WO2017191708A1 - パワートレインシステム - Google Patents

パワートレインシステム Download PDF

Info

Publication number
WO2017191708A1
WO2017191708A1 PCT/JP2017/009347 JP2017009347W WO2017191708A1 WO 2017191708 A1 WO2017191708 A1 WO 2017191708A1 JP 2017009347 W JP2017009347 W JP 2017009347W WO 2017191708 A1 WO2017191708 A1 WO 2017191708A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
internal combustion
combustion engine
temperature
methane conversion
Prior art date
Application number
PCT/JP2017/009347
Other languages
English (en)
French (fr)
Inventor
助川 義寛
金枝 雅人
重雄 幡宮
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2018515400A priority Critical patent/JP6527639B2/ja
Priority to EP17792641.7A priority patent/EP3453858B1/en
Publication of WO2017191708A1 publication Critical patent/WO2017191708A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1506Digital data processing using one central computing unit with particular means during starting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a powertrain system, and more particularly to a powertrain system equipped with a fuel reformer that synthesizes methane from exhaust gas using a methane conversion catalyst.
  • a technology has been proposed in which a fuel reformer is provided in an internal combustion engine, and methane is synthesized from carbon dioxide in exhaust gas by a methane conversion catalyst to be used as fuel.
  • a fuel reformer is provided in an internal combustion engine, and methane is synthesized from carbon dioxide in exhaust gas by a methane conversion catalyst to be used as fuel.
  • Patent Document 1 carbon dioxide discharged from an internal combustion engine and hydrogen obtained by water splitting are mixed, and a predetermined pressure and heat are applied in a reaction chamber.
  • a powertrain system that generates methane and uses the obtained methane again as a fuel for an internal combustion engine is shown.
  • An object of the present invention is to provide a novel powertrain system capable of adjusting the operating state of an internal combustion engine and improving fuel efficiency in response to components of secondary fuel synthesized from carbon dioxide and hydrogen discharged from the internal combustion engine. Is to provide.
  • a feature of the present invention is that an auxiliary fuel mainly composed of methane is synthesized from carbon dioxide separated from hydrogen and exhaust gas by using a methane conversion catalyst, and this auxiliary fuel is mixed with the main fuel to produce an internal combustion engine (spark ignition type).
  • the combustion start timing or combustion period of the internal combustion engine is adjusted in accordance with the temperature of the methane conversion catalyst.
  • the operation of the internal combustion engine is appropriately controlled corresponding to the component of the auxiliary fuel to be synthesized, and the fuel efficiency can be improved by improving the thermal efficiency.
  • FIG. 1 is a configuration diagram of a powertrain system including a reformer according to a first embodiment of the present invention. It is a block diagram which shows an example of a structure of the carbon dioxide separation means shown in FIG. It is a block diagram which shows the structure of the spark ignition type internal combustion engine in the 1st Embodiment of this invention. It is a block diagram which shows the structure of a methane conversion catalyst and a temperature measuring device. It is a characteristic view which shows the temperature characteristic of a methane conversion catalyst and conversion efficiency. It is a characteristic view which shows the ratio of the fuel component in catalyst outflow gas with respect to catalyst temperature.
  • FIG. 14 is an explanatory diagram showing air flow when the tumble control valve shown in FIG. 13 is fully closed.
  • FIG. 14 is an explanatory diagram showing air flow when the tumble control valve shown in FIG. 13 is fully opened.
  • It is a characteristic view which shows the change of the turbulence intensity of the air-fuel mixture at the compression stroke top dead center with respect to the opening degree of the tumble generating valve.
  • It is a characteristic view which shows the change of the turbulent combustion speed with respect to the opening degree of a tumble generation valve.
  • FIG. 5 is a characteristic diagram showing the mass combustion ratio when the ignition timing is constant and the tumble generating valve is fully closed in operating states with different catalyst temperatures. It is a characteristic view which shows the mass combustion ratio at the time of performing the opening degree control of a tumble generation valve. It is explanatory drawing which shows the setting method of the ignition timing in the case of changing both ignition timing and the tumble production
  • FIG. 1 shows an example of the configuration of the powertrain system.
  • reference numeral 20 is a spark ignition type internal combustion engine (hereinafter referred to as an internal combustion engine) that injects fuel into an intake pipe
  • reference numeral 21 is carbon dioxide (hereinafter referred to as CO 2) separated from exhaust gas.
  • CO2 separation means reference numeral 22 is H2 supply means for supplying hydrogen (hereinafter referred to as H2)
  • reference numeral 23 is a mixer for mixing CO2 and H2
  • reference numeral 24 is a methane conversion catalyst
  • reference numeral 25 is The condenser
  • reference numeral 27 is a temperature measuring device
  • reference numeral 28 is a controller.
  • the exhaust gas from the internal combustion engine 20 is separated into a mixed gas of CO 2 and moisture (hereinafter referred to as H 2 O) and nitrogen (hereinafter referred to as N 2) by the CO 2 separation means 21.
  • the separated mixed gas of CO 2 and H 2 O and H 2 supplied from the H 2 supply means (for example, hydrogen cylinder) 22 are uniformly mixed by the mixer 23 and supplied to the methane conversion catalyst 24.
  • the methane conversion catalyst 24 synthesizes a secondary fuel composed mainly of methane (hereinafter referred to as CH 4), and a mixed gas of the secondary fuel (mainly CH 4) and H 2 O is supplied to the condenser 25.
  • the secondary fuel and H 2 O are separated by the condenser 25, and the secondary fuel is used as fuel for the internal combustion engine 20.
  • the inlet temperature of the methane conversion catalyst 24 is measured by the temperature measuring device 27, and the temperature data is transmitted to the controller 28.
  • the controller 28 determines various control parameter values such as the ignition timing of the internal combustion engine 20 and controls the operating state of the internal combustion engine 20.
  • the CO2 separation device means 21 can be realized by adsorbing CO2 and H2O in the exhaust gas to the CO2 capturing means 10 such as activated carbon, zeolite, or solid oxide.
  • the operation process is configured by sequentially repeating a CO2 capture step and a CO2 desorption step.
  • CO2 capture means 10 By installing two or more CO2 capture means 10, it is possible to alternately repeat the CO2 capture process and the CO2 desorption process.
  • one CO2 capturing means 10 is installed in the exhaust gas flow path, if the CO2 capturing reaction by the CO2 capturing means 10 continues, the CO2 and H2O capturing ability of the CO2 capturing means 10 will be exceeded.
  • the flow of the exhaust gas is switched by the three-way valve 11 and the exhaust gas is introduced into the other CO 2 capturing means 10 so that the CO 2 and H 2 O in the exhaust gas are continuously changed. It can be captured.
  • the flow of exhaust gas to the CO2 capture means 10 is stopped, and the temperature of the CO2 capture means 10 is increased to remove CO2 and H2O from the CO2 capture means 10. And CO2 and H2O can be recovered.
  • CO2 and H2O can be desorbed efficiently in terms of energy by utilizing the heat discharged from the internal combustion engine when raising the temperature of the CO2 capturing means 10. For example, by extracting a part of the exhaust gas from the internal combustion engine and applying the heat of the extracted exhaust gas to the CO 2 capturing unit 10 via a heat medium, the temperature of the CO 2 capturing unit 10 can be increased. Alternatively, the CO2 capturing step and the CO2 desorption step can be repeated by making the CO2 capturing means 10 rotary.
  • FIG. 3 shows a combustion chamber and an intake / exhaust passage of a four-cycle internal combustion engine.
  • a piston 35 is slidably disposed in the cylinder 31, and a combustion chamber 36 of an internal combustion engine is formed in the cylinder 31 by an intake valve 33, an exhaust valve 34 and a cylinder head 32.
  • Reference numeral 37 is an intake passage for supplying air and fuel, and reference numeral 38 is an exhaust passage for discharging exhaust gas.
  • Reference numeral 40 is a main fuel injector for supplying main fuel into the intake passage 37
  • 41 is a sub fuel injector for supplying sub fuel into the intake passage 37
  • reference numeral 39 is a spark plug.
  • the ignition timing by the spark plug 39 is set by an ignition timing signal from a controller 28 (not shown).
  • a hydrocarbon fuel having a low cetane number such as gasoline, ethanol, methane, propane or the like is used.
  • auxiliary fuel a synthetic fuel of CH4 and H2 obtained from the condenser 25 shown in FIG. 1 is used.
  • the mixing ratio of CH 4 and H 2 as the auxiliary fuel depends on the temperature of the methane conversion catalyst 24.
  • an air-fuel mixture formed by the air supplied from the intake passage 37, the main fuel supplied from the main fuel injector 40, and the auxiliary fuel supplied from the auxiliary fuel injector 41 is introduced into the combustion chamber 36. Is done.
  • the air-fuel mixture in the combustion chamber compressed by the piston 35 is ignited and burned by the spark plug 39 at a predetermined ignition timing, whereby the piston 35 is pushed down by the explosive force and power can be obtained from the internal combustion engine 20.
  • the methane conversion catalyst 24 is a catalyst that promotes the methanation reaction of CO2 and H2 shown below.
  • the catalyst carrier 12 is installed inside the catalyst case 13.
  • the catalyst carrier 12 is a porous body made of Al, Ce, La, Ti, Zr or the like, and Pt, Pd, Rh, Ni or the like is supported on the surface thereof as a catalyst active component.
  • the specific surface area of the porous carrier used in this embodiment is preferably in the range of 30 to 800 m 2 / g, particularly preferably in the range of 50 to 400 m 2 / g.
  • the total supported amount of the catalytically active components Pt, Pd, Rh, and Ni is preferably 0.0003 mol parts to 1.0 mol parts in terms of elements with respect to 2 mol parts of the porous carrier. If the total supported amount of Pt, Pd, Rh and Ni is less than 0.0003 mol part, the supporting effect is insufficient. On the other hand, if the total supported amount exceeds 1.0 mol part, the specific surface area of the active ingredient itself decreases, and further the catalyst Cost increases.
  • mol part means the content ratio of each component in terms of mol number.
  • “B component” is 1 mol part with respect to 2 mol part of “A component”
  • “A component” is converted to “2” in terms of mol, regardless of the absolute amount of “A component”.
  • it means that “B component” is supported at a ratio of “1”.
  • reference numeral 11 is a thermocouple, and its temperature measuring part is inserted into the exhaust passage upstream of the catalyst case 13.
  • the signal of the thermocouple 11 is taken into the temperature measuring device 27 through the temperature compensating lead wire 14.
  • the temperature measuring device 27 calculates the catalyst temperature from the thermocouple signal and transmits the temperature information to the controller 28.
  • the gas temperature at the catalyst inlet is used as the catalyst temperature.
  • the temperature of the catalyst carrier may be measured by inserting a thermocouple into the catalyst carrier 12, and this may be used as the catalyst temperature. Is.
  • a thermocouple is inserted into the gas passage at the catalyst outlet, the gas temperature at the catalyst outlet is measured, and this may be used as the catalyst temperature.
  • the ignition timing by the ignition plug 39 of the internal combustion engine 20 is adjusted in accordance with the temperature of the methane conversion catalyst 24 measured by the temperature measuring device 27.
  • the combustion start time is controlled.
  • the ignition timing is shifted in the advance direction or the retard direction, the combustion start timing at which combustion of the air-fuel mixture starts due to ignition of the spark plug 39 shifts.
  • the advance amount of the ignition timing is reduced (the ignition timing is delayed as the catalyst temperature decreases). To do).
  • the ignition timing before the top dead center is assumed. Therefore, as the catalyst temperature decreases, the ignition timing approaches the top dead center side.
  • the ignition timing is determined by the rotational speed, load, temperature, etc. of the internal combustion engine. As a correction term for the determined ignition timing, the temperature of the methane conversion catalyst 24 described above can be reflected. It ’s good.
  • FIG. 5 is a characteristic diagram showing the conversion efficiency of CO2 to methane with respect to the catalyst temperature.
  • the conversion efficiency of the methane conversion catalyst 24 is strongly dependent on the catalyst temperature.
  • the catalyst is lower than the activation temperature TA, the function as a catalyst hardly works and the conversion rate is almost “0%”.
  • the catalyst exceeds the activation temperature TA, the conversion of CO2 to methane is started, and the conversion efficiency increases as the catalyst temperature increases.
  • the conversion efficiency reaches “100% (or the upper limit conversion rate of the methane conversion catalyst)”
  • the catalyst temperature when the conversion efficiency reaches “100% (or the upper limit conversion rate of the methane conversion catalyst)” is defined as TB.
  • the catalyst temperature TA and the catalyst temperature TB vary depending on the catalyst support component and the like. For example, TA is about 100 ° C. and TB is about 200 ° C.
  • FIG. 6 is a characteristic diagram showing the ratio of the fuel component in the catalyst outflow gas to the catalyst temperature.
  • the conversion efficiency of the catalyst is almost “0%”, so that H 2 flowing into the catalyst flows out from the catalyst without reacting.
  • the conversion efficiency of the catalyst is almost “100% (or the upper limit conversion rate of the methane conversion catalyst)”, so that the fuel component of the gas flowing out from the catalyst is almost only CH4.
  • the conversion efficiency decreases as the catalyst temperature decreases, so the H2 ratio increases and the CH4 ratio decreases.
  • the secondary fuel produced by the catalyst is a mixed fuel of CH4 and H2, and the component ratio is such that the ratio of H2 increases as the catalyst temperature decreases.
  • FIG. 7 is a characteristic diagram showing the laminar combustion rates of CH4 and H2.
  • the laminar combustion speed represents the speed at which the unburned mixture in front of the flame surface is burned when the mixture is stationary or laminar.
  • H2 has a characteristic that laminar combustion speed is significantly faster than CH4.
  • the difference between the laminar combustion speeds of both is reflected, and the laminar combustion speed of the auxiliary fuel increases as the ratio of H2 increases.
  • the laminar combustion speed due to the mixing ratio of H2 and CH4 changes. Therefore, when the ratio of H2 and CH4 of the auxiliary fuel changes depending on the catalyst temperature, the laminar combustion speed of the auxiliary fuel changes, As shown in FIG. That is, when the catalyst temperature is between TA and TB, the laminar combustion speed of the auxiliary fuel increases as the catalyst temperature decreases.
  • the combustion period (heat generation period) in premixed combustion is almost inversely proportional to the laminar flow rate. Therefore, the relationship between the combustion period (heat generation period) and the catalyst temperature is as shown in FIG. 9.
  • the combustion period (heat generation period) becomes shorter as the catalyst temperature decreases.
  • the mass combustion ratio represents the ratio of the burned fuel out of the fuel flowing into the combustion chamber.
  • the combustion period heat generation period
  • ⁇ 50A that is the 50% combustion timing (MFB50) that becomes the combustion center when the catalyst temperature is TA is Compared to ⁇ 50B, which is the 50% combustion timing (MFB50) when the temperature is TB, it is on the advance side.
  • MFB 50 combustion center
  • the thermal efficiency is best. Therefore, the ignition timing is set in advance so that the air-fuel mixture is ignited and combustion proceeds, and the MFB 50 (combustion center) becomes 10 to 15 ° CA after compression top dead center.
  • the ignition timing is preset so that ⁇ 50B, which is the MFB50 (combustion center) in a state where the conversion efficiency of the methane conversion catalyst 24 is sufficiently high, becomes 10 to 15 ° CA after compression top dead center. Therefore, if the temperature of the methane conversion catalyst 24 decreases, H2 increases and the combustion period (heat generation period) becomes shorter. Therefore, the MFB 50 (combustion center) shifts in the advance direction from the optimum value, resulting in thermal efficiency. Will fall.
  • the internal combustion engine is controlled so that the advance amount of the ignition timing becomes smaller as the catalyst temperature becomes lower in the range of the catalyst temperature from TA to TB.
  • FIG. 12 shows a comparison of mass combustion ratios when ignition timing control is performed according to this embodiment.
  • the ignition timing is controlled to shift to the retard side with respect to TB as indicated by the arrow, and the heat generation period moves to the retard side.
  • the MFB 50 combustion center
  • the thermal efficiency can be increased and the fuel consumption can be improved. be able to.
  • the combustion start timing is controlled by adjusting the ignition timing in accordance with the temperature of the methane conversion catalyst 24, but in this embodiment, the temperature corresponds to the temperature of the methane conversion catalyst 24. Thus, it is different in that the combustion period (heat generation period) of the air-fuel mixture is controlled.
  • FIGS. 13 and 14 show the configuration of the internal combustion engine 20 according to the present embodiment.
  • FIG. 13 shows a longitudinal section of the internal combustion engine 20 in this embodiment
  • FIG. 14 shows a plane of the internal combustion engine 20 shown in FIG.
  • tumble strengthening means for strengthening the tumble (vertical vortex) in the combustion chamber is provided in the passage of the intake passage 37. Since it is the same as that of Example 1, description is abbreviate
  • the tumble strengthening means for strengthening the tumble is a partition wall 42 formed in a part of the passage of the intake passage 37, a rotating shaft 44 provided in the partition wall 42, and fixed to the rotating shaft 44.
  • the tumble generating valve 43 is disposed in a passage formed by the wall surface, and an actuator 45 that drives the rotating shaft 44.
  • the partition wall 42 is a plate-like member that divides the cross section of the intake passage 37 into upper and lower passages.
  • the tumble generating valve 43 is attached to a rotating shaft 44 and is configured to rotate around the rotating shaft 44 by an actuator 45. By rotating the tumble generating valve 43, the amount of air flowing in the lower passage of the intake passage 37 divided by the partition wall 42 can be adjusted, and this adjustment amount (rotation angle) is controlled by the controller 28.
  • this adjustment amount is controlled by the controller 28.
  • the strength of the tumble becomes weaker.
  • methane conversion is performed by measuring the opening degree of the tumble generating valve 43 of the internal combustion engine 20 with the temperature measuring device 27. It adjusts according to the temperature of the catalyst 24, It is characterized by the above-mentioned. That is, the combustion period (heat generation period) is controlled by adjusting the strength of the tumble in the combustion chamber 36.
  • FIG. 15 shows the air flow when the tumble generating valve 43 is in the fully closed state (state where the air flow rate is minimum)
  • FIG. 16 shows the air flow when the tumble generating valve 43 is in the fully open state (maximum air flow rate). The air flow when) is shown.
  • FIG. 17 shows a change in the turbulence intensity at the top dead center of the compression stroke with respect to the opening degree of the tumble generating valve 43.
  • the turbulence intensity generated by the collapse of the tumble is substantially proportional to the strength (air velocity) of the tumble generated in the combustion chamber 36. For this reason, the turbulence intensity decreases as the opening degree of the tumble generating valve 43 increases.
  • the turbulent combustion speed of the premixed gas flame is almost proportional to the turbulence intensity, the turbulent combustion speed becomes slower as the opening degree of the tumble generating valve 43 is larger as shown in FIG. Furthermore, since the combustion period (heat generation period) in premixed combustion is substantially proportional to the turbulent combustion speed, it can be seen that the combustion period (heat generation period) is delayed as the opening of the tumble generating valve increases.
  • the MFB50 (combustion center) when the catalyst temperature is TA is A certain ⁇ 50A is on the advance side compared to ⁇ 50B which is MFB50 (combustion center) when the catalyst temperature is TB. Therefore, when the temperature of the methane conversion catalyst 24 decreases, the MFB 50 (combustion center) shifts in the advance direction from the optimum value and the thermal efficiency decreases.
  • the opening of the tumble generating valve 43 is controlled to increase as the catalyst temperature decreases.
  • FIG. 21 shows a comparison of mass combustion ratios when the opening control of the tumble generating valve is performed according to this embodiment.
  • the opening degree of the tumble generation valve 43 is increased, thereby reducing the turbulent combustion speed and retarding the combustion period (heat generation period). Move to the side.
  • the MFB 50 combustion center
  • the thermal efficiency can be increased as compared with the case where the opening degree of the tumble generation valve 43 is not changed corresponding to the catalyst temperature. .
  • Example 1 it is possible to simultaneously adjust both the opening of the tumble generating valve 43 and the ignition timing of the spark plug 39 in accordance with the catalyst temperature.
  • the catalyst temperature is in the predetermined temperature range TA to TB, the advance amount of the ignition timing is decreased as the catalyst temperature is lowered as shown in FIG. 22A, and the opening degree of the tumble generating valve 43 is changed as shown in FIG. 22B. It can be adjusted greatly.
  • FIG. 23 shows the change in the mass combustion ratio when both the ignition timing of the spark plug 39 and the opening of the tumble generating valve 43 are adjusted in accordance with the catalyst temperature.
  • the catalyst temperature is low, such as TA
  • the combustion start timing at which heat is generated by the combustion of the air-fuel mixture is retarded, and the opening of the tumble generating valve 43 is further increased.
  • the combustion period heat generation period
  • the component ratio of the auxiliary fuel changes depending on the temperature of the methane conversion catalyst 24, and the MFB 50 (combustion center) deviates from the optimum point of thermal efficiency.
  • the combustion period (heat generation period) is adjusted and corrected according to the strength of the tumble.
  • the third embodiment proposes adjusting the combustion start timing or the combustion period (heat generation period) by a control parameter different from the ignition timing and the strength of the tumble.
  • an EGR passage 46 connecting the intake passage 37 and the exhaust pipe 38 is provided, and the amount of recirculation gas flowing through the EGR passage 46 is adjusted by the EGR valve 47.
  • the opening degree of the EGR valve 47 may be adjusted based on the temperature of the methane conversion catalyst 24.
  • the controller 28 adjusts the amount of recirculated gas by increasing the opening of the EGR valve 47 as the catalyst temperature decreases. It may be controlled.
  • Example 1 It is also possible to simultaneously adjust both the opening degree of the EGR valve 47 and the ignition timing of the spark plug 39 corresponding to the catalyst temperature by combining Example 1 and the present embodiment.
  • the advance amount of the ignition timing may be reduced as the catalyst temperature decreases, and the opening degree of the EGR valve may be adjusted to be large.
  • the catalyst temperature is as low as TA
  • the combustion start timing at which heat is generated by the combustion of the air-fuel mixture is retarded, and the opening of the EGR valve 47 is further increased.
  • the combustion period heat generation period
  • ⁇ 50A which is MFB50 (combustion center) when the catalyst temperature is low like TA is retarded
  • ⁇ 50B which is the optimum point.
  • the ignition timing of the spark plug 39 and the opening degree of the EGR valve 47 are adjusted in accordance with the catalyst temperature, the amount of change in the ignition timing and the EGR valve opening degree is independently controlled. There is an effect that can be reduced compared to the case.
  • the present invention uses a methane conversion catalyst to synthesize a secondary fuel mainly composed of methane from carbon dioxide separated from hydrogen and exhaust gas, and mixes this secondary fuel with the main fuel and burns it in an internal combustion engine.
  • the combustion start timing or the combustion period of the internal combustion engine is adjusted in accordance with the temperature of the methane conversion catalyst. According to this, the operation of the internal combustion engine is appropriately controlled corresponding to the component of the auxiliary fuel to be synthesized, and the fuel efficiency can be improved by improving the thermal efficiency.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

内燃機関から排出される二酸化炭素と水素から合成される副燃料の成分に対応して、内燃機関の作動状態を調整して燃費を向上することができる新規な燃料改質装置を備えたパワートレインシステムを提供することにある。 メタン転換触媒24を用いて水素と排気ガスから分離した二酸化炭素からメタンを主成分とする副燃料を合成し、この副燃料を主燃料に混ぜて内燃機関20で燃焼させると共に、メタン転換触媒24の温度に対応して内燃機関の点火プラグ39による燃焼開始時期、或いはタンブル生成バルブ43によって燃焼期間を調整する。これによれば、合成される副燃料の成分に対応して内燃機関の作動が適切に制御され、熱効率の改善を図ることによって燃費の向上を図ることができる。

Description

パワートレインシステム
 本発明はパワートレインシステムに係り、特にメタン転換触媒を用いて排気ガスからメタンを合成する燃料改質装置を備えたパワートレインシステムに関するものである。
 地球温暖化を抑制するため、内燃機関から排出される二酸化炭素を低減する種々の技術的な取り組みがなされている。例えば、理論空燃比より薄い混合気を燃焼させるリーンバーン制御や圧縮比を高くする高圧縮比制御によって、内燃機関の熱効率を改善して二酸化炭素を低減する試みがなされている。
 更に、これに加えて燃料改質装置を内燃機関に設け、排気ガス中の二酸化炭素からメタン転換触媒によってメタンを合成して燃料とする技術が提案されている。例えば、特開2009-269983号公報(特許文献1)には、内燃機関から排出された二酸化炭素と、水分解等で得られた水素とを混合して反応室で所定の圧力と熱を加えてメタンを生成し、この得られたメタンを再び内燃機関の燃料として利用するパワートレインシステムが示されている。
特開2009-269983号公報
 ところで、特許文献1のように、メタン転換触媒を用いてメタンを合成する手法においては、メタン転換触媒の温度に基づく活性化状態によって、合成されるメタンと水素の混合燃料(以下、副燃料という)の成分割合が変化する。このため、合成された副燃料を内燃機関の燃料として再利用する場合には、その副燃料の成分によって内燃機関の最適作動条件が変化する恐れがある。このように副燃料の成分が変化すると、熱効率が悪化して燃費に悪影響を及ぼすことになる。しかしながら、上述した特許文献1においては、これらの点について一切開示がなく、また考慮もされていない。したがって、より実際的な制御技術の提案が要請されている。
 本発明の目的は、内燃機関から排出される二酸化炭素と水素から合成される副燃料の成分に対応して、内燃機関の作動状態を調整して燃費を向上することができる新規なパワートレインシステムを提供することにある。
 本発明の特徴は、メタン転換触媒を用いて水素と排気ガスから分離した二酸化炭素からメタンを主成分とする副燃料を合成し、この副燃料を主燃料に混ぜて内燃機関(火花点火式)で燃焼させると共に、メタン転換触媒の温度に対応して内燃機関の燃焼開始時期、或いは燃焼期間を調整する、ところにある。
 本発明によれば、合成される副燃料の成分に対応して内燃機関の作動が適切に制御され、熱効率の改善を図ることによって燃費の向上を図ることができる。
本発明の第1の実施形態になる、改質装置を備えたパワートレインシステムの構成図である。 図1に示す二酸化炭素分離手段の構成の一例を示す構成図である。 本発明の第1の実施形態における、火花点火式内燃機関の構成を示す構成図である。 メタン転換触媒と温度計測装置の構成を示す構成図である。 メタン転換触媒と転換効率の温度特性を示す特性図である。 触媒温度に対する、触媒流出ガス中の燃料成分の比率を示す特性図である。 メタンと水素の層流燃焼速度を示す特性図である。 触媒温度と副燃料の層流燃焼速度の関係を示す特性図である。 燃焼期間(熱発生期間)と触媒温度との関係を示す特性図である。 触媒温度が異なる運転状態において、点火時期を同一とした場合の質量燃焼割合を示す特性図である。 触媒温度に対する点火時期の設定方法を示す特性図である。 本発明の点火時期制御を行った場合の質量燃焼割合を示す特性図である。 本発明の第2の実施形態における、火花点火式内燃機関の構成を示す構成図である。 図13に示す火花点火式内燃機関の平面図である。 図13に示すタンブル制御バルブが全閉時の空気流動を示す説明図である。 図13に示すタンブル制御バルブが全開時の空気流動を示す説明図である。 タンブル生成バルブの開度に対する圧縮行程上死点での混合気の乱れ強さの変化を示す特性図である。 タンブル生成バルブの開度に対する、乱流燃焼速度の変化を示す特性図である。 触媒温度に対するタンブル生成バルブの設定方法を示す説明図である。 触媒温度が異なる運転状態において、点火時期を一定とし、かつタンブル生成バルブを全閉とした場合の質量燃焼割合を示す特性図である。 タンブル生成バルブの開度制御を行った場合の質量燃焼割合を示す特性図である。 触媒温度に対応して、点火時期とタンブル生成バルブ開度の双方を変える場合における点火時期の設定方法を示す説明図である。 触媒温度に対応して、点火時期とタンブル生成バルブ開度の双方を変える場合におけるタンブル生成バルブ開度の設定方法を示す説明図である。 本発明によって点火時期とタンブル生成バルブの開度制御を行った場合の質量燃焼割合を示す特性図である。 本発明の第3の実施形態における、火花点火式内燃機関の構成を示す構成図である。 触媒温度に対するEGRバルブの設定方法を示す説明図である。 EGRバルブ開度と層流燃焼速度の関係を示す特性図である。
 以下、本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。
 先ず、本発明の第1の実施形態によるパワートレインシステムを、図1~図4を用いて詳細に説明する。
 図1は、パワートレインシステムの構成の一例を示している。図1において、参照番号20は、吸気管に燃料を噴射する火花点火式内燃機関(以下、内燃機関と表記する)、参照番号21は排気ガスから二酸化炭素(以下、CO2と表記する)を分離するCO2分離手段、参照番号22は水素(以下、H2と表記する)を供給するH2供給手段、参照番号23はCO2とH2とを混合するミキサー、参照番号24はメタン転換触媒、参照番号25は凝縮器、参照番号27は温度計測装置、参照番号28はコントローラである。
 内燃機関20からの排気ガスはCO2分離手段21によって、CO2と水分(以下、H2Oと表記する)の混合ガスと、窒素(以下、N2と表記する)に分離される。分離されたCO2とH2Oの混合ガスと、H2供給手段(例えば、水素ボンベ)22から供給されるH2はミキサー23で均一に混合され、メタン転換触媒24に供給される。メタン転換触媒24でメタン(以下、CH4と表記する)を主成分とする副燃料が合成され、副燃料(主にCH4)とH2Oの混合ガスが凝縮器25に供給される。
 凝縮器25で副燃料とH2Oが分離され、副燃料は内燃機関20の燃料として利用される。メタン転換触媒24の入口温度が温度計測装置27によって計測され、温度データはコントローラ28へ送信される。コントローラ28は、内燃機関20の点火時期等の種々の制御パラメータ値を決定して内燃機関20の作動状態を制御する。
 次に図2を用いて、CO2分離手段21の構成の一例について説明する。CO2分離装置手段21は、例えば活性炭、ゼオライト、固体酸化物などのCO2捕捉手段10に排気ガス中のCO2とH2Oを吸着させることで実現できる。その作動プロセスは、CO2の捕捉工程とCO2の脱離工程を順次繰り返すによって構成される。
 CO2捕捉手段10は二つ以上設置することで、CO2捕捉工程とCO2脱離工程を交互に繰り返すことが可能となる。排気ガス流路に1個のCO2捕捉手段10を設置した場合、CO2捕捉手段10によるCO2捕捉反応が継続すると、CO2捕捉手段10のCO2及びH2Oの捕捉能力を超えてしまうことになる。このような場合には、図2にある通り、排気ガスの流れを三方弁11によって切り換え、他方のCO2捕捉手段10へ排気ガスを導入することで、継続して排気ガス中のCO2とH2Oを捕捉する事ができるものである。
 一方で、CO2とH2Oを十分捕捉したCO2捕捉手段10については、CO2捕捉手段10への排気ガスの流入を止め、CO2捕捉手段10の温度を高めることでCO2捕捉手段10からCO2とH2Oを脱離させ、CO2とH2Oを回収することができる。
 CO2捕捉手段10の温度を高める際に、内燃機関から排出された熱を利用することで、エネルギー的に効率良くCO2とH2Oを脱離させることができる。例えば、内燃機関の排気ガスの一部を取り出し、取り出した排気ガスの熱を、熱媒体を介してCO2捕捉手段10に与えることで、CO2捕捉手段10の温度を高めることができる。もしくは、CO2捕捉手段10を回転式にすることで、CO2捕捉工程とCO2脱離工程を繰り返すことも可能である。
 次に図3を用いて、内燃機関20の構成について説明する。図3は、4サイクル式内燃機関の燃焼室及び吸排気通路を示している。シリンダ31にはピストン35が摺動可能に配置され、シリンダ31には吸気弁33、排気弁34及びシリンダヘッド32によって、内燃機関の燃焼室36が形成されている。参照番号37は空気と燃料を供給する吸気通路、参照番号38は排気ガスを排出する排気通路である。
 また、参照番号40は吸気通路37内に主燃料を供給する主燃料インジェクタ、41は吸気通路37内に副燃料を供給する副燃料インジェクタ、参照番号39は点火プラグである。点火プラグ39による点火時期は、図示しないコントローラ28からの点火時期信号によって設定される。主燃料としては、例えばガソリン、エタノール、メタン、プロパンなど、低セタン価の炭化水素燃料を用いる。副燃料としては、図1に示す凝縮器25から得られるCH4とH2の合成燃料を用いる。ここで、副燃料のCH4とH2の混合割合は、メタン転換触媒24の温度に依存している。
 内燃機関20では、吸気通路37から供給される空気と、主燃料インジェクタ40から供給される主燃料と、副燃料インジェクタ41から供給される副燃料とで形成される混合気が燃焼室36へ導入される。ピストン35で圧縮された燃焼室内の混合気が所定の点火時期で点火プラグ39により点火され燃焼することで、その爆発力によってピストン35が押し下げられて内燃機関20より動力を得ることができる。
 次に、図4を用いてメタン転換触媒24と温度計測装置27の構成について説明する。ここでメタン転換触媒24とは、以下で示されるCO2とH2のメタン化反応を促進する触媒のことである。
CO2+4H2⇒CH4+2H2O
 図4において、触媒ケース13の内部に触媒担体12が設置されている。触媒担体12はAl、Ce、La、Ti、Zrなどを材料とした多孔質体であり、その表面に触媒活性成分としてPt、Pd、Rh、Niなどが担持されている。
 メタン転換触媒24の多孔質担体として、比表面積が高い酸化物を用いることで、Pt、Pd、Rh、Niが高分散化し、メタン化性能が高まるものである。特に多孔質担体として、Alを含む酸化物を使用すると安定して高いメタン化性能が得られる。本実施形態において用いる多孔質担体の比表面積は、30~800m/gの範囲が好ましく、特に50~400m/gの範囲が好ましい。
 また、触媒活性成分として、Pt、Pd、Rh、Niから選ばれた二種以上を含有させても良い。触媒活性成分のPt、Pd、Rh、Niの合計担持量は、好ましくは、多孔質担体2mol部に対して元素換算で0.0003mol部~1.0mol部である。Pt、Pd、Rh、Niの合計担持量が0.0003mol部未満であると、担持効果は不十分となり、一方、1.0mol部を越えると、活性成分自体の比表面積が低下し、更に触媒コストが高くなる。
 ここで「mol部」とは、各成分のmol数換算での含有比率を意味する。例えば、「A成分」2mol部に対して「B成分」の担持量が1mol部とは、「A成分」の絶対量の多少に関わらず、mol数換算で「A成分」が「2」に対し、「B成分」が「1」の割合で担持されていることを意味する。
 図4において、参照番号11は熱電対であり、その測温部が触媒ケース13の上流部の排気通路内に挿入されている。熱電対11の信号は温度補償導線14を通じて温度計測装
置27に取り込まれている。温度計測装置27では熱電対の信号から触媒温度を求め、その温度情報をコントローラ28へ送信する。
 尚、本実施例では触媒温度として、触媒入口でのガス温度を用いる例を示したが、熱電対を触媒担体12の内部に挿入して触媒担体温度を測定し、これを触媒温度としても良いものである。または、触媒出口のガス通路に熱電対を挿入し、触媒出口のガス温度を測定し、これを触媒温度としても良いものである。
 本実施形態においては、図1~図4で示したパワートレインシステムにおいて、内燃機関20の点火プラグ39による点火時期を、温度計測装置27で計測したメタン転換触媒24の温度に対応して調整し、これによって燃焼開始時期を制御することを特徴としている。点火時期を進角方向、或いは遅角方向に移行させると、点火プラグ39の発火による、混合気の燃焼が開始する燃焼開始時期が移行するものである。
 つまり、図11に示しているように、触媒温度が所定温度範囲(図11のTA~TBの範囲)において、触媒温度が低くなるにつれて、点火時期の進角量を小さくする(点火時期を遅くする)ものである。尚、この場合は上死点より前での点火時期を前提としている。したがって、触媒温度が低くなるにつれて、点火時期が上死点側に近づくものである。良く知られているように、点火時期は、内燃機関の回転数、負荷、温度等によって求められるが、この求められた点火時期の補正項として、上述したメタン転換触媒24の温度を反映させれば良いものである。
 本実施形態の動作、作用、効果について、図5~図12を用いて説明する。まず、図5を用いてメタン転換触媒24の温度特性について説明する。
 図5は、触媒温度に対するCO2のメタンへの転換効率を示した特性図である。一般にメタン転換触媒24の転換効率は、触媒温度に対して強い依存性がある。触媒が活性化温度TAより低い場合には、触媒としての機能は殆ど働かず転換率はほぼ「0%」となる。一方、触媒が活性化温度TAを超えると、CO2のメタンへの転換が開始され、触媒温度が高くなるほど転換効率は高くなる。転換効率が「100%(もしくは、メタン転換触媒の上限転換率)」に達すると、触媒温度上昇に対して転換率はほぼ一定となる。転換効率が「100%(もしくはメタン転換触媒の上限転換率)」に到達するときの触媒温度をTBとする。触媒温度TAと触媒温度TBは、触媒の担持成分などによって種々に変化するが、例えば、TAは約100℃、TBは約200℃である。
 このように触媒温度がTA~TBの間では、触媒温度によって転換効率が変化することから、触媒から流出するガスの燃料成分が触媒温度によって変化する。図6は触媒温度に対する、触媒流出ガス中の燃料成分の比率を示した特性図である。触媒温度がTAより低いと触媒の転換効率はほぼ「0%」であるため、触媒に流入したH2が反応することなく触媒から流出される。
 したがって、触媒温度がTAより低い場合には、触媒流出ガス中の燃料成分はほぼH2のみである。一方触媒温度がTBより高いと触媒の転換効率はほぼ「100%(もしくはメタン転換触媒の上限転換率)」であるので、触媒から流出されるガスの燃料成分はほぼCH4のみである。触媒温度がTA~TBの間では、触媒温度が低くなるにつれて転換効率が低くなるため、H2比率が高くなり、CH4の比率が低くなる。
 すなわち、触媒温度がTA~TBの間では、触媒によって生成される副燃料はCH4とH2の混合燃料であり、その成分比は、触媒温度が低くなるほどH2の比率が高くなるものである。
 図7は、CH4とH2の層流燃焼速度を示した特性図である。ここで、層流燃焼速度とは、混合気が静止、もしくは層流で流れている場合に、火炎面の前方にある未燃焼混合気を燃焼させていく速度を表している。そして、H2はCH4に比べて大幅に層流燃焼速度が速い特性を有する。H2とCH4が混合された副燃料においても、両者の層流燃焼速度の違いが反映され、H2の比率が高いほど副燃料の層流燃焼速度は大きくなる。
 このように、H2とCH4の混合比率による層流燃焼速度が変化することから、触媒温度によって副燃料のH2とCH4の比率が変化すると、副燃料の層流燃焼速度が変化し、それは触媒温度に対して図8のような相関を持つようになる。すなわち、触媒温度がTA~TBの間では、触媒温度が低くなるにつれて副燃料の層流燃焼速度が速くなるものである。
 また、予混合燃焼における燃焼期間(熱発生期間)は層流燃焼速度にほぼ反比例する。したがって、燃焼期間(熱発生期間)と触媒温度との関係は図9に示したようになり、触媒温度がTA~TBの間では、触媒温度が低くなるにつれて燃焼期間(熱発生期間)が短くなる。ここで、触媒温度がTAの場合とTBの場合の2つの運転状態を想定し、両者の点火時期を同一とした場合の質量燃焼割合(MFB)の比較を図10に示している。ここで、質量燃焼割合とは、燃焼室に流入した燃料のうち、燃焼した燃料の割合を表している。
 触媒温度がTAの場合は、触媒温度がTBの場合より燃焼期間(熱発生期間)が短いので、触媒温度がTAの場合の燃焼中心となる50%燃焼時期(MFB50)であるθ50Aは、触媒温度がTBの場合の50%燃焼時期(MFB50)であるθ50Bに比べて進角側になる。一般に、内燃機関ではMFB50(燃焼中心)を圧縮上死点後10~15°CAにすると、熱効率が最も良くなることが知られている。したがって、点火時期は、混合気に点火されて燃焼が進行し、MFB50(燃焼中心)が圧縮上死点後10~15°CAになるように予め設定される。
 具体的には、メタン転換触媒24の転換効率が充分高い状態のMFB50(燃焼中心)であるθ50Bが、圧縮上死点後10~15°CAになるように点火時期が予め設定される。したがって、メタン転換触媒24の温度が低下するとH2が多くなって燃焼期間(熱発生期間)が短くなることから、MFB50(燃焼中心)が最適値よりも進角方向に移行し、この結果、熱効率が低下するのである。
 そこで本実施形態では図11に示すように、触媒温度がTA~TBの範囲において、触媒温度が低くなるにつれて、点火時期の進角量が小さくなるように内燃機関を制御するものである。
 本実施形態によって点火時期制御を行った場合における、質量燃焼割合の比較を図12に示している。触媒温度が低く燃焼期間(熱発生期間)が短いTAの場合には、矢印で示すように点火時期がTBに対して遅角側に移行制御され、熱発生期間が遅角側に移動する。この結果、触媒温度が低い場合でもMFB50(燃焼中心)を最適位置に近づけることができ、点火時期を触媒温度に対応して変化させない場合に比べて、熱効率を高くすることができ燃費を向上することができる。
 次に、本発明の第2の実施形態について図13~図23を用いて説明する。第1の実施形態では、メタン転換触媒24の温度に対応して、点火時期を調整することによって燃焼開始時期を制御するものであったが、本実施形態ではメタン転換触媒24の温度に対応して、混合気の燃焼期間(熱発生期間)を制御する点で異なっている。
 本実施形態におけるパワートレインシステムの構成は、実施例1と同様であるので詳しい説明は省略する。ここで、図13と図14に、本実施形態になる内燃機関20の構成を示している。図13は本実施例における内燃機関20の縦断面を示し、図14は図13に示す内燃機関20の平面を示している。
 本実施例における内燃機関20の構成では、吸気通路37の通路内に、燃焼室内のタンブル(縦渦)を強化するためのタンブル強化手段が設けられており、その他の内燃機関20の構成については、実施例1と同様であるので説明は省略する。
 タンブルを強化するタンブル強化手段は、吸気通路37の通路の一部に形成した隔壁42と、この隔壁42に設けられた回転軸44と、回転軸44に固定され、隔壁42と吸気通路37の壁面とで形成された通路に配置されたタンブル生成バルブ43と、回転軸44を駆動するアクチュエータ45から構成されている。
 図13、14にある通り、隔壁42は吸気通路37の通路断面を上下の通路に分割する板状部材である。タンブル生成バルブ43は回転軸44に取り付けられており、アクチュエータ45によって回転軸44を中心に回転する構成となっている。タンブル生成バルブ43が回転することによって、隔壁42で分割された吸気通路37の下側通路に流れる空気の量を調整でき、この調整量(回転角度)はコントローラ28によって制御されるものである。ここで、タンブル生成バルブ43を通過する空気が多いほどタンブルの強さは弱くなるものである。
 本実施形態においては、図1、図2、図4、図13及び図14で示したパワートレインシステムにおいて、内燃機関20のタンブル生成バルブ43の開度を、温度計測装置27で計測したメタン転換触媒24の温度に対応して調整することを特徴とするものである。つまり、燃焼室36内のタンブルの強さを調整することで、燃焼期間(熱発生期間)を制御するものである。
 タンブルの強さが大きいほど燃焼期間(熱発生期間)は短くなるので、燃焼速度が早いH2が多いほどタンブルを弱くして、燃焼期間(熱発生期間)を長くしてやるものである。このため、図19に示しているように、触媒温度が所定温度範囲(図19のTA~TBの範囲)において、H2が多くなる触媒温度が低くなるにつれて、タンブル生成バルブ43を通過する空気の流れが多くなる方向に、タンブル生成バルブ43の開度を大きくするものである。
 本実施形態の動作、作用、効果について、図15~図21を用いて説明するが、まず、図15、16用いて、タンブル生成バルブ43の開度の違いによる燃焼室内の空気流動の違いを説明する。図15は、タンブル生成バルブ43が全閉状態(空気の流量が最小の状態)になっているときの空気流動を示しており、図16はタンブル生成バルブ43が全開状態(空気の流量が最大)になっているときの空気流動を示している。
 図15にある通り、タンブル生成バルブ43が全閉状態では、吸気通路37の隔壁42より下の通路には空気が流入せず、空気は主に吸気バルブ33の開口部の上側を経由して燃焼室36内に流入する。このため、燃焼室36内には強いタンブルが生成される。
 一方、図16にある通り、タンブル生成バルブ43が全開状態では、吸気通路37の隔壁42の上下通路に均等に空気が流入して、空気は吸気バルブ33の開口部の上側と下側からほぼ均等に燃焼室36内に流入する。このため、燃焼室36内に生成されるタンブルは、タンブル生成バルブ43が全閉状態で生成されるタンブルに比べて弱く(空気速度が遅く)なる。
 そして、燃焼室36内に生成されたタンブルは、圧縮行程の後期で崩壊して燃焼室36内に乱れ(乱流)を生成する。図17にタンブル生成バルブ43の開度に対する、圧縮行程上死点での乱れ強さの変化を示している。タンブルの崩壊によって生成される乱れ強さは、燃焼室36内に生成されたタンブルの強さ(空気速度)にほぼ比例する。このため、タンブル生成バルブ43の開度が大きいほど乱れ強さは小さくなる。
 予混合気火炎の乱流燃焼速度は、乱れ強さにほぼ比例するので、図18に示すように乱流燃焼速度は、タンブル生成バルブ43の開度が大きいほど遅くなる。更に、予混合燃焼における燃焼期間(熱発生期間)は、乱流燃焼速度にほぼ比例するので、燃焼期間(熱発生期間)はタンブル生成バルブの開度が大きいほど遅くなることがわかる。
 そして、触媒温度がTAの場合とTBの場合の2つの運転状態を想定し、両運転状態での点火時期を一定とし、かつタンブル生成バルブを全閉とした場合の質量燃焼割合の比較を図20に示している。
 触媒温度がTAの場合は、触媒温度がTBの場合に比べて副燃料中のH2比率が高く、燃焼期間(熱発生期間)が短いので、触媒温度がTAの場合のMFB50(燃焼中心)であるθ50Aは、触媒温度がTBの場合のMFB50(燃焼中心)であるθ50Bに比べて進角側になる。したがって、メタン転換触媒24の温度が低下するとMFB50(燃焼中心)が最適値よりも進角方向に移行して熱効率が低下する。
 そこで、本実施形態では図19に示すように、触媒温度がTA~TBの範囲において、触媒温度が低くなるにつれてタンブル生成バルブ43の開度が大きくなるように制御するものである。
 本実施形態によってタンブル生成バルブの開度制御を行った場合における、質量燃焼割合の比較を図21に示している。触媒温度が低く燃焼期間(熱発生期間)が短いTAの場合には、タンブル生成バルブ43の開度が大きくなることで乱流燃焼速度が低下して、燃焼期間(熱発生期間)が遅角側に移動する。この結果、触媒温度が低い場合でもMFB50(燃焼中心)を最適位置に近づけることができ、タンブル生成バルブ43の開度を触媒温度に対応して変化させない場合に比べて熱効率を高くすることができる。
 また、実施例1と本実施形態とを組み合わせて、触媒温度に対応してタンブル生成バルブ43の開度と点火プラグ39の点火時期の双方を同時に調整することも可能である。触媒温度が所定温度範囲TA~TBの範囲において、図22Aに示すように触媒温度が低くなるにつれて点火時期の進角量を小さくすると共に、図22Bに示すようにタンブル生成バルブ43の開度を大きく調整しても良いものである。
 このように、点火プラグ39の点火時期とタンブル生成バルブ43の開度の双方を触媒温度に対応して調整した場合の質量燃焼割合の変化を図23に示している。触媒温度がTAのように低い場合において、点火プラグ39の点火時期を遅らすことで、混合気の燃焼による熱が発生する燃焼開始時期が遅角し、更にタンブル生成バルブ43の開度を大きくすることで、燃焼期間(熱発生期間)が長く継続される。
 これらの双方の効果によって、触媒温度がTAのように低い場合のMFB50(燃焼中心)であるθ50Aが遅角し、最適点であるθ50Bに近づくことで触媒温度が低い場合の熱効率を高くすることができる。このように、点火プラグ39の点火時期とタンブル生成バルブ43の開度の双方を、触媒温度に対応して調整させた場合には、点火時期とタンブル生成バルブ開度の変化量を、それぞれ単独で制御する場合に比べて小さくできる効果がある。
 内燃機関の制御パラメータ値の変化量が大きいと、過渡において燃焼が不安定になったり、過渡追従性が悪くなったりする課題があるが、上述した手法では夫々の制御量の変化を小さく抑えることができるので、これらの課題に対して優位になるものである。
 次に、本発明の第3の実施形態について図24~図26を用いて説明する。実施例1や実施例2は、メタン転換触媒24の温度によって副燃料の成分比が変わり、MFB50(燃焼中心)が熱効率の最適点から外れるのを、点火時期によって燃焼開始時期を調整し、或いはタンブルの強さによって燃焼期間(熱発生期間)を調整して補正するものである。これに対して、第3に実施形態では、点火時期やタンブルの強さとは別の制御パラメータによって、燃焼開始時期、或いは燃焼期間(熱発生期間)を調整するものを提案している。
 図24に示す内燃機関では、吸気通路37と排気管38の連結するEGR通路46を設け、このEGR通路46を流れる再循環ガスの量をEGRバルブ47で調整するものである。このように、再循環ガス量を制御できるパワートレインシステムにおいては、メタン転換触媒24の温度に基づいて、EGRバルブ47の開度を調整しても良いものである。
 具体的には図25に示すように、触媒温度がTA~TBの範囲において、触媒温度が低くなるにつれて、EGRバルブ47の開度を大きくして再循環ガス量を調整するようにコントローラ28で制御しても良いものである。
 EGRバルブ47の開度が大きくなると、多くの再循環ガスが燃焼室36内に導入されるので、燃焼室36内の混合気が希釈され、図26に示すように層流燃焼速度が小さくなる。触媒温度が低く燃焼期間(熱発生期間)が短い場合に、多くの再循環ガスを導入することで燃焼速度が低下して、熱発生期間が遅角側に移動する。この結果、触媒温度が低い場合でもMFB50(燃焼中心)を最適位置に近づけることができ、EGRバルブ47の開度を触媒温度に対応して変化させない場合に比べて熱効率を高くすることができる。
 また、実施例1と本実施形態とを組み合わせて、触媒温度に対応してEGRバルブ47の開度と点火プラグ39の点火時期の双方を同時に調整することも可能である。触媒温度が所定温度範囲TA~TBの範囲において、触媒温度が低くなるにつれて点火時期の進角量を小さくすると共に、EGRバルブの開度を大きく調整しても良いものである。
 このように、触媒温度がTAのように低い場合において、点火プラグ39の点火時期を遅らすことで、混合気の燃焼による熱が発生する燃焼開始時期が遅角し、更にEGRバルブ47の開度を大きくすることで、燃焼期間(熱発生期間)が長く継続される。
 これらの双方の効果によって、触媒温度がTAのように低い場合のMFB50(燃焼中心)であるθ50Aが遅角し、最適点であるθ50Bに近づくことで触媒温度が低い場合の熱効率を高くすることができる。このように、点火プラグ39の点火時期とEGRバルブ47の開度の双方を、触媒温度に対応して調整させた場合には、点火時期とEGRバルブ開度の変化量を、それぞれ単独で制御する場合に比べて小さくできる効果がある。
 以上に述べた通り、本発明はメタン転換触媒を用いて水素と排気ガスから分離した二酸化炭素からメタンを主成分とする副燃料を合成し、この副燃料を主燃料に混ぜて内燃機関で燃焼させると共に、メタン転換触媒の温度に対応して内燃機関の燃焼開始時期、或いは燃焼期間を調整する、構成とした。これによれば、合成される副燃料の成分に対応して内燃機関の作動が適切に制御され、熱効率の改善を図ることによって燃費の向上を図ることができる。
 尚、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。
 11…熱電対、12…触媒担体、13…触媒ケース、14…温度補償導線、20…火花点火式内燃機関、21…CO2分離手段、22…H2供給手段、23…ミキサー、24…メタン転換触媒、25…凝縮器、27…温度計測装置、28…コントローラ、31…シリンダ、35…ピストン、33…吸気バルブ、34…排気バルブ、32…シリンダヘッド、36…燃焼室、37…吸気通路、38…排気通路、39…点火プラグ、40…主燃料用インジェクタ、41…副燃料用インジェクタ、42…隔壁、43…タンブル生成バルブ、44…回転軸、45…アクチュエータ、46…EGR通路、47…EGRバルブ、48…スロットル弁。

Claims (10)

  1.  内燃機関から排出される排気ガスから分離した二酸化炭素と水素をメタン転換触媒に導入して副燃料を合成する燃料改質手段と、前記副燃料を主燃料と共に前記内燃機関に供給する燃料供給手段と、前記内燃機関に供給された混合気に点火する点火手段と、前記燃料供給手段、及び前記点火手段を制御する制御手段とを備えたパワートレインシステムにおいて、
     前記制御手段は、前記メタン転換触媒の温度に対応して、前記点火手段による混合気の燃焼開始時期を調整する点火時期補正手段を備えていることを特徴とするパワートレインシステム。
  2.  請求項1に記載のパワートレインシステムにおいて、
     前記点火時期補正手段は、前記メタン転換触媒の温度が低くなるにしたがい、点火時期を遅角する方向に移行して前記燃焼開始時期を遅角させる機能を備えていることを特徴とするパワートレインシステム。
  3.  内燃機関から排出される排気ガスから分離した二酸化炭素と水素をメタン転換触媒に導入して副燃料を合成する燃料改質手段と、前記副燃料を主燃料と共に前記内燃機関に供給する燃料供給手段と、前記内燃機関に供給された混合気に点火する点火手段と、前記内燃機関の燃焼室内に生成される空気流動の強さを変化させる空気流動制御手段と、前記燃料供給手段、前記点火手段、及び空気流動制御手段を制御する制御手段とを備えたパワートレインシステムにおいて、
     前記制御手段は、前記メタン転換触媒の温度に対応して、空気流動に基づく混合気の燃焼期間を調整する空気流動補正手段を備えていることを特徴とするパワートレインシステム。
  4.  請求項3に記載のパワートレインシステムにおいて、
     前記空気流動補正手段は、前記メタン転換触媒の温度が低くなるにしたがい、空気流動が弱くなる方向に移行して前記燃焼期間を短くする機能を備えていることを特徴とするパワートレインシステム。
  5.  内燃機関から排出される排気ガスから分離した二酸化炭素と水素をメタン転換触媒に導入して副燃料を合成する燃料改質手段と、前記副燃料を主燃料と共に前記内燃機関に供給する燃料供給手段と、前記内燃機関に供給された混合気に点火する点火手段と、前記内燃機関の燃焼室内に生成される空気流動の強さを変化させる空気流動制御手段と、前記燃料供給手段、前記点火手段、及び空気流動制御手段を制御する制御手段とを備えたパワートレインシステムにおいて、
     前記制御手段は、前記メタン転換触媒の温度に対応して、前記点火手段による混合気の燃焼開始時期を調整する点火時期補正手段を備え、更に、前記制御手段は、前記メタン転換触媒の温度に対応して、空気流動に基づく混合気の燃焼期間を調整する空気流動補正手段を備えていることを特徴とするパワートレインシステム。
  6.  請求項5に記載のパワートレインシステムにおいて、
     前記点火時期補正手段は、前記メタン転換触媒の温度が低くなるにしたがい、点火時期を遅角する方向に移行して前記燃焼開始時期を遅角させる機能を備え、
     前記空気流動補正手段は、前記メタン転換触媒の温度が低くなるにしたがい、空気流動が弱くなる方向に移行して前記燃焼期間を短くする機能を備えていることを特徴とするパワートレインシステム。
  7.  内燃機関から排出される排気ガスから分離した二酸化炭素と水素をメタン転換触媒に導入して副燃料を合成する燃料改質手段と、前記副燃料を主燃料と共に前記内燃機関に供給する燃料供給手段と、前記内燃機関に供給された混合気に点火する点火手段と、前記内燃機関の排気ガスを前記内燃機関の吸気通路に再循環するEGR制御手段と、前記燃料供給手段、前記点火手段、及びEGR制御手段を制御する制御手段とを備えたパワートレインシステムにおいて、
     前記制御手段は、前記メタン転換触媒の温度に対応して、排気ガスの再循環に基づく混合気の燃焼期間を調整するEGR補正手段を備えていることを特徴とするパワートレインシステム。
  8.  請求項7に記載のパワートレインシステムにおいて、
     前記EGR補正手段は、前記メタン転換触媒の温度が低くなるにしたがい、再循環量が多くなる方向に移行して前記燃焼期間を短くする機能を備えていることを特徴とするパワートレインシステム。
  9.  内燃機関から排出される排気ガスから分離した二酸化炭素と水素をメタン転換触媒に導入して副燃料を合成する燃料改質手段と、前記副燃料を主燃料と共に前記内燃機関に供給する燃料供給手段と、前記内燃機関に供給された混合気に点火する点火手段と、前記内燃機関の排気ガスを前記内燃機関の吸気通路に再循環するEGR制御手段と、前記燃料供給手段、前記点火手段、及びEGR制御手段を制御する制御手段とを備えたパワートレインシステムにおいて、
     前記制御手段は、前記メタン転換触媒の温度に対応して、前記点火手段による混合気の燃焼開始時期を調整する点火時期補正手段を備え、更に、前記制御手段は、前記メタン転換触媒の温度に対応して、排気ガスの再循環に基づく混合気の燃焼期間を調整する空気流動補正手段を備えていることを特徴とするパワートレインシステム。
  10.  請求項9に記載のパワートレインシステムにおいて、
     前記点火時期補正手段は、前記メタン転換触媒の温度が低くなるにしたがい、点火時期を遅角する方向に移行して前記燃焼開始時期を遅角させる機能を備え、
     前記EGR補正手段は、前記メタン転換触媒の温度が低くなるにしたがい、再循環量が多くなる方向に移行して前記燃焼期間を短くする機能を備えていることを特徴とするパワートレインシステム。
PCT/JP2017/009347 2016-05-06 2017-03-08 パワートレインシステム WO2017191708A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018515400A JP6527639B2 (ja) 2016-05-06 2017-03-08 パワートレインシステム
EP17792641.7A EP3453858B1 (en) 2016-05-06 2017-03-08 Powertrain system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-092943 2016-05-06
JP2016092943 2016-05-06

Publications (1)

Publication Number Publication Date
WO2017191708A1 true WO2017191708A1 (ja) 2017-11-09

Family

ID=60202873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009347 WO2017191708A1 (ja) 2016-05-06 2017-03-08 パワートレインシステム

Country Status (3)

Country Link
EP (1) EP3453858B1 (ja)
JP (1) JP6527639B2 (ja)
WO (1) WO2017191708A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019203065A1 (de) * 2019-03-06 2020-09-10 Thyssenkrupp Ag Verfahren zur Herstellung von Methanol oder Methan

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174526A (ja) * 2007-12-29 2009-08-06 Masaru Ichikawa 複数の燃料を併用する内燃機関
JP2009269983A (ja) * 2008-05-02 2009-11-19 Yoshiro Nakamatsu 二酸化炭素消滅燃料費節約装置
WO2011040139A1 (ja) * 2009-09-30 2011-04-07 株式会社日立製作所 改質器付エンジンシステム
JP2014125980A (ja) * 2012-12-26 2014-07-07 Nissan Motor Co Ltd エンジンの制御装置及び制御方法
JP2016023546A (ja) * 2014-07-16 2016-02-08 日産自動車株式会社 エンジン及びその制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174526A (ja) * 2007-12-29 2009-08-06 Masaru Ichikawa 複数の燃料を併用する内燃機関
JP2009269983A (ja) * 2008-05-02 2009-11-19 Yoshiro Nakamatsu 二酸化炭素消滅燃料費節約装置
WO2011040139A1 (ja) * 2009-09-30 2011-04-07 株式会社日立製作所 改質器付エンジンシステム
JP2014125980A (ja) * 2012-12-26 2014-07-07 Nissan Motor Co Ltd エンジンの制御装置及び制御方法
JP2016023546A (ja) * 2014-07-16 2016-02-08 日産自動車株式会社 エンジン及びその制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3453858A4 *

Also Published As

Publication number Publication date
EP3453858A4 (en) 2019-12-04
JPWO2017191708A1 (ja) 2019-01-17
EP3453858A1 (en) 2019-03-13
JP6527639B2 (ja) 2019-06-05
EP3453858B1 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
JP4645456B2 (ja) 予混合圧縮自着火燃焼機関の制御装置
US6968678B2 (en) High efficiency, reduced emissions internal combustion engine system, especially suitable for gaseous fuels
US10202959B2 (en) Combustion pre-chamber and method for operating same
US8453433B2 (en) Exhaust gas purification device for internal combustion engine
US9932916B2 (en) Combustion control apparatus for internal combustion engine
US9670828B2 (en) Mixture-charged gas engine and method for compensating for volumetric efficiency deviations in a mixture-charged gas engine
JP2008267267A (ja) 内燃機関
JP2010014085A (ja) 内燃機関の制御装置
JP2014125980A (ja) エンジンの制御装置及び制御方法
EP3256704B1 (en) Reducing unburned hydrocarbon emissions in gaseous fuelled lean-burn engines
WO2017191708A1 (ja) パワートレインシステム
JP5094539B2 (ja) 内燃機関の排気浄化装置
JP2017172396A (ja) エンジンシステム、及びその制御方法
WO2010073698A1 (ja) 改質器付エンジンシステム
JP3969918B2 (ja) 予混合圧縮自着火エンジンとその制御方法
JP2002276519A (ja) エンジン及びその運転方法
JP4340920B2 (ja) 内燃機関の運転方法
JP4470724B2 (ja) 副室式内燃機関
JP2006291775A (ja) 内燃機関の制御装置
JP4456927B2 (ja) 触媒加熱法および該触媒加熱法を制御するための制御装置
JP2013029088A (ja) エンジンの燃料改質装置
JP5510237B2 (ja) 内燃機関の制御装置
EP3441595A1 (en) Method to adjust a control parameter of a fuel combustion engine
JP2023031376A (ja) エンジンシステム
JP2023031377A (ja) エンジンシステム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018515400

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17792641

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017792641

Country of ref document: EP

Effective date: 20181206