ja) * 2017-11-15 2018-10-17 マツダ株式会社 過給機付エンジン
JP2021032176A (ja) * 2019-08-27 2021-03-01 株式会社Subaru 改質燃料供給装置
JP2021532306A (ja) * 2018-09-19 2021-11-25 ケヨウ ゲーエムベーハーKeyou Gmbh 内燃エンジン、特にガスエンジンの作動方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291775A (ja) * 2005-04-07 2006-10-26 Toyota Motor Corp 内燃機関の制御装置
JP2009121412A (ja) * 2007-11-16 2009-06-04 Toyota Motor Corp 点火制御装置
JP2009138527A (ja) * 2007-12-03 2009-06-25 Toyota Motor Corp 内燃機関の制御装置
JP2009203104A (ja) * 2008-02-27 2009-09-10 Toyota Motor Corp 燃料改質装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291775A (ja) * 2005-04-07 2006-10-26 Toyota Motor Corp 内燃機関の制御装置
JP2009121412A (ja) * 2007-11-16 2009-06-04 Toyota Motor Corp 点火制御装置
JP2009138527A (ja) * 2007-12-03 2009-06-25 Toyota Motor Corp 内燃機関の制御装置
JP2009203104A (ja) * 2008-02-27 2009-09-10 Toyota Motor Corp 燃料改質装置

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056734A (ja) * 2014-09-10 2016-04-21 三菱電機株式会社 内燃機関のegr流量推定装置、及び内燃機関の制御装置
JP2016070131A (ja) * 2014-09-29 2016-05-09 本田技研工業株式会社 内燃機関の制御装置
KR102021711B1 (ko) 2015-09-18 2019-09-16 닛산 지도우샤 가부시키가이샤 내연 기관의 제어 장치 및 내연 기관의 제어 방법
KR20180044353A (ko) * 2015-09-18 2018-05-02 닛산 지도우샤 가부시키가이샤 내연 기관의 제어 장치 및 내연 기관의 제어 방법
KR20180053356A (ko) * 2015-09-18 2018-05-21 닛산 지도우샤 가부시키가이샤 내연 기관의 제어 장치 및 내연 기관의 제어 방법
US10495007B2 (en) 2015-09-18 2019-12-03 Nissan Motor Co., Ltd. Control device for internal combustion engine and control method for internal combustion engine
US10450974B2 (en) 2015-09-18 2019-10-22 Nissan Motor Co., Ltd. Control device for internal combustion engine and control method for internal combustion engine
KR102006582B1 (ko) 2015-09-18 2019-08-01 닛산 지도우샤 가부시키가이샤 내연 기관의 제어 장치 및 내연 기관의 제어 방법
WO2017191708A1 (ja) * 2016-05-06 2017-11-09 株式会社日立製作所 パワートレインシステム
EP3453858A4 (en) * 2016-05-06 2019-12-04 Hitachi, Ltd. MOTOR CONTROL GROUP SYSTEM
JPWO2017191708A1 (ja) * 2016-05-06 2019-01-17 株式会社日立製作所 パワートレインシステム
JP2018009493A (ja) * 2016-07-13 2018-01-18 日産自動車株式会社 内燃機関の排気浄化触媒の暖機方法
WO2018061411A1 (ja) * 2016-09-30 2018-04-05 日立オートモティブシステムズ株式会社 内燃機関制御装置
JP2018053845A (ja) * 2016-09-30 2018-04-05 日立オートモティブシステムズ株式会社 内燃機関制御装置
JP2019090378A (ja) * 2017-11-15 2019-06-13 マツダ株式会社 過給機付エンジン
JP6406417B1 (ja) * 2017-11-15 2018-10-17 マツダ株式会社 過給機付エンジン
JP2021532306A (ja) * 2018-09-19 2021-11-25 ケヨウ ゲーエムベーハーKeyou Gmbh 内燃エンジン、特にガスエンジンの作動方法
JP7208354B2 (ja) 2018-09-19 2023-01-18 ケヨウ ゲーエムベーハー 内燃エンジン、特にガスエンジンの作動方法
JP2021032176A (ja) * 2019-08-27 2021-03-01 株式会社Subaru 改質燃料供給装置
JP7299798B2 (ja) 2019-08-27 2023-06-28 株式会社Subaru 改質燃料供給装置

Similar Documents

Publication Publication Date Title
JP2014125980A (ja) エンジンの制御装置及び制御方法
US9932916B2 (en) Combustion control apparatus for internal combustion engine
US10358971B2 (en) Control apparatus for internal combustion engine
JP6170852B2 (ja) 内燃機関の燃焼制御装置
JP2009115025A (ja) 圧縮自己着火式内燃機関の制御装置および制御方法
WO2018059485A1 (zh) 汽油发动机过量空气系数燃烧控制方法及燃烧控制系统
JP6141801B2 (ja) 内燃機関の制御装置
JP2016053333A (ja) 内燃機関
WO2011158353A1 (ja) 内燃機関の燃料制御装置
JP6010642B2 (ja) 内燃機関の燃焼制御装置
JPWO2017138279A1 (ja) エンジンの制御装置
JP2009209903A (ja) 内燃機関の制御装置
JP2000213444A (ja) エンジンの着火時期制御装置および方法
JP2009191649A (ja) 内燃機関の制御装置
JP2010209728A (ja) 筒内直接噴射式エンジンの制御装置
JP3812292B2 (ja) 内燃機関
JP5617988B2 (ja) 内燃機関の制御装置
JP2016017459A (ja) 内燃機関の制御装置
JP2007285179A (ja) 内燃機関のegr温度制御装置
JP2007224927A (ja) 圧縮比変更機構の故障を検知して制御を行う内燃機関
JP5709738B2 (ja) 圧縮着火内燃機関の制御装置
JP2008180184A (ja) 筒内噴射式火花点火内燃機関の制御装置
JP6069698B2 (ja) エンジンの制御装置及び制御方法
WO2012013034A1 (zh) 氢内燃机燃烧空燃比控制方法
JP5896292B2 (ja) 内燃機関の運転制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161206