JP2018009493A - 内燃機関の排気浄化触媒の暖機方法 - Google Patents

内燃機関の排気浄化触媒の暖機方法 Download PDF

Info

Publication number
JP2018009493A
JP2018009493A JP2016138101A JP2016138101A JP2018009493A JP 2018009493 A JP2018009493 A JP 2018009493A JP 2016138101 A JP2016138101 A JP 2016138101A JP 2016138101 A JP2016138101 A JP 2016138101A JP 2018009493 A JP2018009493 A JP 2018009493A
Authority
JP
Japan
Prior art keywords
fuel
catalyst
reforming
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016138101A
Other languages
English (en)
Other versions
JP6717091B2 (ja
Inventor
耕一 芦田
Koichi Ashida
耕一 芦田
平谷 康治
Koji Hiratani
康治 平谷
新城 崇
Takashi Shinjo
崇 新城
正生 小池
Masao Koike
正生 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2016138101A priority Critical patent/JP6717091B2/ja
Publication of JP2018009493A publication Critical patent/JP2018009493A/ja
Application granted granted Critical
Publication of JP6717091B2 publication Critical patent/JP6717091B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

【課題】冷間始動時の未燃HCを抑制しつつ排気浄化触媒の早期活性化を図る。
【解決手段】内燃機関は、EGR通路に、燃料改質触媒と改質燃料用燃料噴射弁とを含む燃料改質システムを備え、燃料改質触媒に追加の空気を供給する空気導入通路を有する。冷間始動(t0)であったら、排気浄化触媒の暖機のために点火時期リタードを開始し、同時に、改質システムに少量の改質用燃料と追加空気を供給する昇温モードを実行する。燃料改質触媒が活性温度に達したら(t1)、水素始動モードとして、改質システムに十分な改質用燃料と追加空気を供給し、改質ガス中の水素濃度を高める。燃焼室への高い濃度の水素の導入によって、点火時期リタード中のHC生成が抑制される。
【選択図】図5

Description

この発明は、内燃機関の冷間始動時に、排気浄化触媒を早期に活性化させるための暖機方法に関する。
内燃機関の冷間始動時には、排気系に設けられている三元触媒等の排気浄化触媒を早期に活性化させる必要がある。そのため、特許文献1に開示されているように、点火時期をリタードすることで排気温度を高め、排気浄化触媒の暖機を促進する技術が知られている。
特開2007−113413号公報
上記のような点火時期リタードにおいては、排気温度が上昇するものの、点火時期リタードに伴い、内燃機関の排気ポートから出るHC(炭化水素)生成量そのものは増加する。従って、排気浄化触媒が活性温度に達するまでの間は、排気浄化触媒を通して外部へ排出されるHC排出量が却って増加してしまう、という問題がある。
この発明は、EGR通路に設けられる燃料改質システムを利用して点火時期リタード中のHCを抑制する。すなわち、内燃機関の冷間始動時に、燃料改質触媒を通した排気の還流を実行し、かつ改質用燃料噴射弁から改質用の燃料を供給するとともに、上記燃料改質触媒に流入するガス中の酸素濃度を高める酸素増加処理を行う。
上記のように酸素濃度を高めることで、燃料改質触媒においてより多量の水素が生成される。この水素は、新気とともに内燃機関に導入されるので、燃焼室内の水素濃度が高くなり、燃焼速度の向上によって排気中のHCが減少する。つまり、点火時期リタードに伴うHC生成量の増加が多量の水素の導入によって抑制される。
この発明によれば、冷間始動時に、HCの増加を抑制しつつ早期に排気浄化触媒の暖機を図ることができる。
燃料改質システムを備えた内燃機関の構成を示す構成説明図。 排気還流領域を示す特性図。 燃料改質触媒の入口ガス温度と生成される水素濃度との相関に対する酸素濃度の影響を示した特性図。 始動時の処理の流れを示すフローチャート。 冷間始動時のタイムチャート。
以下、この発明の一実施例を図面に基づいて詳細に説明する。
図1は、炭化水素燃料から水素を生成する燃料改質システムを備えた内燃機関1のシステム構成を示す構成説明図である。内燃機関1は、例えばガソリンを燃料とする火花点火式内燃機関であり、燃料タンク2から送られた燃料を例えば各気筒の吸気ポートへ向けて噴射供給する燃料噴射弁3を備えている。内燃機関1の吸気通路4には、吸入空気量を計量するエアフロメータ5と、スロットル弁6と、が設けられている。図示例では、スロットル弁6の下流に、機械式過給機あるいはターボチャージャのコンプレッサなどからなる過給機7が示されているが、この過給機7は必ずしも必須のものではない。過給機7と内燃機関1との間には、吸気中の水素成分を検出する水素センサ8が設けられている。また、内燃機関1は、各気筒に点火プラグ9を備えている。
内燃機関1の排気通路11には、排気浄化を行うための三元触媒を用いた排気浄化触媒12が設けられている。排気浄化触媒12の上流側には空燃比センサ13が配置され、排気浄化触媒12の下流側には酸素センサ14が配置されている。エンジンコントローラ15は、これら空燃比センサ13および酸素センサ14の検出信号に基づいて公知の空燃比フィードバック制御を行う。排気浄化触媒12は、触媒担体温度を検出する触媒温度センサ16を備えている。なお、図示例では、1つの排気浄化触媒12のみが示されているが、複数個の排気浄化触媒を具備する場合もある。
内燃機関1の排気通路11と吸気通路4との間には、内燃機関1の排気の一部を排気通路11から吸気通路4へと還流するEGR通路17が設けられている。EGR通路17は、排気浄化触媒12の上流側で排気通路11から分岐し、スロットル弁6と過給機7との間において吸気通路4に合流している。
上記EGR通路17には、燃料改質システムの主要部をなす燃料改質触媒18が介装されており、この燃料改質触媒18の上流側に、該燃料改質触媒18に改質用燃料を噴射供給する改質燃料用燃料噴射弁19がミキサー20とともに設けられている。この実施例では、改質燃料用燃料噴射弁19は、改質用燃料として燃料タンク2内のガソリンを噴射供給するが、内燃機関1に供給される燃料とは異なる液体炭化水素燃料を改質用燃料として用いることも可能である。燃料改質触媒18は、モノリスハニカム触媒担体に例えばロジウム系の触媒金属を含む触媒スラリーをコーティングして焼成したものであり、還流排気(EGRガス)中に含まれる水蒸気ならびに熱を利用して炭化水素燃料から水素を生成する。
上記EGR通路17は、さらに、燃料改質触媒18よりも下流側の位置において、EGRガスを冷却する水冷ないし空冷のEGRガスクーラ21と、EGR率を目標EGR率に沿って制御するための排気還流制御弁22と、を備えている。また、燃料改質触媒18とEGRガスクーラ21との間には、EGRガス中の水素成分を検出する水素センサ23が設けられており、EGRガスクーラ21と排気還流制御弁22との間には、酸素センサ24が設けられている。なお、これらの水素センサ23および酸素センサ24は、吸気通路4における水素センサ8とともに、燃料改質により燃焼室に供給する水素量を制御するために用いられる。
上記燃料改質触媒18の入口部、詳しくは該燃料改質触媒18とミキサー20との間には、ミキサー20を経て燃料改質触媒18に流入するガスの温度を検出する入口ガス温度センサ26が配置されている。上記燃料改質触媒18には、触媒担体温度を検出する触媒温度センサ27が配置されている。
また、燃料改質触媒18に流入するガス中の酸素濃度を高めるために、本実施例では、燃料改質触媒18上流側に新気(空気)を導入する空気導入通路28が設けられている。この空気導入通路28は、一端が吸気通路4のスロットル弁6の上流側に接続され、かつ他端がEGR通路17の改質燃料用燃料噴射弁19の上流側に接続されている。そして、空気導入通路28は、空気導入量を可変制御可能なバタフライバルブ等からなる空気制御弁29を通路途中に備えている。
上記のような燃料改質システムを備えた内燃機関1においては、運転中の排気還流に際して燃料改質による水素を加えることで、高EGR率での安定した燃焼を図っている。すなわち、エンジンコントローラ15においては、内燃機関1の運転条件つまり負荷(トルク)と回転速度とをパラメータとして目標EGR率が予めマップの形で設定されており、この目標EGR率を実現するように排気還流制御弁22の開度が制御される。図2は、機関暖機完了後において排気還流を行う排気還流領域(符号EGRで示す)を示している。そして、この排気還流領域の中で目標EGR率があるレベルよりも高い領域においては、改質燃料用燃料噴射弁19から燃料改質触媒18へ改質用燃料を供給し、EGRガスに含まれる水蒸気ならびに熱および燃料改質触媒18の触媒作用を利用して、改質用燃料から水素を生成する。この水素は、EGRガスとともに吸気通路4における新気と合流し、燃焼室に導入される。水素の導入によって燃焼室内での燃焼速度が高められるため、高EGR率での安定した燃焼を実現できる。なお、改質用燃料の量は、内燃機関1の燃料噴射弁3からの燃料量と合わせた総量が理論空燃比を実現できるように設定される。
ここで、本実施例では、通常の運転中の水素の供給においては、空気制御弁29が閉じており、空気導入通路28を介した積極的な空気の導入は行わない。
一方、内燃機関1の冷間始動時には、エンジンコントローラ15は、排気浄化触媒12の暖機促進のために、点火時期を暖機後の基本点火時期に比較して大きく遅角させる点火時期リタードを実行する。そして、この点火時期リタードに併行して、上記燃料改質システムを作動させ、燃焼室内に水素を供給する。
つまり、冷間始動後の点火時期リタードによる触媒暖機運転中は、図2に符号Aで示すアイドル(詳しくは機関回転速度を暖機後よりも高くしたファストアイドル)運転条件においても、排気還流制御弁22を介した排気還流が実行され、燃料改質触媒18に対し改質燃料用燃料噴射弁19から改質用燃料が供給される。特に、この点火時期リタードに伴う燃料改質に際しては、酸素増加処理として、空気導入通路28および空気制御弁29を介して燃料改質触媒18上流に空気が導入され、該燃料改質触媒18に流入するガス中の酸素濃度が高く与えられる。この酸素濃度の上昇に伴い、燃料改質触媒18によって生成される改質ガス中の水素濃度が高くなる。
図3は、一例として、横軸を燃料改質触媒18の入口ガス温度、縦軸を燃料改質触媒18の出口における水素濃度として、両者の相関を示した特性図である。破線は、EGRガスのみで追加の酸素(空気)の供給がない場合の特性を示し、実線は、入口からのガスに6%の酸素が含まれるように酸素(空気)を追加的に供給した場合の特性を示している。なお、内燃機関1が理論空燃比で運転しているときの排気中には、一般に、0.5%前後の酸素が含まれている。
図3に示すように、燃料改質触媒18に流入するガス中の酸素濃度を高めることで、生成される水素の濃度が上昇する。特に、冷間始動直後のように燃料改質触媒18に流入するガスの温度が比較的低い領域で、酸素濃度に応じた水素濃度の上昇が顕著である。この水素濃度の上昇は、主に、酸素濃度の上昇に伴い、改質燃料用燃料噴射弁19から供給された燃料の触媒上での酸化反応が促進されて、燃料改質触媒18の触媒担体温度が上昇することに起因する。なお、酸素濃度がさらに高いと、熱分解によっても水素濃度の上昇が生じる。
また、冷間始動時においては、燃料および追加の酸素の供給による酸化反応を利用する燃料改質触媒18の触媒担体温度の上昇は、燃料や酸素の追加がない排気浄化触媒12の触媒担体温度の温度上昇に比較して、非常に短い時間で生じる。
このようにして燃料改質触媒18で生成された比較的高い濃度の水素は、内燃機関1の暖機完了後の高EGR領域での運転時と同様に、新気とともに燃焼室に導入される。燃焼室内では、前述したように、水素が燃焼速度の向上に寄与するため、比較的高い濃度の水素の導入によって、点火時期リタードの条件下においても、燃焼室内での未燃HCの生成が抑制される。従って、排気浄化触媒12が活性温度に達するまでの間に外部へ排出されるHC排出量を抑制しつつ、点火時期リタードによる排気浄化触媒12の早期暖機が可能となる。
なお、高い濃度の水素の導入によって、燃焼が安定化するため、点火時期リタードにおける遅角限界がより遅角側となる。従って、改質システムによる水素の導入を前提として、点火時期リタード時の点火時期をより遅角側に設定することが可能であり、これによって、排気浄化触媒12の温度上昇をさらに早めることが可能である。
図4は、内燃機関1の始動時に上記エンジンコントローラ15が実行する処理の一例を示すフローチャートである。ステップ1では、例えば冷却水温などの機関温度に基づいて、今回の始動が冷間始動であるか否かを判別する。暖機再始動であれば、ステップ7へ進み、通常運転モードで内燃機関1を運転する。この通常運転モードでは、前述したように、所定の高EGR領域において燃料改質システムによる水素の導入が行われる。空気導入通路28からの空気導入は停止しており、点火時期は、機関運転条件(負荷および機関回転速度)に対応した基本点火時期に沿って制御される。
なお、内燃機関1の始動中(換言すればクランキング中)は、燃料改質システムは停止している。つまり、排気還流制御弁22は閉じており、改質燃料用燃料噴射弁19は停止している。
ステップ1で冷間始動であった場合には、ステップ2へ進み、排気浄化触媒12の暖機促進のために、点火時期リタードを実行する。そして、ステップ3において、燃料改質触媒18の温度上昇のための昇温モードを実行する。この昇温モードでは、排気還流制御弁22を適宜な開度まで開いて排気還流を行うとともに、改質燃料用燃料噴射弁19から比較的少量の改質用燃料を供給し、かつ、空気制御弁29を比較的小さな開度まで開いて比較的少量の空気(酸素)の追加的供給を行う。この昇温モードでの改質用燃料の供給量および空気の供給量は、触媒上での酸化反応により燃料改質触媒18を温度上昇させるのに必要な比較的少ない量にそれぞれ設定される。つまり、燃料改質触媒18が十分に活性する前に不必要に改質用燃料を供給しないようにしている。
次のステップ4では、触媒温度センサ27が検出する燃料改質触媒18の触媒担体温度が所定の活性温度に達したか否かを判定する。燃料改質触媒18の触媒担体温度が活性温度に達するまで、昇温モードでの運転を継続する。なお、燃料改質触媒18の温度上昇は、前述したように、排気浄化触媒12の温度上昇よりも速い。
燃料改質触媒18の触媒担体温度が活性温度に達したら、ステップ5へ進み、水素始動モードに移行する。この水素始動モードでは、排気還流を継続しつつ、改質燃料用燃料噴射弁19からの改質用燃料の供給量を増加し、かつ、空気制御弁29の開度を大きくして十分な量の空気(酸素)の追加的供給を行う。これにより、燃料改質触媒18を介して多量の水素が生成され、燃焼室へ導入される。従って、排気浄化触媒12の暖機促進のために点火時期リタードを実行している内燃機関1での燃焼速度が高くなって燃焼が安定化し、上述したように、点火時期リタードに伴うHC生成が抑制される。
ステップ6では、触媒温度センサ16が検出する排気浄化触媒12の触媒担体温度が所定の活性温度に達したか否かを判定する。排気浄化触媒12の触媒担体温度が活性温度に達するまで、点火時期リタードとともに水素始動モードでの運転を継続する。
排気浄化触媒12の触媒担体温度が活性温度に達したら、ステップ7へ進み、通常運転モードへ移行する。つまり、点火時期リタードを終了して、点火時期を基本点火時期に沿ったものとし、空気導入通路28を介した空気導入を停止する。また、このときアイドル運転条件であれば、排気還流ならびに燃料改質は停止する。
図5は、上述したフローチャートに従って実行される冷間始動後の暖機運転の状況を示すタイムチャートである。(a)欄は、内燃機関1の排気浄化触媒12を通して外部へ排出されるエンジン排出HCの特性、(b)欄は、点火時期リタードの実行を表す点火時期リタードフラグの状態、(c)欄は、排気浄化触媒12ならびに燃料改質触媒18の各々の触媒担体温度の変化および対応する運転モード、をそれぞれ示している。
時間t0において冷間始動がなされると、実質的に同時に、点火時期リタードが開始される。この点火時期リタードによって排気温度が高くなるため、排気浄化触媒12の触媒担体温度は比較的速やかに上昇していく。また、燃料改質システムは、昇温モードとして作動開始する。この昇温モードでの運転により、燃料改質触媒18に比較的少量の改質用燃料および追加の酸素が供給されるため、燃料改質触媒18の触媒担体温度は急速に上昇する。特に、排気浄化触媒12の温度上昇に比較して、燃料改質触媒18の温度上昇はより急激に得られる。そして、時間t1において燃料改質触媒18の触媒担体温度が所定の活性温度T1に達する。
時間t1において活性温度T1に達したら、燃料改質システムは、水素始動モードに移行する。水素始動モードでの十分な量の改質用燃料と追加の酸素の供給により、多量の水素が生成される。従って、改質ガス中の水素濃度ひいては燃焼室内における吸気中の水素濃度が高くなる。これにより、点火時期リタードの下での燃焼が安定化し、かつHC生成量が減少する。
(a)欄には、燃料改質による水素導入を行わない場合のHC排出量の特性を「比較例」として破線で示しているが、図示するように、燃焼室壁温が低い始動直後には、HC生成量が多く、特に点火時期リタードに伴ってさらにHC生成量が増加する。このように多く生成されたHCは、排気浄化触媒12の活性前は、殆ど浄化されることなく放出されてしまう。
これに対し、(a)欄に実線で示すように、上記実施例によれば、燃焼速度向上に寄与する水素を改質ガスとして高い濃度で供給することにより、HCの生成そのものが抑制され、排気浄化触媒12の活性前に放出されるHC排出量が低減する。
その後、時間t2において排気浄化触媒12が活性温度T2に達し、通常運転モードに移行する。これにより、点火時期リタードは終了する。排気浄化触媒12の活性温度T2と燃料改質触媒18の活性温度T1とは、通常は大差のない温度である。
なお、点火時期リタードのリタード量は、排気浄化触媒12が活性温度T2に達するまでの間一定である必要はなく、触媒担体温度の上昇(あるいは始動後の時間経過)に伴って徐々にリタード量を縮小するようにしてもよい。
以上、この発明の一実施例を説明したが、この発明は上記実施例に限られるものではなく、種々の変更が可能である。
例えば、上記実施例における昇温モードを省略し、冷間始動後、直ちに水素始動モードを開始するようにしてもよい。つまり、上記実施例の昇温モードでは、燃料改質触媒18の温度上昇に必要な比較的少量の改質用燃料および追加の酸素の供給を行うことで、燃料改質触媒18に不必要に燃料が供給されないようにし、触媒劣化の抑制等を図っているが、昇温モードを省略して水素始動モードを直ちに開始しても、燃料改質触媒18の温度上昇には大差がなく、上記実施例と同様に冷間始動直後のHCの抑制が図れる。
また、昇温モードとして、改質用燃料の供給や追加の酸素の供給を行うことなく、排気還流制御弁22を適宜な開度まで開いて排気還流のみを行うようにしてもよい。
また、上記実施例では、図4のステップ4において触媒温度センサ27の検出温度から燃料改質触媒18の活性を判断しているが、始動から所定時間が経過したか否かを判定し、所定時間経過時点で燃料改質触媒18が活性しているとみなして水素始動モードに移行するようにしてもよい。
さらに、上記実施例では、燃料改質触媒18に流入するガス中の酸素濃度を高める酸素増加処理として、空気導入通路28および空気制御弁29を介して空気の導入を行うようにしているが、内燃機関1の空燃比をリーン化することで、酸素濃度を高めるようにしてもよい。つまり、冷間始動後の点火時期リタード実行に併せて、内燃機関1の空燃比を理論空燃比よりもリーン化する。これにより排気中に残存する酸素の濃度が高くなり、EGR通路17を通して燃料改質触媒18に与えられるガス中の酸素濃度が高くなる。従って、上記実施例と同様に、改質ガス中の水素濃度が高く得られる。
このようなリーン化による方法では、上記実施例の空気導入通路28および空気制御弁29のような空気供給機構が不要であり、空燃比の制御のみで足りるので、構成が簡単となる利点がある。なお、この場合も、リーン化の程度を変更することで、昇温モードと水素始動モードとで酸素濃度を変更することが可能である。
1…内燃機関
2…燃料タンク
3…燃料噴射弁
4…吸気通路
5…エアフロメータ
6…スロットル弁
11…排気通路
12…排気浄化触媒
16…触媒温度センサ
15…エンジンコントローラ
17…EGR通路
18…燃料改質触媒
19…改質燃料用燃料噴射弁
21…EGRガスクーラ
22…排気還流制御弁
27…触媒温度センサ
28…空気導入通路
29…空気制御弁

Claims (6)

  1. 排気系に少なくとも1つの排気浄化触媒を備えるとともに、排気の一部を吸気系に還流するEGR通路に、燃料改質触媒と、該燃料改質触媒に上流側から燃料を供給する改質燃料用燃料噴射弁と、を備えてなる内燃機関において、
    内燃機関の冷間始動時に、
    点火時期リタードを実行し、
    上記燃料改質触媒を通した排気の還流を実行し、かつ上記改質用燃料噴射弁から改質用の燃料を供給するとともに、上記燃料改質触媒に流入するガス中の酸素濃度を高める酸素増加処理を行う、ことを特徴とする内燃機関の排気浄化触媒の暖機方法。
  2. 上記酸素増加処理として、上記EGR通路の上記燃料改質触媒よりも上流側から空気を導入する、ことを特徴とする請求項1に記載の内燃機関の排気浄化触媒の暖機方法。
  3. 上記酸素増加処理として、上記内燃機関の空燃比をリーン化する、ことを特徴とする請求項1に記載の内燃機関の排気浄化触媒の暖機方法。
  4. 上記燃料改質触媒が活性するまでの間は、活性後に比較して、改質用の燃料の供給量を相対的に少量に制限する、ことを特徴とする請求項1〜3のいずれかに記載の内燃機関の排気浄化触媒の暖機方法。
  5. 上記燃料改質触媒が活性するまでの間は、活性後に比較して、上記酸素濃度を相対的に低く制限する、ことを特徴とする請求項4に記載の内燃機関の排気浄化触媒の暖機方法。
  6. 上記排気浄化触媒が所定の活性温度に達したときに、燃料改質を伴う排気の還流を終了する、ことを特徴とする請求項1〜5のいずれかに記載の内燃機関の排気浄化触媒の暖機方法。
JP2016138101A 2016-07-13 2016-07-13 内燃機関の排気浄化触媒の暖機方法 Active JP6717091B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016138101A JP6717091B2 (ja) 2016-07-13 2016-07-13 内燃機関の排気浄化触媒の暖機方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016138101A JP6717091B2 (ja) 2016-07-13 2016-07-13 内燃機関の排気浄化触媒の暖機方法

Publications (2)

Publication Number Publication Date
JP2018009493A true JP2018009493A (ja) 2018-01-18
JP6717091B2 JP6717091B2 (ja) 2020-07-01

Family

ID=60993492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016138101A Active JP6717091B2 (ja) 2016-07-13 2016-07-13 内燃機関の排気浄化触媒の暖機方法

Country Status (1)

Country Link
JP (1) JP6717091B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021032097A (ja) * 2019-08-21 2021-03-01 日産自動車株式会社 燃料改質方法および燃料改質装置
CN113137310A (zh) * 2021-04-29 2021-07-20 广西玉柴机器股份有限公司 一种天然气发动机冷机排放控制策略
CN113614348A (zh) * 2019-03-25 2021-11-05 株式会社丰田自动织机 发动机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121259A (ja) * 1994-10-31 1996-05-14 Nippondenso Co Ltd 内燃機関の排気還流制御装置
JPH11107840A (ja) * 1997-10-03 1999-04-20 Hitachi Ltd 内燃機関の制御装置
JP2005048631A (ja) * 2003-07-31 2005-02-24 Toyota Motor Corp 内燃機関の触媒昇温装置
JP2013148034A (ja) * 2012-01-20 2013-08-01 Nissan Motor Co Ltd 内燃機関の制御装置
JP2014025375A (ja) * 2012-07-25 2014-02-06 Nissan Motor Co Ltd 内燃エンジンシステムの制御装置
JP2014125980A (ja) * 2012-12-26 2014-07-07 Nissan Motor Co Ltd エンジンの制御装置及び制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121259A (ja) * 1994-10-31 1996-05-14 Nippondenso Co Ltd 内燃機関の排気還流制御装置
JPH11107840A (ja) * 1997-10-03 1999-04-20 Hitachi Ltd 内燃機関の制御装置
JP2005048631A (ja) * 2003-07-31 2005-02-24 Toyota Motor Corp 内燃機関の触媒昇温装置
JP2013148034A (ja) * 2012-01-20 2013-08-01 Nissan Motor Co Ltd 内燃機関の制御装置
JP2014025375A (ja) * 2012-07-25 2014-02-06 Nissan Motor Co Ltd 内燃エンジンシステムの制御装置
JP2014125980A (ja) * 2012-12-26 2014-07-07 Nissan Motor Co Ltd エンジンの制御装置及び制御方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113614348A (zh) * 2019-03-25 2021-11-05 株式会社丰田自动织机 发动机
CN113614348B (zh) * 2019-03-25 2023-10-13 株式会社丰田自动织机 发动机
JP2021032097A (ja) * 2019-08-21 2021-03-01 日産自動車株式会社 燃料改質方法および燃料改質装置
JP7245746B2 (ja) 2019-08-21 2023-03-24 日産自動車株式会社 燃料改質方法および燃料改質装置
CN113137310A (zh) * 2021-04-29 2021-07-20 广西玉柴机器股份有限公司 一种天然气发动机冷机排放控制策略

Also Published As

Publication number Publication date
JP6717091B2 (ja) 2020-07-01

Similar Documents

Publication Publication Date Title
JP6217269B2 (ja) 内燃機関の燃料改質装置
JP5831501B2 (ja) 内燃機関
JP2008095542A (ja) 内燃機関の制御装置
JP2009062946A (ja) 筒内噴射型内燃機関の制御装置
JP2010019178A (ja) エンジンの制御装置
JP4175385B2 (ja) 内燃機関の排気浄化触媒暖機システム
JP6717091B2 (ja) 内燃機関の排気浄化触媒の暖機方法
JP2010270664A (ja) 内燃機関の排気浄化システム
JP4720779B2 (ja) 排気温度低減制御装置及び方法
JP2008019792A (ja) 内燃機関の触媒早期暖機制御装置
JP2007187111A (ja) 水素利用内燃機関
JP2010144801A (ja) 自動変速機のオイル加熱装置
JP2014145299A (ja) 排気還流装置
JP5120173B2 (ja) 内燃機関の排気循環装置
JP2007224927A (ja) 圧縮比変更機構の故障を検知して制御を行う内燃機関
JP4412201B2 (ja) 水素利用内燃機関の制御装置
JP2007138799A (ja) 水素利用内燃機関
JP2007056700A (ja) 水素エンジンの制御装置
JP2000120471A (ja) 筒内噴射式エンジンの制御装置
JP4987354B2 (ja) 内燃機関の触媒早期暖機制御装置
JP2013148034A (ja) 内燃機関の制御装置
JP2007056719A (ja) 内燃機関の排気浄化装置
JP2016153613A (ja) 燃料改質制御装置
JP2006125267A (ja) 水素添加内燃機関
JP2010163930A (ja) 直噴火花点火式内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200525

R151 Written notification of patent or utility model registration

Ref document number: 6717091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151