WO2018061411A1 - 内燃機関制御装置 - Google Patents

内燃機関制御装置 Download PDF

Info

Publication number
WO2018061411A1
WO2018061411A1 PCT/JP2017/025848 JP2017025848W WO2018061411A1 WO 2018061411 A1 WO2018061411 A1 WO 2018061411A1 JP 2017025848 W JP2017025848 W JP 2017025848W WO 2018061411 A1 WO2018061411 A1 WO 2018061411A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
ignition timing
ignition
amount
Prior art date
Application number
PCT/JP2017/025848
Other languages
English (en)
French (fr)
Inventor
一浩 押領司
赤城 好彦
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to EP17855369.9A priority Critical patent/EP3521600B1/en
Publication of WO2018061411A1 publication Critical patent/WO2018061411A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/045Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions combined with electronic control of other engine functions, e.g. fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1516Digital data processing using one central computing unit with means relating to exhaust gas recirculation, e.g. turbo
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • F02P5/1523Digital data processing dependent on pinking with particular laws of return to advance, e.g. step by step, differing from the laws of retard
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/153Digital data processing dependent on combustion pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention is an engine control device.
  • the present invention relates to an engine control technique including a system for returning exhaust gas discharged from an engine to an intake side.
  • EGR exhaust gas recirculation
  • Patent Document 1 discloses control for increasing the amount of EGR gas in response to a difference between the target ignition timing and the knock limit ignition timing.
  • the EGR control and the ignition control are not performed when the deterioration of combustion is detected.
  • the range of the knock limit and the combustion stability limit is not taken into consideration in the control, so that the robustness as the operating state is low, and the combustion stability deteriorates or the knock occurs due to a slight disturbance. There is a possibility of falling. For this reason, a technique for controlling the EGR amount while ensuring a survival region as an operating condition of the engine is necessary.
  • the present invention provides an internal combustion engine control apparatus for controlling the internal combustion engine provided with an exhaust gas recirculation flow path for allowing the exhaust gas of the internal combustion engine to be taken into the internal combustion engine again.
  • the difference between the combustion instability calculation unit for determining the combustion instability of the internal combustion engine based on the engine speed or the in-cylinder pressure of the internal combustion engine and the ignition timing at which the advance limit ignition timing and the combustion instability are detected are predetermined.
  • the present invention it becomes possible to control the EGR amount in a region where there is a range between the advance limit ignition timing defined by knocking or the optimal ignition timing and the ignition timing for detecting combustion instability, and robust against disturbances. It is possible to maximize the amount of EGR without deteriorating the performance.
  • the system block diagram which shows the structure of the control apparatus of the engine by the 1st and 2nd embodiment of this invention. Diagram explaining the relationship between EGR rate, knock limit ignition timing, and stability limit in the high load range System configuration diagram of engine control apparatus according to first and second embodiments of the present invention
  • the flowchart which shows the EGR amount and the ignition timing control content according to the width
  • FIG. 1 is a system block diagram showing a configuration of an engine control apparatus according to an embodiment of the present invention.
  • Output signals of the air flow sensor 1, the humidity sensor 3, the accelerator opening sensor 12, the differential pressure sensor 43, the EGR temperature sensor 44, and the cooling water temperature sensor 8 are input to the input circuit 20a of the ECU 20.
  • the input signal is not limited to these.
  • the input signal of each input sensor is sent to the input port in the input / output port 20b.
  • the value sent to the input port 20b is stored in the RAM 20c and processed by the CPU 20e.
  • a control program describing the contents of the arithmetic processing is written in advance in the ROM 20d.
  • the value indicating the operation amount of each actuator calculated in accordance with the control program is stored in the RAM 20c, then sent to the output port in the input / output port 20b, and sent to each actuator via each drive circuit.
  • the device includes the drive circuit in the ECU 20.
  • the present invention is not limited to this, and any of the drive circuits may be provided in the ECU 20.
  • the ECU 20 estimates the EGR rate based on the input signal, and controls the ignition coil 16 and the EGR valve 41 according to the required operating conditions.
  • FIG. 2 is a diagram showing the stable operating range of the engine.
  • the advance amount of the ignition timing is limited by the knock limit, and the retard amount is limited by the stability limit.
  • the settable range of the ignition timing that falls between the knock limit and the stability limit decreases.
  • the efficiency of the internal combustion engine is highest at the point where the external EGR rate becomes the maximum value within the settable range of the ignition timing, but it exceeds the stability limit and knock limit only by slightly deviating the EGR rate and ignition timing. Therefore, the robustness against disturbance is reduced. For this reason, it is important to control the external EGR rate while ensuring a settable range of the ignition timing.
  • FIG. 3 is a configuration diagram of an in-cylinder injection gasoline engine for automobiles provided with a low pressure EGR flow path.
  • Engine 100 is a gasoline engine for automobiles that performs spark ignition combustion.
  • An airflow sensor 1 for measuring the intake air amount
  • a humidity sensor 3 for detecting intake air humidity
  • a compressor 4a for a supercharger for supercharging intake air
  • an intercooler 7 for cooling intake air
  • an intake pipe pressure An electronically controlled throttle 2 is provided at each appropriate position of the intake pipe.
  • the humidity sensor 3 is a sensor capable of detecting relative humidity and absolute humidity.
  • the engine 100 is provided with a fuel injection device (hereinafter referred to as an injector) 13 for injecting fuel into the cylinder 14 of each cylinder and an ignition plug 16 for supplying ignition energy for each cylinder.
  • the cylinder head is provided with a variable valve 5 that adjusts gas flowing into or out of the cylinder.
  • variable valve 5 By adjusting the variable valve 5, the intake air amount and the internal EGR amount of all cylinders are adjusted.
  • a high-pressure fuel pump for supplying high-pressure fuel to the fuel injection device 13 is connected to the fuel injection device 13 by a fuel pipe, and in the fuel pipe, a fuel injection pressure is measured.
  • a fuel pressure sensor is provided.
  • a turbine 4b for applying a rotational force to the compressor 4a of the supercharger by exhaust energy
  • an electronically controlled wastegate valve 11 for adjusting an exhaust flow rate flowing through the turbine
  • a three-way catalyst 10 for purifying the exhaust
  • An air-fuel ratio sensor 9 that detects the air-fuel ratio of the exhaust gas upstream of the three-way catalyst 10 is provided at an appropriate position of each exhaust pipe 15.
  • an EGR pipe 40 for recirculating exhaust gas from the downstream side of the exhaust pipe catalyst 10 to the upstream side of the intake pipe compressor 4a is provided.
  • an EGR cooler 42 for cooling the EGR
  • an EGR valve (EGR mechanism) 41 for controlling the EGR flow rate
  • a differential pressure sensor 43 for detecting the differential pressure before and after the EGR valve
  • an EGR temperature sensor 44 for detecting the EGR temperature.
  • the temperature sensor 45 which measures the temperature of the cooling water which goes around an engine is provided.
  • Signals obtained from the air flow sensor 1, the humidity sensor 3, the air-fuel ratio sensor 9, the differential pressure sensor 43, and the EGR temperature sensor 44 are sent to an engine control unit (ECU) 20.
  • a signal obtained from the accelerator opening sensor 12 is sent to the ECU 20.
  • the accelerator opening sensor 12 detects the depression amount of the accelerator pedal, that is, the accelerator opening.
  • the ECU 20 calculates the required torque based on the output signal of the accelerator opening sensor 12. That is, the accelerator opening sensor 12 is used as a required torque detection sensor that detects a required torque for the engine.
  • ECU20 calculates the rotational speed of an engine based on the output signal of a crank angle sensor.
  • the ECU 20 optimally calculates main operating amounts of the engine such as the air flow rate, the fuel injection amount, the ignition timing, and the fuel pressure based on the operating state of the engine obtained from the outputs of the various sensors.
  • the fuel injection amount calculated by the ECU 20 is converted into a valve opening pulse signal and sent to the injector 13. Further, an ignition signal is sent to the spark plug 16 so that ignition is performed at the ignition timing calculated by the ECU 20.
  • the throttle opening calculated by the ECU 20 is sent to the electronic control throttle 2 as a throttle drive signal.
  • the EGR valve opening calculated by the ECU 20 is sent to the EGR valve 41 as an EGR valve opening drive signal.
  • the fuel is injected into the air that flows into the cylinder 14 from the intake pipe through the intake valve to form an air-fuel mixture.
  • the air-fuel mixture explodes due to a spark generated from the spark plug 16 at a predetermined ignition timing, and the piston is pushed down by the combustion pressure to become the driving force of the engine.
  • the exhaust gas after the explosion is sent to the three-way catalyst 10 through the exhaust pipe 15, and the exhaust components are purified in the three-way catalyst 10 and discharged to the outside.
  • FIG. 4 shows a calculation process performed by the CPU 20e (control unit) of the ECU 20 in FIG.
  • the ECU 20 of this embodiment controls the internal combustion engine (engine 100) provided with an exhaust gas recirculation flow path for allowing the exhaust gas of the internal combustion engine (engine 100) to be taken into the internal combustion engine 100 again.
  • ignition advance control is performed in which the ignition timing of the spark plug 16 is advanced to the knock limit.
  • the region where the external EGR rate is smaller than the set value and the ignition advance amount is larger than the set value is set as the knock generation region, and the region not entering this region is knocked. It is set as a non-occurring area.
  • the knock limit ignition timing is set so as not to enter the knock generation region if the ignition advance amount is set to be equal to or smaller than the set value.
  • step S402 it is confirmed whether an excessive EGR rate control flag is ON or OFF.
  • the excessive EGR rate control flag is ON, the EGR rate will be too high, so this control is terminated.
  • step S404 the degree of combustion instability when the ignition is retarded is detected.
  • a region where the external EGR rate is smaller than the set value and the ignition advance amount is smaller than the set value is set as a combustion unstable region, and a region not entering this region is a combustion stable region. Is set as Therefore, the stability limit is set so as not to enter the combustion unstable region if the ignition advance amount is set to a set value or more.
  • step S405 the process proceeds to step S405, and if the degree of combustion instability is smaller than the set value, it is determined that there is a room for increasing the EGR amount, and the process proceeds to step S406, in which ignition angle advance control is performed in conjunction with the increase in the EGR amount.
  • the combustion instability the ignition timing of the spark plug 16 is compared with the retard amount (retard amount) and the set value, and if the retard amount (retard amount) is within the set value, the combustion instability is small. In other words, it is judged to be stable.
  • the set value is set based on the difference between the ignition advance amount at the knock limit ignition timing and the ignition advance amount at the stability limit in the corresponding external EGR rate. Alternatively, the set value is obtained from the difference from the ignition advance amount of the corresponding stability limit after retarding the ignition timing of the spark plug 16.
  • the combustion instability calculation unit of the CPU 20e (control unit) of the ECU 20 may obtain the combustion instability of the internal combustion engine 100 based on the rotational speed of the engine 100 or the in-cylinder pressure of the internal combustion engine 100. Here, it is carried out until the combustion becomes unstable or the knock limit is reached.
  • step S405 If it is determined in step S405 that the combustion instability is larger than the set value, the process proceeds to step S407, the excessive EGR rate control flag is set to ON, and the process proceeds to step S408, where the EGR amount is reduced and the ignition advance control is performed. To do.
  • the EGR amount increase control can be performed when the range between the knock limit and the combustion stability limit is greater than the appropriate range. As a result, the EGR amount can be optimally controlled without falling into a condition where the setting range is narrow.
  • step S406 by performing ignition advance control together with the reduction of the EGR amount in step S406, it becomes possible to control in the combustion stabilization direction using the quicker ignition advance control, and from the unstable combustion condition quickly Transition to stable condition.
  • the internal combustion engine control device (ECU 20) of the present embodiment allows the exhaust gas recirculation amount and the ignition advance amount when the difference between the advance angle limit ignition timing and the ignition timing at which combustion instability is detected is equal to or greater than a set value.
  • the ignition advance limit is preferably a knock limit ignition timing. Further, it is desirable that the ignition advance limit is the best fuel economy ignition timing.
  • the combustion instability calculator preferably estimates the combustion stability from the fluctuation amount of the maximum in-cylinder pressure position detected based on the in-cylinder pressure sensor.
  • the combustion stability detection device is an in-cylinder pressure sensor
  • the combustion instability calculation unit estimates the combustion stability from the engine output fluctuation amount estimated based on the in-cylinder pressure sensor.
  • the control unit (CPU 20e) sets the ignition timing at which combustion instability is detected, then changes the ignition timing to the advance limit ignition timing, and then increases both the exhaust gas recirculation amount and the ignition advance amount. It is desirable to proceed to.
  • the control unit controls the exhaust gas recirculation dormitory and the ignition advance amount to increase both
  • the ignition advance amount is set so that the combustion center position detected by the in-cylinder pressure is within a set range. It is desirable to control.
  • FIG. 5 shows a state transition when the control flow shown in FIG. 4 is executed.
  • the ignition timing is once retarded. Since the combustion stability here falls within a predetermined value, the EGR rate is increased and the ignition timing is advanced.
  • control of the EGR valve is stopped and ignition advance control is performed.
  • a predetermined amount of ignition delay is performed to detect combustion instability.
  • the EGR rate is reduced and the ignition advance is performed. In this way, by controlling the EGR amount using the settable ranges of the knock limit ignition timing and the combustion stability ignition timing as parameters, the fuel consumption can be maximized, and control in a state in which robustness against disturbance is ensured. Is possible.
  • FIG. 6 shows a state transition when the control flow shown in FIG. 4 is executed.
  • the horizontal axis in FIG. 5 is time.
  • a knock is detected at time t1, and the ignition retard is immediately performed at time t2, thereby reducing the knock intensity.
  • the combustion instability here is not more than a predetermined value
  • the required EGR amount after time t2 increases with time.
  • the required ignition timing is also advanced. Since the combustion instability exceeds a predetermined value at time t3, the ignition advance and the required EGR amount are set to constant values. Furthermore, after knocking occurs at t4, the ignition timing is retarded immediately at time t5.
  • the combustion instability at time t5 exceeds a predetermined range
  • the required EGR amount is reduced and the ignition timing is advanced after time t6. Since the knock intensity exceeds a predetermined range at time t7, the ignition timing is retarded, and combustion instability is detected at time t8.
  • FIG. 7 is a diagram showing an operating range of the engine in a low load region.
  • the advance amount of the ignition timing is limited by the optimal ignition timing from the viewpoint of deterioration of fuel consumption, and the retard amount is limited by the stability limit.
  • the settable range of the ignition timing that falls within the fuel efficiency best ignition timing and the stability limit decreases.
  • the efficiency of the internal combustion engine is highest at the point where the external EGR rate becomes the maximum value within the settable range of the ignition timing.
  • the stability limit and the best fuel economy ignition timing are only obtained when the EGR rate and the ignition timing are slightly shifted. Therefore, the robustness against disturbance is reduced. For this reason, it is important to control the external EGR rate while ensuring a settable range of the ignition timing.
  • FIG. 8 shows a calculation process performed by the ECU of FIG.
  • step S801 ignition advance control is performed so that the combustion center position is at a predetermined position. It is determined whether the combustion center position is at a predetermined position based on the analysis result of the pressure detected using an in-cylinder pressure sensor (not shown in FIG. 3). As the combustion position here, a crank angle at which the pressure reaches a maximum value or a crank angle at which the heat generation rate reaches 50% can be used. Next, it progresses to step S802 and the state of an excessive EGR rate control flag is confirmed. If it is determined to be OFF in step S802, the process proceeds to step S803, the ignition retard amount is set, and ignition retard control is performed.
  • the ignition retardation amount is determined from the required value of the deterioration of fuel consumption and the range of possible existence range, but it is approximately 1 to 2 deg. It can be set to about CA.
  • step S804 the degree of combustion instability when the ignition is retarded is detected.
  • step S805 the process proceeds to step S805, and if the combustion instability is smaller than a predetermined value, it is determined that there is room for increasing the EGR amount, and the process proceeds to step S806.
  • step S806 an ignition timing equivalent to the ignition timing set in step S801 is set.
  • step S807 the continuation cycle Nref1 of the EGR amount increase and ignition advance control executed in step S808 is defined. If it is determined from the past circumstances that the upper limit of the EGR rate is approaching, the value of Nref1 can be set small. Subsequently, the routine proceeds to step 808, where an increase in EGR amount and ignition advance control are performed.
  • the target value of the EGR amount can be set so that the change in the EGR amount per unit time becomes constant.
  • ignition timing advance control is performed so that the combustion center position becomes a predetermined position in accordance with the increase in the EGR amount.
  • step S809 the excessive EGR rate control flag is set to ON, and then the process proceeds to step S810.
  • step S810 the fuel efficiency best point at the ignition timing is set, and then the process proceeds to step S811.
  • step S811 the number of cycles for continuing step S812 is defined.
  • step S812 EGR reduction and ignition advance control are performed.
  • the target value can be set to decrease the EGR so that the change in the EGR rate per unit time becomes constant.
  • step S806 or step S810 the ignition is set to the fuel efficiency best point in the EGR rate by using the ignition timing with a quick response, so that the fuel efficiency deterioration during the EGR increase / decrease control can be suppressed.
  • FIG. 9 shows a state transition when the control flow shown in FIG. 8 is executed.
  • the ignition timing is retarded once after the ignition retardation. Since the combustion stability here falls within a predetermined value, the EGR rate is increased and the ignition timing is advanced. At this time, the ignition timing is once evolved and controlled to the best fuel efficiency ignition timing at the EGR rate. Next, both the EGR rate and the ignition timing are increased.
  • the combustion position is detected using an in-cylinder pressure value detected using an in-cylinder pressure sensor (not shown in FIG. 3), and the ignition timing is evolved so as to set the combustion position to a predetermined value.
  • the ignition retard control is once performed to confirm the combustion stability. Since the combustion stability when the ignition is retarded is within a predetermined range, the ignition is advanced and the combustion position is set to a predetermined position, and then the EGR rate is increased and the ignition advance is promoted.
  • the EGR rate reduction control is performed after setting the combustion center position by the ignition advance to a predetermined position.
  • the EGR amount is controlled using the settable range of the best fuel economy ignition timing and the ignition timing of combustion stability as parameters, thereby maximizing fuel consumption reduction and ensuring robustness against disturbance. State control is possible.
  • FIG. 10 shows a state transition when the control flow shown in FIG. 7 is executed.
  • the horizontal axis in FIG. 5 is time.
  • ignition retard control is performed to detect combustion instability. Since t is detected and within a predetermined range, ignition advance control is performed at time t2 to achieve a predetermined combustion center position. Thereafter, the EGR rate is increased and the ignition advance is performed until time t3, and the EGR amount is increased while maintaining the combustion center position. Ignition retarding control is performed again at a time t3 after a predetermined time, and combustion instability is confirmed.
  • the ignition timing is advanced again, the combustion center position is set at a predetermined position, and then the EGR amount is increased and the ignition advance is simultaneously performed. Also at this time, control is performed so that the combustion center position is maintained substantially constant.
  • ignition retard control is performed to detect combustion instability.
  • the combustion instability exceeds a predetermined range, it is determined that there is no sufficient settable range after executing the ignition advance control, and the EGR reduction and the ignition delay are executed.
  • the control unit (CPU 20e) of the internal combustion engine control device (ECU 20) advances the ignition timing of the ignition plug 16 for igniting the internal combustion engine (engine 100) and then retards the ignition timing. If the combustion stability limit of the internal combustion engine (engine 100) has not been reached, the ignition timing is again advanced and the exhaust gas recirculation amount is increased. Further, when the control unit (CPU 20e) advances the ignition timing to the set ignition advance limit and then retards the ignition timing, the combustion stability limit of the internal combustion engine (engine 100) has not been reached. Therefore, it is desirable to control the ignition timing to advance again and to increase the exhaust gas recirculation amount.
  • control unit determines that the ignition timing is not reached. It is desirable to control the engine so as to advance again and increase the exhaust gas recirculation amount.
  • control unit (CPU 20e) controls the exhaust gas recirculation amount so as to maintain a constant value when the ignition timing is first advanced.
  • the control unit (CPU 20e) advances the ignition timing to the set ignition advance limit and then reaches the combustion stability limit of the internal combustion engine (engine 100) in a state where the ignition timing is retarded. It is desirable to control the ignition timing to advance again and to reduce the exhaust gas recirculation amount.
  • Electronically controlled throttle drive circuit 20g ... Injector drive circuit 20h ... Wastegate valve drive circuit 20j ... Intercooler cooling water valve drive circuit 20k ... Transmission drive circuit 20m ... EGR valve drive circuit 30 ... Transmission 40 ... EGR pipe 41 ... EGR valve 42 ... EGR cooler 43 ... Differential pressure sensor 44 ... EGR temperature sensor 100 ... Engine

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

ノックや最適点火時期で規定される進角限界点火時期と燃焼不安定性を検出する点火時期に幅のある領域にてEGR量を制御することを可能とし、外乱に対するロバスト性を悪化させることなくEGR量を最大化することが可能とする。 内燃機関の排気ガスを再度、前記内燃機関に吸気させる排気再循環流路が設けられた前記内燃機関を制御する内燃機関制御装置において、前記内燃機関の回転数、又は前記内燃機関の筒内圧力に基づいて前記内燃機関の燃焼不安定性を求める燃焼不安定性算出部と、進角限界点火時期と燃焼不安定性を検出した点火時期の差が所定の値以上であるとき、排気再循環量と点火進角量を共に増加させる方向に進めるように制御する制御部と、を備えた。

Description

内燃機関制御装置
 本発明は、エンジンの制御装置。特に、エンジンから排出される排気ガスを吸気側に戻すシステムを備えるエンジンの制御技術に関する。
 自動車の燃費を低減するため、排気ガスを吸気側に還流する仕組み(EGR:Exhaust Gas Recirculation)を導入したエンジンが市場に投入されている。排気ガスを還流する狙いは、エンジンの出力が小さい条件における吸気管負圧(吸気行程中の筒内圧と大気圧の差)を減らしピストンが系外に行う仕事(ポンプ損失)を減らすこと、エンジン出力の比較的大きい条件における異常燃焼(ノック)を抑制し排気損失を減らすことである。
 エンジン出力が大きい条件においてノックを抑制し排気損失を減らすという観点からは、燃焼安定性を損なわない範囲で出来るだけ多くのEGRガス量を戻したい。ノック領域におけるEGR制御に関する技術として特許文献1に記載される内燃機関の制御装置がある。この内燃機関の制御装置は、ノック限界点火時期とマップ上の目標点火時期との間に差がある場合に、ノック限界点火時期と目標点火時期の差に応じたEGRガス量を増量し、目標点火時期を実現することで、運転条件に応じてEGR量を最大化しようとする制御を開示している。 
特開2006-291795号公報
 特許文献1に記載の技術は、目標点火時期とノック限界点火時期に差がある場合、これに応じてEGRガス量を増加させる制御を開示している。また合わせて燃焼の悪化を検出した際にEGR制御と点火制御を実施しないことを開示している。ただし、これらの制御では、ノック限界と燃焼安定限界の幅を制御の考慮に入れていないため、運転状態としてロバスト性が低く、わずかな外乱により燃焼安定性が悪化する又はノックが発生する状況に陥る可能性がある。このため、エンジンの運転条件として生存領域を確保してEGR量を制御する技術が必要であった。
 上記する課題を解決するために、本発明は、内燃機関の排気ガスを再度、前記内燃機関に吸気させる排気再循環流路が設けられた前記内燃機関を制御する内燃機関制御装置において、前記内燃機関の回転数、又は前記内燃機関の筒内圧力に基づいて前記内燃機関の燃焼不安定性を求める燃焼不安定性算出部と、進角限界点火時期と燃焼不安定性を検出した点火時期の差が所定の値以上であるとき、排気再循環量と点火進角量を共に増加させる方向に進めるように制御する制御部と、を備えたことを特徴とする。
 本発明によれば、ノックや最適点火時期で規定される進角限界点火時期と燃焼不安定性を検出する点火時期に幅のある領域にてEGR量を制御することが可能になり、外乱に対するロバスト性を悪化させることなくEGR量を最大化することが可能となる。
本発明の第1と第2の実施形態によるエンジンの制御装置の構成を示すシステムブロック図 高負荷領域におけるEGR率とノック限界点火時期、安定限界の関係を説明する図 本発明の第1及び第2の実施形態によるエンジンの制御装置のシステム構成図 本発明の第1の実施形態によるエンジンの制御装置のノック限界点火時期と燃焼不安定性点火時期の幅に応じたEGR量及び点火時期制御内容を示すフローチャート 本発明の第1の実施形態によるエンジンの制御装置を用いた際の点火時期とEGR率の変化 本発明の第1の実施形態によるエンジンの制御装置を用いた際の各種アクチュエータや計測値の変化 低負荷領域におけるEGR率と燃費最良点火時期、安定限界の関係を説明する図 本発明の第2の実施形態によるエンジンの制御装置の燃費最良点火時期と燃焼不安定性点火時期の幅に応じたEGR量及び点火時期制御内容を示すフローチャート 本発明の第2の実施形態によるエンジンの制御装置を用いた際の点火時期とEGR率の変化 本発明の第2の実施形態によるエンジンの制御装置を用いた際の各種アクチュエータや計測値の変化
以下、図面を参照しながら、本発明の実施形態について説明する。まず、以下に示す実施形態に共通の構成を図1、図2、図3を用いて説明する。
 図1は、本発明の実施形態によるエンジンの制御装置の構成を示すシステムブロック図である。エアフローセンサ1、湿度センサ3、アクセル開度センサ12、差圧センサ43、EGR温度センサ44、冷却水温度センサ8の出力信号は、ECU20の入力回路20aに入力する。但し、入力信号はこれらだけに限られない。入力された各センサの入力信号は入出力ポート20b内の入力ポートに送られる。入力ポート20bに送られた値は、RAM20cに保管され、CPU20eで演算処理される。演算処理内容を記述した制御プログラムは、ROM20dに予め書き込まれている。
 制御プログラムに従って演算された各アクチュエータの作動量を示す値は、RAM20cに保管された後、入出力ポート20b内の出力ポートに送られ、各駆動回路を経て各アクチュエータに送られる。本実施形態の場合は、駆動回路として、電子スロットル駆動回路20f、EGRバルブ駆動回路20mがある。各回路は、それぞれ、電子制御スロットル2、EGRバルブ41を制御する。本実施形態においては、ECU20内に上記駆動回路を備えた装置であるが、これに限るものではなく、上記駆動回路のいずれかをECU20内に備えるものであってもよい。
 ECU20は、入力信号に基づいてEGR率を推定し、要求される運転条件に応じて、点火コイル16およびEGRバルブ41を制御する。
 図2は、エンジンの安定動作範囲を示す図である。高負荷領域では、点火時期の進角量はノック限界によって制限され、遅角量は安定限界で制限される。外部EGR率の増加と共に、ノック限界と安定限界にはさまれる点火時期の設定可能範囲は減少する。外部EGR率は、この点火時期の設定可能範囲の中で最大値となる点で最も内燃機関の効率が高くなるが、わずかにEGR率や点火時期がずれただけで安定限界やノック限界を超えてしまうため、外乱に対するロバスト性が低くなる。このため、点火時期の設定可能範囲を確保しつつ、外部EGR率を制御することが重要である。
 図3は、低圧EGR流路を備えた自動車用筒内噴射式ガソリンエンジン構成図である。
 エンジン100は、火花点火式燃焼を実施する自動車用のガソリンエンジンである。吸入空気量を計測するエアフローセンサ1と、吸気湿度を検出する湿度センサ3と、吸気を過給するための過給機のコンプレッサ4aと、吸気を冷却するためのインタークーラ7と、吸気管圧力を調整する電子制御スロットル2が吸気管の各々の適宜位置に備えられている。ここで、湿度センサ3は相対湿度及び絶対湿度が検出可能なセンサである。また、エンジン100には、各気筒のシリンダ14の中に燃料を噴射する燃料噴射装置(以下、インジェクタ)13と、点火エネルギーを供給する点火プラグ16が気筒ごとに備えられている。また、筒内に流入、または筒内から排出するガスを調整する可変バルブ5が、シリンダヘッドに備えられている。可変バルブ5を調整することにより、全気筒の吸気量および内部EGR量を調整する。また、図示していないが燃料噴射装置13に高圧燃料を供給するための高圧燃料ポンプが燃料配管によって燃料噴射装置13と接続されており、燃料配管中には、燃料噴射圧力を計測するための燃料圧力センサが備えられている。
 さらに、排気エネルギによって過給機のコンプレッサ4aに回転力を与えるためのタービン4bと、タービンに流れる排気流量を調整するための電子制御ウェイストゲート弁11と、排気を浄化する三元触媒10と、空燃比検出器の一態様であって、三元触媒10の上流側にて排気の空燃比を検出する空燃比センサ9と、が排気管15の各々の適宜位置に備えられる。
 さらに、排気管の触媒10の下流から、吸気管のコンプレッサ4aの上流に排気を還流させるためのEGR管40を備えている。また、EGRを冷却するためのEGRクーラ42、EGR流量を制御するためのEGRバルブ(EGR機構)41、EGRバルブ前後の差圧を検出する差圧センサ43、EGR温度を検出するEGR温度センサ44が、EGR管40の各々の適宜位置に、取りつけられている。また、図示していないがエンジンを巡る冷却水の温度を計測する温度センサ45が備えられている。
 エアフローセンサ1と湿度センサ3と空燃比センサ9と差圧センサ43とEGR温度センサ44から得られる信号は、エンジンコントロールユニット(ECU)20に送られる。また、アクセル開度センサ12から得られる信号がECU20に送られる。アクセル開度センサ12は、アクセルペダルの踏み込み量、すなわち、アクセル開度を検出する。ECU20は、アクセル開度センサ12の出力信号に基づいて、要求トルクを演算する。すなわち、アクセル開度センサ12は、エンジンへの要求トルクを検出する要求トルク検出センサとして用いられる。また、ECU20は、クランク角度センサの出力信号に基づいて、エンジンの回転速度を演算する。ECU20は、上記各種センサの出力から得られるエンジンの運転状態に基づき、空気流量、燃料噴射量、点火時期、燃料圧力等のエンジンの主要な作動量を最適に演算する。
 ECU20で演算された燃料噴射量は開弁パルス信号に変換され、インジェクタ13に送られる。また、ECU20で演算された点火時期で点火されるように、点火信号が点火プラグ16に送られる。また、ECU20で演算されたスロットル開度は、スロットル駆動信号として電子制御スロットル2に送られる。また、ECU20で演算されたEGRバルブ開度は、EGRバルブ開度駆動信号として、EGRバルブ41へ送られる。
 吸気管から吸気バルブを経てシリンダ14内に流入した空気に対し、燃料が噴射され、混合気を形成する。混合気は所定の点火時期で点火プラグ16から発生される火花により爆発し、その燃焼圧によりピストンを押し下げてエンジンの駆動力となる。更に、爆発後の排気ガスは排気管15を経て、三元触媒10に送りこまれ、排気成分は三元触媒10内で浄化され、外部へと排出される。三元触媒10をEGR管40の入り口上流に備えることで、還流する排気ガスの組成を安定させること可能となり、結果、任意の運転条件でのEGR量制御において安定して性能を得ることができる。
 図4には、図1のECU20のCPU20e(制御部)で実施される演算処理が記載されている。本実施例のECU20は内燃機関(エンジン100)の排気ガスを再度、内燃機関100に吸気させる排気再循環流路が設けられた内燃機関(エンジン100)を制御する。まず、ステップS401にてノック限界まで点火プラグ16の点火タイミングを進角させる、点火進角制御を実施する。なお、本実施例では図5に示すように、外部EGR率が設定値より小さく、かつ点火進角量が設定値より大きい領域がノック発生領域として設定され、この領域に入らない領域がノックの発生しない領域として設定されている。よって、ノック限界点火時期は、点火進角量を設定値以下とすればノック発生領域に入らないように設定される。次に、ステップS402に進み過大EGR率制御フラグがONかOFFかを確認する。ここで、過大EGR率制御フラグがONとなっていると、EGR率が高すぎることになるため、本制御を終了する。
 ステップS402にてOFFと判定した場合、ステップS403に進み、点火プラグ16の点火タイミングを遅角させる、点火遅角制御を実施する。次にステップS404に進み、点火遅角時の燃焼不安定度を検出する。本実施例では図5に示すように、外部EGR率が設定値より小さく、かつ点火進角量が設定値より小さい領域が燃焼不安定領域として設定され、この領域に入らない領域が燃焼安定領域として設定されている。よって、安定限界は、点火進角量を設定値以上とすれば燃焼不安定領域に入らないように設定される。
 次にステップS405に進み、燃焼不安定度が設定値より小さければ、EGR量を増やせる余地があると判断し、ステップS406に進み、EGR量の増加と合わせて点火時期の進角制御を実施する。燃焼不安定度は、点火プラグ16の点火タイミングを遅角量(リタード量)と、設定値とを比較し、遅角量(リタード量)が設定値内であれば、燃焼不安定度が小さい、つまり安定していると判断される。設定値は、対応外部EGR率におけるノック限界点火時期の点火進角量と安定限界の点火進角量との差に基づいて設定される。
あるいは設定値は点火プラグ16の点火タイミングを遅角後、対応する安定限界の点火進角量との差によって求まる。
 あるいは、ECU20のCPU20e(制御部)の燃焼不安定性算出部は、エンジン100の回転数、又は内燃機関100の筒内圧力に基づいて内燃機関100の燃焼不安定性を求めても良い。ここでは、燃焼不安定に至るまでまたはノック限界に至るまで実施する。
 ステップS405にて燃焼不安定度が設定値より大きいと判断した場合は、ステップS407に進み過大EGR率制御フラグをONに設定し、ステップS408に進み、EGR量の減量と点火進角制御を実施する。このステップS403~ステップS408の処理により、ノック限界と燃焼安定限界の幅が適切な範囲以上存在する場合に、EGR量増量制御を実施することが可能となる。これにより、設定範囲が狭い条件に陥ることなく、EGR量を最適に制御ができる。また、ステップS406にてEGR量の減量と共に点火進角制御を実施することで、より応答の速い点火進角制御を用いた燃焼安定化方向への制御が可能になり、早く燃焼不安定条件から安定条件へと遷移することができる。
 以上の通り、本実施例の内燃機関制御装置(ECU20)は、進角限界点火時期と燃焼不安定性を検出した点火時期の差が設定値以上であるとき、排気再循環量と点火進角量を共に増加させる方向に進めるように制御する制御部(CPU20e)を備えた。
 また上記の点火進角限界はノック限界点火時期であることが望ましい。また、点火進角限界が燃費最良点火時期であることが望ましい。また燃焼不安定性算出部は、燃焼安定性を筒内圧センサに基づき検出した筒内圧力最大位置の変動量から推定することが望ましい。
 また燃焼安定性の検出装置は、筒内圧センサであり、燃焼不安定性算出部は燃焼安定性を筒内圧センサ基づき推定したエンジン出力の変動量から推定することが望ましい。また制御部(CPU20e)は、燃焼不安定性を検出した点火時期を設定した後に、進角限界点火時期へと点火時期を変更させた後に、排気再循環量と点火進角量を共に増加させる方向に進めることが望ましい。
 また、制御部(CPU20e)は前記排気再循環寮と点火進角量を共に増加させる方向に制御する際に、前記筒内圧力により検出した燃焼中心位置が設定範囲に収まるように点火進角量を制御することが望ましい。
 図5には、図4に示した制御フローを実行した際の状態の遷移を示す。始点から始まり、点火進角後にノック限界点火時期に至ると、一旦、点火時期遅角化する。ここでの燃焼安定性が所定の値に収まるので、EGR率の増加と点火時期の進角制御を実施する。制御中、燃焼不安定性を検出した際には、EGR弁の制御をやめ、点火進角制御を実施する。
次にノック限界を検出した場合に、所定量、点火遅角を実施し燃焼不安定性を検出する。
図5の例では、EGR率増加後の点火遅角で安定限界を超えて不安定な領域に達するため、EGR率の減量と点火進角を行う。このように、ノック限界点火時期と燃焼安定性の点火時期の設定可能範囲をパラメータとしてEGR量を制御することで、燃費低減を最大化し、かつ、外乱に対するロバスト性を確保した状態での制御が可能にある。
 図6には、図4に示した制御フローを実行した際の状態の遷移を示す。図5の横軸を時間にしたものである。時間t1でノックを検出し、時刻t2で即座に点火遅角を実施することでノック強度が下がる。ここでの燃焼不安定性は所定の値以下であるので、時間t2後の要求EGR量が時間的に増加する。また、これに合わせて要求点火時期も進角する。
時間t3で燃焼不安定度が所定の値を超えるため点火進角及び要求EGR量を一定値に設定する。さらにt4でノック発生後、即座に時間t5にて点火時期を遅角化する。本実施例では、時間t5における燃焼不安定性が所定の範囲を超えるため、時間t6以降の要求EGR量の減量及び点火時期進角化を実施。時間t7でノック強度が所定の範囲を超えるため、点火時期を遅角化し、時間t8で燃焼不安定性を検出する。
 続いて図7から図10を用いて第2の実施形態を説明する。
図7は、低負荷領域におけるエンジンの動作範囲を示す図である。低負荷領域では、点火時期の進角量は、燃費悪化の観点から最適点火時期によって制限され、遅角量は安定限界で制限される。外部EGR率の増加と共に、燃費最良点火時期と安定限界にはさまれる点火時期の設定可能範囲は減少する。外部EGR率は、この点火時期の設定可能範囲の中で最大値となる点で最も内燃機関の効率が高くなるが、わずかにEGR率や点火時期がずれただけで安定限界や燃費最良点火時期を超えてしまうため、外乱に対するロバスト性が低くなる。このため、点火時期の設定可能範囲を確保しつつ、外部EGR率を制御することが重要である。
 図8には、図1のECUで実施される演算処理が記載されている。まず、ステップS801にて燃焼中心位置が所定位置にくるように点火進角制御を実施する。燃焼中心位置は、図3に図示しない筒内圧力センサを用いて検出した圧力の分析結果に基づき所定位置に有るかを判定する。なお、ここでの燃焼位置は、圧力が最大値となるクランク角度や、発熱率50%に達するクランク角度、を用いることができる。次に、ステップS802に進み、過大EGR率制御フラグの状態を確認する。ステップS802でOFFと判定した場合は、ステップS803に進み、点火遅角量を設定し、点火遅角制御を実施する。ここでは、燃費悪化と存在可能領域の幅の要求値から点火遅角量を決めるが、概ね1から2deg。CAくらいの設定と出来る。
 ついでステップS804に進み、点火遅角時の燃焼不安定度を検出する。次にステップS805に進み、燃焼不安定度が所定の値より小さければ、EGR量を増やせる余地があると判断し、ステップS806に進む。ステップS806にて、ステップS801で設定していた点火時期と同等の点火時期に設定する。次にステップS807に進み、ステップS808で実施するEGR量増加と点火進角制御の継続サイクルNref1を規定する。
過去の経緯から、EGR率の上限に近づいていると判断した場合は、Nref1の値を小さく設定することができる。続いてステップ808に進みEGR量の増加と点火進角制御を実施する。
 ここでEGR量の目標値は、単位時間当たりのEGR量の変化が一定になるように目標値を設定することができる。まずEGR量の増加と合わせて燃焼中心位置が所定位置になるように点火時期の進角制御を実施する。Nref1サイクルステップS808を継続した後、ステップS801へと進む。ステップS805にて不安定度が所定の値より大きい場合は、ステップS809に進み、過大EGR率制御フラグをONに設定し、ついで、ステップS810に進む。ステップS810では、点火時期の燃費最良点に設定し、次にステップS811に進む。
 ステップS811ではステップS812を継続するサイクル数を規定する。次にステップS812に進み、EGRの減量と点火進角制御を実施する。EGRの減量は単位時間当たりのEGR率の変化が一定になるように目標値を設定できる。このステップS803~ステップS808の処理により、EGR増加制御中における燃焼位相のずれに伴う燃費悪化を抑制しつつ、EGR量の増加を実現できる。
 また、ステップS803からステップS812の処理により、燃費最良点火時期と燃焼安定限界の幅が適切な範囲以上存在する場合に、EGR量増量制御を実施することが可能となる。これにより、設定範囲が狭い条件に陥ることなく、EGR量を最適に制御ができる。また、ステップS806やステップS810で、応答の速い点火時期を用いて点火を、当該EGR率における燃費最良点に設定することで、EGR増減制御中の燃費悪化も抑制できる。
 図9には、図8に示した制御フローを実行した際の状態の遷移を示す。始点から始まり、点火遅角後に一旦、点火時期遅角化する。ここでの燃焼安定性が所定の値に収まるので、EGR率の増加と点火時期の進角制御を実施する。このさい、いったん点火時期を進化角し当該EGR率での燃費最良点火時期に制御する。ついで、EGR率と点火時期を共に増加する。ここでは、図3に図示しない筒内圧センサを用いて検出した筒内圧値を用いて燃焼位置を検出し、この燃焼位置を所定の値に設定するように点火時期を進化する。EGR率の増加と点火進角を所定の期間継続したら、一旦、点火遅角制御を実施し、燃焼安定性を確認する。点火遅角時の燃焼安定性が所定の範囲内なので、点火進角し燃焼位置を所定の位置に設定した後、EGR率の増加と点火進角をすすめる。
 再度、所定の間、EGR率の増加と点火進角を進めた後、点火遅角制御を実施する。この際、点火遅角時の燃焼不安定性が所定の範囲を超えるため、点火進角による燃焼中心位置を所定の位置に設定した後、EGR率の減量制御を実施する。第2の実施例に従えば、燃費最良点火時期と燃焼安定性の点火時期の設定可能範囲をパラメータとしてEGR量を制御することで、燃費低減を最大化し、かつ、外乱に対するロバスト性を確保した状態での制御が可能にある。
 図10には、図7に示した制御フローを実行した際の状態の遷移を示す。図5の横軸を時間にしたものである。時間t1で点火遅角制御を実施し、燃焼不安定性を検出。検出しtが所定の範囲であるので、時間t2で点火進角制御を実施し、所定の燃焼中心位置を実現。その後、時間t3までEGR率の増加と点火進角を実施し、燃焼中心位置を維持しつつ、EGR量を増加する。所定の時間がたった時間t3にて再度点火遅角制御を実施し、燃焼不安定性を確認する。ここでも燃焼不安定性が所定の範囲内であるので、再度、点火時期を進角し、燃焼中心位置を所定の位置に設置、その後、EGR量の増加と点火進角を同時に実施する。この際も燃焼中心位置が概ね一定に維持されるように制御する。再度予定のサイクル制御を進めたところで、点火遅角制御を実施し、燃焼不安定性を検出。ここで燃焼不安定性が所定の範囲を超えるため、一旦、点火進角制御を実施した後、充分な設定可能範囲が無いと判断し、EGR減量と点火遅角を実施する。
 以上の通り、内燃機関制御装置(ECU20)の制御部(CPU20e)は内燃機関(エンジン100)の点火を行う点火プラグ16の点火タイミングを進角させた後、点火タイミングを遅角させた状態において、内燃機関(エンジン100)の燃焼安定限界に達していない場合には、点火タイミングを再度、進角させるとともに排気再循環量を増加させるように制御する。
また、制御部(CPU20e)は点火タイミングを設定された点火進角限界まで進角させた後、点火タイミングを遅角させた状態において、内燃機関(エンジン100)の燃焼安定限界に達していない場合には、点火タイミングを再度、進角させるとともに排気再循環量を増加させるように制御することが望ましい。また、制御部(CPU20e)は点火タイミングを設定されたノック限界まで進角させた後、点火タイミングを遅角させた状態において、前記内燃機関の燃焼安定限界に達していない場合には、点火タイミングを再度、進角させるとともに排気再循環量を増加させるように制御することが望ましい。
 また制御部(CPU20e)は、最初に点火タイミングを進角させる際に排気再循環量は一定値を維持するように制御することが望ましい。また制御部(CPU20e)は、点火タイミングを設定された点火進角限界まで進角させた後、点火タイミングを遅角させた状態において、内燃機関(エンジン100)の燃焼安定限界に達した場合には、点火タイミングを再度、進角させるとともに排気再循環量を減少させるように制御することが望ましい。
1…エアフローセンサ
2…電子制御スロットル
3…湿度センサ
4…過給機
4a…コンプレッサ
4b…タービン
5…可変バルブ
6…吸気マニホールド
7…インタークーラ
8…冷却水温度センサ(図示していない)
9…空燃比センサ
10…三元触媒
11…ウェイストゲート弁
12…アクセル開度センサ
13…筒内直接噴射用インジェクタ
14…シリンダ
15…排気管
16…点火プラグ
20…ECU
20a…入力回路
20b…入出力ポート
20c…RAM
20d…ROM
20e…CPU
20f…電子制御スロットル駆動回路
20g…インジェクタ駆動回路
20h…ウェイストゲート弁駆動回路
20j…インタークーラ冷却水弁駆動回路
20k…変速機駆動回路
20m…EGRバルブ駆動回路
30…変速機
40…EGR管
41…EGRバルブ
42…EGRクーラ
43…差圧センサ
44…EGR温度センサ
100…エンジン

Claims (12)

  1.  内燃機関の排気ガスを再度、前記内燃機関に吸気させる排気再循環流路が設けられた前記内燃機関を制御する内燃機関制御装置において、
     前記内燃機関の回転数、又は前記内燃機関の筒内圧力に基づいて前記内燃機関の燃焼不安定性を求める燃焼不安定性算出部と、
     進角限界点火時期と燃焼不安定性を検出した点火時期の差が所定の値以上であるとき、排気再循環量と点火進角量を共に増加させる方向に進めるように制御する制御部と、を備える内燃機関制御装置。
  2.  請求項1に記載の内燃機関制御装置において、
     前記点火進角限界がノック限界点火時期であることを特徴とする内燃機関制御装置。
  3.  請求項1に記載の内燃機関制御装置において、
     前記点火進角限界が燃費最良点火時期であることを特徴とする内燃機関の制御装置。
  4.  請求項1に記載の内燃機関制御装置において、
     前記燃焼不安定性算出部は前記燃焼安定性を筒内圧センサに基づき検出した筒内圧力最大位置の変動量から推定することを特徴とする内燃機関制御装置。
  5.  請求項1に記載の内燃機関制御装置において、
     前記燃焼安定性の検出装置は、筒内圧センサであり、前記燃焼不安定性算出部は前記燃焼安定性を筒内圧センサ基づき推定したエンジン出力の変動量から推定することを特徴とする内燃機関制御装置。
  6.  請求項3に記載の内燃機関制御装置において、
     前記制御部は、燃焼不安定性を検出した点火時期を設定した後に、進角限界点火時期へと点火時期を変更させた後に、前記排気再循環量と点火進角量を共に増加させる方向に進めることを特徴とする内燃機関制御装置。
  7.  請求項6に記載の内燃機関制御装置において、前記制御部は、前記排気再循環量と点火進角量を共に増加させる方向に制御する際に、前記筒内圧力により検出した燃焼中心位置が所定の範囲に収まるように点火進角量を制御することを特徴とする内燃機関制御装置。
  8.  内燃機関の排気ガスを再度、前記内燃機関に吸気させる排気再循環流路が設けられた前記内燃機関を制御する内燃機関制御装置において、
     前記内燃機関の点火を行う点火プラグの点火タイミングを進角させた後、点火タイミングを遅角させた状態において、前記内燃機関の燃焼安定限界に達していない場合には、点火タイミングを再度、進角させるとともに排気再循環量を増加させるように制御する制御部を備えた内燃機関制御装置。
  9.  請求項8に記載の内燃機関制御装置において、
     前記制御部は、点火タイミングを設定された点火進角限界まで進角させた後、点火タイミングを遅角させた状態において、前記内燃機関の燃焼安定限界に達していない場合には、点火タイミングを再度、進角させるとともに排気再循環量を増加させるように制御する内燃機関制御装置。
  10.  請求項8に記載の内燃機関制御装置において、
     前記制御部は、点火タイミングを設定されたノック限界まで進角させた後、点火タイミングを遅角させた状態において、前記内燃機関の燃焼安定限界に達していない場合には、点火タイミングを再度、進角させるとともに排気再循環量を増加させるように制御する内燃機関制御装置。
  11.  請求項8~10の何れかに記載の内燃機関制御装置において、
     前記制御部は、最初に点火タイミングを進角させる際に排気再循環量は一定値を維持するように制御する内燃機関制御装置。
  12.  請求項8に記載の内燃機関制御装置において、
     前記制御部は、点火タイミングを設定された点火進角限界まで進角させた後、点火タイミングを遅角させた状態において、前記内燃機関の燃焼安定限界に達した場合には、点火タイミングを再度、進角させるとともに排気再循環量を減少させるように制御する内燃機関制御装置。
PCT/JP2017/025848 2016-09-30 2017-07-18 内燃機関制御装置 WO2018061411A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17855369.9A EP3521600B1 (en) 2016-09-30 2017-07-18 Internal combustion engine control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016192524A JP6920805B2 (ja) 2016-09-30 2016-09-30 内燃機関制御装置
JP2016-192524 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018061411A1 true WO2018061411A1 (ja) 2018-04-05

Family

ID=61762648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025848 WO2018061411A1 (ja) 2016-09-30 2017-07-18 内燃機関制御装置

Country Status (3)

Country Link
EP (1) EP3521600B1 (ja)
JP (1) JP6920805B2 (ja)
WO (1) WO2018061411A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2773089C1 (ru) * 2018-11-30 2022-05-30 Грейт Волл Мотор Компани Лимитед Система EGR двигателя и стратегия диагностики системы EGR двигателя

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015219133A1 (de) 2015-10-02 2017-04-06 Continental Automotive Gmbh Verfahren zum Betreiben einer Brennkraftmaschine für ein Kraftfahrzeug und System für eine Brennkraftmaschine
JP2019210834A (ja) * 2018-06-01 2019-12-12 トヨタ自動車株式会社 内燃機関の制御装置
JP7360804B2 (ja) * 2019-04-19 2023-10-13 日産自動車株式会社 車両の制御方法及び車両
SE543849C2 (en) * 2019-12-11 2021-08-10 Scania Cv Ab Method and control arrangement for controlling egr
WO2021245436A1 (ja) 2020-06-04 2021-12-09 日産自動車株式会社 内燃機関の制御方法および制御装置
AT525555B1 (de) * 2022-03-15 2023-05-15 Avl List Gmbh Verfahren zum betreiben einer brennkraftmaschine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291795A (ja) 2005-04-08 2006-10-26 Mitsubishi Motors Corp ノッキング抑制装置
JP2007262937A (ja) * 2006-03-28 2007-10-11 Toyota Central Res & Dev Lab Inc 直噴ガソリンエンジンの制御装置
US20130255628A1 (en) * 2010-10-29 2013-10-03 Westport Power Inc. Dual Fuel Engine System And Method Of Operating
JP2014125980A (ja) * 2012-12-26 2014-07-07 Nissan Motor Co Ltd エンジンの制御装置及び制御方法
JP2014190305A (ja) * 2013-03-28 2014-10-06 Toyota Motor Corp ディーゼルエンジンの制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0222486B1 (en) * 1985-10-28 1990-04-25 General Motors Corporation Combustion control for an internal combustion engine
US5287836A (en) * 1991-12-18 1994-02-22 Honda Giken Kogyo Kabushiki Kaisha Control system for internal combustion engines
US7086382B2 (en) * 2002-11-01 2006-08-08 Visteon Global Technologies, Inc. Robust multi-criteria MBT timing estimation using ionization signal
JP6051887B2 (ja) * 2013-01-24 2016-12-27 日産自動車株式会社 ノッキング抑制装置及びノッキング抑制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291795A (ja) 2005-04-08 2006-10-26 Mitsubishi Motors Corp ノッキング抑制装置
JP2007262937A (ja) * 2006-03-28 2007-10-11 Toyota Central Res & Dev Lab Inc 直噴ガソリンエンジンの制御装置
US20130255628A1 (en) * 2010-10-29 2013-10-03 Westport Power Inc. Dual Fuel Engine System And Method Of Operating
JP2014125980A (ja) * 2012-12-26 2014-07-07 Nissan Motor Co Ltd エンジンの制御装置及び制御方法
JP2014190305A (ja) * 2013-03-28 2014-10-06 Toyota Motor Corp ディーゼルエンジンの制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3521600A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2773089C1 (ru) * 2018-11-30 2022-05-30 Грейт Волл Мотор Компани Лимитед Система EGR двигателя и стратегия диагностики системы EGR двигателя

Also Published As

Publication number Publication date
JP6920805B2 (ja) 2021-08-18
JP2018053845A (ja) 2018-04-05
EP3521600A4 (en) 2020-09-16
EP3521600B1 (en) 2023-03-15
EP3521600A1 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
WO2018061411A1 (ja) 内燃機関制御装置
JP5967064B2 (ja) 内燃機関の制御装置
JP2009115025A (ja) 圧縮自己着火式内燃機関の制御装置および制御方法
EP3006705A1 (en) Control device for internal combustion engine
WO2017033644A1 (ja) 内燃機関制御装置
CN113015848B (zh) 控制装置
US10400738B2 (en) Control device for internal combustion engine
US20180202410A1 (en) Control device for internal combustion engine and method for controlling internal combustion engine
JP5087569B2 (ja) 圧縮自己着火式内燃機関の制御装置
JP4789756B2 (ja) 内燃機関の制御装置
JP5273310B2 (ja) 内燃機関の制御装置
JP2010168931A (ja) 火花点火式内燃機関の点火時期制御装置
JP2006132399A (ja) 過給機付エンジンの制御装置および制御方法
JP6283959B2 (ja) エンジンの制御装置
JP2018031340A (ja) エンジンの燃料性状判定装置および燃焼制御装置
US20160047351A1 (en) Control apparatus for internal combustion engine
JP6311363B2 (ja) 内燃機関の制御装置
WO2020240244A1 (ja) 内燃機関の制御方法および制御装置
US9995265B2 (en) Control device for internal combustion engine
JP6327477B2 (ja) エンジンの制御装置
JP2007239564A (ja) 内燃機関の制御装置
CN117222803A (zh) 内燃机的控制装置
JP2020159329A (ja) 内燃機関の制御装置
JP2016173061A (ja) 内燃機関のエンジントルク補正装置
JP2006274950A (ja) エンジンの制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017855369

Country of ref document: EP

Effective date: 20190430