JP2014114777A - 流体噴射弁及び噴霧生成装置 - Google Patents

流体噴射弁及び噴霧生成装置 Download PDF

Info

Publication number
JP2014114777A
JP2014114777A JP2012270493A JP2012270493A JP2014114777A JP 2014114777 A JP2014114777 A JP 2014114777A JP 2012270493 A JP2012270493 A JP 2012270493A JP 2012270493 A JP2012270493 A JP 2012270493A JP 2014114777 A JP2014114777 A JP 2014114777A
Authority
JP
Japan
Prior art keywords
spray
switching
collective
injection valve
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012270493A
Other languages
English (en)
Other versions
JP5491612B1 (ja
Inventor
Mamoru Sumida
守 住田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012270493A priority Critical patent/JP5491612B1/ja
Priority to US14/082,925 priority patent/US10280885B2/en
Priority to DE102013224969.1A priority patent/DE102013224969A1/de
Application granted granted Critical
Publication of JP5491612B1 publication Critical patent/JP5491612B1/ja
Publication of JP2014114777A publication Critical patent/JP2014114777A/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/162Means to impart a whirling motion to fuel upstream or near discharging orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1853Orifice plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Nozzles (AREA)

Abstract

【課題】流体噴霧の微粒化と、噴霧形状、貫徹力、噴射量分布、噴霧方向の設計自由度向上とを両立させた燃料噴射弁を得る。
【解決手段】この発明の燃料噴射弁1は、少なくとも一つの噴孔は、噴射された噴霧が、長円状のスイッチング噴霧32Aであって、下流において長軸及び短軸の方向がアクシス-スイッチング現象により変化して変形するスイッチング噴孔12Bであり、このスイッチング噴孔12Bを除く他の複数の噴孔は、単噴霧30A,31A間で作用するコアンダ効果で集合した集合噴霧40を形成する集合噴孔12Aであり、集合した各単噴霧30A,31Aの噴射量分布の中心あるいは重心が集合噴霧40の中心あるいは重心に達する収束する前の集合噴霧40と、スイッチング噴霧32Aとがコアンダ効果により集合して全体噴霧50が形成されるようになっている。
【選択図】図7

Description

この発明は、複数の各噴孔から各噴流が噴射されて、下流において各噴霧となって、最終的に集合し、中実の全体噴霧が形成される流体噴射弁、及びその流体噴射弁が用いられた噴霧生成装置に関するものである。
近年、自動車などの車両用エンジンにおいては、燃料噴霧の微粒化などによるエンジン冷機時の排出ガス低減や、燃焼性改善などによる燃費向上の研究開発が積極的に進められている。
例えば、衝突により得られる微粒化噴霧と、貫徹力の強いリード噴霧とを形成し、後者が前者を牽引して噴霧の飛散を抑制し、吸気弁中心位置よりも内側方向に燃料噴霧濃度を濃くした燃料噴射弁が知られている(特許文献1参照)。
また、各噴霧の干渉を回避して微粒化を図りつつ、かつ、各噴霧のコアンダ効果により互いに引き合いながら進むので噴霧の進行方向のバラツキを防止できるとした燃料噴射弁が知られている(特許文献2参照)。
特開2005−207236号公報 特開2000−104647号公報
しかしながら、上記特許文献1のものでは、噴流を衝突させて微粒化させるには、衝突位置は噴流のブレーク長さよりも短い位置にする必要があり、この場合、微粒化するがために噴流(噴霧)は飛散することになり、また、この衝突によって噴流が有していたエネルギーの内の相当量は飛散した噴霧粒子の表面張力に転換されるので、貫徹力が低下することになる。
従って、この衝突によって飛散し、貫徹力が低下した噴霧を同時に噴射された貫徹力の強いリード噴霧が牽引するとしても、これらの噴霧先端部の挙動は時刻的にタイミングが合わず、噴射期間が短い小噴射量の場合は衝突により飛散した噴霧が取り残されてリード噴霧が先に進んでしまうことになる。
また、リード噴霧によって生じる誘引渦は、上記特許文献1の図4に示された以外に、同時にリード噴霧外周と雰囲気とのせん断力のバランスによって決まるある噴射方向下流位置でリード噴霧外周に円環渦を形成するので、飛散した噴霧はこの円環渦に取り込まれてそれより噴射方向下流に進むことができなくなる。
このように、リード噴霧が飛散した微粒化噴霧を牽引して進むには種々の制約条件を必要とするので、過渡運転時の非定常状態の多いガソリンエンジン用の噴射系システムとしては不向きであり、より簡便に噴霧パターンや全体噴霧の形状の設計自由度を向上させる手法が望まれる。
また、上記特許文献2のものでは、各噴霧が広がり過ぎないようにコアンダ効果を作用させ、かつ一方では各噴霧が集まらないようにコアンダ効果を抑制するというような噴霧方向のバランス維持は、静的な雰囲気条件下でも難しく、ましてや吸気ポート内では周囲空気圧力・温度、吸気流動、噴霧体積(重量)流量、噴霧速度などの影響も受けるため、過渡運転時の非定常状態の多いガソリンエンジン用の噴射系システムで実現するのは非常に難しい。
つまり、ここでのコアンダ効果の役割には、コンパクトな集合噴霧を形成するという積極的な意図はなく、全体噴霧の噴霧形状や噴霧パターン、噴射量分布は成り行きとなっていた。
以上、上記引用文献1,2のものでは、噴霧の微粒化向上と、噴霧形状、噴霧パターン、噴霧の貫徹力や噴射量分布の設計自由度向上を両立させる方策が示されておらず、従ってエンジン仕様毎に吸気ポート形状や吸気流動が異なるという実情の中で、より最適な噴霧仕様を決めるための指針とはなっていないという問題点があった。
この発明は、かかる問題点を解決することを課題とするものであって、流体噴霧の微粒化と、噴霧形状、貫徹力、噴射量分布、噴霧方向の設計自由度向上とを両立させた、流体噴射弁、及びその流体噴射弁が用いられた噴霧生成装置を提供することを目的としている。
この発明に係る流体噴射弁は、流体通路の途中に設けられた弁座と、この弁座との当接、離間により前記流体通路の開閉を制御する弁体と、前記弁座の下流に設けられ、複数の噴孔を有する噴孔体と、を備え、
複数の各前記噴孔から各噴流が噴射されて、下流において各噴霧となって、最終的に集合し、中実の全体噴霧が形成される、流体噴射弁であって、
少なくとも一つの前記噴孔は、前記噴流が噴射された後の前記噴霧が、流れ方向に直角な面内の断面形状が長軸と短軸の長さが異なる長円状のスイッチング噴霧であって、下流において前記長軸及び前記短軸の方向がアクシス-スイッチング現象により変化して変形するスイッチング噴孔であり、
このスイッチング噴孔を除く他の複数の前記噴孔は、各噴流が破断、分裂を経て単噴霧にブレークされたブレーク部位よりも下流側の各単噴霧が単噴霧間で作用するコアンダ効果で集合した集合噴霧を形成する集合噴孔であり、
集合した各前記単噴霧の噴射量分布の中心あるいは重心が前記集合噴霧の中心あるいは重心に収束する前の集合噴霧と、前記スイッチング噴霧とがコアンダ効果により集合して前記全体噴霧が形成されるようになっている。
この発明に係る流体噴射弁によれば、集合した各単噴霧の噴射量分布の中心あるいは重心が集合噴霧の中心あるいは重心に収束する前の集合噴霧と、スイッチング噴霧とがコアンダ効果により集合して全体噴霧が形成されるようになっており、流体噴霧の微粒化と、噴霧形状、貫徹力、噴射量分布、噴霧方向の設計自由度向上とを両立させることができる。
この発明の実施の形態1の燃料噴射弁を示す断面図である。 図1の燃料噴射弁の先端部を示す拡大図である。 図2の噴孔プレートを示す平面図である。 図1の燃料噴射弁の先端部を示す拡大図である。 図2の要部を示す拡大図である。 単噴霧の挙動を示す説明図である。 この発明の実施の形態1の燃料噴射弁の単噴霧及びスイッチング噴霧の挙動を示す説明図である。 この発明の実施の形態2の燃料噴射弁の単噴霧及びスイッチング噴霧の挙動を示す説明図である。 この発明の実施の形態3の燃料噴射弁の単噴霧及びスイッチング噴霧の挙動を示す説明図である。 この発明の実施の形態4の燃料噴射弁の使用態様の一例を示す構成図である。 この発明の実施の形態4の燃料噴射弁の使用態様の他の例を示す構成図である。 図11の平面図である。 この発明の実施の形態4の燃料噴射弁の使用態様のさらに他の例を示す構成図である。 図13の平面図である。
以下、この発明の各実施の形態について図に基づいて説明するが、各図において同一、または相当部材、部位については同一符号を付して説明する。
実施の形態1.
図1は燃料噴射弁1を示す断面図、図2は図1の燃料噴射弁1の先端部を示す拡大図である。
この燃料噴射弁1は、内燃機関の吸気管に取り付けられ、先端部が内燃機関の吸気ポート内に臨んでおり、下方に向けて燃料を噴射するようになっている。
燃料噴射弁1は、電磁力を発生するソレノイド装置2と、このソレノイド装置2への通電により作動する弁装置7とを備えている。
ソレノイド装置2は、磁気回路のヨーク部分をなすハウジング3と、このハウジング3の内側に設けられた固定鉄心であるコア4と、このコア4を囲ったコイル5と、このコイル5の内側に設けられ往復移動する可動鉄心であるアマチュア6とを備えている。
弁装置7は、円筒形状であってコア4の先端部の外径部に圧入、溶接された弁本体9と、この弁本体9の内部に設けられた弁座10と、弁座10の下流側に設けられた噴孔プレート11と、弁座10の内部で噴孔プレート11の上流に設けられたカバープレート18と、弁本体9の内側に設けられた弁体8と、弁体8の上流に設けられた圧縮バネ14とを備えている。
弁体8は、アマチュア6の内面に圧入、溶接された中空のロッド8aと、このロッド8aの先端部に溶接で固定されたボール13とを有している。
ボール13は、燃料噴射弁1のZ軸に平行な面取り部13aと、カバープレート18と対向した平面形状の平面部13bと、弁座10と線接触する曲面部13cとを有している。
噴孔プレート11は、周縁部が下側に折曲されており、弁座10の先端面及び弁本体9の内周側面に溶接されている。噴孔プレート11には板厚方向に貫通する複数の集合噴孔12A、スイッチング噴孔12Bが形成されている。
図3は図2のJ矢視による噴孔プレート11の平面図である。
噴孔プレート11には、燃料噴射弁1の中心軸であるZ軸に沿って下流に向けて外側に向かう集合噴孔12A、スイッチング噴孔12Bが周方向に等間隔をおいて配置されている。
集合噴孔12A、スイッチング噴孔12Bは、この中心軸線、即ち噴流方向がエンジンの吸気弁を指向し、かつ図3の左右で互いに交差する2方向に向かう噴孔群に分かれている。
断面が長円形状のスイッチング噴孔12Bは、対向しており、このスイッチング噴孔12Bの両側に、それぞれ断面が円形状の複数の集合噴孔12Aが配置されている。
次に、上記燃料噴射弁1の動作について説明する。
内燃機関の制御装置(図示せず)より燃料噴射弁1の駆動回路に動作信号が送られると、燃料噴射弁1のコイル5に電流が通電され、アマチュア6は、コア4側へ吸引される。
この結果、アマチュア6と一体構造であるロッド8a及びボール13は、圧縮バネ14の弾性力に逆らって上方向に移動し、ボール13の曲面部13cが弁座面10aから離間し両者に間隙が形成されて燃料流路が形成され、吸気ポートに指向した燃料噴射が開始する。
一方、内燃機関の制御装置より燃料噴射弁1の駆動回路に動作の停止信号が送られると、コイル5への通電が停止し、アマチュア6がコア4側に吸引される力は消失し、ロッド8aは、圧縮バネ14の弾性力によって弁座10側に押され、曲面部13cと弁座面10aとは閉じ状態となり、燃料噴射は、この時点で終了する。
ここで、例えば縮流によって集合噴孔12A、スイッチング噴孔12B内の流れを液膜流とする噴孔プレート11とカバープレート18、及び弁座10、ボール13の詳細な位置、構造につき、図2、図4及び図5の各詳細断面図を用いて説明する。
燃料は、弁体8の開弁時においてボール13の面取り部13aと弁座10の内面との間のZ軸に平行な通路から、曲面部13cと弁座面10aとの間を下流へ向かい、シート部R1に至る。
シート部R1の上流では燃料がZ軸に平行に流れるため、燃料は、シート部R1を通過した後においては慣性により弁座面10aに沿う流れが主流となり、弁座面10aの下流端の点P1に達する。点P1は弁座面10aの終端であり、弁座10は、点P1から下流側は垂直方向に延びた面を有している。
従って、燃料の主流は、点P1から剥離する。弁座面10aの延長線は、カバープレート18の周側面と点P2で交わっており、点P1から剥離した燃料は、点P2に向かい環状通路C(弁座10の内周壁面とカバープレート18の大径部の周側面との間)を通過して、径方向に大幅な進路変更を伴わずに径方向通路B(弁座10の内周壁面とカバープレート18の小径部の周側面との間)に流入する。
上記によりシート部R1を通過する燃料の主流は、環状通路Cに流入するため、隙間通路A(ボール13の底面とカバープレート18の天面との間)への流入は抑制される。
シート部R1と噴孔12の入口の点R2とを直線で結んだ線は、カバープレート18の大径部である薄肉部18bで交叉しており、薄肉部18bは、シート部R1から噴孔12の入口への燃料の直線的な流入を遮っている。
このため、集合噴孔12A、スイッチング噴孔12Bに流入する燃料の少なくとも一部は、径方向通路Bに沿う流れとなる。カバープレート18は、この終端面18dが噴孔12よりも内径側で噴孔12に近接して配置されている。従って、径方向通路Bに沿って内径側に向かう燃料の正面流れイ(図5参照)は、燃料噴射弁1のZ軸から噴孔12に流入する戻り流れロ(図5参照)の流路を閉塞させ、戻り流れロの速度を低下させる。
戻り流れロが抑制されることで、シート部R1側から噴孔12に流入する正面流れイの速度が相対的に強められる。
正面流れイの少なくとも一部が径方向通路Bに沿って進行した後に集合噴孔12A、スイッチング噴孔12B内で大幅な方向変化を強制されること、及び正面流れイが高速であることにより、燃料は、噴孔12の断面において、燃料噴射弁1のZ軸側の集合噴孔12A、スイッチング噴孔12Bの壁面に強く押し付けられる。
なお、図4において、Lは集合噴孔12A、スイッチング噴孔12Bの長さ、Dは集合噴孔12A、スイッチング噴孔12Bの径を示している。
この後、集合噴孔12A、スイッチング噴孔12Bの入口では、低速な戻り流れロは、噴孔12の壁面に沿って流れαを形成し、高速な正面流れイは、燃料を壁面に押し付ける燃料流βを形成する。
空気は、集合噴孔12A、スイッチング噴孔12Bの出口から集合噴孔12A、スイッチング噴孔12Bの入口付近に導入され、燃料流βに作用して、点Q(噴孔12の燃料入口の外側の縁部)を起点とした燃料流βの剥離を生じさせる。
燃料流βは、集合噴孔12A、スイッチング噴孔12B内を進行するに伴い、壁面に押し付けられ、液膜の方向は、集合噴孔12A、スイッチング噴孔12Bの壁面の円周方向に広がりつつ集合噴孔12A、スイッチング噴孔12Bの壁面に沿う方向に変化していく。
隙間通路Aの高さhに対して集合噴孔12A、スイッチング噴孔12Bの長さLが適切であると、集合噴孔12A、スイッチング噴孔12B内で薄い液膜流1aの状態まで押し付けられる。
そして、噴射された燃料の液膜流1aは、所定の距離を経て分裂を開始し、液糸の状態を経るなどして微粒化された液滴が生成される。
なお、微粒化のプロセスにおいて、液滴を小さくするためにはその分裂の前段階である液糸を細くするのが有効である。そのためには、液糸の分裂の前段階である液膜を薄くしたり液柱を細くしたりするのが有効であり、液膜のほうがより液柱よりも有利であることが従来の知見で分かっている。
そこで、この他に、噴孔に流入する前の燃料流に旋回流を与えて噴孔内に液膜流を形成するなどいろいろな液膜流形成手法が提案されている。
ところで、本願発明者は、これらの液膜流形成手法や微粒化プロセスと、それらをベースとして複数噴霧が集合した集合噴霧の噴霧形状、貫徹力、噴射量分布の出来映えの関係を調査検討した結果、単噴霧が集合した集合噴霧において、次の2点に分けられることを見出した。
即ち、各単噴霧が識別可能であり、かつ各単噴霧の特徴がほぼ識別不可能な集合噴霧(つまり、比較的均質に近い中実構造の集合噴霧)となるか、あるいは各単噴霧の識別さえも不可能となる集合噴霧(噴射量分布が中心ピークの円錐形状となるものを代表例とする集合噴霧)となるか、に分けられることを見出した。
後者は、複数の単噴霧が集合してほぼ元の形態とは異なる新しい一つの集合噴霧に置き換わっており、前者も各単噴霧を識別可能とは言うものの集合噴霧と共通的な特徴を示す噴霧となっている。
これらのどちらの形態になるかは、噴霧挙動がある閾値のどちらにあるかによるところが大きく、単噴霧の集合化が進んだ集合噴霧になるほど噴射量分布は軸対称に近づき、また鋭角な円錐形状となる。
従って、前者であっても、噴霧方向に直角な面内の噴霧形状、噴射量分布がおおよそ軸対称のようになり、その断面形状を所謂異形とすることは難しかった。
このため、ほとんどの通路断面が所謂異形形状である吸気ポートや吸気弁近辺への付着を抑制する噴霧ターゲティング(噴射位置、噴射方向、噴霧仕様)の設定は不十分なものであった。
前述したようないろいろな微粒化手法が燃料噴射弁に適用されつつあるが、もともと微粒化のために小噴孔径にして多噴孔化する技術の流れにあり、隣り合う噴孔からの噴流が干渉して微粒化状態が悪化しないような配慮がなされている。
つまり、噴孔中心軸線あるいは噴流方向が下流になるほど離れていくように、噴孔配置と噴孔諸元(径、傾き、長さ等)、あるいは噴流配置と噴流方向はなされており、微粒化とコンパクトな噴霧という要件を両立させることは難しかった。
また、吸気弁近辺への噴霧衝突軽減や、空気との混合促進などを目的として、噴霧の貫徹力を所定距離のところで急速に減衰させる案も考えられるが、噴霧形態を大きく変えずに実現する手段がなかった。
ポート噴射システムにおいては、吸気ポートへの燃料付着は、なんら良い影響、効果はなく、これを抑制することが最大の課題である。
従って、噴霧が吸気弁や吸気弁近傍の吸気ポートに付着する率を低減するために微粒化を向上させても、噴霧全体が広がった結果、噴霧側面が別の吸気ポート部分に付着するためにポート噴射システムとしてのメリットはなかなか見出せなかった。
つまり、各液膜流の方向を広角に設定して微粒化を促進させても、あるいは、微粒化噴霧外周に大きな巻き上がりを生じさせて噴霧形態を大きく変えて貫徹力を抑制しても、結果的には広角噴霧となって吸気弁や吸気ポートとの干渉を引き起こして燃料が付着することになる。
一方、噴霧全体の広がりを抑制しているものでは、噴孔中心軸線あるいは噴流方向が、噴孔直下で互いに交差するような噴孔配置と噴孔諸元、あるいは噴流配置と噴流方向にするものが知られているものの、液膜流れのブレーク長さ(噴孔出口から液膜流の破断や分裂を経て実質的に噴霧流と見なせるようになる状態の位置までの長さ)との関係など微粒化の要件を考慮したものは知られていない。
また、噴霧全体の広がりを抑制しようとした場合には、垂直線(図1 Z軸)に対する噴孔中心軸線の角度は相対的に小さくなり、薄い液膜流形成には不利であり、従って微粒化プロセスが遅くなって噴流同士の干渉になり易くなり、微粒化レベルを期待値通りに実現できなかった。
更に、この場合、複数噴霧の集合が進んで、所謂「学術文献5」(日本機械学会論文集(第2部) 25巻156号pp820-826「ディーゼル機関燃料噴霧の到達距離に関する研究」(和栗ら))に記載の噴霧形態に近い噴霧形態となることによって、単噴霧の場合の貫徹力よりも集合噴霧の貫徹力のほうが大きくなっていた。
ここで、本願発明者は、噴孔が一つの単噴霧の挙動と、複数噴孔からの複数の単噴霧が集まって集合噴霧になった場合の挙動の差に注目し、これらの噴霧挙動と、流体工学における知見であるアクシス-スイッチング(axis-switching)現象を巧妙に組み合わせることで全体噴霧の形状、貫徹力、噴射量分布、噴霧方向をコントロールする手法を見出した。
ここで、アクシス-スイッチング現象に関しては、下記の学術文献にその知見が示されている。
[学術文献1]日本機械学会論文集(B編)55巻514号 pp1542-1545,「非円形噴流中の渦構造に関する研究」(豊田他)
[学術文献2]ILASS-Europe 2010,”An experimental investigation of discharge coefficient and cavitation length in the elliptical nozzles”(Sung Ryoul Kim )
[学術文献3]生産研究 50巻1号 pp69-72,”Numerical Simulation of Complex Turbulent Jets:Origin of Axis-Switching”(Ayodeji O.DEMUREN)
[学術文献4]噴流工学 森北出版 pp41-42
このアクシス-スイッチング現象は、噴流の研究分野においては、噴霧の断面形状が長円形状である、この実施の形態の例にとどまらず、少なくとも長円の短軸に対して長軸がほぼ線対称である形状のものであればよく、また液体に限らず気体でも成立する。
長短軸比が大きい断面が長円状の噴霧の場合、長軸方向が分断しない範囲で、長短軸方向が変化して変形するものを選択すればよい。
そのために、この実施の形態では、噴霧の長短軸方向を変化させる角度を略90度となるようにした。
図1に示された燃料噴射弁1は、本願発明者が全体噴霧の形状、貫徹力、噴射量分布、噴霧方向をコントロールする手法を見出し、実現したものであり、図6は燃料噴射弁1の単噴霧30A,31Aの挙動を示す説明図、図7は燃料噴射弁1の単噴霧30A,31A及びスイッチング噴霧32Aの挙動を示す説明図である。
この燃料噴射弁1では、複数の集合噴孔12Aからの噴流30,31、単噴霧30A,31Aが下流で集合した集合噴霧40と、スイッチング噴孔12Bからの長円状の、噴流32、下流において長軸と短軸の方向がアクシス-スイッチング現象により変化するスイッチング噴霧32Aとがコアンダ効果により全体噴霧50が形成される。
この集合噴霧40は、集合した各単噴霧30A,31Aの噴射量分布の中心あるいは重心が集合噴霧40の中心あるいは重心に収束する。
図6(a)において、隣り合う集合噴孔12A,12Aからの噴流30,31にブレークが生じたときの噴流断面形状は、断面E-Eに示す形状である。
このときの集合噴孔12A,12Aと断面E-Eとの間の距離をブレーク長さaとする。
引き続き、噴流30,31は、ばらけて単噴霧30A,31Aとなり、集合噴孔12A,12Aから距離bの位置で二つの単噴霧30A,31Aは、その外形が接し始める(断面F-F)。ここで、集合噴孔12A,12Aからの距離bを干渉距離と呼ぶ。
単噴霧30A,31Aの集合噴孔12A,12Aの中心軸線に対して垂直な平面での燃料の噴射量分布は、噴流30,31の素性に起因する単噴霧30A,31Aの噴射量分布によって、略等分布か、あるいはカルデラ状か、あるいは中心がピークとなる円錐状など任意に設定できる。
同時に、断面F-Fから、圧力分布に起因して二つの単噴霧30A,31A間に働くコアンダ効果によって単噴霧30A,31Aは接近して断面G-Gのように集合化が進んでいき、単噴霧30A,31Aの周囲空気の巻き込みと、それによる単噴霧30A,31A内の所定部分の下流への流れ方向に沿った空気流の誘起を生じさせるようになる。
なお、周囲空気の巻き込みレベルは、単噴霧30A,31Aを集合した集合噴霧40の全体の形状を大きく変化させるレベルではなく、「学術文献6」(日本機学会論文集(B編)62巻599号pp2867-2873「ディーゼル噴霧構造に与える雰囲気粘性の影響」(段ら))に記載のFig.12(a)レベルあるいは微小噴霧粒子のみが(b)レベルである。
条件が整えば、図6(a)の断面H-Hの集合噴霧40の状態から、さらに二つの単噴霧30A,31Aの集合化が進み、実質的にほぼ一つの中実の集合噴霧40とみなせるようになる。
図6(b)において、周囲空気の巻き込み状況を多くの渦状の矢印60で、分かり易いように誇張して示してある。
従って、ここでは渦状の矢印60の大きさや個数は、その実態を表すものではない。
また、噴霧内所定部分の下流への流れ方向に沿った空気流Vを誘起している。
その結果、F1-F1、G1a-G1a、G1b-G1b、H1-H1における噴射量分布は図6(b)の右側の図のように次第に略中心ピークに近づいていくことになる。
一方、スイッチング噴孔12Bの噴流32にブレークが生じたときのスイッチング噴霧32Aの断面形状は、図7(a)の断面E-Eに示す形状である。
この噴流32は、ばらけてスイッチング噴霧32Aとなり、図7(b)から分かるように、この断面形状が長円状のスイッチング噴霧32Aは、その長軸に沿って配列された一対の単噴霧30A,31Aと対向して配置されている。
引き続き、このスイッチング噴霧32Aは、単噴霧30A,31Aが集合した集合噴霧40と対向しつつ、その断面形状が若干拡大(長軸及び短軸の両方向)していきながらも、ほぼスイッチング噴孔12Bの直下での流れ方向を維持してそのまま下流に流れる。
そして、単噴霧30A,31Aの集合化が進み、コアンダ効果が弱まったタイミングで、スイッチング噴霧32Aは、その長短軸方向が変化する変形が生じ始める(断面J-J)。
なお、単噴霧30A,31Aの集合化が進む前であって、単噴霧30A,31A間のコアンダ効果が強い時に、スイッチング噴霧32Aの長短軸方向が変化する変形が生じた場合には、スイッチング噴霧32Aと単噴霧30A,31Aとの距離が接近することで、スイッチング噴霧32Aと単噴霧30A,31Aとは急速に一体化してしまう。
断面J-Jから断面K-Kへと下流になるにつれて、スイッチング噴霧32Aの長短軸方向が変化する変形が進んで、スイッチング噴霧32Aと単噴霧30A,31Aで構成された集合噴霧40が近接化してくる。
これは、スイッチング噴霧32Aの長短軸方向が切り替わることによってスイッチング噴霧32Aと集合噴霧40の隙間が小さくなっていくこと、それに伴ってスイッチング噴霧32Aと集合噴霧40との間でのコアンダ効果が生じることによる。
そして、断面L-Lではスイッチング噴霧32Aと集合噴霧40との向かい合う端部が変形(移動)して干渉し始める。
その結果、断面M-Mのように、燃料噴射後の所定時期、集合噴孔12A、スイッチング噴孔12Bからの所定距離の位置において、スイッチング噴霧32Aと集合噴霧40との相互影響を全体噴霧50の仕様に応じた所定レベルに設定することが可能となり、断面M-Mの位置での全体噴霧50の形状や貫徹力、噴射量分布の設定の自由度が向上する。
また、スイッチング噴霧32Aは、その長短軸方向が変化して変形することによって周囲空気との運動量交換が大きく進み、貫徹力が小さくなるので、集合噴霧40と干渉することで集合噴霧40の貫徹力も抑制される。
従って、集合噴霧40が単独の場合には、図7(a)の想像線ハに示すように、その先端は延びるのに対して、集合噴霧40の先端は短縮される。また、集合噴霧40の貫徹力が抑制されることで、集合噴霧40内のコアンダ効果はほぼ減衰して作用しなくなる。
さらに、スイッチング噴霧32Aは、貫徹力が小さくなって周囲空気との混合が大幅に進むことによって微粒化も向上し、集合噴霧40の微粒化レベルとの差が小さくなる。
つまり、集合噴孔12A、スイッチング噴孔12Bからある程度下流の所定位置において、比較的均質に近い構造の非対称形状の全体噴霧50を形成することができる。
ここで、スイッチング噴霧32Aは、その長短軸方向が変化して変形する前に、集合噴霧40との間でのコアンダ効果が作用することを次の方法を採用することで確実に抑制することができる。
即ち、集合噴孔12A、スイッチング噴孔12Bから主たる流れ方向に同じ距離の位置において、スイッチング噴霧32Aの平均粒径を集合噴霧40の平均粒径よりも大きくする方法、あるいはスイッチング噴霧32Aのブレーク長さを集合噴霧40を構成する単噴霧30A,31Aのブレーク長さよりも長くする方法、さらにはスイッチング噴霧32Aの貫徹力を集合噴霧40の貫徹力よりも大きく設定する方法で採用すればよい。
これらの方法を実現するにあたって、例えば集合噴孔12Aとスイッチング噴孔12Bとの噴孔形状の違いによって、縮流のレベルを異ならせること等を利用すればよい。
さらに、スイッチング噴霧32A及び集合噴霧40のそれぞれの噴射量、断面積、噴射方向及び微粒化レベルの各々をそれぞれ調整することで、スイッチング噴霧32Aと集合噴霧40とがコアンダ効果により集合して形成された全体噴霧50となった時点から下流の噴霧方向をそれまでの方向に対して変化させることが可能となる。
また、全体噴霧50として一体化して噴霧の運動量が大幅に低下してから以降も、全体噴霧50に曲率を持たせて変化させることも可能である。
要は、これらの全体噴霧50の流れ方向、形状変化は、全体噴霧50における運動量の分布によって決定される。
この実施の形態では、図6のようなコンパクトな集合噴霧40の特性を維持しつつ、その噴霧形状、貫徹力、噴射量分布、噴霧方向等の特性に自由度を与えるために、集合噴霧40を構成する単噴霧30A,31Aとは、異なる特性を有した長円状断面形状のスイッチング噴霧32Aを利用している。
つまり、集合噴霧40におけるコアンダ効果が弱くなった以降の下流において、集合噴霧40から少し離れたところに位置した断面形状が長円状のスイッチング噴霧32Aを、アクシス-スイッチング現象によって長短軸方向が変化して変形することで、スイッチング噴霧32Aと集合噴霧40とが影響し合い、所望の特性(噴霧形状、貫徹力、噴射量分布、噴霧方向等)を得る自由度が高い全体噴霧50を得ることができる。
そして、所望の全体噴霧50を得るには、スイッチング噴霧32Aと集合噴霧40とが互いに影響し始めるタイミング、即ちスイッチング噴霧32Aの長短軸方向が変化するタイミングと、集合噴霧40におけるコアンダ効果が弱くなるタイミング(図7において断面J-J)とを一致させるようにすればよい。
また、集合噴孔12A、スイッチング噴孔12Bの形状、スイッチング噴霧32Aと集合噴霧40との、距離、貫徹力差、拡がりの差等を調整すればよい。
なお、ポート噴射の場合、ブレーク長さaから下流の噴霧粒子の数密度は、ガソリン筒内噴射用噴霧やディーゼル用噴霧に比べると極めて低く(ガソリン筒内噴射用噴霧の約1/10、ディーゼル用噴霧の約1/100以下のレベル)、基本的には同様の方向に同様の速度で移動しているために、粒子同士の衝突合体はほとんどないと考えてよい。
また、ポート噴射の場合の燃圧0.3MPaレベルでは、粒子単独からの分裂も生じていないと考えてよい。
以上のようにこの発明の実施の形態1の燃料噴射弁1によれば、集合した各単噴霧30A,31Aの噴射量分布が集合噴霧40の中心に達する前の集合噴霧40と、スイッチング噴孔12Bからのスイッチング噴霧32Aとがコアンダ効果により集合して全体噴霧50が形成されるようになっている。
従って、集合噴霧40によるコンパクトな多噴孔微粒化噴霧を実現しつつ、通常の多噴孔噴霧の集合噴霧では得られない噴霧形状、貫徹力、噴射量分布、噴霧方向の少なくとも一部を実現することが可能となり、噴霧仕様の設計自由度を大幅に向上させることができる。
これにより、下流での全体噴霧50の吸気弁や吸気ポート壁面への衝突を従来に比べて大幅に抑制することが可能となる。
なお、全体噴霧50の形状だけでは吸気弁や吸気ポート壁面への衝突を回避できない場合は、全体噴霧50における運動量の分布を利用して、全体噴霧50の方向が途中で変化するようにすることもできる。
さらに、吸気弁が閉じた状態での吸気ポート内の空気流動にマッチさせて均質混合気形成を促進させるような全体噴霧50の形状、貫徹力、噴射量分布、全体噴霧50の方向を設定することもできる。
また、例えば吸気行程噴射では吸気弁から筒内へ流入する吸気流動に、更に追随し易くなり、全体噴霧50が吸気弁やその近傍の吸気ポート壁面に干渉せずに筒内へ流入することが可能になって、筒内での吸気冷却効果による充填効率向上を実現できる。
なお、ここでも全体噴霧50の形状等だけでは吸気弁やその近傍の吸気ポート壁面への干渉を回避できない場合は、全体噴霧50の方向が途中で変化するように設定して、吸気流動に追随させることが可能となる。
従って、各単噴霧30A,31Aの広角化を伴わずに貫徹力をコントロールすることにより噴射系システム全体の自由度が高くなり、またエンジン性能が向上する。
実施の形態2.
次に、この発明の実施の形態2の燃料噴射弁1について説明する。
図8(a),(b)は、実施の形態2の燃料噴射弁1における、集合噴霧40とこの集合噴霧40と影響し合うスイッチング噴霧32Aのそれぞれの挙動を示す図である。
この実施の形態では、集合噴孔12A、スイッチング噴孔12Bの直下において、図8(b)に示すように、長円形状のスイッチング噴霧32Aに対向した単噴霧30A,31Aは、スイッチング噴霧32Aの短軸に沿って対向して配列されている。
即ち、集合噴孔12A,スイッチング噴孔12Bの直下において、単噴霧30A,31Aが長円形状のスイッチング噴霧32Aの長軸に沿って対向して配列された、実施の形態1の燃料噴射弁1とその点で異なる。
他の構成は、実施の形態1の燃料噴射弁1と同じであり、また作用、効果も実施の形態1の燃料噴射弁1と同じである。
実施の形態3.
図9は、集合噴霧40を4個の単噴霧30A,30’A,31A,31’Aで構成したものである。
この場合も、基本的には実施の形態1,2と同様の噴霧挙動を実現することができる。 図9のように、単噴霧30A,30’A,31A,31’Aを配置すれば、実施の形態1のものと比較して、図9において全体噴霧50の上下方向の長さを増大させることができる。
このように、集合噴霧40を構成する各単噴霧30A,30’A,31A,31’Aの特性(断面形状、噴射量、粒径レベル、貫徹力等)や配置を種々組み合わせることによって、集合噴霧40の特性(断面形状、噴射量、粒径レベル、貫徹力等)を種々設定することが可能となる。
そのためには、集合噴霧40がその集中度を高めて中心にピークがある円錐状噴射量分布となるのを抑制して、集合噴霧40を構成する各単噴霧30A,30’A,31A,31’Aを識別できるようにして、集合噴霧40の各特性の作り込みをする必要がある。
スイッチング噴霧32Aも、アクシス-スイッチング現象によってその面の長短軸方向を所定の条件で変化して変形可能な範囲で断面形状の設定に自由度がある。
これらを組み合わせることで一つの集合噴霧40となった時の全体噴霧50の形状や配置など、つまり運動量の分布や方向を設定することが可能となる。
従って、断面M-M近辺から全体噴霧50の噴霧方向を変化させることが可能である。 また、全体噴霧50となった断面M-Mから下流においても運動量の分布や方向の変化が継続するようにすれば、噴霧方向に曲率を持たせるなど、連続的に噴霧方向を変化させることも可能である。
なお、集合噴霧40を構成する各単噴霧30A,30’A,31A,31’Aの数に制限がないことは言うまでもない。また、長円状断面形状のスイッチング噴霧32Aの数や配置にも制限はない。
実施の形態4.
図10は上記構成の燃料噴射弁1が吸気ポート20のスロットルボディ21に取り付けられた例を示す構成図である。
この例では、燃料噴射弁1がスロットル弁22の下流に設けられている。燃料噴射弁1の先端部は、吸気流の上流に向かって燃料噴射するように指向している。
この燃料噴射弁1から燃料が噴射されて生じた、集合噴霧40及びスイッチング噴霧32Aは、最後は全体噴霧50となり、この全体噴霧50の貫徹力はスロットル弁22及びスロットルボディ21の壁面の直前で急に抑制される。
従って、一旦上流に燃料を噴射して、燃料と空気とで混合気が生じる空間的余裕、即ち吸気弁23と全体噴霧50との間の空間的余裕を持たせることができる。
この結果、極端に吸気ポート20が短い場合等で吸気流の下流方向に燃料を噴射すると気筒間の噴射量分配がアンバランスになったり、吸気ポート20の内壁面への噴霧付着割合が増加することで、結果的に混合気形成状態が悪くなり、エンジンの性能が向上しないといった不都合を解消することができる。
図11は上記燃料噴射弁1が吸気ポート20の吸気管集合部25に取り付けられた例を示す構成図、図12は図11の平面図である。
この例では、吸気管集合部25に燃料噴射弁1が取り付けられている。吸気管集合部25は、下流が分岐部26と接続されている。各分岐部26は、それぞれ気筒(図示せず)が接続されている。各分岐部26にはそれぞれ吸気弁23が取り付けられている。燃料噴射弁1の先端部は、各吸気弁23に向かって燃料噴射するように指向している。
この燃料噴射弁1から燃料が噴射されて生じた、集合噴霧40及びスイッチング噴霧32Aは、最後は全体噴霧50となり、先に説明したように、全体噴霧50の貫徹力を吸気弁23及び分岐部26の内壁面の直前で急に抑制される。
また、集合噴霧40とスイッチング噴霧32Aとの間でのコアンダ効果により噴霧が集合するので、図12の点線で示すように吸気ポート20の内壁面に直接噴霧が付着するのを抑制することができる。
また、図11及び図12から分かるように、全体噴霧50は、その形状が分岐部26の内壁面及び吸気弁23と直接干渉しないようになっている。
このように、この例では、吸気管集合部25に燃料噴射弁1を一本だけ配置して、各気筒の吸気弁23の付近までの吸気ポート20への噴霧付着を抑制しつつ、吸気弁23付近で全体噴霧50の貫徹力を抑制しつつ、かつ広角な噴霧を行うことが可能である。
このような多気筒エンジンで燃料噴射弁1を1本だけ使用するようなシステム(所謂シングルポイントインジェクション)はエンジンのコストパーフォーマンスを向上することになり、非常に有用である。
即ち、汎用エンジン、小型エンジンにおいては、現在のキャブレタから燃料噴射システムへの転換が進んでいるが、大幅なコストアップは難しいため、図11及び図12に示した、シングルポイントインジェクションを用いることは非常に有用である。
図13は上記燃料噴射弁1が吸気ポート20の吸気管集合部25に取り付けられた他の例を示す構成図、図14は図13の平面図である。
この例でも、燃料噴射弁1が吸気ポート20に、先端部が吸気弁23に指向して取り付けられている。
この燃料噴射弁1から燃料が噴射されて生じた、集合噴霧40及びスイッチング噴霧32Aは、最後は全体噴霧50となり、先に説明したように、この全体噴霧50は、その指向方向が曲率を有しており、吸気ポート20の壁面に直接的に衝突するのが回避されるようになっている。
また、集合噴霧40とスイッチング噴霧32Aとの間でのコアンダ効果により噴霧が集合するので、図14の点線で示すように吸気ポート20の内壁面に噴霧が直接付着するのを抑制することができる。
このように、通常流体通路の断面が所謂三次元的に異形形状である、吸気弁23近傍の吸気ポート20において、燃料噴霧が吸気ポート20に直接付着するのを抑制することできる。
なお、図11〜図14のものは、一気筒に対して一吸気弁23であって、一つの燃料噴射弁1で二つの気筒を賄う例であるが、一気筒に対して二つの吸気弁23であって、一つの燃料噴射弁1で一つの気筒を賄う例であっても、この発明は適応できる。
吸気弁23が2つあるガソリンエンジンの場合、夫々の吸気弁23に対応する二つの全体噴霧を構成すれば、2スプレーの各噴霧の設定自由度が大幅に向上することになる。
その上で、噴霧の吸気ポート20の内壁面への付着抑制、噴霧と空気流動とのマッチングによる均質混合気形成、噴霧の吸気流動への追随による筒内直入など、目的に応じて全体噴霧50の仕様を決めればよい。
なお、上記実施の形態では、噴霧パターンについては、図10に示した1スプレーのパターン、図11〜図14に示した2スプレーのパターンについて説明したが、3スプレー等のマルチスプレー、異なる形状の全体噴霧50の組み合わせ等、いろいろな仕様が実現可能である。
なお、各実施の形態の燃料噴射弁1は、電磁式の燃料噴射弁について説明したが、駆動源は他の方式でもよく、ピエゾ式、機械式等の他の方式でもよく、また間欠噴射弁ではなく連続噴射弁にも適用できることは明らかである。
また、燃料噴射弁1以外にも塗装・コーティング、農薬散布、洗浄、加湿、スプリンクラー、殺菌用スプレー、冷却などの一般産業用、農業用、設備用、家庭用、個人用としての各種スプレーなど用途・要求機能は多岐に亙る。
従って、駆動源やノズル形態、噴霧流体にかかわらず、これらの噴霧生成装置にもこの発明の流体噴射弁を組み入れて、今までになかった噴霧形態を実現することが可能である。
1a 液膜流、1 燃料噴射弁(流体噴射弁)、2 ソレノイド装置、3 ハウジング、4 コア、5 コイル、6 アマチュア、7 弁装置、8a ロッド、8 弁体、9 弁本体、10 弁座、10a 弁座面、11 噴孔プレート(噴孔体)、12A 集合噴孔、12B スイッチング噴孔、13 ボール、13a 面取部、13b 平面部、13c 曲面部、14 圧縮バネ、18 カバープレート、18d 終端面、18b 薄肉部、20 吸気ポート、21 スロットルボディ、22 スロットル弁、23 吸気弁、24 吸気ポート、25 吸気管集合部、26 分岐部、30,31,32 噴流、30A,30’A,31A,31’A 単噴霧、32A スイッチング噴霧、40 集合噴霧、50 全体噴霧、R1 シート部、V 空気流、β 燃料流、A 隙間通路、B 径方向通路、C 環状通路C、イ 正面流れ、ロ 戻り流れ。
この発明に係る流体噴射弁は、流体通路の途中に設けられた弁座と、この弁座との当接、離間により前記流体通路の開閉を制御する弁体と、前記弁座の下流に設けられ、複数の噴孔を有する噴孔体と、を備え、
複数の各前記噴孔から各噴流が噴射されて、下流において各噴霧となって、最終的に集合し、中実の全体噴霧が形成される、流体噴射弁であって、
少なくとも一つの前記噴孔は、前記噴流が噴射された後の前記噴霧が、流れ方向に直角な面内の断面形状が長軸と短軸の長さが異なるスイッチング噴霧であって、下流において前記長軸及び前記短軸の方向がアクシス-スイッチング現象により変化して変形するスイッチング噴孔であり、
このスイッチング噴孔を除く他の複数の前記噴孔は、各噴流が破断、分裂を経て単噴霧にブレークされたブレーク部位よりも下流側の各単噴霧が単噴霧間で作用するコアンダ効果で集合した集合噴霧を形成する集合噴孔であり、
集合した各前記単噴霧の噴射量分布の中心あるいは重心が前記集合噴霧の中心あるいは重心に収束する前の集合噴霧と、前記スイッチング噴霧とがコアンダ効果により集合して前記全体噴霧が形成されるようになっている。

Claims (10)

  1. 流体が流れる流体通路の途中に設けられた弁座と、この弁座との当接、離間により前記流体通路の開閉を制御する弁体と、前記弁座の下流に設けられ、複数の噴孔を有する噴孔体と、を備え、
    複数の各前記噴孔から各噴流が噴射されて、下流において各噴霧となって、最終的に集合し、中実の全体噴霧が形成される、流体噴射弁であって、
    少なくとも一つの前記噴孔は、前記噴流が噴射された後の前記噴霧が、流れ方向に直角な面内の断面形状が長軸と短軸の長さが異なる長円状のスイッチング噴霧であって、下流において前記長軸及び前記短軸の方向がアクシス-スイッチング現象により変化して変形するスイッチング噴孔であり、
    このスイッチング噴孔を除く他の複数の前記噴孔は、各前記噴流が破断、分裂を経て単噴霧にブレークされたブレーク部位よりも下流側の各単噴霧が単噴霧間で作用するコアンダ効果で集合した集合噴霧を形成する集合噴孔であり、
    集合した各前記単噴霧の噴射量分布の中心あるいは重心が前記集合噴霧の中心あるいは重心に収束する前の集合噴霧と、前記スイッチング噴霧とがコアンダ効果により集合して前記全体噴霧が形成されるようになっている流体噴射弁。
  2. 前記全体噴霧において、その形状、貫徹力、噴射量分布及び噴霧方向の各特性の内、少なくとも一つの特性は、前記スイッチング噴霧が前記長軸及び前記短軸の方向が前記アクシス-スイッチング現象により変化する前記下流において定められる請求項1に記載の流体噴射弁。
  3. 前記スイッチング噴孔と前記集合噴孔とは、前記スイッチング噴霧と前記集合噴霧とが、前記アクシス-スイッチング現象が生じる前記下流においてコアンダ効果により集合して前記全体噴霧が形成されるように離れて配置されている請求項1または2に記載の流体噴射弁。
  4. 前記スイッチング噴霧は、少なくとも前記短軸に対して前記長軸がほぼ線対称である請求項1から3の何れか1項に記載の流体噴射弁。
  5. 前記スイッチング噴霧は、その貫徹力が前記集合噴孔からの前記単噴霧の貫徹力よりも大きい請求項1から4の何れか1項に記載の流体噴射弁。
  6. 前記スイッチング噴霧は、その前記長軸が前記単噴霧と対向している請求項1から5の何れか1項に記載の流体噴射弁。
  7. 吸気ポートに、スロットル弁の吸気流の下流側であって、かつ先端部がスロットル弁に指向して取り付けられるとともに、前記全体噴霧が前記スロットル弁の手前で前記貫徹力が抑制されるようになっている請求項2〜6の何れか1項に記載の流体噴射弁。
  8. 吸気ポートに、先端部が吸気弁に指向して取り付けられるとともに、前記全体噴霧が前記吸気弁の手前で前記貫徹力が抑制されるようになっている請求項2〜6の何れか1項に記載の流体噴射弁。
  9. 吸気ポートに、先端部が吸気弁に指向して取り付けられるとともに、前記全体噴霧がその指向方向を曲率を有して吸気ポートの壁面に直接的に衝突するのを回避するようになっている請求項2〜8の何れか1項に記載の流体噴射弁。
  10. 請求項1から9の何れか1項に記載の流体噴射弁を含む噴霧生成装置。
JP2012270493A 2012-12-11 2012-12-11 流体噴射弁及び噴霧生成装置 Expired - Fee Related JP5491612B1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012270493A JP5491612B1 (ja) 2012-12-11 2012-12-11 流体噴射弁及び噴霧生成装置
US14/082,925 US10280885B2 (en) 2012-12-11 2013-11-18 Fluid injection valve and spray generator
DE102013224969.1A DE102013224969A1 (de) 2012-12-11 2013-12-05 Fluideinspritzventil und Zerstäuber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012270493A JP5491612B1 (ja) 2012-12-11 2012-12-11 流体噴射弁及び噴霧生成装置

Publications (2)

Publication Number Publication Date
JP5491612B1 JP5491612B1 (ja) 2014-05-14
JP2014114777A true JP2014114777A (ja) 2014-06-26

Family

ID=50778394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012270493A Expired - Fee Related JP5491612B1 (ja) 2012-12-11 2012-12-11 流体噴射弁及び噴霧生成装置

Country Status (3)

Country Link
US (1) US10280885B2 (ja)
JP (1) JP5491612B1 (ja)
DE (1) DE102013224969A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200103A (ja) * 2015-04-14 2016-12-01 三菱電機株式会社 流体噴射弁およびこれを備えた噴霧生成装置並びにエンジン

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5491612B1 (ja) * 2012-12-11 2014-05-14 三菱電機株式会社 流体噴射弁及び噴霧生成装置
DE102015222771B3 (de) 2015-11-18 2017-05-18 Technische Universität Berlin Fluidisches Bauteil
DE102015225338A1 (de) * 2015-12-15 2017-07-06 Robert Bosch Gmbh Spritzlochscheibe und Ventil
DE102015225340A1 (de) * 2015-12-15 2017-06-22 Robert Bosch Gmbh Spritzlochscheibe und Ventil
JP6808356B2 (ja) * 2016-05-25 2021-01-06 日立オートモティブシステムズ株式会社 燃料噴射弁
US11098686B2 (en) * 2017-05-12 2021-08-24 Hitachi Automotive Systems, Ltd. Fuel injection valve
CN107326965B (zh) * 2017-08-31 2023-07-07 泉州市山河消防技术有限公司 一种多功能消防栓

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104647A (ja) * 1998-09-25 2000-04-11 Denso Corp 燃料噴射ノズル
JP2001107825A (ja) * 1999-10-13 2001-04-17 Bosch Automotive Systems Corp 電磁式燃料噴射弁
JP2004324558A (ja) * 2003-04-25 2004-11-18 Nissan Motor Co Ltd 内燃機関の燃料噴射弁
JP2005207236A (ja) * 2004-01-20 2005-08-04 Hitachi Ltd 燃料噴射弁および燃料噴射方法
JP2009079598A (ja) * 2009-01-21 2009-04-16 Hitachi Ltd 燃料噴射弁
JP2011202513A (ja) * 2010-03-24 2011-10-13 Mitsubishi Electric Corp 燃料噴射弁および燃料噴射システム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4513720A (en) * 1982-10-27 1985-04-30 Toyota Jidosha Kabushiki Kaisha Fuel injection device for motor vehicle
KR970002860B1 (ko) * 1989-11-21 1997-03-12 도오 또오 기끼 가부시끼가이샤 포말토수장치
DE4115477C2 (de) * 1990-05-17 2003-02-06 Avl Verbrennungskraft Messtech Einspritzdüse für eine Brennkraftmaschine
JPH11319674A (ja) * 1998-05-17 1999-11-24 San Tool:Kk 接着剤螺旋状スプレー塗布装置におけるノズル装置およびガンユニット
JP3745232B2 (ja) * 2001-01-17 2006-02-15 愛三工業株式会社 流体噴射ノズルとその流体噴射ノズルを備えた流体噴射弁
US6669106B2 (en) * 2001-07-26 2003-12-30 Duran Technologies, Inc. Axial feedstock injector with single splitting arm
JP4022882B2 (ja) * 2002-06-20 2007-12-19 株式会社デンソー 燃料噴射装置
US7093776B2 (en) * 2004-06-29 2006-08-22 Delphi Technologies, Inc Fuel injector nozzle atomizer having individual passages for inward directed accelerated cross-flow
JP4906466B2 (ja) * 2006-10-16 2012-03-28 日立オートモティブシステムズ株式会社 燃料噴射弁およびそれを搭載した内燃機関の燃料噴射装置
KR101019324B1 (ko) 2007-01-29 2011-03-07 미쓰비시덴키 가부시키가이샤 연료 분사 밸브
EP2141350B1 (en) 2007-03-27 2013-06-05 Mitsubishi Electric Corporation Fuel injection valve
JP4416023B2 (ja) * 2007-09-10 2010-02-17 株式会社デンソー 燃料噴射弁
JP4792478B2 (ja) * 2008-02-28 2011-10-12 トヨタ自動車株式会社 内燃機関の制御装置
JP2010249125A (ja) * 2009-03-23 2010-11-04 Denso Corp 燃料噴射弁
JP5295316B2 (ja) * 2011-06-22 2013-09-18 三菱電機株式会社 流体噴射弁による噴霧生成方法、流体噴射弁及び噴霧生成装置
JP5295337B2 (ja) * 2011-10-19 2013-09-18 三菱電機株式会社 流体噴射弁による噴霧生成方法、流体噴射弁、及び噴霧生成装置
JP5491612B1 (ja) * 2012-12-11 2014-05-14 三菱電機株式会社 流体噴射弁及び噴霧生成装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104647A (ja) * 1998-09-25 2000-04-11 Denso Corp 燃料噴射ノズル
JP2001107825A (ja) * 1999-10-13 2001-04-17 Bosch Automotive Systems Corp 電磁式燃料噴射弁
JP2004324558A (ja) * 2003-04-25 2004-11-18 Nissan Motor Co Ltd 内燃機関の燃料噴射弁
JP2005207236A (ja) * 2004-01-20 2005-08-04 Hitachi Ltd 燃料噴射弁および燃料噴射方法
JP2009079598A (ja) * 2009-01-21 2009-04-16 Hitachi Ltd 燃料噴射弁
JP2011202513A (ja) * 2010-03-24 2011-10-13 Mitsubishi Electric Corp 燃料噴射弁および燃料噴射システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200103A (ja) * 2015-04-14 2016-12-01 三菱電機株式会社 流体噴射弁およびこれを備えた噴霧生成装置並びにエンジン

Also Published As

Publication number Publication date
DE102013224969A1 (de) 2014-06-12
US20140158090A1 (en) 2014-06-12
JP5491612B1 (ja) 2014-05-14
US10280885B2 (en) 2019-05-07

Similar Documents

Publication Publication Date Title
JP5491612B1 (ja) 流体噴射弁及び噴霧生成装置
JP5295316B2 (ja) 流体噴射弁による噴霧生成方法、流体噴射弁及び噴霧生成装置
JP5295337B2 (ja) 流体噴射弁による噴霧生成方法、流体噴射弁、及び噴霧生成装置
JP5933720B2 (ja) 燃料噴射弁
JP2008280981A (ja) 燃料噴射装置およびそれを搭載した内燃機関
JP6292188B2 (ja) 燃料噴射装置
JP4072402B2 (ja) 燃料噴射弁およびそれを搭載した内燃機関
JP5627743B1 (ja) 流体噴射弁及び噴霧生成装置
JP2004204806A (ja) 燃料噴射装置
JP5627742B1 (ja) 流体噴射弁及び噴霧生成装置
WO2006095706A1 (ja) 燃料噴射弁
JP4783439B2 (ja) 燃料噴射弁
JP2015209772A (ja) 流体噴射弁およびこれを備えた噴霧生成装置並びにエンジン
JP2015078603A (ja) 燃料噴射弁
JP6029706B1 (ja) 流体噴射弁およびこれを備えた噴霧生成装置並びにエンジン
JP5478671B2 (ja) 流体噴射弁による噴霧生成方法、流体噴射弁及び噴霧生成装置
JP2015078604A (ja) 流体噴射弁並びに火花点火式エンジン
JP6012693B2 (ja) 流体噴射弁およびこれを備えた噴霧生成装置
JP4166792B2 (ja) 燃料噴射装置
JP4276958B2 (ja) 燃料噴射弁及び燃料噴射方法
JP5818939B1 (ja) 燃料噴射弁及びその燃料噴射弁を備えた噴霧生成装置、並びに火花点火式内燃機関
JP5766317B1 (ja) 燃料噴射弁
JP7224451B2 (ja) 燃料噴射弁
JP6000296B2 (ja) 流体噴射弁およびこれを備えた噴霧生成装置
JP2017106338A (ja) インジェクタ

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140227

R150 Certificate of patent or registration of utility model

Ref document number: 5491612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees