JP2014106120A - レーダ装置、および、信号処理方法 - Google Patents

レーダ装置、および、信号処理方法 Download PDF

Info

Publication number
JP2014106120A
JP2014106120A JP2012259296A JP2012259296A JP2014106120A JP 2014106120 A JP2014106120 A JP 2014106120A JP 2012259296 A JP2012259296 A JP 2012259296A JP 2012259296 A JP2012259296 A JP 2012259296A JP 2014106120 A JP2014106120 A JP 2014106120A
Authority
JP
Japan
Prior art keywords
signal
frequency
target
peak signal
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012259296A
Other languages
English (en)
Other versions
JP6092596B2 (ja
Inventor
Hisateru Asanuma
久輝 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP2012259296A priority Critical patent/JP6092596B2/ja
Priority to US14/060,255 priority patent/US9348016B2/en
Priority to DE102013221766.8A priority patent/DE102013221766B4/de
Priority to CN201310529704.3A priority patent/CN103852762B/zh
Publication of JP2014106120A publication Critical patent/JP2014106120A/ja
Application granted granted Critical
Publication of JP6092596B2 publication Critical patent/JP6092596B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • G01S13/723Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar by using numerical data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/356Receivers involving particularities of FFT processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

【課題】物標に関する情報が実際には存在しないゴーストの情報か否かを正確に判定する技術を提供する。
【解決手段】
第1周波数に存在するピーク信号の周波数から、複数のピーク信号の中で選択された1つの選択ピーク信号の周波数相当離れた周波数に特定ピーク信号が存在するか否かを判定し、特定ピーク信号が存在する場合に、選択ピーク信号に対応する物標情報をレーダ装置の出力対象から除外する。これにより、選択ピーク信号が実際には存在しない物標に対応するゴーストのピーク信号か否かを正確に判定でき、本来は制御対象ではない物標情報のレーダ装置からの出力を防止できる。
【選択図】図2

Description

本発明は、物標の導出における信号処理に関する。
従来、車両に備えられたレーダ装置は、送信アンテナから送信波を射出し、射出された送信波を反射する物標からの反射波を受信アンテナで受信して、車両(レーダ装置)に対する物標の位置情報等の物標情報を導出していた。そして、レーダ装置は導出した物標情報を車両に搭載された車両制御装置に出力していた。レーダ装置から物標情報の入力を受けた車両制御装置は、例えば、自車線内で車両前方を車両と同方向に移動する物標である前方車両を追従走行するACC(Adaptive Cruise Control)の制御を行っていた。また、車両制御の別の例として車両制御装置は、車両と、自車線に隣接する隣接車線内で車両の移動方向と逆方向に移動する隣接車両とが衝突する可能性がある場合に、警報器を用いて車両のユーザに警告音を発する等のPCS(Pre-Crash Safety System)の制御を行っていた。
ここで、車両制御装置がACCやPCS等の制御を行う場合に、制御対象となる物標は車両からの所定の範囲内(例えば、車両からの距離が0〜200m以内)に存在する物標である。そして制御対象となる物標の情報は、具体的にはレーダ装置の信号処理部が行う以下のような処理で導出される。信号処理部は、物標からの反射波に対応する受信信号から生成されるビート信号をFFT(Fast Fourier Transform)処理する。このFFT処理によりビート信号の周波数ごとの信号レベルを示すデータ(以下、「FFTデータ」という。)が取得される。FFTデータは例えば、周波数が0〜1023BIN(1BINは、約468Hz)までの各BINのビート信号のレベルの値を有するデータである。そして、信号処理部は、物標の相対速度の範囲内で車両から0〜200mの距離に相当する周波数(0〜700BIN)のデータの中から所定の信号レベルを超える信号(以下、「ピーク信号」という。)を抽出し、ピーク信号に基づいて物標の物標情報を導出していた。つまり、信号処理部は、車両から200m以上の距離に対応する周波数701〜1023BINのデータは車両制御の物標情報としては用いないため、FFT処理後、取得したFFTデータのうちの周波数701〜1023BINのデータを削除していた。なお、本発明と関連する技術を説明する資料としては特許文献1がある。
特開2002−122662号公報
しかしながら、例えば1023BINを超えた周波数(例えば、1187BIN)に相当する距離(例えば、車両から約461m)にトラック等の比較的反射波の信号レベルの値の高い物標である強反射物が存在する場合、以下の原理で実際には存在しない物標であるゴーストのピーク信号(以下、「ゴーストピーク」という。)が、FFTデータの0〜700BINの周波数領域内に発生する場合があった。具体的には、強反射物の受信信号とレーダ装置の電源回路のDC-DCコンバータのスイッチングノイズ(例えば、1023BINの周波数にピーク信号として現れるノイズ)との干渉(相互変調)により、FFTデータの700BIN以下の周波数(例えば、164BIN)にゴーストピークが発生し、その周波数に相当する距離(例えば、車両から約60m)に物標情報が導出される場合があった。
その結果、ゴーストピークの物標情報がレーダ装置から車両制御装置に出力され、車両制御装置がACC制御やPCS制御等を行うことで、本来必要のない車両制御が行われるときがあった。
本発明は、物標に関する情報が実際には存在しないゴーストの情報か否かを正確に判定することを目的とする。
上記課題を解決するために、本発明は、周波数変調される送信信号に係る送信波を射出し、前記送信波が物標において反射することによって到来する反射波を受信信号として受信し、前記受信信号から生成されるビート信号をFFT処理して抽出されたピーク信号から少なくとも前記物標の位置情報を含む物標情報を導出するレーダ装置であって、第1周波数に存在する前記ピーク信号の周波数から、複数の前記ピーク信号の中で選択された1つの選択ピーク信号の周波数相当離れた周波数に特定ピーク信号が存在するか否かを判定する判定手段と、前記特定ピーク信号が存在する場合に、前記選択ピーク信号に対応する前記物標情報を前記レーダ装置の出力対象から除外する除外手段と、を備える。
また、請求項2の発明は、請求項1に記載のレーダ装置であって、前記特定ピーク信号の周波数から所定周波数の第2周波数に対して折り返した周波数に応じて、前記特定ピーク信号の信号レベルの値を所定倍する補正手段をさらに備え、前記除外手段は、前記選択ピーク信号の信号レベルの値と補正後の前記特定ピーク信号の信号レベルの値とが所定の関係を満たす場合に、前記選択ピーク信号に対応する前記物標情報を前記レーダ装置の出力対象から除外する。
また、請求項3の発明は、請求項1または2に記載のレーダ装置であって、前記レーダ装置の出力対象となる物標に対応するピーク信号の上限周波数までの周波数を含む周波数領域である第1領域と、前記上限周波数よりも高い周波数で前記レーダ装置の出力対象とはならない物標に対応するピーク信号の周波数を含む周波数領域である第2領域との前記ビート信号の信号レベルの値を有し、前記FFT処理により導出されるFFTデータを取得する取得手段をさらに備え、前記判定手段は、前記FFTデータを用いて前記特定ピーク信号の存在の有無を判定する。
また、請求項4の発明は、請求項3に記載のレーダ装置であって、前記第1周波数は、前記第2領域の周波数である。
また、請求項5の発明は、請求項3または4に記載のレーダ装置であって、前記送信波は、一の送信期間と他の送信期間とで異なるビームパターンで出力され、前記取得手段は、前記一の送信期間および前記他の送信期間に対応する複数の期間の前記第1領域のみの前記FFTデータと、前記一の送信期間および他の送信期間のいずれか一方の期間に対応する前記FFTデータとを取得する。
また、請求項6の発明は、請求項5に記載のレーダ装置であって、前記取得手段は、前記一の送信期間および前記他の送信期間のいずれか一方の期間に対応する半周期分の前記FFTデータを取得する。
また、請求項7の発明は、請求項1乃至6のいずれかに記載のレーダ装置であって、前記除外手段は、今回の処理を含む以降の所定回数の処理において、前回の処理で出力対象から除外された前記物標と同一の物標に対応する特定ピーク信号が存在しないと前記判定手段により判定された場合に、前記選択ピーク信号に対応する前記物標情報を前記レーダ装置の出力対象とする。
さらに、請求項8の発明は、周波数変調される送信信号に係る送信波を射出し、前記送信波が物標において反射することによって到来する反射波を受信信号として受信し、前記受信信号から生成されるビート信号をFFT処理して抽出されたピーク信号から少なくとも前記物標の位置情報を含む物標情報を導出する信号処理方法であって、第1周波数に存在する前記ピーク信号の周波数から、複数の前記ピーク信号の中で選択された1つの選択ピーク信号の周波数相当離れた周波数に特定ピーク信号が存在するか否かを判定する工程と、前記特定ピーク信号が存在する場合に、前記選択ピーク信号に対応する前記物標情報を前記レーダ装置の出力対象から除外する工程と、を備える。
請求項1〜8の発明によれば、特定ピーク信号が存在する場合に、選択ピーク信号に対応する物標情報をレーダ装置の出力対象から除外することで、選択ピーク信号が実際には存在しない物標に対応するゴーストのピーク信号か否かを正確に判定でき、本来は制御対象ではない物標情報のレーダ装置からの出力を防止できる。
また、特に請求項2の発明によれば、選択ピーク信号の信号レベルの値と補正後の特定ピーク信号の信号レベルの値とが所定の関係を満たす場合に、選択ピーク信号に対応する物標情報をレーダ装置の出力対象から除外することで、選択ピーク信号がゴーストのピーク信号であるか否かをより正確に特定できる。
また、特に請求項3の発明によれば、第2領域のFFTデータとをゴーストピークを判定する処理に用いることで、FFT処理で導出した全周波数領域のFFTデータを有効活用できる。
また、特に請求項4の発明によれば、第2領域のデータを第1領域のデータと併せて用いることで、選択ピーク信号がゴーストのピーク信号か否かを正確に判定できる。
また、特に請求項5の発明によれば、一の送信期間および他の送信期間のいずれか一方の期間に対応する前記FFTデータを取得することで、第1領域および第2領域のFFTデータを複数の送信期間取得することと比べて、メモリの記憶容量を削減できる。
また、特に請求項6の発明によれば、第1領域および第2領域のFFTデータの取得期間を送信期間に対応する半周期とすることで、第1領域および第2領域のFFTデータの取得期間を送信期間に対応する一周期とするのに比べて、メモリの記憶容量を削減できる。
さらに、特に請求項7の発明によれば、一回の処理で出力対象から除外された物標情報に対して、以降の処理でゴーストのピーク信号に対応する物標情報か否かを所定回数判定し、判定条件を満たさない場合は、レーダ装置の出力対象とすることで、実際には存在している物標を誤ってゴーストのピーク信号に対応する物標を出力対象から除外することを防止できる。
図1は、車両の全体図である。 図2は、車両制御システムのブロック図である。 図3は、FM−CW方式の信号を示す図である。 図4は、送信信号の2周期の各送信期間において得られるFFTデータを主に示す図である。 図5は、信号処理部が行う物標情報の導出の処理フローチャートである。 図6は、信号処理部が行う物標情報の導出の処理フローチャートである。 図7は、信号処理部が行う物標情報の導出の処理フローチャートである。 図8は、第1の実施の形態のゴーストピークの物標情報除去処理のフローチャートである。 図9は、第1の実施の形態のFFTデータを示す図である。 図10は、第2の実施の形態のゴーストピークの物標情報除去処理のフローチャートである。 図11は、第2の実施の形態のゴーストピークの物標情報除去処理のフローチャートである。 図12は、第2の実施の形態のFFTデータを示す図である。 図13は、LPFのフィルタ特性と信号レベルの値の補正割合を示す図である。 図14は、第3の実施の形態のゴーストピークの物標情報除去処理のフローチャートである。 図15は、第3の実施の形態のゴーストピークの物標情報除去処理のフローチャートである。 図16は、第4の実施の形態のゴーストピークの物標情報除去処理のフローチャートである。 図17は、第4の実施の形態のゴーストピークの物標情報除去処理のフローチャートである。 図18は、第4の実施の形態のゴーストピークの物標情報除去処理のフローチャートである。
以下、図面を参照しつつ本発明の実施の形態について説明する。以下に示す実施の形態は例示であり、本願発明の技術的範囲をこれらに限定するものではない。
<第1の実施の形態>
<1.構成等>
<1−1.車両全体図>
図1は、車両CRの全体図である。車両CRは本実施形態の車両制御システム10に含まれるレーダ装置1と、車両制御装置2とを主に備える。車両CRはレーダ装置1を車両前方のバンパー近傍に備えている。このレーダ装置1は、一回の走査で所定の走査範囲を走査して、車両CRと物標との車両進行方向に対応する距離、つまり、物標から反射した反射波がレーダ装置1の受信アンテナに到達するまでの距離(以下、「縦距離」という。)を導出する。また、レーダ装置1は車両CRと物標との車両横方向(車幅方向)に対応する距離、つまり、車両CRの進行方向に仮想的に延伸する基準軸BLに対して略直交する方向の車両CRに対する物標の距離(以下、「横距離」という。)を導出する。なお、横距離は車両CRに対する物標の角度の情報に対して三角関数の演算を行うことで導出される。このように、レーダ装置1は車両CRに対する物標の位置情報を導出する。また、レーダ装置1は、車両CRの速度に対する物標の速度である相対速度を導出する。
なお、図1にはレーダ装置1の後述する2つの送信アンテナ(図2に示す送信アンテナ13aおよび送信アンテナ13b)から送信される送信波のビームパターンが示されている。基準軸BLを角度±0度とした場合、送信アンテナ13aから出力される送信波のビームパターンNAは、送信アンテナ13bから出力される送信波のビームパターンBAと比べて角度範囲が狭く(例えば、±6度)、縦距離が大きい比較的シャープなビームパターンで出力される。縦距離が大きいのは送信波を出力する出力レベルが比較的大きいためである。
また、これとは逆に送信アンテナ13bから出力される送信波のビームパターンBAは、送信アンテナ13aから送信される送信波のビームパターンNAと比べて角度範囲が広く(例えば±10度)、縦距離が小さい比較的ブロードなビームパターンで出力される。縦距離が小さいのは送信波を出力する出力レベルが比較的小さいためである。そして、送信アンテナ13aで送信波を出力する送信期間と、送信アンテナ13bと送信波を出力する送信期間とのそれぞれの送信期間において異なるビームパターンの送信波を出力することで、物標からの反射波の位相折り返しによる角度導出の誤りを防止できる。物標の角度導出処理については後述する。
また、図1のレーダ装置1はその搭載位置を車両前方のバンパー近傍としているが、前方のバンパー近傍に限らず、車両CRの後方バンパー近傍、および、車両CRの側方のサイドミラー近傍等、後述する車両制御装置2の車両CRの制御目的に応じて物標を導出できる搭載位置であれば他の部分であってもよい。
また、車両CRは、車両CRの内部に車両制御装置2を備える。この車両制御装置2は、車両CRの各装置を制御するECU(El ectronic Control Unit)である。
<1−2.システムブロック図>
図2は、車両制御システム10のブロック図である。車両制御システム10は、レーダ装置1と車両制御装置2とが電気的に接続され、主にレーダ装置1で導出された位置情報および相対速度の物標情報を車両制御装置2に出力する。つまり、レーダ装置1は、車両CRに対する物標の縦距離、横距離、および、相対速度の情報である物標情報を車両制御装置2に出力する。そして、車両制御装置2が物標情報に基づき車両CRの各種装置の動作を制御する。また、車両制御システム10の車両制御装置2は、車速センサ40、および、ステアリングセンサ41などの車両CRに設けられる各種センサと電気的に接続されている。さらに、車両制御装置2はブレーキ50、および、スロットル51などの車両CRに設けられる各種装置と電気的に接続されている。
レーダ装置1は、主に信号生成部11、発振器12、送信アンテナ13、受信アンテナ14、ミキサ15、LPF(Low Pass Filter)16,AD(Analog to Digital)変換器17、および、信号処理部18により構成される。
信号生成部11は、後述する送信制御部107の制御信号に基づいて、例えば三角波状に電圧が変化する変調信号を生成する。
発振器12は、電圧で発振周波数を制御する電圧制御発振器であり、信号生成部11で生成された変調信号に基づき所定周波数信号(例えば、76.5GHz)を周波数変調し、76.5GHzを中心周波数とする周波数帯の送信信号として送信アンテナ13に出力する。
送信アンテナ13は、送信信号に係る送信波を車両外部に出力する。本実施の形態のレーダ装置1は送信アンテナ13a、および、送信アンテナ13bの2本の送信アンテナを有している。送信アンテナ13a、および、13bは、切替部131のスイッチングにより所定の周期で切替えられ、発振器12と接続された送信アンテナ13から送信波が連続的に車両外部に出力される。そして、送信アンテナ13aと送信アンテナ13bとはアンテナ素子の配置(アンテナパターン)が異なる。これにより、図1に示したように送信アンテナ13aおよび13bから送信される送信波のビームパターンが異なるものとなる。
切替部131は、発振器12と送信アンテナ13との接続を切替えるスイッチであり、送信制御部107の信号により送信アンテナ13a、および、送信アンテナ13bのいずれかの送信アンテナと発振器12とを接続する。
受信アンテナ14は、送信アンテナ13から連続的に送信される送信波が物標に反射した反射波を受信する複数のアレーアンテナである。本実施の形態では、受信アンテナ14a(ch1)、14b(ch2)、14c(ch3)、および、14d(ch4)の4本の受信アンテナが設けられている。なお、受信アンテナ14a〜14dのそれぞれのアンテナは等間隔に設けられている。
ミキサ15は、各受信アンテナに設けられている。ミキサ15は、受信信号と送信信号とを混合する。そして、受信信号と送信信号との混合により送信信号と受信信号との両方の信号の差の信号であるビート信号が生成されて、LPF16に出力される。
ここで、ビート信号を生成する送信信号と受信信号について、図3を用いてFM−CW(Frequency Modulated Continuous Wave)の信号処理方式を例に説明する。なお、本実施形態では、以下にFM−CWの方式を例に説明を行うが、送信信号の周波数が上昇するUP区間と、送信信号の周波数が下降するDOWN区間のような複数の区間を組み合わせて物標を導出する方式であれば、このFM−CWの方式に限定されない。
また、下記に記載の数式や図3に示すFM−CWの信号やビート周波数等についての各記号は以下に示すものである。f:距離周波数、f:速度周波数、f:送信波の中心周波数、△F:周波数偏移幅、f:変調波の繰り返し周波数、c:光速(電波の速度)、T:車両CRと物標との電波の往復時間、f:送信/受信周波数、D:縦距離、V:相対速度、θ:物標の角度、θup:UP区間のピーク信号に対応する角度、θdn:DOWN区間のピーク信号に対応する角度。
<2.FM−CWの信号処理>
物標の導出処理に用いられる信号処理の一例としてFM−CW(Frequency Modulated Continuous Wave)方式における信号処理について説明する。なお、本実施形態では、FM−CWの方式を例に説明を行うが、周波数が上昇する区間と周波数が下降する区間のような複数の区間を組み合わせて物標の位置等を検出する方式であれば、FM−CW方式に限定されない。
図3は、FM−CW方式の信号を示す図である。図3の上段の図はFM−CW方式の送信信号TX、および、受信信号RXの信号波形を示す図である。また、図3の中段の図は送信信号TXと受信信号RXとの差分により生じるビート周波数を示す図である。さらに、図3の下段の図はビート周波数に対応するビート信号を示す図である。
図3上段の図は、縦軸が周波数[GHz]、横軸が時間[m sec]を示す図である。図中の送信信号TXは、中心周波数をf(例えば、76.5GHz)として、所定周波数(例えば76.6GHz)まで上昇した後に所定周波数(例えば、76.4GHz)まで下降をするように200MHzの間で一定の変化を繰り返す。このように所定周波数まで周波数が上昇する区間(以下、「UP区間」ともいい、例えば、図2に示す、区間U1、U2、U3、および、U4がUP区間となる。)と、所定周波数まで上昇した後に所定の周波数まで下降する区間(以下、「DOWN区間」ともいい、例えば、区間D1、D2、D3、および、D4がDOWN区間になる。)がある。また、送信アンテナ13から送信された送信波が物体にあたって反射波として受信アンテナ14に受信されると、受信アンテナ14を介して受信信号RXがミキサ15に入力される。この受信信号RXについても送信信号TXと同じように所定周波数まで周波数が上昇する区間と、所定周波数まで周波数が下降する区間とが存在する。
なお、本実施の形態のレーダ装置1では、一つのUP区間と一つのDOWN区間の組み合わせを送信信号TXの1周期として、送信信号TXの2周期分に相当する送信波を車両外部に送信する。例えば、1周期目(時刻t0〜t1のUP区間の区間U1と、時刻t1〜t2のDOWN区間の区間D1)では送信アンテナ13aからビームパターンNAの送信波が出力される。次の周期の2周期目(時刻t2〜t3のUP区間の区間U2と、時刻t3〜t4のDOWN区間の区間D2)では送信アンテナ13bからビームパターンBAの送信波が出力される。そして、信号処理部18が送信信号TXと受信信号RXとにより物標情報を導出するための信号処理を行う(時刻t4〜t5の信号処理区間)。その後、3周期目(時刻t5〜t 6のUP区間の区間U3と、時刻t6〜t7のDOWN区間の区間D3)では送信アンテナ13aからビームパターンNAの送信波が出力され、4周期目(時刻t7〜t8のUP区間U4と、時刻t8〜t9のDOWN区間D4)では送信アンテナ13bからビームパターンBAの送信波が出力され、その後、信号処理部18が物標情報を導出するための信号処理を行う。そして、以降は同様の処理が繰り返される。
なお、車両CRに対する物標の距離に応じて、送信信号TXに比べて受信信号RXに時間的な遅れ(時間T)が生じる。さらに、車両CRの速度と物標の速度との間に速度差がある場合は、送信信号TXに対して受信信号RXにドップラーシフト分の差が生じる。
図3中段の図は縦軸が周波数[kHz]、横軸が時間[msec]を示す図であり、図中にはUP区間およびDOWN区間の送信信号と受信信号との差を示すビート周波数が示されている。例えば、区間U1ではビート周波数BF1が導出され、区間D1ではビート周波数BF2が導出される。このように各区間において、ビート周波数が導出される。
図3の下段の図は、縦軸が振幅[V]、横軸が時間[msec]を示す図である。図中には、ビート周波数に対応するアナログ信号のビート信号BSが示されており、当該ビート信号BSが後述するLPF16でフィルタリングされた後、AD変換器17によりデジタルデータに変換される。なお、図2では1つの反射点から受信した場合の受信信号RXに対応するビート信号BSが示されているが、送信信号TXに対応する送信波が複数の反射点に反射し、複数の反射波として受信アンテナ14に受信された場合は、受信信号RXは複数の反射波に応じた信号が発生する。そして、送信信号TXとの差分を示すビート信号BSは、複数の受信信号RXと送信信号TXとのそれぞれの差分が合成したものとなる。
図2に戻り、LPF(Low Pass Filter)16は、所定周波数より低い周波数の成分を減少させることなく、所定周波数より高い周波数の成分を減少させるフィルタである。即ち、少なくとも制御対象となる物標の周波数成分を通過させるようカットオフ周波数が設定されている。例えば、後述する図13のフィルタ特性図に示すように比較的高い周波数に相当する周波数1187BINの信号の成分を信号レベルの値が-16dBとなるように減少させる。なお、LPF16もミキサ15と同様に各受信アンテナに設けられている。
AD変換器17は、アナログ信号であるビート信号を所定周期でサンプリングして、複数のサンプリングデータを導出する。そして、サンプリングされたデータを量子化することで、アナログデータのビート信号をデジタルデータに変換して、デジタルデータを信号処理部18に出力する。なお、AD変換器17もミキサ15と同様に各受信アンテナに設けられている。
次に、ビート信号BSがAD変換器17によりデジタルデータに変換された後、信号処理部18によりFFT処理されることでビート信号BSの周波数BINごとの信号レベルの値や位相情報を有するFFTデータが取得される。
信号処理部18は、CPU181、および、メモリ182を備えるコンピュータであり、AD変換器17から出力されたデジタルデータのビート信号をFFT処理してFFTデータを取得し、FFTデータのビート信号の中から信号レベルの値が所定の閾値を超える信号をピーク信号として抽出する。
ここで、図4を用いて、信号処理部18が各送信期間に対して取得するFFTデータについて説明する。図4は、送信信号TXの2周期(時刻t0〜t4)の各送信期間において得られるFFTデータを主に示す図である。時刻t0〜t2の1周期目は、時刻t0〜t1のUP区間と時刻t1〜t2のDOWN区間とに分けられ、更にUP区間は時刻t0〜t11のUP区間前半、時刻t11〜t1のUP区間後半に分けられ、DOWN区間は時刻t1〜t12のDOWN区間前半、および時刻t12〜t2のDOWN区間後半とに分けられる。
そして、この1周期目のUP区間前半で1つのFFTデータが取得される。同様にUP区間後半、DOWN区間前半、および、DOWN区間後半のそれぞれの区間でFFTデータが取得され、1周期目のUP区間(UP区間前半およびUP区間後半)と、DOWN区間(DOWN区間前半およびDOWN区間後半)で合計4個のFFTデータが取得される。なお、このFFTデータは4つの受信アンテナ(受信アンテナ14a〜14d)ごとに取得されるため、図4に示すように1周期目のUP区間およびDOWN区間(時刻t0〜t2)で合計16個のFFTデータが取得される。また、上述のようにこの1周期目では送信信号TXに対応する送信波は、送信アンテナ13aのビームパターンNAで出力されたものである。
次に、1周期目と同様に2周期目のUP区間前半(時刻t2〜t13)、UP区間後半(時刻t13〜t3)、DOWN区間前半(時刻t3〜t14)、および、DOWN区間後半(時刻t14〜t4)の各区間でFFTデータが取得される。つまり、合計4つのFFTデータが取得され、かつ、4つの受信アンテナごとにFFTデータが生成されるため、2周期目のUP区間およびDOWN区間(時刻t2〜t4)で合計16語のFFTデータが取得される。その結果、信号処理部18による1回の物標導出(送信信号TXの2周期分の送信期間)の処理で、合計32個のFFTデータが取得される。また、上述のようにこの2周期目では送信信号TXに対応する送信波は、送信アンテナ13bのビームパターンBAで出力される。
ここで、FFTデータは具体的には次のようなデータである。レーダ装置1の車両制御装置2の出力対象となる物標に対応するピーク信号の上限周波数までの周波数を含む周波数領域(以下、「第1領域」という。)(0〜700BIN)と、上限周波数よりも高い周波数でレーダ装置1の車両制御装置2に対する出力対象とはならない物標に対応するピーク信号の周波数を含む周波数領域(以下、「第2領域」という。)(701〜1023BIN)との各BINのビート信号の信号レベルを含むデータである。
そして、FFT処理を行なえば0〜1023BINまでのデータが得られるが、本実施形態の特徴の1つとして、1023BINまでの全データを記憶しておくのは1周期目のUP区間前半(時刻t0〜t11)とDOWN区間前半(時刻t1〜t12)のみであり、1周期目の残りの区間(時刻t11〜t1、t12〜t2)と2周期目の全区間(時刻t2〜t4)のFFTデータは0〜700BINまでのデータを記憶する。車両制御に必要なデータは本来0〜700BINのデータであるのに対して、701〜1023BINのデータは後述するゴースト判定にのみ用いるため、701〜1023BINのデータは必要最小限に抑えることでメモリ182の記憶容量を削減するためである。更に、0〜1023BINまでのデータを記憶する対象となる受信アンテナは1本(例えば、受信アンテナ14a(ch1)のデータ)でよい。
なお、メモリ182に記憶するFFTデータは、1周期目の全区間(時刻t0〜t2)の0〜1023BINまでのデータであってもよい。その場合でも1周期目と2周期目の全区間に対して0〜1023BINまでのデータを記憶するのに比べるとメモリ182の記憶容量を削減することができる。
そして、このようにして導出された複数のFFTデータを用いて車両CRに対する物標の縦距離、相対速度、および、横距離が導出される。主に横距離に対応する角度の導出においては、空間平均などの演算手法を行う場合にこのような複数のFFTデータを用いて演算することで正確な角度情報が導出できる。
ここで、車両CRに対する物標の縦距離は(1)式により導出され、車両CRに対する物標の相対速度は(2)式により導出される。また、車両CRに対する物標の角度は(3)式により導出される。そして、(3)式により導出された角度と物標の縦距離の情報から三角関数を用いた演算により、車両CRに対する物標の横距離が導出される。
Figure 2014106120
Figure 2014106120
Figure 2014106120
信号処理部18は、UP区間のピーク信号とDOWN区間のピーク信号とをペアリングして物標の物標情報を導出する。また、信号処理部18は、抽出されたピーク信号が実際には存在しない物標に対応するゴーストピークか否かを判定して、ゴーストのピーク信号に対応する物標情報をレーダ装置の出力対象から除外する処理を行う。このようなゴーストピークの判定およびゴーストピークに対応する物標情報の除去については後に詳述する。
メモリ182は、CPU181により実行される各種演算処理などの実行プログラムを記録する。また、メモリ182は、信号処理部18が導出した複数の物標情報を記録する。過去の物標導出処理(例えば、前回の物標導出処理(以下、「前回処理」という。)、および、今回の物標処理(以下、「今回処理」という。)において導出された物標情報(物標の縦距離、横距離、および、相対速度)を記録する。さらに、メモリ172は、FFT処理により取得されたFFTデータ182aを記録する。このFFTデータ182aには、今回処理のFFTデータを含む過去の物標導出処理のFFTデータが記憶されている。
送信制御部107は信号処理部18と接続され、信号処理部18からの信号に基づき、変調信号を生成する信号生成部11に制御信号を出力する。また送信制御部107は、信号処理部18からの信号に基づき、送信アンテナ13a、および、送信アンテナ13bのいずれかの送信アンテナと発振器12とが接続する切替部131に制御信号を出力する。
車両制御装置2は、車両CRの各種装置の動作を制御する。つまり、車両制御装置2は、車速センサ40、および、ステアリングセンサ41などの各種センサから情報を取得する。そして、車両制御装置2は、各種センサから取得した情報、および、レーダ装置1の信号処理部18から取得した物標情報に基づき、ブレーキ50、および、スロットル51などの各種装置を作動させて車両CRの挙動を制御する。
車両制御装置2による車両制御の例としては次のようなものがある。車両制御装置2は、車両CRが走行する自車線内で、車両CRの前方を走行する前方車両を追従対象として走行する制御を行う。具体的には、車両制御装置2は、車両CRの走行に伴いブレーキ50、および、スロットル51の少なくとも一の装置を制御して、車両CRと前方車両との間で所定の車間距離を確保した状態で車両CRを前方車両に追従走行させるACCの制御を行う。
また、車両制御装置2は、車両CRの障害物への衝突に備え、車両CRの乗員を保護する制御である。詳細には、車両CRが障害物に衝突する危険性がある場合に、車両CRのユーザに対して図示しない警報器を用いて警告の表示を行ったり、ブレーキ50を制御して車両CRの速度を低下させるPCSの制御を行う。さらに、車両制御装置2は車室内のシートベルトにより乗員を座席に固定、または、ヘッドレストを固定して衝突時の衝撃による車両CRのユーザへのダメージを軽減するPCSの制御を行う。
車速センサ40は、車両CRの車軸の回転数に基づいて車両CRの速度に応じた信号を出力する。車両制御装置2は、車速センサ40からの信号に基づいて、現時点の車両速度を取得する。
ステアリングセンサ41は、車両CRのドライバーの操作によるステアリングホイールの回転角を検知し、車両CRの車体の角度の情報を車両制御装置2に送信する。
ブレーキ50は、車両CRのドライバーの操作により車両CRの速度を減速させる。また、ブレーキ50は、車両制御装置2の制御により車両CRの速度を減速させる。例えば、車両CRと前方車両との距離を一定の距離に保つように車両CRの速度を減速させる。
スロットル51は、車両CRのドライバーの操作により車両CRの速度を加速させる。また、スロットル51は、車両制御装置2の制御により車両CRの速度を加速させる。例えば、車両CRと前方車両との距離を一定の距離に保つように車両CRの速度を加速させる。
<2.処理フローチャート>
<2−1.全体処理>
図5〜図7は、信号処理部18が行う物標情報の導出の処理フローチャートである。最初に信号処理部18は、送信波を生成する指示信号を送信制御部107に出力する(ステップS101)。そして、信号処理部18から指示信号が入力された送信制御部107により信号生成部11が制御され、送信信号TXに対応する送信波が生成される。生成された送信波は、車両外部に出力される。
次に、送信波が物標に反射することによって到来する反射波を受信アンテナ14が受信し、反射波に対応する受信信号RXと送信信号TXとがミキサ15によりミキシングされ、送信信号と受信信号との差分の信号であるビート信号BSが生成される。そして、アナログ信号であるビート信号BSが、LPF16によりフィルタリングされ、AD変換器17によりデジタルデータに変換され、信号処理部18に入力される。
信号処理部18は、デジタルデータのビート信号に対してFFT処理を行い(ステップS102)、周波数BINごと(例えば、0〜1023BIN間の各BINごと)のビート信号の信号レベルの値を有するFFTデータ(例えば、後述する図9に示すデータFT1)を取得する。このFFTデータは具体的には第1領域(0〜700BIN)と、第2領域(701〜1023BIN)との各BINのビート信号の信号レベルの値を含むデータである。
そして、信号処理部18は、次に説明するステップS103のピーク抽出処理では第1領域のみのFFTデータを用いて処理を行う。また、信号処理部18は、後に詳述するステップS114の不要物除去処理では、第1領域および第2領域の全領域のFFTデータを用いて処理を行う。
次に、信号処理部18は、FFTデータの第1領域の各BINのビート信号のうち信号レベルの値が所定の閾値を超えるビート信号をピーク信号として抽出する(ステップS103)。なお、この処理で送信期間2周期分(例えば、時刻t0〜t4)のUP区間(UP区間前半(時刻t0〜t1、時刻t2〜t13)およびUP区間後半(時刻t11〜t1、時刻t13〜t3))と、DOWN区間(DOWN区間前半(時刻t1〜t12、時刻t3〜t14)およびDOWN区間後半(時刻t12〜t2、時刻t14〜t4))との全て区間のピーク信号が抽出され、今回処理で信号処理部18が処理するピーク信号数が確定する。
そして、信号処理部18はピーク抽出処理で抽出された今回処理のピーク信号の中から、前回処理で導出された物標から今回処理のピーク信号を予測した予測ピーク信号の周波数に対して±3BIN以内に存在する今回処理のピーク信号を前回処理のピーク信号と時間的な連続性を有する履歴ピーク信号として抽出する(ステップS104)。
次に、信号処理部18は、車速センサ40の車両CRの速度情報からUP区間のピーク信号とDOWN区間のピーク信号との周波数差がその速度に対応する周波数差となる各区間のピーク信号を静止物に対応するピーク信号として抽出する処理を行う(ステップS105)。ここで、静止物とは、車両CRの速度と略同じ相対速度を有する物標をいい、また、特定速度で移動し、車両CRの速度と異なる相対速度を有する物標を以下では移動物という。
なお、このように履歴ピーク抽出(ステップS104)、および、静止物ピーク抽出(ステップS105)の処理を行うのは、信号処理部18が車両制御装置2に対して優先的に出力する必要性のある物標に対応するピーク信号を選択するためである。例えば、前回処理で導出された物標と時間的な連続性を有する今回処理の物標のピーク信号は、前回処理で導出されていない新規に導出された物標と比べて物標が実際に存在する確率が高いため優先順位が高い場合があり、また、移動物に対応するピーク信号は静止物に対応するピーク信号よりも車両CRと衝突する可能性が高いため優先順位が高い場合がある。
そして、信号処理部18はUP区間およびDOWN区間のそれぞれの区間において、ピーク信号に基づいて方位演算を行う(ステップS106)。詳細には信号処理部18は、所定の方位演算アルゴリズムによって物標の方位(角度)を導出する。例えば、方位演算アルゴリズムは、ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)であり、各受信アンテナ14a〜14dにおける受信信号の位相情報から相関行列の固有値、および、固有ベクトル等が演算されて、UP区間のピーク信号に対応する角度θupと、DOWN区間のピーク信号に対応する角度θdnとが導出される。そして、UP区間およびDOWN区間の各ピーク信号がペアリングされた場合に、上述の(3)式により物標の角度が導出される。
また、1つのピーク信号の周波数BINの情報は、物標の縦距離と相対速度の情報に対応しているが、1つのピーク信号の周波数BINに複数の物標の情報が含まれているときがある。例えば、車両CRに対する物標の位置情報において、縦距離が同じ値で角度が異なる値の複数の物標の情報が、同じ周波数BINのピーク信号に含まれている場合がある。このような場合、異なる角度から到来する複数の反射波の位相情報はそれぞれ異なる位相情報となる。そのため、信号処理部18は各反射波の位相情報に基づいて1つのピーク信号に対して異なる角度に存在する複数の物標情報を導出する。
ここで、方位演算を行う場合、物標の角度によっては、位相が360度回転して物標が存在する本来の角度とは異なる角度情報が導出される場合がある。具体的には、例えば、受信アンテナで受信した物標からの反射波の位相情報が420度の場合、実際の物標は、図1で示したビームパターンNA以外のビームパターンBAの領域に物標が存在するときでも、位相折り返しにより位相情報が60度(420度-360度)と判定され、ビームパターンBAには含まれないビームパターンNAの領域に物標が存在するとする誤った角度情報が導出されるときがある。そのため、送信アンテナ13aおよび13bの2つの送信アンテナからそれぞれ異なるビームパターンの送信波を出力し、同一物標に対する各送信アンテナでの受信レベルを比較することで物標の正確な角度を導出する。
具体的には各ビームパターンの送信波に対する反射波に基づいて、次のように角度を導出する。反射波の位相情報が60度の場合に、送信アンテナ13aの送信波の反射波と、送信アンテナ13bの送信波の反射波とに対応するそれぞれの角度スペクトラムの信号レベルの値を比べて、送信アンテナ13aの送信波の反射波に対応する角度スペクトラムの信号レベルの値が大きい場合は、ビームパターンBAの領域を除くビームパターンNAの領域内の位相情報60度に対応する角度を物標の角度として導出する。また、送信アンテナ13bの送信波の反射波に対応する角度スペクトラムの信号レベルの値の方が大きい場合は、ビームパターンNAの領域を除くビームパターンBAの領域内の位相情報420度に対応する角度を物標の角度として導出する。このように送信信号TXの2周期分の送信波で各周期ごとに異なるビームパターンの送信波を出力することで、方位演算を行う場合の位相折り返しによる物標の誤った角度情報の導出を防止する。
次に、信号処理部18は、図6に示すUP区間のピーク信号とDOWN区間のピーク信号とをペアリングするペアリング処理を行う(ステップS107)。このペアリング処理は、UP区間、DOWN区間とも0〜700BINまでの全FFTデータに基づき行なう。ステップS103の処理で導出された全ピーク信号のうち履歴ピーク抽出処理(ステップS104)で抽出された履歴ピーク信号については、UP区間の履歴ピーク信号とDOWN区間の履歴ピーク信号とでペアリング処理が行われる。また、静止物ピーク抽出処理(ステップS105)で抽出された静止物ピーク信号については、UP区間の静止物ピーク信号とDOWN区間の静止物ピーク信号とでペアリング処理が行われる。さらに、ピーク抽出処理で抽出された全ピーク信号のうち履歴ピーク信号と静止物ピーク信号とを除いた残りのピーク信号については、UP区間の残りのピーク信号とDOWN区間の残りのピーク信号とでペアリングの処理が行われる。
なお、UP区間のピーク信号とDOWN区間のピーク信号とのペアリング処理は、例えば、マハラノビス距離を用いた演算を用いて行われる。具体的には、レーダ装置1を車両CRに搭載する前に試験的にUP区間のピーク信号とDONW区間のピーク信号とをペアリングする中で正しい組み合わせでペアリングされた正常ペアデータと、誤った組み合わせでペアリングされたミスペアデータとのデータを複数取得し、複数の正常ペアデータにおけるUP区間のピーク信号とDOWN区間のピーク信号との「信号レベルの値の差」、「角度の値の差」、および、「角度スペクトラムの信号レベルの値の差」の3つのパラメータ値から、複数の正常ペアデータの3つのパラメータごとの平均値を導出し、予めメモリ182に記憶する。
そして、レーダ装置1を車両CRに搭載した後に、信号処理部18が物標情報を導出する場合、今回処理で取得されたFFTデータのピーク信号のうちUP区間のピーク信号とDOWN区間のピーク信号のすべての組み合わせの3つのパラメータ値と、複数の正常ペアデータの3つのパラメータごとの平均値とを用いて以下に示す(4)式によりマハラノビス距離を導出する。信号処理部18は、マハラノビス距離が最小の値となる今回処理のペアデータを正常ペアデータとして導出する。ここで、マハラノビス距離は、平均がμ=(μ1, μ2, μ3) で、共分散行列がΣであるような多変数ベクトルx=(x1, x2, x3)で表される一群の値に対するもので(4)式により導出される。なお、μ1, μ2, μ3は正常ペアデータの3つのパラメータの値を示し、x1, x2, x3は今回処理のペアデータの3つのパラメータの値を示す。
Figure 2014106120
そして、信号処理部18は、このペアリング処理において正常ペアデータのパラメータの値と上述の(1)式〜(3)式とを用いて、正常ペアデータと判定されたペアデータの縦距離、相対距離、および、角度に基づく横距離が導出する。ここで、横距離は、絶対横距離と相対横距離とが導出される。絶対横距離とは、基準軸BLを±0mとした車両CRの車幅方向の左方向を−(マイナス)、右方向が+(プラス)とする横距離である。また、相対横距離は、車両CRの走行する自車線のカーブ半径の情報と、物標の縦距離、および、絶対横距離の情報とから、カーブ半径に応じた物標の横距離として導出される距離である。詳細には車両CRのステアリングホイールを車両CRのドライバが操作することでステアリングセンサ41から入力されるステアリングホイールの回転角の情報に応じて直線および曲線に仮想的に変化する基準軸BLを±0mとした車両CRの車幅方向の左方向を−(マイナス)、右方向が+(プラス)とする横距離である。そして、以下では、単に横距離と記載した場合は、絶対横距離のことをさす。なお、相対横距離を物標情報とする場合は、横位置の算出において車線のカーブの状態を用いる必要があるときである。
次に、信号処理部18は、今回処理でペアリングされた今回ペアデータの物標情報(以下、「今回ペア物標情報」という。)と、前回処理の物標の物標情報から今回ペア物標情報を予測した情報(以下、「予測物標情報」という。)との間に時間的に連続する関係が存在するか否かの連続性判定処理を行う(ステップS108)。ここで、予測物標情報は、信号処理部18が前回処理の物標情報の相対速度の情報やこれまでの物標情報の値の変化等から、今回処理における縦距離および横距離の位置情報や相対速度情報を含む物標情報を予測した情報である。
そして、今回処理で今回ペア物標情報と、予測物標情報とに時間的に連続する関係がある場合とは、例えば、今回ペア物標情報と、予測物標情報とに含まれる縦距離、横距離、および、相対速度のそれぞれの差の値が所定値以内の場合である。なお、信号処理部18は、所定値以内に複数の予測物標情報が存在する場合、今回ペア物標情報との差の値が最も小さい所定値以内の予測物標情報が、今回ペア物標情報と時間的に連続する関係を有するものと判定し、このように予測物標情報と時間的な連続性がある今回ペア物標情報を有する今回ペアデータ(以下、「過去対応ペアデータ」という。)に対して後述するステップS110のフィルタ処理を行う。
また、信号処理部18は、今回ペア物標情報と、予測物標情報とに含まれる縦距離、横距離、および、相対速度のそれぞれの差の値が所定値以内ではない場合に、今回ペア物標情報と予測物標情報とに時間的に連続する関係がないと判定する。そして、このように予測物標情報と時間的な連続性がないと判定された今回ペア物標情報の今回ペアデータ(以下「新規ペアデータ」という。)は、今回処理において初めて導出された物標となる。なお、新規ペアデータの場合は、以下で説明するステップS110のフィルタ処理では、予測物標情報が存在しないため、新規ペアデータの縦距離、横距離、および、相対速度が今回処理における一つの物標の物標情報となる。
次に信号処理部18は、車両CRの速度とペアデータの相対速度の情報から移動物に対応するペアデータを導出する(ステップS109)。この処理を行うことで優先的に処理する必要性のあるペアデータを導出できる。
そして、信号処理部18は、今回ペア物標情報と予測物標情報とに時間的に連続する関係が存在する場合は、今回ペア物標情報と予測物標情報とに含まれる縦距離、横距離、および、相対速度のフィルタリングを行い(ステップS110)、フィルタリングされた物標の物標情報を今回処理の物標の物標情報として導出する。
具体的には、両者に時間的に連続する関係が有る場合に、信号処理部18は、例えば、横距離について予測ペアデータの横距離にフィルタ定数0.75の値の重み付けを行い、今回ペアデータの横距離にフィルタ定数0.25の値の重み付けを行って、両方の値を足し合わせたものを今回処理の過去対応ペアデータの横距離として導出する。なお、縦距離、相対速度、および、信号レベルの値についても所定のフィルタ定数を用いてフィルタ処理を行う。
次に、信号処理部18は、車両CRの制御には必要のない静止物を導出する上下方物処理を行う(ステップS111)。具体的には、静止物の車両CRの車高方向の位置を導出し、その位置が所定の高さよりも高い(例えば、車両CRの車高よりも高い)位置に存在する静止物(例えば、車道の上方に設けられている片持式や門型式の道路標識など)を導出する。また、車両CRの車高よりも低い位置に存在する静止物(例えば、道路の中央分離帯やカーブに設置されている反射板の付いたチャッターバーなどの道路鋲など)を導出する。このようにして導出された静止物は後述する不要物除去処理で物標情報が除去され、レーダ装置1から物標情報として車両制御装置2に出力されることはない。
そして、信号処理部18は、今回処理の次に行われる処理(以下、「次回処理」という。)において、次回処理の履歴ピーク抽出処理(ステップS104)に用いる物標情報の予測値(予測縦距離、予測相対速度、予測横距離等)を導出する(ステップS112)。具体的には、車両制御を行う上で優先順位の高い20個の物標情報を導出して、UP区間、DOWN区間のそれぞれの今回処理のピーク信号の予測値を算出しておくことで、次回処理における履歴ピークの導出処理に用いる。優先順位については、ACC制御を行う場合は、車両CRの走行している自車線上に相当する横位置を有し、車両CRとの縦距離が比較的小さい物標が優先順位が高く、隣接車線に相当する横位置で、車両CRとの縦距離が比較的大きい物標が優先順位が低い。また、PCSの場合は、衝突余裕時間(Time-To-Collision、以下「TTC」という。)の比較的短い物標の優先順位が高く、TTCの比較的長い物標の優先順位が低い。
次に、信号処理部18は車両CRに対する物標の相対横距離と縦距離とに基づき、予めメモリ182に記憶された相対横距離と縦距離とをパラメータとする二次元のマップデータから物標が自車線上に存在する確率を導出する(ステップS113)。この確率は車両CRに対する相対横距離の絶対値が大きくなる程値が低下し、車両CRに対する縦距離の値が大きくなる程値が低下する。なお、この確率が高い程車両CRが存在する自車線上に物標が存在することとなるので、そのような物標を例えばACCの制御対象とする。
そして、信号処理部18は、これまでの処理で導出された物標情報に対して、車両制御装置2への出力が不要な物標を除去する処理を行う(ステップS114)。例えば、信号処理部18は、上述のステップS111の上下方物処理で導出された物標情報の除去や、所定距離以上に存在する実際の物標に対応するピーク信号と、レーダ装置1の図示しない電源装置のDC-DCコンバータのスイッチングノイズとの干渉(相互変調)で生じる実際に存在しない物標に対応するゴーストピークの物標情報の除去などを行う。なお、ゴーストピークの物標情報の除去については後に詳述する。
次に、信号処理部18は、複数の物標情報に対して一つの物体に対応する物標情報にまとめる処理を行う(ステップS115)。例えば、レーダ装置1の送信アンテナ13から送信波を射出した場合、送信波が前方車両に反射するとき、受信アンテナ14に受信される反射波は複数存在する。つまり、同一物体における複数の反射点からの反射波が受信アンテナ14に到来する。その結果、信号処理部18はそれぞれの反射波に基づき位置情報の異なる物標情報を複数導出するが、もともとは一つの車両の物標情報なので、各物標情報を一つにまとめて同一物体の物標情報として取り扱う。そのため、複数の物標情報の各相対速度が略同一で、各物標情報の縦距離および横距離が所定範囲内であれば、信号処理部18は複数の物標情報を同一物体における物標情報とみなし、当該複数の物標情報を一つの物標に対応する物標情報にまとめる結合処理を行う。
そして、信号処理部18は、ステップS115の処理で結合処理された物標情報から車両制御装置2に出力する優先順位の高い物標情報を車両制御装置2に出力する(ステップS116)。
<2−2.不要物除去処理>
次に図7のステップS114で説明した不要物除去処理のうち、ゴーストピークに対応する物標情報の除去について図8および図9を用いて詳細に説明する。図8は、第1の実施の形態のゴーストピークの物標情報除去処理のフローチャートである。また、図9は第1の実施の形態のFFTデータFT1を示す図である。
最初に信号処理部18は、今回処理において、図6のステップS108の連続性判定処理で過去対応ペアデータ、および、新規ペアデータのうちいずれかのペアデータと判定されて、ステップS110のフィルタ処理で、フィルタリングされた(新規ペアデータの場合は、過去の物標情報がないことから予測ペアデータとの平滑化は行われず、新規ペアデータがそのまま新規物標情報となる)複数の物標情報のうち1つの物標情報を選択する。そして、信号処理部18は選択された物標情報(以下、「選択物標情報」という。)が新規物標情報か否かを判定する(ステップS201)。なお、選択物標情報が新規物標情報でない(ステップS201がNo)場合は、信号処理部18は、ステップS207の処理を実施する。ステップS207の処理については後述する。
信号処理部18は、今回処理の選択物標情報の縦距離、および、相対速度の情報からこの選択物標情報を構成するUP区間のピーク信号の周波数とDOWN区間のピーク信号の周波数とを算出する(ステップS202)。そして、メモリ182に記憶されたUP区間前半(図4に示す時刻t0〜t11)の第1領域および第2領域の周波数領域(0〜1023BIN)のFFTデータと、DOWN区間前半(図4に示す時刻t1〜t12)の第1領域および第2領域の周波数領域(0〜1023BIN)のFFTデータを読み出して、これらのFFTデータの複数のピーク信号のうち新規物標情報から算出された周波数に存在するピーク信号(UP区間前半のピーク信号、および、DOWN区間前半のピーク信号、以下「選択ピーク信号」という。)を選択する(ステップS203)。
そして、信号処理部18は、UP区間の0〜1023BINのFFTデータについて第1の周波数であるDC-DCコンバータのスイッチングノイズの周波数に存在するピーク信号の周波数(例えば、1023BIN)から、UP区間の選択ピーク信号の周波数相当離れた周波数位置に他のピーク信号(以下、「特定ピーク信号」という。)が存在するか否かを判定する(ステップS204)。
次に、信号処理部18は、特定ピーク信号が存在する(ステップS204がYes)場合は、次の処理であるステップS205の処理を行う。なお、UP区間前半のFFTデータに特定ピーク信号が存在しない(ステップS204がNo)場合は、信号処理部18は、ステップS207の処理を実施する。
ここで、図9を用いて上述のUP区間前半のFFTデータ内の選択ピーク信号および特定ピーク信号の処理について具体的に説明する。図9に示すFFTデータFT1(以下、「データFT1」という。)は、横軸を周波数軸[単位:BIN」、縦軸を信号レベルの値[単位:dB]とするUP区間前半(時刻t0〜t11)のFFTデータであり、横軸において第1領域と第2領域の周波数領域を含むデータである。具体的には、データFT1はレーダ装置1の出力対象となる物標に対応するピーク信号の上限周波数(例えば、周波数700BIN)までの周波数を含む第1領域(例えば、0〜700BIN)と、上限周波数よりも高い周波数でレーダ装置1の出力対象とはならない物標に対応するピーク信号の周波数を含む周波数領域である第2領域(例えば、701〜1023BIN)とのビート信号の信号レベルの値を有するデータである。
さらに、図9を用いてゴーストの発生原因およびゴーストの判定方法について説明する。DC-DCコンバータのスイッチングノイズの周波数が1023BINに存在し(ピーク信号P0)、それより高い周波数位置に実際の物標(例えば、車両CRから縦距離が461m離れたトラック等の強反射物)に対応するピーク信号P12(例えば1187BIN)が存在しているとする。その場合、強反射物からの受信信号とスイッチングノイズとがミキサ15で相互変調されるとFFT処理により、その差分周波数成分が選択ピーク信号P1の周波数(1187BIN―1023BIN=164BIN)にピーク信号として表れる。従って、この選択ピーク信号P1は実際に存在しない物標のデータとなる。
ただし、選択ピーク信号P1だけでは実在する物標のデータかゴーストによる物標のデータかを判断できない。そこで本実施の形態では、制御対象外の遠距離に存在する強反射物のピーク信号(例えば、ピーク信号P12)が通常の車両制御対象のピーク信号の周波数領域外である第2領域に表れるという事実を確認したため、これを利用して選択ピーク信号P1がゴーストピークか否かを判定するようにした。
即ち、FFTデータは0〜1023BINまでのデータしかないため実際の強反射物のピーク信号P12はFFTデータには表れないが、その代わり第2の周波数であるデータFT1のナイキスト周波数F2(1023BIN)でピーク信号が折り返されるため、折り返しの周波数(859BIN)に特定ピーク信号P2が現れる。換言すれば、スイッチングノイズのピーク信号P0と強反射物の折り返しのピーク信号である特定ピーク信号P2の差分周波数に対応する周波数に選択ピーク信号P1に対応するピーク信号が出現する。
従って、ある周波数のピーク信号を選択ピーク信号P1として選択したとき、スイッチングノイズのピーク信号P0(1023BIN)と選択ピーク信号P1(164BIN)との差分周波数(859BIN)の位置に他のピーク信号、即ち特定ピーク信号が存在している場合、選択ピーク信号P1はゴーストピークであると判定できる。
そして、図9では、信号処理部18が、選択した選択物標情報が新規物標情報の場合(ステップS201がYesに対応)は、選択物標情報の距離および相対速度の情報からUP区間前半の選択ピーク信号の周波数(例えば、164BIN)が算出され(ステップS202に対応)、周波数164BINに存在するピーク信号(信号レベル−22dB)が選択ピーク信号P1となる(ステップS203に対応)。
そして、信号処理部18は、DC-DCコンバータのスイッチングノイズの周波数に対応する周波数1023BINに存在するピーク信号P0の周波数から、選択ピーク信号の周波数(164BIN)分離れた周波数(1023BIN-164BIN=859BIN)とその周波数近傍(例えば、859BINの±1BIN以内)を含む範囲に特定ピーク信号が存在するか否かを判定する(ステップS204に対応)。図9では、周波数859BINに特定ピーク信号P2(信号レベル−16dB)が存在するため、特定ピーク信号(特定ピーク信号P2)が存在すると判定される(ステップS204がYesに対応)。ここで、この特定ピーク信号P2は、第2の周波数であるデータFT1のナイキスト周波数F2(1023BIN)を超えた周波数(例えば、1187BIN)に対応する距離および相対速度を有する実際に存在する物標(例えば、車両CRから縦距離が461m離れたトラック等の強反射物)に対応するピーク信号P12(信号レベル−16dB)がナイキスト周波数F2との差分(1187BIN-1023BIN=164BIN)だけ折り返した周波数(1023BIN-164BIN=859BIN)に、折り返しのピーク信号として出現したものである。
次に、図8のステップS205に戻り、図9で説明したUP区間前半の処理と共にDOWN区間前半でも同様の処理が行われる。つまり、図8に示すステップS201〜S203により、信号処理部18はDOWN区間前半における選択ピーク信号を導出し、上述のDC-DCコンバータのスイッチングノイズに対応するピーク信号の周波数(1023BIN)から、DOWN区間前半の選択ピーク信号の周波数相当離れた周波数に特定ピーク信号が存在するか否かを判定する(ステップS205)。
そして、信号処理部18は、DOWN区間前半において特定ピーク信号が存在する(ステップS205がYes)場合は、選択物標情報がゴーストピークに対応する物標情報であることを示すゴーストフラグをON状態とする(ステップS206)。つまり、信号処理部18は、UP区間前半およびDOWN区間前半の両方の区間のFFTデータに特定ピーク信号が存在する場合に選択物標情報のゴーストフラグをON状態とする。
そして、ゴーストフラグがON状態となった物標情報は、レーダ装置1から車両制御装置2へ出力する出力対象から除外される。このように、特定ピーク信号が存在する場合に、選択ピーク信号に対応する物標情報をレーダ装置の出力対象から除外することで、選択ピークが実際には存在しない物標に対応するゴーストのピーク信号か否かを正確に判定でき、本来は制御対象ではない物標情報のレーダ装置1からの出力を防止できる。その結果、車両制御装置2は、実際には存在しない物標情報に基づいて車両制御を行うことなく、適切な車両制御が行える。
なお、ステップS205において、DOWN区間前半に特定ピーク信号が存在しない(ステップS205がNo)場合は、信号処理部18は、次にステップS207の処理を実施する。
次に、信号処理部18は全ての物標情報に対して不要物除去処理を実施したか否かを判定し(ステップS207)、全ての物標情報に対して不要物除去処理を実施した(ステップS207がYes)場合は、不要物除去処理を終了して次の結合処理(ステップS115)を行う。なお、全ての物標情報に対して不要物除去処理を実施していない場合(ステップS207がNo)は、ステップS201の処理に戻り不要物除去処理がまだ実施されていない他の物標情報に対して不要物除去処理を実施する。
なお、上述の図9の説明では特定ピーク信号P2は実際に存在する物標のピーク信号P12とナイキスト周波数F2との差分だけ折り返した折り返しのピーク信号であり、実際には859BINの周波数に対応する縦距離および相対速度の物標は存在しないことを前提に説明を行った。これに対して、周波数859BINに対応する縦距離および相対速度の物標が実際に存在する場合は、周波数859BINの特定ピーク信号P2と、周波数1023BINのDC−DCコンバータのスイッチングノイズとの干渉(相互変調)により、0BINの周波数である周波数F1からマイナス側の−164BINの周波数にピーク信号が存在することとなる。そして、−164BINの周波数と周波数F1との差分だけ折り返した折り返しピーク信号が164BINの周波数に選択ピーク信号P1に対応するピーク信号が出現する。その結果、信号処理部18は、この周波数164BINの折り返しの選択ピーク信号P1を物標情報として導出する。
そのため、信号処理部18は、周波数1187BINのピーク信号P12が実際に存在する物標に対応する信号で、このピーク信号P12とDC−DCコンバータのスイッチングノイズのピーク信号P0とが干渉(相互変調)して周波数164BINに選択ピーク信号P1に対応するピーク信号が出現した場合に、選択ピーク信号P1をゴーストピークと判定して不要物除去処理により除去するだけでなく、それに加えて、信号処理部18は、周波数859BINの特定ピーク信号P2が実際に存在する物標に対応する信号で、この特定ピーク信号P2とピーク信号P0とが干渉(相互変調)して最終的に周波数164BINに選択ピーク信号P1に対応するピーク信号が出現する場合も、選択ピーク信号P1をゴーストピークと判定して不要物除去処理により除去できる。
また、この不要物除去処理では、図5のステップS102で説明したFFT処理により信号処理部18がレーダ装置の出力対象となる物標に対応するピーク信号の上限周波数までの周波数を含む周波数領域である第1領域と、前記上限周波数よりも高い周波数で前記レーダ装置の出力対象とはならない物標に対応するピーク信号の周波数を含む周波数領域である第2領域との前記ビート信号の信号レベルの値を有し、FFT処理により導出されるFFTデータを取得する。そして、取得されたFFTデータはメモリ182にFFTデータ182aとして記憶される。
信号処理部18は、不要物除去処理を行う際にメモリ182からFFTデータ182aを読み出し、この第1領域および第2領域のFFTデータを用いて、UP区間およびDOWN区間の特定ピーク信号の存在の有無を判定する。このように、物標情報の導出に用いられる第1周波数領域のFFTデータと、物標情報の導出には用いられることがないため、これまではメモリの記憶容量の確保のために削除していた第2領域のFFTデータとを用いてゴーストピークの判定を行い、このゴーストピークに対応する物標情報を除去する不要物除去処理を行うことで、FFT処理で導出した全周波数領域のFFTデータを有効活用できる。
また、ゴーストピークが出現する原因の一つであるDC−DCコンバータのスイッチングノイズは例えば、1023BINの第2領域の周波数に存在するため、信号処理部18はFFTデータの第1領域のデータだけでは選択ピーク信号がゴーストのピーク信号か否かを判定できないのに対し、第2領域のデータを第1領域のデータと併せて用いることで、選択ピーク信号がゴーストピークか否かを正確に判定できる。
また、送信アンテナ13aから送信波を出力する一の送信期間(例えば、時刻t0〜t2)と送信アンテナ13bから送信波を出力する他の送信期間(例えば、時刻t2〜t4)とではそれぞれの送信波のビームパターン(ビームパターンNA、および、ビームパターンBA)が異なることを前提に、信号処理部18は一の送信期間および他の送信期間に対応する複数の期間の第1領域(0〜700BIN)のFFTデータを取得する。そして、信号処理部18は、一の送信期間および他の送信期間のいずれか一方の期間に対応する第1領域および第2領域(701〜1023BIN)のFFTデータを取得する。
これは、物標の縦距離や相対速度だけではなく物標の角度を導出するのに用いられる第1領域のみのFFTデータは、位相折り返しが生じても物標の角度を正確に導出できるように送信波のビームパターンが異なる複数の送信期間分に対する反射波の情報(受信信号RX)を取得する。これに対し第1領域および第2領域のFFTデータは、ゴーストピークの判定処理を行うためのものである。つまり、第1領域および第2領域のFFTデータを用いて物標の角度の導出は行わないため、一つビームパターンに対応する一つの送信期間の情報のみ取得すればよい。その結果、第1領域および第2領域のFFTデータを複数の送信期間分取得することと比べて、メモリ182の記憶容量を削減できる。
また、信号処理部18が第1領域および第2領域のFFTデータを取得する送信期間は、上述のように例えば、UP区間前半およびDOWN区間の前半の送信信号TXの1回の送信期間の半周期分である。このように、信号処理部18が不要物除去処理を行うために取得する第1領域および第2領域のFFTデータの取得期間を送信信号TXの1回の送信期間の半周期とすることで、第1領域および第2領域のFFTデータの取得期間を送信信号TXの1周期とするのに比べて、メモリ182の記憶容量を削減できる。更に、ゴースト判定にはピーク信号の周波数情報と受信レベル情報を用い、位相情報は必要ないため、第1領域および第2領域のFFTデータを記憶する対象となる受信アンテナは4本中の1本とすることが可能である。これにより更にメモリ182の記憶容量を削減できる。
<第2の実施の形態>
次に、第2の実施の形態について説明する。第2の実施の形態のレーダ装置1の信号処理部18は、第1の実施の形態の主に図8を用いて説明した不要物除去処理に対して、ゴーストピークの判定をより正確に行うために、新たな処理を追加したものである。
第2の実施の形態のレーダ装置1の構成および処理は、第1の実施の形態とほぼ同様であるが、不要物除去処理の処理内容が一部異なる。以下、図10〜図13を用いて相違点を中心に説明する。
<3.処理フローチャート>
図10および図11は、第2の実施の形態のゴーストピークの物標情報除去処理のフローチャートである。また、図12は第2の実施の形態のFFTデータFT2を示す図であり、図13は、LPF16のフィルタ特性と信号レベルの値の補正割合を示す図である。
図10において、信号処理部18は、ステップS201〜ステップS203の処理を行い、UP区間前半に特定ピーク信号が存在する(ステップS204がYes)場合、特定周波数の周波数から所定周波数(1023BIN)のナイキスト周波数F2に基づいて折り返した周波数を導出する(ステップS211)。そして、信号処理部18は、導出した周波数に応じて特定ピーク信号の信号レベルの値を所定倍する信号レベル補正を行う(ステップS212)。次に、信号処理部18は、選択ピーク信号と補正後の特定ピーク信号の信号レベルの値とが所定の関係を満たす場合(例えば、両方のピークの信号レベルの値の差が20dB以上)(ステップS213がYes)の場合、次に図11に示すステップS205の処理を行う。
ここで、図12および図13を用いて上述のUP区間前半のFFTデータ内のナイキスト周波数F2に基づいて折り返した周波数の導出、および、特定ピーク信号の信号レベル補正について具体的に説明する。図12に示すFFTデータFT2(以下、「データFT2」という。)は、横軸を周波数軸[単位:BIN」、縦軸を信号レベルの値[単位:dB]とするUP区間前半(時刻t0〜t11)のFFTデータであり、横軸において第1領域と第2領域の周波数領域を含むデータである。
図12では、信号処理部18は、DC-DCコンバータのスイッチングノイズの周波数に対応する周波数1023BINに存在するピーク信号P0の周波数から、選択ピーク信号の周波数164BIN分離れた周波数(例えば、1023BIN-164BIN=859BIN)とその周波数近傍(例えば、859BINの±1BIN以内)を含む範囲に周波数859BINに特定ピーク信号P2が存在するため、特定ピーク信号P2が存在すると判定する(ステップS204がYesに対応)。
次に、信号処理部18は、この特定ピーク信号P2から、ナイキスト周波数(1023BIN)に対して折り返した周波数(1023BIN−859BIN=164BIN、1023BIN+164BIN=1187BIN)を導出する(ステップS211に対応)。そして、信号処理部18は折り返した周波数1187BINに対応する信号レベルの値の補正割合に応じて、特定ピーク信号P2の信号レベルを所定倍する(ステップS212に対応)。
ここで、図13のフィルタ特性図(横軸周波数[単位:BIN]、縦軸信号レベルの値[単位:dB])では、LPF16がビート信号BSをフィルタリングした場合のビート信号における各周波数BINの信号レベルの値を示すレベル線LCが表示されている。そして、特定ピーク信号P2の周波数がナイキスト周波数に基づいて折り返した場合の周波数である1187BINの信号レベルの値は、レベル線LC上のポイントCP1の−16dBである。
そして、信号処理部18は、1187BINの−16dBのレベルの値を信号レベルの値を補正した後のレベルの値を示す補正後レベル線LCa上のポイントCP1aの0dBとする倍率(α倍)で特定ピーク信号P2の信号レベルの値を所定倍する補正を行う。その結果、図12に示すように補正前の特定ピーク信号P2の信号レベルの値(−16dB)が補正後の特定ピーク信号P2aの信号レベルの値(0dB)となる。
次に信号処理部18は、図12に示すように選択ピーク信号の信号レベルの値(−22dB)と補正後の特定ピーク信号P2aの信号レベルの値(0dB)との差が20dB以上(22dB)である(ステップS213がYesに対応)ため、次の処理であるステップS205の処理に進む。
そして、図11に戻りステップS205の処理でDOWN区間前半のFFTデータ内に特定ピーク信号が存在する(ステップS205がYes)場合に、上述のUP区間と同様にステップS214〜ステップS216において、信号処理部18は、特定ピーク信号の周波数からナイキスト周波数F2に対して折り返した周波数に対応する信号レベルの値の補正割合に応じて、特定ピーク信号の信号レベルを所定倍する補正を行う。
そして、信号処理部18は、選択ピーク信号の信号レベルの値と補正後の特定ピーク信号の信号レベルの値とが所定の関係を満たす場合に、ステップS206の処理を行う。つまり、信号処理部18は選択物標情報に対してゴーストフラグをON状態とする。ゴーストフラグがON状態となった物標情報は、レーダ装置1から車両制御装置2へ出力する出力対象から除外される。
即ち、選択ピーク信号がゴースト信号である場合、その発生原因となった実在する強反射物のピーク信号P12はLPF16によりそのレベルが大きく低下しているため、ゴーストピークとして発生する選択ピーク信号P1のレベルも小さくなる。これに対し、選択ピーク信号が実際に存在する物標に対応しているピーク信号である場合は、LPF16によってそのレベルは低下しない。これにより、選択ピーク信号が実際に存在する物標に対応しているピーク信号である場合は、ゴーストピークである場合と比べて大きい信号レベルの値を有しているため、選択ピーク信号はゴーストピークと判定されない。そして、選択ピーク信号の信号レベルの値と補正後の特定ピーク信号の信号レベルの値とが所定の関係を満たす場合に、選択ピーク信号に対応する物標情報をレーダ装置の出力対象から除外することで、ゴーストピークであるか否かをより正確に特定できる。
なお、信号処理部18はステップS213およびステップS216において、選択ピーク信号の信号レベルの値と、補正後の特定ピーク信号意の信号レベルの値とが所定の関係を満たさない(例えば、両方の信号レベルの値の差が20dB未満の)(ステップS213がNo、ステップS216がNo)場合、第1の実施の形態で説明したステップS207の処理を行う。
<第3の実施の形態>
次に、第3の実施の形態について説明する。第3の実施の形態のレーダ装置1の信号処理部18は、第1の実施の形態の主に図8を用いて説明した不要物除去処理に対して、前回処理でゴーストフラグがON状態となった物標情報に対して今回処理において時間的に連続性を有する物標情報が導出された場合の処理を追加したものである。
第3の実施の形態のレーダ装置1の構成および処理は、第1の実施の形態とほぼ同様であるが、不要物除去処理の処理内容が一部異なる。以下、図14〜図15を用いて相違点を中心に説明する。
<4.処理フローチャート>
図14および図15は、第3の実施の形態のゴーストピークの物標情報除去処理のフローチャートである。信号処理部18は、今回の物標導出処理において、図6のステップS108の連続性判定処理で過去対応ペアデータ、および、新規ペアデータのうちいずれかのペアデータと判定されて、ステップS110のフィルタ処理で、フィルタリングされた複数の物標情報のうち1つの物標情報を選択する。そして、信号処理部18は選択物標情報が新規物標情報か否かを判定し(ステップS201)、新規物標情報(ステップS201がYes)の場合、第1の実施の形態で説明した処理を行う。
そして、選択物標情報が新規物標情報でない(ステップS201がNo)場合、信号処理部18は、第3の実施の形態の処理を行う。つまり、信号処理部18は今回処理の選択物標情報が前回処理でゴーストフラグがON状態となった物標情報と時間的な連続性を有する物標情報か否かを判定する(ステップS301)。そして、今回処理の選択物標情報が前回処理でゴーストフラグON状態となった物標情報と時間的な連続性を有する物標情報(ステップS301がYes)の場合、ステップS301〜S305の処理を行う。
なお、今回処理の選択物標情報が前回処理のゴーストフラグOFF状態の物標と時間的な連続性を有する(ステップS301がNo)場合、信号処理部18は、図15に示すステップS309の処理を行う。つまり、信号処理部18は、実施の形態1で示した図8のステップS207の処理と同様に全ての物標情報に対して不要物除去処理を実施したか否かを判定し(ステップS309)、全ての物標情報に対して不要物除去処理を実施した(ステップS309がYes)場合は、不要物除去処理を終了して次の結合処理(ステップS115)を行う。なお、全ての物標情報に対して不要物除去処理を実施していない場合(ステップS309がNo)場合は、ステップS201の処理に戻り不要物除去処理がまだ実施されていない他の物標情報に対して不要物除去処理を実施する。
図14に戻りステップS302〜S305の処理は、第1の実施の形態の図8で説明したステップS202からステップS205(図14に示すステップS202〜ステップS205)の処理と同様の処理である。つまり、ステップS302からS305の処理で信号処理部18は、前回処理でゴーストフラグがON状態とされた物標情報と時間的な連続性を有する今回処理の選択物標情報が、ゴーストフラグがONとなる条件を満たしているか否かを判定し、条件を満たしている(ステップS305がYes)場合、図15に示すステップS306の処理を行う。なお、ゴーストフラグがON状態となる条件を満たしていない(ステップS304がNo、および、ステップS305がNoのいずれか一方の)場合、信号処理部18はステップS310の処理を行う。
そして、図15のステップS306の処理で、信号処理部18は、最初にゴーストフラグがON状態とされた後に、物標情報がゴーストフラグON状態となる条件を満たした回数に応じてカウンタをインクリメントする処理を行う(ステップS306)。
次に、信号処理部18はカウンタが所定カウント値(例えば、カウント値3)か否かを判定する(ステップS307)。そして、信号処理部18は、カウント値が3(ステップS307がYes)の場合、対象の選択物標情報のレーダ装置1から車両制御装置2への出力除外を確定する(ステップS308)。このように、1回の物標導出処理でゴーストフラグがON状態となった物標情報に対して、以降の複数回の物標導出処理で時間的な連続性のある物標情報に対して、ゴーストの物標情報であると判定される全ての条件を満たしてゴーストフラグがON状態と判定された場合は、カウンタをインクリメントする。そして、例えば、ゴーストフラグがON状態となった後、3回の連続する物標導出処理で、ゴーストフラグがON状態となる条件を満たした場合に当該選択物標情報の出力除外を確定するものである。
なお、ステップS310の処理において、上述のように信号処理部18が、今回処理を含む以降の所定回数(例えば、3回)の物標導出処理において、前回処理でゴーストフラグがON状態となり出力対象から除外された物標情報と同一の物標情報に対応する特定ピーク信号が存在しない(ステップS304がNo、および、ステップS305がNoのいずれか一方)と判定した場合、選択物標情報のゴーストフラグはOFF状態となり、選択物標情報はレーダ装置1の出力対象となる。このように、一回の処理で出力対象から除外された物標情報に対して、以降の処理でゴーストのピーク信号に対応する物標情報か否かを所定回数判定し、判定条件を満たさない場合は、レーダ装置の出力対象とすることで、実際には存在している物標を誤ってゴーストのピーク信号に対応する物標を出力対象から除外することを防止できる。そして、ステップS310の処理の後、信号処理部18はステップS309の処理を行う。
<第4の実施の形態>
次に、第4の実施の形態について説明する。第4の実施の形態のレーダ装置1の信号処理部18は、第2の実施の形態の主に図10および図11を用いて説明した不要物除去処理に対して、第3の実施の形態で説明した前回処理でゴーストフラグがON状態となった物標情報に対して今回処理において時間的な連続性を有する物標情報が導出された場合の処理を追加したものである。
第4の実施の形態のレーダ装置1の構成および処理は、第2及び第3の実施の形態とほぼ同様であるが、不要物除去処理の処理内容が一部異なる。以下、図16〜図18を用いて相違点を中心に説明する。
<5.処理フローチャート>
図16、図17、および、図18では、第4の実施の形態のゴーストピークの物標情報除去処理のフローチャートである。これらの処理フローチャートでは、上述の第3の実施の形態の処理フローチャート図14および図15に対して、第2の実施の形態で説明したステップS204のUP区間前半の特定ピーク信号が存在する(ステップS204がYes)の場合、以降の処理であるステップS211〜ステップS213の処理と、ステップS205のDOWN区間前半の特定ピーク信号が存在する(ステップS205がYes)の場合、以降の処理であるステップS214〜ステップS216の処理を追加したものである。
具体的には、図16に示すステップS304のUP区間前半の特定ピーク信号が存在する(ステップS204がYes)の場合、以降の処理でステップS211〜ステップS213と同様の処理であるステップS311〜ステップS313の処理が実施される。また、図18に示すステップS305のDOWN区間前半の特定ピーク信号が存在する(ステップS305がYes)の場合、以降の処理でステップS214〜ステップS216と同様の処理であるステップS314〜ステップS316の処理が実行される。これにより、選択物標情報を構成する選択ピークの周波数および信号レベルの情報からゴーストの物標情報か否かを判定できる。そして、複数回の連続する物標導出処理で更に判定することで、ゴーストの物標情報か否かをより正確に判定でき、ゴーストの物標情報をレーダ装置1の出力対象から確実に除外し、ゴーストではない出力すべき物標情報をレーダ装置1の出力対象とできる。
なお、図16のステップS201〜ステップS204およびステップS211〜ステップS213の処理は、第2の実施の形態で図10の処理フローチャートで説明した処理と同様の処理であり、図17のステップS205〜ステップS206、および、ステップS214〜ステップS216の処理は、第2の実施の形態で図11の処理フローチャートで説明した処理と同様の処理である。
<変形例>
以上、本発明の実施の形態について説明してきたが、この発明は上記実施の形態に限定されるものではなく様々な変形が可能である。以下では、このような変形例について説明する。なお、上記実施の形態で説明した形態、および、以下で説明する形態を含む全ての形態は、適宜に組み合わせ可能である。
上記実施の形態において、不要物除去処理は1周期目のUP区間前半(時刻t0〜t11)のFFTデータとDOWN区間前半(時刻t1〜t12)のFFTデータに対して処理を行うことを例に説明したが、不要物除去処理の対象の区間はこれ以外の区間のFFTデータに対して処理を行ってもよく、例えば、1周期目のUP区間後半(時刻t11〜t1)のFFTデータとDOWN区間後半(時刻t12〜t2)のFFTデータに対して処理を行ってもよい。また、2周期目の各区間の前半および後半のFFTデータや、さらに各区間の前半と後半とを併せた区間のFFTデータに対して処理を行ってもよい。
また、上記実施の形態において、ステップ114の不要物除去処理は、物標情報が導出された後に実施される処理として説明し、選択ピーク信号がゴーストピークの場合は、選択ピーク信号に対応する選択物標情報をレーダ装置1からの出力対象とはせずに除去する処理について説明した。これ以外にも例えば、ステップS102のFFT処理が行われた後で、今回の処理で物標情報が導出前に選択ピーク信号に対してゴーストピークか否かの判定を行い、ゴーストピークと判定された場合は、当該選択ピークを除去する処理を行うようにしてもよい。
また、上記実施の形態において、DC−DCコンバータのスイッチング周波数に対応するピーク信号P0の周波数をナイキスト周波数F2と同じ1023BINとして説明したが、スイッチング周波数が変われば、それに応じてピーク信号P0の周波数も変わるため、ピーク信号P0の周波数が1023BIN以外の周波数であってもよい。その場合、図9に示すピーク信号P0、強反射物のピーク信号P12、ナイキスト周波数F2、その折り返しの特定ピーク信号P2、ゴーストとなる選択ピーク信号P1の位置関係や周波数差が異なってくるが、同様の手法でゴースト判定を行なえばよい。この場合、ノイズのピーク信号P0と強反射物のピーク信号P12の折り返しの特定ピーク信号P2との差分周波数ΔFは選択ピーク信号P1の周波数Fp1と一致しないが、ΔFとFp1の関係が上記したゴーストとなる関係を有する場合に「選択ピーク信号の周波数相当離れた周波数に特定ピーク信号が存在する」ことに該当する。
また、上記第2の実施の形態において、選択ピーク信号の信号レベルの値と補正後の特定ピーク信号の信号レベルの値とが所定の関係を満たす場合の所定の関係とは、例えば、選択ピーク信号の信号レベルの値と補正後の特定ピーク信号の信号レベルの値との差が20dB以上であるとして説明したが、これ以外にも両方の信号レベルの値の比が所定比以上の関係にある場合や両方の信号レベルの値が所定倍以上の関係にある場合など他に両者の関係を特定できるものであれば、上記以外のものであってもよい。
また、上記の実施の形態において、レーダ装置1の角度方向推定はESPRITとして説明したが、これ以外にもDBF(Digital Beam Forming)、PRISM(Propagator method based on an Improved Spatial-smoothing Matrix)、および、MUSIC(Multiple Signal Classification)などのうちいずれか一のアルゴリズムを用いてもよい。
また、上記実施の形態において、レーダ装置1は、車両に搭載する以外の各種用途(例えば、飛行中の航空機および航行中の船舶の監視の少なくともいずれか1つ)に用いてもよい。
1・・・・・レーダ装置
10・・・・車両制御システム
11・・・・信号生成部
12・・・・発振器
13・・・・送信アンテナ
14・・・・受信アンテナ
15・・・・ミキサ
16・・・・LPF
17・・・・AD変換部
18・・・・信号処理部

Claims (8)

  1. 周波数変調される送信信号に係る送信波を射出し、前記送信波が物標において反射することによって到来する反射波を受信信号として受信し、前記受信信号から生成されるビート信号をFFT処理して抽出されたピーク信号から少なくとも前記物標の位置情報を含む物標情報を導出するレーダ装置であって、
    第1周波数に存在する前記ピーク信号の周波数から、複数の前記ピーク信号の中で選択された1つの選択ピーク信号の周波数相当離れた周波数に特定ピーク信号が存在するか否かを判定する判定手段と、
    前記特定ピーク信号が存在する場合に、前記選択ピーク信号に対応する前記物標情報を前記レーダ装置の出力対象から除外する除外手段と、
    を備えることを特徴とするレーダ装置。
  2. 請求項1に記載のレーダ装置であって、
    前記特定ピーク信号の周波数から所定周波数の第2周波数に対して折り返した周波数に応じて、前記特定ピーク信号の信号レベルの値を所定倍する補正手段をさらに備え、
    前記除外手段は、前記選択ピーク信号の信号レベルの値と補正後の前記特定ピーク信号の信号レベルの値とが所定の関係を満たす場合に、前記選択ピーク信号に対応する前記物標情報を前記レーダ装置の出力対象から除外すること、
    を特徴とするレーダ装置。
  3. 請求項1または2に記載のレーダ装置であって、
    前記レーダ装置の出力対象となる物標に対応するピーク信号の上限周波数までの周波数を含む周波数領域である第1領域と、前記上限周波数よりも高い周波数で前記レーダ装置の出力対象とはならない物標に対応するピーク信号の周波数を含む周波数領域である第2領域との前記ビート信号の信号レベルの値を有し、前記FFT処理により導出されるFFTデータを取得する取得手段をさらに備え、
    前記判定手段は、前記FFTデータを用いて前記特定ピーク信号の存在の有無を判定すること、
    を特徴とするレーダ装置。
  4. 請求項3に記載のレーダ装置であって、
    前記第1周波数は、前記第2領域の周波数であること、
    を特徴とするレーダ装置。
  5. 請求項3または4に記載のレーダ装置であって、
    前記送信波は、一の送信期間と他の送信期間とで異なるビームパターンで出力され、
    前記取得手段は、前記一の送信期間および前記他の送信期間に対応する複数の期間の前記第1領域のみの前記FFTデータと、前記一の送信期間および他の送信期間のいずれか一方の期間に対応する前記FFTデータとを取得すること、
    を特徴とするレーダ装置。
  6. 請求項5に記載のレーダ装置であって、
    前記取得手段は、前記一の送信期間および前記他の送信期間のいずれか一方の期間に対応する半周期分の前記FFTデータを取得すること、
    を特徴とするレーダ装置。
  7. 請求項1乃至6のいずれかに記載のレーダ装置であって、
    前記除外手段は、今回の処理を含む以降の所定回数の処理において、前回の処理で出力対象から除外された前記物標と同一の物標に対応する特定ピーク信号が存在しないと前記判定手段により判定された場合に、前記選択ピーク信号に対応する前記物標情報を前記レーダ装置の出力対象とすること、
    を特徴とするレーダ装置。
  8. 周波数変調される送信信号に係る送信波を射出し、前記送信波が物標において反射することによって到来する反射波を受信信号として受信し、前記受信信号から生成されるビート信号をFFT処理して抽出されたピーク信号から少なくとも前記物標の位置情報を含む物標情報を導出する信号処理方法であって、
    第1周波数に存在する前記ピーク信号の周波数から、複数の前記ピーク信号の中で選択された1つの選択ピーク信号の周波数相当離れた周波数に特定ピーク信号が存在するか否かを判定する工程と、
    前記特定ピーク信号が存在する場合に、前記選択ピーク信号に対応する前記物標情報を前記レーダ装置の出力対象から除外する工程と、
    を備えることを特徴とする信号処理方法。
JP2012259296A 2012-11-28 2012-11-28 レーダ装置、および、信号処理方法 Active JP6092596B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012259296A JP6092596B2 (ja) 2012-11-28 2012-11-28 レーダ装置、および、信号処理方法
US14/060,255 US9348016B2 (en) 2012-11-28 2013-10-22 Radar apparatus and signal processing method
DE102013221766.8A DE102013221766B4 (de) 2012-11-28 2013-10-25 Radareinrichtung und Signalverarbeitungsverfahren
CN201310529704.3A CN103852762B (zh) 2012-11-28 2013-10-31 雷达设备和信号处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012259296A JP6092596B2 (ja) 2012-11-28 2012-11-28 レーダ装置、および、信号処理方法

Publications (2)

Publication Number Publication Date
JP2014106120A true JP2014106120A (ja) 2014-06-09
JP6092596B2 JP6092596B2 (ja) 2017-03-08

Family

ID=50679170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012259296A Active JP6092596B2 (ja) 2012-11-28 2012-11-28 レーダ装置、および、信号処理方法

Country Status (4)

Country Link
US (1) US9348016B2 (ja)
JP (1) JP6092596B2 (ja)
CN (1) CN103852762B (ja)
DE (1) DE102013221766B4 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014109439A (ja) * 2012-11-30 2014-06-12 Denso Corp Fmcwレーダ装置
JP2016102787A (ja) * 2014-11-11 2016-06-02 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag レーダ信号処理方法およびデバイス
JP2016109678A (ja) * 2014-11-11 2016-06-20 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag レーダ信号を処理するための方法および装置
CN107076831A (zh) * 2014-09-29 2017-08-18 黑拉许克联合股份有限公司 雷达传感器
WO2018154710A1 (ja) * 2017-02-24 2018-08-30 三菱電機株式会社 レーダ信号処理装置及びレーダシステム
US10408920B2 (en) 2015-11-06 2019-09-10 Fujitsu Ten Limited Radar device, signal processing device and signal processing method for radar device
WO2020209344A1 (ja) * 2019-04-10 2020-10-15 株式会社デンソー レーダ装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6092596B2 (ja) * 2012-11-28 2017-03-08 富士通テン株式会社 レーダ装置、および、信号処理方法
JP2016070772A (ja) * 2014-09-30 2016-05-09 富士通テン株式会社 レーダ装置、車両制御システム、および、信号処理方法
JP6303964B2 (ja) * 2014-10-03 2018-04-04 株式会社デンソー レーダ装置
JP6358076B2 (ja) * 2014-12-24 2018-07-18 株式会社デンソー 方位誤差検出方法および装置、車載レーダ装置
EP3098623A1 (en) * 2015-05-25 2016-11-30 Autoliv Development AB A vehicle radar system
US10451723B2 (en) * 2016-12-20 2019-10-22 National Chung-Shan Institute Of Science & Technology Signal processing apparatus of a continuous-wave (CW) radar sensing system
JP7053982B2 (ja) * 2017-05-25 2022-04-13 ミツミ電機株式会社 ゴースト除去方法及びレーダ装置
JP6989766B2 (ja) * 2017-09-29 2022-01-12 ミツミ電機株式会社 レーダー装置及び物標検出方法
JP7002910B2 (ja) * 2017-10-20 2022-01-20 株式会社Soken 物体検知装置
JP7056212B2 (ja) * 2018-02-20 2022-04-19 株式会社デンソー 方位推定方法および装置
CN110376583B (zh) * 2018-09-30 2021-11-19 毫末智行科技有限公司 用于车辆传感器的数据融合方法及装置
CN109814114B (zh) * 2019-01-15 2021-12-24 北京百度网讯科技有限公司 一种超声波雷达阵列、障碍物检测方法及系统
EP3958016A1 (en) * 2020-08-20 2022-02-23 Zenuity AB Stationary object detection
JP2022120352A (ja) * 2021-02-05 2022-08-18 古野電気株式会社 レーダ信号処理装置、レーダ装置、レーダ信号処理方法およびレーダ信号処理プログラム
WO2022226905A1 (zh) * 2021-04-29 2022-11-03 深圳市速腾聚创科技有限公司 激光雷达的检测方法、装置、终端设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344560A (ja) * 1998-06-02 1999-12-14 Fujitsu Ten Ltd Fm−cwレーダの信号処理装置
JP2000338232A (ja) * 1999-06-01 2000-12-08 Fujitsu Ten Ltd Fm−cwミリ波レーダ装置内部の雑音周波数配分設定方法
JP2009264952A (ja) * 2008-04-25 2009-11-12 Denso Corp レーダシステム、電源装置の制御方法
JP2012026791A (ja) * 2010-07-21 2012-02-09 Honda Elesys Co Ltd レーダ装置、位置速度検出方法、及びプログラム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3460453B2 (ja) * 1995-12-11 2003-10-27 株式会社デンソー Fmcwレーダ装置
JP3783549B2 (ja) 2000-10-12 2006-06-07 三菱電機株式会社 レーダ信号処理装置
US6900754B2 (en) * 2001-03-15 2005-05-31 Fujitsu Tem Limited Signal processing method for use with scanning radar
JP2008145178A (ja) * 2006-12-07 2008-06-26 Denso Corp 調整方法及び方位検出装置及び電子機器
GB0710209D0 (en) * 2007-05-29 2007-07-04 Cambridge Consultants Radar system
ATE483173T1 (de) * 2008-02-22 2010-10-15 Thales Nederland Bv Verfahren zur messung der radialgeschwindigkeit eines ziels mit einem doppler-radar
JP4715871B2 (ja) * 2008-06-10 2011-07-06 株式会社デンソー 方位検出装置、レーダ装置
JP4843003B2 (ja) * 2008-08-05 2011-12-21 富士通テン株式会社 信号処理装置、レーダ装置、及び信号処理方法
JP2010038826A (ja) * 2008-08-07 2010-02-18 Fujitsu Ten Ltd 信号処理装置、及びレーダ装置
US8624775B2 (en) * 2009-04-23 2014-01-07 Mitsubishi Electric Corporation Radar apparatus and antenna device
JP5468304B2 (ja) * 2009-05-20 2014-04-09 株式会社東芝 レーダ装置
JP5256223B2 (ja) * 2010-01-27 2013-08-07 富士通テン株式会社 レーダシステム、及び方位検出方法
JP5576727B2 (ja) * 2010-06-30 2014-08-20 富士通テン株式会社 信号処理装置、レーダ装置、車両制御システム、および、信号処理方法
JP2012168157A (ja) * 2011-02-11 2012-09-06 National Univ Corp Shizuoka Univ 車載用のマルチビーム方式レーダ装置、マルチビーム方式レーダ方法およびマルチビーム方式レーダプログラム
JP5851752B2 (ja) * 2011-07-30 2016-02-03 富士通テン株式会社 信号処理装置、レーダ装置、および、信号処理方法
JP6092596B2 (ja) * 2012-11-28 2017-03-08 富士通テン株式会社 レーダ装置、および、信号処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344560A (ja) * 1998-06-02 1999-12-14 Fujitsu Ten Ltd Fm−cwレーダの信号処理装置
JP2000338232A (ja) * 1999-06-01 2000-12-08 Fujitsu Ten Ltd Fm−cwミリ波レーダ装置内部の雑音周波数配分設定方法
JP2009264952A (ja) * 2008-04-25 2009-11-12 Denso Corp レーダシステム、電源装置の制御方法
JP2012026791A (ja) * 2010-07-21 2012-02-09 Honda Elesys Co Ltd レーダ装置、位置速度検出方法、及びプログラム

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014109439A (ja) * 2012-11-30 2014-06-12 Denso Corp Fmcwレーダ装置
CN107076831A (zh) * 2014-09-29 2017-08-18 黑拉许克联合股份有限公司 雷达传感器
JP2016102787A (ja) * 2014-11-11 2016-06-02 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag レーダ信号処理方法およびデバイス
JP2016109678A (ja) * 2014-11-11 2016-06-20 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag レーダ信号を処理するための方法および装置
KR101766974B1 (ko) * 2014-11-11 2017-08-09 인피니언 테크놀로지스 아게 레이더 신호를 처리하는 방법 및 디바이스
KR101766973B1 (ko) * 2014-11-11 2017-08-23 인피니언 테크놀로지스 아게 레이더 신호 처리 방법 및 디바이스
US10416284B2 (en) 2014-11-11 2019-09-17 Infineon Technologies Ag Method and device for processing radar signals
US10222470B2 (en) 2014-11-11 2019-03-05 Infineon Technologies Ag Method and device for processing radar signals
US10408920B2 (en) 2015-11-06 2019-09-10 Fujitsu Ten Limited Radar device, signal processing device and signal processing method for radar device
JPWO2018154710A1 (ja) * 2017-02-24 2019-06-27 三菱電機株式会社 レーダ信号処理装置及びレーダシステム
WO2018154710A1 (ja) * 2017-02-24 2018-08-30 三菱電機株式会社 レーダ信号処理装置及びレーダシステム
US11156697B2 (en) * 2017-02-24 2021-10-26 Mitsubishi Electric Corporation Radar signal processing device and radar system
WO2020209344A1 (ja) * 2019-04-10 2020-10-15 株式会社デンソー レーダ装置
JP2020173163A (ja) * 2019-04-10 2020-10-22 株式会社デンソー レーダ装置
JP7196744B2 (ja) 2019-04-10 2022-12-27 株式会社デンソー レーダ装置

Also Published As

Publication number Publication date
US20140145871A1 (en) 2014-05-29
DE102013221766A1 (de) 2014-05-28
US9348016B2 (en) 2016-05-24
JP6092596B2 (ja) 2017-03-08
CN103852762B (zh) 2017-04-12
DE102013221766B4 (de) 2017-11-30
CN103852762A (zh) 2014-06-11

Similar Documents

Publication Publication Date Title
JP6092596B2 (ja) レーダ装置、および、信号処理方法
US9354299B2 (en) Radar apparatus and signal processing method
US9310470B2 (en) Radar apparatus and signal processing method
JP6294594B2 (ja) レーダ装置、及び、信号処理方法
JP6077226B2 (ja) レーダ装置、および、信号処理方法
JP6170704B2 (ja) レーダ装置、および、信号処理方法
US9372261B2 (en) Radar device and method of processing signal
US9658327B2 (en) Radar device and method of processing signal
US9348023B2 (en) Radar apparatus and signal processing method
US8638254B2 (en) Signal processing device, radar device, vehicle control system, signal processing method, and computer-readable medium
JP2015141109A (ja) レーダ装置、及び、信号処理方法
JP6265617B2 (ja) レーダ装置、及び、信号処理方法
JP6231803B2 (ja) レーダ装置、及び、信号処理方法
US20150234041A1 (en) Radar apparatus
US9157995B2 (en) Radar apparatus
JP6219652B2 (ja) レーダ装置、及び、信号処理方法
JP2007232747A (ja) 車載用レーダ装置
JP6857974B2 (ja) レーダ装置およびレーダ装置の制御方法
JP2018066702A (ja) レーダ装置および物標グループ化方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170209

R150 Certificate of patent or registration of utility model

Ref document number: 6092596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250