WO2022226905A1 - 激光雷达的检测方法、装置、终端设备及存储介质 - Google Patents

激光雷达的检测方法、装置、终端设备及存储介质 Download PDF

Info

Publication number
WO2022226905A1
WO2022226905A1 PCT/CN2021/091052 CN2021091052W WO2022226905A1 WO 2022226905 A1 WO2022226905 A1 WO 2022226905A1 CN 2021091052 W CN2021091052 W CN 2021091052W WO 2022226905 A1 WO2022226905 A1 WO 2022226905A1
Authority
WO
WIPO (PCT)
Prior art keywords
echo
peak point
amplitude
peak
sampling points
Prior art date
Application number
PCT/CN2021/091052
Other languages
English (en)
French (fr)
Inventor
皮兴俊
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to PCT/CN2021/091052 priority Critical patent/WO2022226905A1/zh
Priority to CN202180095239.XA priority patent/CN117157553A/zh
Publication of WO2022226905A1 publication Critical patent/WO2022226905A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection

Definitions

  • the present application belongs to the technical field of lidar detection, and in particular, relates to a detection method, device, terminal device and storage medium for lidar.
  • Lidar is a rangefinder that uses laser transmission and reception processing.
  • the structure of a typical lidar is shown in Figure 1.
  • the control and processing unit is used to control the entire system to work according to a certain transmission and reception sequence, and at the same time process the received data to obtain the distance result of the target;
  • the transmission unit is usually a plurality of semiconductor lasers
  • the array driven by voltage, emits laser light according to a certain sequence.
  • the returned echo passes through the receiving lens to the receiving photoelectric sensor, and is converted into an electrical signal, which is amplified and converted into a digital signal in the receiving unit.
  • the distance result is formed after digitization.
  • the three-dimensional distance information of the target can be obtained through lidar.
  • different electro-optical sensors of lidar emit laser beams of different vertical angles in the air, and at the same time, the photoelectric sensor receives the echoes returned by the target, converts them into weak electrical signals, and amplifies the electrical signals after analog-to-digital conversion. , calculates the distance to the target in the numerical domain.
  • the entire transmitting unit and receiving unit including the receiving lens and the receiving photoelectric sensor
  • the target distances of adjacent angles are obtained, and the target distances of all different horizontal angles are collected. , to form the three-dimensional distance information of the space target, and then the shape, size and type of the target are determined through further perceptual processing.
  • lidar measures low-reflection objects by emitting larger or even maximum optical energy, which is prone to measurement errors such as misdetecting objects or large errors in distance measurement data.
  • the embodiments of the present application provide a detection method, device, terminal device and storage medium for a lidar, which can detect the presence of internal absorption of echoes according to echo data, which is beneficial to avoid false detection of objects and ensure the accuracy of distance measurement data, and can Avoid LiDAR measurement errors.
  • embodiments of the present application provide a detection method for a lidar, the method comprising:
  • the echo data determine the peak point of the echo and the position and amplitude of the peak point
  • determining that the echo has internal absorption including:
  • determining that the echo has internal absorption when the position and amplitude of the peak point satisfy a preset condition further comprising:
  • N discrete sampling points are taken on both sides of the peak point, and N is a positive integer;
  • the pulse width meets the third condition and the amplitude of the peak point meets the fourth condition, it is determined that the echo has internal absorption.
  • the determining the pulse width of the waveform corresponding to the peak point and the 2N discrete sampling points in common includes: determining, among the 2N discrete sampling points, the amplitude The number of the discrete sample points whose value is greater than the specified value, the number representing the pulse width of the waveform.
  • the determining, among the 2N discrete sampling points, the number of the discrete sampling points whose magnitude is greater than a specified value includes:
  • An additive sum of each of the numerical values is determined, the additive sum representing the number of the discrete sample points having a magnitude greater than a specified value.
  • the determining, among the 2N discrete sampling points, the number of the discrete sampling points whose amplitude is greater than a specified value includes: changing the amplitude of the peak point The product with the specified proportion, which is between 0% and 100%, is determined as the specified value.
  • an embodiment of the present application provides a detection device for a lidar, the device comprising:
  • an echo data acquisition unit for acquiring echo data
  • an echo data processing unit configured to: determine the peak point of the echo and the position and amplitude of the peak point according to the echo data;
  • a systemic absorption determination unit configured to determine that the echo has systemic absorption when the position and amplitude of the peak point satisfy a preset condition.
  • embodiments of the present application provide a terminal device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, when the processor executes the computer program
  • a terminal device including a memory, a processor, and a computer program stored in the memory and executable on the processor, when the processor executes the computer program
  • embodiments of the present application provide a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements any one of the above-mentioned first aspect Methods.
  • the embodiments of the present application provide a computer program product that, when the computer program product runs on a terminal device, enables the terminal device to execute the method described in any one of the above-mentioned first aspects.
  • the peak point of the echo and the position and amplitude of the peak point are determined according to the acquired echo data, and when the position and amplitude of the aforementioned peak point meet the preset conditions, it is determined that the echo exists within the The internal absorption of the echo is the cause of the measurement error of the lidar.
  • the embodiment of the present application detects the internal absorption of the echo according to the echo data, which is beneficial to avoid the false detection of the object and ensure the accuracy of the distance measurement data. Avoid LiDAR measurement errors.
  • the position of the peak point take N discrete sampling points on both sides of the peak point, where N is a positive integer, and then determine the pulse width of the waveform corresponding to the peak point and the 2N discrete sampling points.
  • the third condition and the magnitude of the amplitude of the peak point conforms to the fourth condition, it is determined that the echo has internal absorption, which can accurately determine the internal absorption and has wide applicability.
  • Figure 1 is a schematic diagram of the structure of the lidar
  • Figure 2 is a schematic diagram of the working state of the lidar
  • FIG. 3 is a waveform diagram of an echo provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a detection method for a lidar provided by an embodiment of the present application
  • step S3 of the detection method for a lidar provided by an embodiment of the present application
  • FIG. 7 is a schematic flowchart of a modification of step S3 of the detection method for a lidar provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a detection device for a lidar provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a systemic suction determination unit provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a modification of a systemic suction determination unit provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a sampling point processing unit provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a modification of a detection device for a lidar provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the term “if” may be contextually interpreted as “when” or “once” or “in response to determining” or “in response to detecting “.
  • the phrases “if it is determined” or “if the [described condition or event] is detected” may be interpreted, depending on the context, to mean “once it is determined” or “in response to the determination” or “once the [described condition or event] is detected. ]” or “in response to detection of the [described condition or event]”.
  • references in this specification to "one embodiment” or “some embodiments” and the like mean that a particular feature, structure or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • FIG. 2 is a schematic diagram of the working state of the lidar. As shown in Fig. 2, under the extremely large emitted light energy, the optical echo reflected from the inner and outer surfaces of the lidar cover back to the receiving lens is called A, the echo reflected from the target is called B, and the echo A is not The unhelpful components required, and the lidar cannot avoid echo A under the large emitted light energy.
  • this embodiment provides a detection method for a lidar, which is used to detect whether there is internal absorption of echoes.
  • the detection method provided in this embodiment can be applied to terminal devices that use this optical principle for distance detection, such as lidar, wearable devices, vehicle-mounted devices, augmented reality (AR)/virtual reality (VR) devices, and so on.
  • this embodiment does not impose any restrictions on the specific type of the terminal device.
  • the detection method of the laser radar provided in this embodiment is specifically a method for detecting the internal absorption of a point cloud in the middle and short distances of the laser radar.
  • FIG. 5 shows a schematic flowchart of a detection method for a lidar provided by this embodiment, and the method includes steps S1 to S3. As an example and not a limitation, the method can be applied to the above-mentioned terminal device.
  • Step S1 acquiring echo data.
  • the lidar emits laser light to the target, and the echo returned from the target passes through the receiving lens to the receiving photoelectric sensor, and is converted into an electrical signal, which is amplified and converted into a digital signal in the receiving unit, and the echo data can be obtained.
  • the echo data is corresponding to the echo.
  • the echo data are sampled discrete sampling points f(n).
  • the echo data includes the position and amplitude of each discrete sampling point. Since the echoes are returned to the lidar in time order, the position of the discrete sampling point refers to the position of the discrete sampling point on the time axis (X axis).
  • Step S2 Determine the peak point of the echo and the position and amplitude of the peak point according to the echo data.
  • the position of the peak point of the echo After acquiring the echo data, find the position of the peak point of the echo. Select a discrete sampling point from the discrete sampling points f(n), in the order of time is not smaller than the amplitude of the next discrete sampling point), the current discrete sampling point is considered to be a peak point of the echo. In this way, the peak point of the echo can be determined, which can be one peak point or multiple peak points. After the peak point is determined, the position and amplitude of the peak point can be obtained.
  • Step S3 When the position and amplitude of the peak point meet the preset conditions, it is determined that the echo has internal absorption.
  • the peak point After the peak point is obtained, it can be determined whether the echo corresponding to the target has internal absorption according to the position and amplitude of the peak point. Specifically, when the position and amplitude of the peak point meet the preset conditions, it is determined that the echo has internal absorption; if the position and amplitude of the peak point do not meet the preset conditions, it is determined that the echo does not have internal absorption.
  • FIG. 6 is a schematic flowchart of step S3 of the lidar detection method provided by an embodiment of the present application
  • step S3 the position and amplitude of the peak point meet the preset If conditions are met, it is determined that the echo has internal absorption
  • Step S31A Determine the distance difference between two adjacent peak points according to the positions of the peak points.
  • Step S32A Determine the relative magnitudes of the amplitudes of two adjacent peak points.
  • the magnitudes (or peaks) corresponding to the aforementioned two adjacent peak points are respectively AmpA and AmpB, namely:
  • AmpA f(DisA)
  • AmpB f(DisB) .
  • AmpA is the amplitude corresponding to the peak point of echo A (also referred to as the peak value of echo A), and AmpB is the amplitude corresponding to the peak point of echo B (also referred to as the peak value of echo B).
  • the relative magnitudes of the output amplitudes of the two peak points can be calculated.
  • the aforementioned relative size may be the ratio of the amplitude corresponding to the peak point of echo B to the amplitude corresponding to the peak point of echo A, or it may be the ratio of the amplitude corresponding to the peak point of echo A to the amplitude of echo B.
  • the ratio of the amplitudes corresponding to the peak points of then, the aforementioned ratio is the relative magnitude of the amplitudes of the aforementioned two adjacent peak points.
  • Step S33A If the distance difference meets the first condition and the relative size meets the second condition, it is determined that the echo has internal absorption.
  • the distance difference DisDif between two adjacent peak points After the distance difference DisDif between two adjacent peak points is obtained, it is determined whether the distance difference DisDif meets the first condition. In this embodiment, it is determined whether the distance difference DisDif is smaller than the set distance threshold ThreDisDif. The first condition is met if the distance difference DisDif is less than the distance threshold ThreDisDif, otherwise it is determined that the first condition is not met.
  • the specific judgment logic is as follows:
  • the aforementioned relative size is the ratio of the amplitude (AmpB) corresponding to the peak point of echo B to the amplitude (AmpA) corresponding to the peak point of echo A. From the perspective of the order of receiving echoes, echo A is the echo with a short distance, and echo B is an echo with a long distance. Therefore, the aforementioned relative magnitude is that the peak value of the echo B that is far away is closer to the distance. The ratio obtained from the peak value of echo A.
  • Determining whether the aforementioned relative magnitude (ratio) meets the second condition is to determine whether the multiple of the peak value of the echo B that is far away and the peak value of the echo A that is closer meets the second condition.
  • the second condition is met: the aforementioned ratio (multiple) is less than the preset value (also called the preset multiple) RatioThre ; the second condition is not met: the aforementioned ratio (multiple) is greater than or equal to the preset value; the specific judgment logic is as follows:
  • a typical value of the aforementioned preset value is 8. The smaller the preset value, the smaller the probability that the judgment result is a suction point; the larger the preset value, the higher the probability that the judgment result is a suction point.
  • FIG. 7 A schematic flowchart of a variant of step S3 of the lidar detection method), the aforementioned step S3 (when the position and amplitude of the peak point meet the preset conditions, determine that the echo has internal absorption) includes steps S31B to S33B.
  • Step S31B according to the position of the peak point, take N discrete sampling points on both sides of the peak point, where N is a positive integer.
  • N time-continuous discrete sampling points are taken respectively, which are denoted as DataPa, where N is a positive integer, and the size of N is determined by the front-end bandwidth of the current lidar hardware. Decide. When the aforementioned bandwidth is larger, the value of N is smaller; when the aforementioned bandwidth is smaller, the value of N is larger, and the typical value of N is between 4 and 6.
  • the echo data is the sampled discrete sampling points f(n), and these discrete sampling points are continuous in time, then N points can be taken on the left and right of the peak point. These N points continuous in time. In this way, 2N discrete sampling points are obtained.
  • Step S32B Determine the pulse width of the waveform corresponding to the peak point and the 2N discrete sampling points.
  • the aforementioned peak point and the 2N discrete sampling points correspond to the same waveform, and the pulse width of the waveform can be determined. Specifically, among the 2N discrete sampling points, the number of discrete sampling points whose amplitude is greater than the specified value may be determined, and the aforementioned number represents the pulse width of the waveform, which specifically includes steps S321B to S323B.
  • Step S321B Determine the difference between the amplitude values of the 2N discrete sampling points and the specified value respectively.
  • the specified value may be an empirical value obtained according to multiple measurement results, and the empirical value may be a fixed value.
  • Step S322B digitize the symbols of each difference to obtain a value corresponding to each symbol.
  • the signs of all numbers in the difference value DataSuR are calculated. For example, if a certain difference is positive or 0, it is marked as 0; if a certain difference is negative, it is marked as 1. The value corresponding to the sign of the difference (sign result) is recorded as DataSuRSign.
  • Step S323B Determine the sum of the aforementioned numerical values, and the added sum represents the number of discrete sampling points whose amplitude is greater than the specified value.
  • SignSum is the sum of addition. Since the difference value is positive or 0 is marked as 0, and the difference value is negative as 1, then the aforementioned summation and SignSum represent the number of discrete sampling points whose amplitude is greater than the specified value, which can measure the pulse width of the echo.
  • the foregoing content is the pulse width value of the echo calculated according to the ratio of the peak values.
  • the foregoing pulse width may be determined by performing image recognition on the waveform corresponding to the echo data.
  • Step S33B If the pulse width meets the third condition and the magnitude of the amplitude of the peak point meets the fourth condition, it is determined that the echo has internal absorption.
  • the pulse width After determining the pulse width of the waveform corresponding to the peak point and the 2N discrete sampling points, it can be determined whether the pulse width meets the third condition.
  • the pulse width satisfies the third condition that the sum of the aforementioned additions SignSum is greater than the pulse width threshold, otherwise, the pulse width does not meet the third condition.
  • the magnitude of the peak point amplitude satisfies the fourth condition that the peak point amplitude is less than or equal to the amplitude threshold AmpThre; the peak point amplitude does not meet the fourth condition is that the peak point amplitude is greater than the amplitude threshold Threshold AmpThre.
  • the excluded echo is a saturated echo
  • the pulse width of the echo is too large relative to the peak value
  • it is considered that the continuous wave is too close to form a systemic absorption that is, the aforementioned second type of systemic absorption.
  • the peak point of the echo and the position and amplitude of the peak point are determined.
  • the position and amplitude of the aforementioned peak point meet the preset conditions, it is determined that the echo has internal absorption; the echo
  • the existence of internal suction is the cause of the measurement error of the lidar.
  • the above embodiment detects that the echo has internal suction according to the echo data, which is beneficial to avoid false detection of objects and ensure the accuracy of the distance measurement data, and can avoid the measurement error of the lidar. .
  • the position of the peak point take N discrete sampling points on both sides of the peak point, where N is a positive integer, and then determine the pulse width of the waveform corresponding to the peak point and the 2N discrete sampling points.
  • the third condition and the magnitude of the amplitude of the peak point conforms to the fourth condition, it is determined that the echo has internal absorption, which can accurately determine the internal absorption and has wide applicability.
  • the above embodiment provides a point cloud internal suction identification method, which is a stable and reliable detection method and can detect in time. Whether the distance detection result of the current echo is internal suction is beneficial to avoid the drawbacks of internal suction of close-range point clouds.
  • FIG. 8 shows a structural block diagram of the detection apparatus of the lidar provided by the embodiments of the present application. For convenience of description, only the parts related to the embodiments of the present application are shown.
  • the apparatus includes an echo data acquisition unit 1 , an echo data processing unit 2 and an internal suction determination unit 3 .
  • the echo data acquisition unit 1 is used for acquiring echo data.
  • the echo data processing unit 2 is configured to: determine the peak point of the echo and the position and amplitude of the peak point according to the echo data.
  • the systemic absorption determination unit 3 is configured to determine that the echo has systemic absorption when the position and amplitude of the peak point meet the preset conditions.
  • FIG. 9 is a schematic structural diagram of a systemic suction determination unit provided by an embodiment of the present application.
  • the systemic suction determination unit 3 includes a distance difference determination unit 31A, a relative size determination unit 32A and a first determination unit 33A.
  • the distance difference determining unit 31A is configured to: determine the distance difference between two adjacent peak points according to the positions of the peak points.
  • the relative size determination unit 32A is used to determine the relative size of the amplitudes of two adjacent peak points.
  • the first determining unit 33A is configured to: if the distance difference meets the first condition and the relative size meets the second condition, determine that the echo has internal absorption.
  • FIG. 10 is a schematic structural diagram of a modification of the systemic determination unit provided by an embodiment of the present application.
  • the systemic determination unit 3 includes a sampling point determination unit 31B and a sampling point processing unit 32B and the second decision unit 33B.
  • the sampling point determination unit 31B is configured to: according to the position of the peak point, take N discrete sampling points on both sides of the peak point, where N is a positive integer.
  • the sampling point processing unit 32B is configured to: determine the pulse width of the waveform corresponding to the peak point and the 2N discrete sampling points.
  • the second decision unit 33B is configured to: if the pulse width meets the third condition and the magnitude of the amplitude of the peak point meets the fourth condition, determine that the echo has internal absorption.
  • FIG. 11 is a schematic structural diagram of a sampling point processing unit provided by an embodiment of the present application.
  • the sampling point processing unit 32B includes a difference value determination unit 321B, a numerical unit 322B, and an addition unit 323B .
  • the difference value determining unit 321B is configured to determine the difference values between the amplitude values of the 2N discrete sampling points and the specified value respectively.
  • the digitizing unit 322B is configured to: digitize the symbols of each difference to obtain a value corresponding to each symbol.
  • the adding unit 323B is used to determine the added sum of the aforementioned numerical values.
  • FIG. 12 is a schematic structural diagram of a modification of a detection device for a lidar provided by an embodiment of the present application.
  • the aforementioned echo data processing unit 2 includes a peak detector 21, a peak position and an amplitude latch unit 22. Based on this, the judgment of the aforementioned first systemic suction will be explained.
  • the peak detector 21 determines whether the current sample point is an echo peak: if the current sample point is larger than the previous sample point and not smaller than the latter sample point, the current point is considered to be a peak point of the echo. After it is determined that the current sample point is the echo peak point, the peak value and the peak position of a plurality of peak points are sequentially stored in the peak position and amplitude latch unit 22 .
  • the distance difference (also referred to as the position difference) between adjacent peak points is less than the set threshold, and the difference between the peak values of adjacent peak points is not large, and the difference threshold relationship is satisfied, it is considered that the current The echo at the peak point of , is the suction echo type.
  • the sampling point determination unit 31B and the sampling point processing unit 32B are the pulse width detector 100 , according to which the second type of systemic suction judgment will be described. All the echo data are sequentially sent to the pulse width detector 100, and the number of samples in the echo data that is larger than a certain percentage of the peak value is calculated. In the second decision unit 33B, if the number of samples larger than a certain percentage of the peak value is greater than the set threshold, while the peak value is less than the set threshold, the echo is considered to be the second type of systemic absorption.
  • the judgment result of any one of the first judgment unit 33A and the second judgment unit 33B is systemic suction, it is considered to be the echo type of internal suction, and the judgment results are combined to output the systemic suction mark (such as the aforementioned first mark and second mark).
  • the embodiment of the present application can provide a reliable reference for an autonomous vehicle or a low-speed robot by judging whether the short-range echo is internal suction, and can avoid sudden braking and stop due to internal suction.
  • FIG. 13 is a schematic structural diagram of a terminal device according to an embodiment of the application.
  • the terminal device 13 of this embodiment includes: at least one processor 130 (only one is shown in FIG. 13 ), a processor, a memory 131 , and a processor 131 stored in the memory 131 and operable on the at least one processor 130
  • the computer program 132 when the processor 130 executes the computer program 132, the steps in any of the foregoing method embodiments are implemented.
  • the terminal device 13 may be a computing device such as a desktop computer, a notebook, a palmtop computer, and a cloud server.
  • the terminal device may include, but is not limited to, the processor 130 and the memory 131 .
  • FIG. 13 is only an example of a terminal device, and does not constitute a limitation to the terminal device. It may include more or less components than the one shown in the figure, or combine some components, or different components, such as It can also include input and output devices, network access devices, buses, and the like.
  • the processor 130 may be a central processing unit (Central Processing Unit, CPU), and the processor 130 may also be other general-purpose processors, digital signal processors (Digital Signal Processors) Processor, DSP), application-specific integrated circuits (Application Specific Integrated Circuit, ASIC), off-the-shelf Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 131 may be an internal storage unit of the terminal device 13 in some embodiments, such as a hard disk or a memory of the terminal device. In other embodiments, the memory 131 may also be an external storage device of the terminal device, such as a plug-in hard disk equipped on the terminal device, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, flash card (Flash Card), etc. Further, the memory 131 may also include both an internal storage unit of the terminal device and an external storage device. The memory 131 is used to store an operating system, an application program, a boot loader (Boot Loader), data, and other programs, such as program codes of computer programs, and the like. The memory 131 may also be used to temporarily store data that has been output or will be output.
  • a boot loader Boot Loader
  • the computer program 132 may be divided into one or more modules/units, and the one or more modules/units are stored in the memory 131 and executed by the processor 130 to complete the present application.
  • One or more modules/units may be a series of computer program instruction segments capable of accomplishing specific functions, and the instruction segments are used to describe the execution process of the computer program 132 in the terminal device 13 .
  • Module completion means dividing the internal structure of the device into different functional units or modules to complete all or part of the functions described above.
  • Each functional unit and module in the embodiment may be integrated in one processing unit, or each unit may exist physically alone, or two or more units may be integrated in one unit, and the above-mentioned integrated units may adopt hardware. It can also be realized in the form of software functional units.
  • the specific names of the functional units and modules are only for the convenience of distinguishing from each other, and are not used to limit the protection scope of the present application. For the specific working processes of the units and modules in the above-mentioned system, reference may be made to the corresponding processes in the foregoing method embodiments, which will not be repeated here.
  • the aforementioned integrated units are implemented in the form of software functional units and sold or used as independent products, they may be stored in a computer-readable storage medium.
  • this application realizes all or part of the processes in the methods of the above embodiments, which can be completed by instructing the relevant hardware through a computer program, and the computer program can be stored in a computer-readable storage medium; the computer program is processed when the When the device is executed, the steps of the foregoing method embodiments may be implemented.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate forms, and the like.
  • the computer-readable medium includes: any entity or device capable of carrying computer program codes to the device/terminal device, recording medium, computer memory, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory) Memory), electrical carrier signals, telecommunication signals, and software distribution media.
  • ROM read-only memory
  • RAM random access memory
  • electrical carrier signals telecommunication signals
  • software distribution media For example, U disk, mobile hard disk, disk or CD, etc.
  • computer readable media may not be electrical carrier signals and telecommunications signals.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the steps in the foregoing method embodiments can be implemented.
  • the embodiments of the present application provide a computer program product, when the computer program product is run on a terminal device such as a lidar, the lidar can implement the steps in each of the foregoing method embodiments.
  • the disclosed apparatus/device and method may be implemented in other manners.
  • the apparatus/equipment embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the aforementioned units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达的检测方法、装置、终端设备及存储介质,适用于激光雷达探测技术领域。该方法包括:获取回波数据(S1);根据回波数据,确定回波的峰值点以及峰值点的位置和幅值(S2);在峰值点的位置和幅值满足预设条件时,判定回波存在内吸(S3)。该方法能根据回波数据检测出回波存在内吸,有利于避免误测物体以及保证距离测量数据的准确性,能避免激光雷达的测量失误。

Description

激光雷达的检测方法、装置、终端设备及存储介质 技术领域
本申请属于激光雷达探测技术领域,尤其涉及一种激光雷达的检测方法、装置、终端设备及存储介质。
背景技术
激光雷达是一种利用激光发收处理的测距仪。典型的激光雷达的结构如图1所示,控制及处理单元用于控制整个系统按照一定的发射接收时序来工作,同时对接收的数据处理得到目标的距离结果;发射单元通常是多个半导体激光器阵列,在电压的驱动下按照一定的时序发射激光,当发射方向有目标时,返回的回波经接收镜头到接收光电传感器,转化为电信号,在接收单元放大转化为数字信号,经过后续的数字化处理后形成距离结果。
通过激光雷达可以得到目标的三维距离信息。具体而言,激光雷达的不同的电光传感器在空中发射不同垂直角度的激光束,同时光电传感器接收到目标返回来的回波,转化为微弱的电信号,将该电信号放大后经模数变换,在数字域计算目标的距离。当激光雷达的电机旋转到下一角度,整个发射单元和接收单元(包括接收镜头和接收光电传感器)再次同样的重复动作,处理后得到相邻角度的目标距离,收集所有不同水平角度的目标距离,形成空间目标的三维距离信息,后续通过进一步的感知处理来确定目标的形状、大小以及类型。
对于低反(低反射率)物体,整个系统需要发射更大甚至最大的光学能量,使得低反物体的反射回波大到足够被检测到。但是,在实际应用中,激光雷达通过发射更大甚至最大的光学能量来测量低反物体,容易出现误测物体或者距离测量数据有较大误差之类的测量失误。
技术问题
本申请的实施例提供一种激光雷达的检测方法、装置、终端设备及存储介质,根据回波数据检测出回波存在内吸,有利于避免误测物体以及保证距离测量数据的准确性,能避免激光雷达的测量失误。
技术解决方案
第一方面,本申请的实施例提供一种激光雷达的检测方法,所述方法包括:
获取回波数据;
根据所述回波数据,确定所述回波的峰值点以及所述峰值点的位置和幅值;
在所述峰值点的位置和幅值满足预设条件时,判定所述回波存在内吸。
在第一方面的一种可能的实现方式中,所述在所述峰值点的位置和幅值满足预设条件时,判定所述回波存在内吸,包括:
根据所述峰值点的位置,确定两个相邻的所述峰值点之间的距离差;
确定两个相邻的所述峰值点的幅值的相对大小;
若所述距离差符合第一条件且所述相对大小符合第二条件,则判定所述回波存在内吸。
在第一方面的一种可能的实现方式中,所述在所述峰值点的位置和幅值满足预设条件时,判定所述回波存在内吸,还包括:
根据所述峰值点的位置,在所述峰值点的两侧各取N个离散采样点,N为正整数;
确定所述峰值点和2N个所述离散采样点共同对应的波形的脉宽;
若所述脉宽符合第三条件且所述峰值点的幅值的大小符合第四条件,则判定所述回波存在内吸。
在第一方面的一种可能的实现方式中,所述确定所述峰值点和2N个所述离散采样点共同对应的波形的脉宽,包括:确定在2N个所述离散采样点中,幅值大于指定值的所述离散采样点的数量,所述数量表示所述波形的脉宽。
在第一方面的一种可能的实现方式中,所述确定在2N个所述离散采样点中,幅值大于指定值的所述离散采样点的数量,包括:
确定2N个所述离散采样点的幅值分别与指定值的差值;
将各个所述差值的符号数值化,得到各个所述符号对应的数值;
确定各个所述数值的相加之和,所述相加之和表示幅值大于指定值的所述离散采样点的数量。
在第一方面的一种可能的实现方式中,所述确定在2N个所述离散采样点中,幅值大于指定值的所述离散采样点的数量,包括:将所述峰值点的幅值与指定比例的积确定为所述指定值,所述指定比例位于0%到100%之间。
在第一方面的一种可能的实现方式中,所述根据所述峰值点的位置,在所述峰值点的两侧各取N个离散采样点,包括:按照时间前后顺序,在所述峰值点的前面和后面各取N个时间连续的离散采样点。
第二方面,本申请的实施例提供一种激光雷达的检测装置,所述装置包括:
回波数据获取单元,用于获取回波数据;
回波数据处理单元,用于:根据所述回波数据,确定所述回波的峰值点以及所述峰值点的位置和幅值;
内吸判定单元,用于在所述峰值点的位置和幅值满足预设条件时,判定所述回波存在内吸。
第三方面,本申请的实施例提供一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述第一方面中任一项所述的方法。
第四方面,本申请的实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述第一方面中任一项所述的方法。
第五方面,本申请的实施例提供一种计算机程序产品,当计算机程序产品在终端设备上运行时,使得终端设备执行上述第一方面中任一项所述的方法。
有益效果
本申请的实施例与现有技术相比存在的有益效果是:
在本申请的实施例中,根据获取的回波数据,确定回波的峰值点以及峰值点的位置和幅值,在前述峰值点的位置和幅值满足预设条件时,判定回波存在内吸;回波存在内吸是造成激光雷达出现测量失误的原因,本申请的实施例根据回波数据检测出回波存在内吸,有利于避免误测物体以及保证距离测量数据的准确性,能避免激光雷达的测量失误。
本申请的实施例的一些可能的实现方式具有如下有益效果:
根据峰值点的位置,在峰值点的两侧各取N个离散采样点,其中,N为正整数,然后确定峰值点和2N个离散采样点共同对应的波形的脉宽,若前述脉宽符合第三条件且峰值点的幅值的大小符合第四条件,则判定回波存在内吸,这样能准确判定内吸且适用性广。
附图说明
为了更清楚地说明本申请的实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是激光雷达的结构示意图;
图2是激光雷达的工作状态的示意图;
图3是本申请一实施例提供的一种回波的波形图;
图4是本申请一实施例提供的另一种回波的波形图;
图5是本申请一实施例提供的激光雷达的检测方法的流程示意图;
图6是本申请一实施例提供的激光雷达的检测方法的步骤S3的流程示意图;
图7是本申请一实施例提供的激光雷达的检测方法的步骤S3的一种变型方式的流程示意图;
图8是本申请一实施例提供的激光雷达的检测装置的结构示意图;
图9是本申请一实施例提供的内吸判定单元的结构示意图;
图10是本申请一实施例提供的内吸判定单元的一种变型方式的结构示意图;
图11是本申请一实施例提供的采样点处理单元的结构示意图;
图12是本申请一实施例提供的激光雷达的检测装置的一种变型方式的结构示意图;
图13是本申请一实施例提供的终端设备的结构示意图。
本发明的实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图1至12及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请的实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
应当理解,当在本申请说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本申请说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
激光雷达在对低反物体进行测量时,需要发射更大甚至最大的光学能量,使得低反物体的反射回波大到足够被检测到。如果发射光能量足够大,经过激光雷达的外罩时会有明显的反射能量。图2是激光雷达的工作状态的示意图。如图2所示,在极大的发射光能量下,激光雷达的外罩的内外表面反射回接收镜头的光学回波称为A,从目标反射回的回波称为B,回波A是不需要的无益成分,而激光雷达在大的发射光能量下又无法避免回波A。
回波A和回波B的大小以及距离关系如图3和图4:在图3中,回波A和回波B虽然比较近,但其峰值可区分;在图4中,由于回波B的距离太近,回波A和回波B的峰值不可区分。前述两种情况,都会影响到回波B的真实距离计算,特别是峰值不可区分的情况,由于整体重心前移,使得计算出的B的回波距离也更靠前,即造成点云内吸。对于使用激光雷达的自动驾驶车辆或机器人来说,会判定更近的距离有障碍,从而频繁刹车或停止前进。
为此,本实施例提供一种激光雷达的检测方法,用于检测回波的是否存在内吸。本实施例提供的检测方法可以应用于激光雷达、可穿戴设备、车载设备、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备等利用本光学原理进行距离探测的终端设备上,本实施例对终端设备的具体类型不作任何限制。
本实施例提供的激光雷达的检测方法具体为一种检测激光雷达中近距离点云内吸方法。图5示出本实施例提供的激光雷达的检测方法的示意性流程图,该方法包括步骤S1至步骤S3。作为示例而非限定,该方法可以应用于上述终端设备中。
步骤S1、获取回波数据。
激光雷达向目标发射激光,从目标返回的回波经接收镜头到接收光电传感器,转化为电信号,在接收单元放大转化为数字信号,能得到回波数据。回波数据是与回波对应的。
在本实施例中,回波数据是经采样后的离散采样点f(n)。回波数据中包括每个离散采样点的位置和幅值。由于回波是按时间顺序返回到激光雷达的,离散采样点的位置是指离散采样点在时间轴(X轴)上的位置。
步骤S2、根据回波数据,确定回波的峰值点以及峰值点的位置和幅值。
在获取到回波数据之后,查找回波的峰值点位置。从离散采样点f(n)中选取一个离散采样点,按时间前后顺序,如果该离散采样点的幅值大于前一个离散采样点的幅值且大于后一个离散采样点的幅值(或者说不比后一个离散采样点的幅值小),则认为当前离散采样点为回波的一个峰值点。如此,可确定回波的峰值点,可以是确定一个峰值点或者多个峰值点。确定峰值点之后,就可以得到峰值点的位置和幅值。
步骤S3、在峰值点的位置和幅值满足预设条件时,判定回波存在内吸。
得到峰值点之后,根据峰值点的位置和幅值,可以判定目标对应的回波是否存在内吸。具体是在峰值点的位置和幅值满足预设条件时,判定回波存在内吸;如果峰值点的位置和幅值不满足预设条件,则判定回波不存在内吸。
对于前述两种内吸情况中的第一种情况,虽然相邻回波(回波A和回波B)靠得近,但回波A的峰值和回波B的峰值仍然可以被识别,如此,在一些实施例中,如图6所示(图6是本申请一实施例提供的激光雷达的检测方法的步骤S3的流程示意图),步骤S3(在峰值点的位置和幅值满足预设条件时,判定回波存在内吸)包括步骤S31A至步骤S33A。
步骤S31A、根据峰值点的位置,确定两个相邻的峰值点之间的距离差。
假设相邻的两个峰值点(回波A的峰值点和回波B的峰值点)的位置分别为DisA和DisB,计算相邻的两个峰值点之间的距离差DisDif,即DisDif = DisB - DisA。如此,便可得到两个相邻的峰值点之间的距离差DisDif。
步骤S32A、确定两个相邻的峰值点的幅值的相对大小。
前述相邻的两个峰值点对应的幅值(或者说峰值)大小分别为AmpA和AmpB,即:
AmpA = f(DisA),AmpB = f(DisB)
AmpA为回波A的峰值点对应的幅值(也可称为回波A的峰值),AmpB为回波B的峰值点对应的幅值(也可称为回波B的峰值)。
得到前述两个峰值点对应的幅值之后,可以计算输出这两个峰值点的幅值的相对大小。其中,前述相对大小,可以是回波B的峰值点对应的幅值比回波A的峰值点对应的幅值得到的比值,也可以是回波A的峰值点对应的幅值比回波B的峰值点对应的幅值得到的比值,那么,前述比值就是前述两个相邻的峰值点的幅值的相对大小。
步骤S33A、若距离差符合第一条件且相对大小符合第二条件,则判定回波存在内吸。
在得到两个相邻的峰值点之间的距离差DisDif之后,判断距离差DisDif是否符合第一条件。在本实施例中是判断距离差DisDif是否小于设定的距离阈值ThreDisDif。符合第一条件是距离差DisDif小于距离阈值ThreDisDif,否则就判定不符合第一条件,具体判断逻辑如下:
if ( DisDif< ThreDisDif)
DisSign = 1
else
DisSign = 0
end。
其中, DisSign = 1表示距离差DisDif符合第一条件, DisSign = 0表示距离差DisDif不符合第一条件。
在得到前述相对大小之后,判断该相对大小是否符合第二条件。在本实施例中,前述相对大小是回波B的峰值点对应的幅值(AmpB)比回波A的峰值点对应的幅值( AmpA)得到的比值。从接收回波的顺序来看,回波A是距离较近的回波,回波B是距离较远的回波,因此,前述相对大小是距离较远的回波B的峰值比距离较近的回波A的峰值得到的比值。判断前述相对大小(比值)是否符合第二条件也就是判断距离较远的回波B的峰值与距离较近的回波A的峰值的倍数是否符合第二条件。符合第二条件是:前述比值(倍数)小于预设值(也可称为预设倍数) RatioThre;不符合第二条件是:前述比值(倍数)大于或等于预设值;具体判断逻辑如下:
if (AmpB< RatioThre * AmpA)
Amp Sign = 1
else
Amp Sign = 0
end。
其中,Amp Sign = 1表示前述相对大小符合第二条件,Amp Sign = 0表示前述相对大小不符合第二条件。前述预设值的典型值为8,该预设值越小,判断结果是吸点的概率越小;该预设值越大,判断结果是吸点的概率越大。
当上述两个关系均满足时(距离差符合第一条件且相对大小符合第二条件),即相邻峰值点的距离比较小,同时后面的峰值点的峰值不比前面的峰值点的峰值大多少,则判定回波存在吸点,也就是存在前述第一种情况的吸点,否则判定为不存在吸点,具体判断逻辑如下:
if (DisSign == 1 && AmpSign == 1)
IndrawCase1 = 1
else
IndrawCase1 = 0
end。
其中,第一标记 IndrawCase1 = 1表示回波存在吸点,第一标记 IndrawCase1 = 0表示回波不存在吸点。
对于前述两种内吸情况中的第二种情况,回波A和回波B过于靠近,区分不了峰值,如此,在一些实施例中,参考图7(图7是本申请一实施例提供的激光雷达的检测方法的步骤S3的一种变型方式的流程示意图),前述步骤S3(在峰值点的位置和幅值满足预设条件时,判定回波存在内吸)包括步骤S31B至步骤S33B。
步骤S31B、根据峰值点的位置,在峰值点的两侧各取N个离散采样点,N为正整数。
如前所述,由于回波A和回波B过于靠近,能识别到的峰值点一般只有一个。在确定该峰值点的位置后,在该峰值点的附近取若干离散采样点。具体而言,按照时间前后顺序,在峰值点的前面和后面各取N个时间连续的离散采样点,记为DataPa,其中,N为正整数,N的大小由当前激光雷达的硬件的前端带宽决定。当前述带宽较大时,N的值较小;当前述带宽较窄时,N的值较大,N的典型值为4到6之间。如前所述,回波数据是经采样后的离散采样点f(n),这些离散采样点在时间上是连续的,那么就可以在峰值点的左右各取N个点,这N个点在时间上是连续的。如此,便得到2N个离散采样点。
步骤S32B、确定峰值点和2N个离散采样点共同对应的波形的脉宽。
前述峰值点和2N个离散采样点对应的是同一个波形,可以确定该波形的脉宽。具体可以是确定在2N个离散采样点中,幅值大于指定值的离散采样点的数量,前述数量表示波形的脉宽,具体包括步骤S321B至步骤S323B。
步骤S321B、确定2N个离散采样点的幅值分别与指定值的差值。
将峰值点的幅值(也即峰值)与指定比例的积确定为指定值(该指定值后续作为被减数),指定比例位于0%到100%之间(0到1之间)。前述指定比例的典型值为四分之一。如此,得到的指定值为DataSu = f(Dis) / 4。
在其他一些实施例中,指定值可以是根据多次测量结果得到的经验值,该经验值为固定值。
得到前述指定值之后,将2N个离散采样点以及峰值点分别与指定值相减,得到减法结果,该减法结果为差值;如果N等于5,那么就得到11个减法结果(差值),其中,差值DataSuR = DataSu - DataPa
步骤S322B、将各个差值的符号数值化,得到各个符号对应的数值。
在得到前述差值DataSuR之后,求差值DataSuR中所有数的符号。示例的,如果某个差值为正或0,标记为0;如果某个差值为负,则标记为1。将差值的符号对应的数值(符号结果)记为DataSuRSign。
步骤S323B、确定各前述数值的相加之和,相加之和表示幅值大于指定值的离散采样点的数量。
在得到各个差值的数值DataSuRSign之后,对数值DataSuRSign求和:
SignSum = sum (DataSuRSign)。
其中,SignSum为相加之和。由于差值为正或0标记为0,差值为负标记为1,那么,前述相加之和SignSum表示幅值大于指定值的离散采样点的数量,能衡量回波的脉宽。
前述内容是按照峰值的比值来计算的回波的脉宽值,在其他一些实施例中,可以通过对回波数据对应的波形进行图像识别,进而确定前述脉宽。
步骤S33B、若脉宽符合第三条件且峰值点的幅值的大小符合第四条件,则判定回波存在内吸。
在确定峰值点和2N个离散采样点共同对应的波形的脉宽之后,就可以判断脉宽是否符合第三条件。在本实施例中,脉宽符合第三条件是前述相加之和 SignSum大于脉宽阈值,否则,脉宽不符合第三条件。
此外,还需要判断峰值点的幅值(峰值)的大小是否符合第四条件,因为需要将饱和回波排除在外,饱和回波不属于内吸;具体而言,激光雷达发射的激光照射反射率很高的物体时,产生的回波会很高且很宽,该回波为饱和回波,需要将这种回波排除。
在本实施例中,峰值点的幅值的大小符合第四条件是峰值点的幅值小于或等于幅度阈值AmpThre;峰值点的幅值的大小不符合第四条件是峰值点的幅值大于幅度阈值AmpThre。
前述两个判断的判断逻辑如下:
if (f(Dis) > AmpThre)
IndrawCase2 = 0
elseif ( SignSum<= SignNumThre)
IndrawCase2 = 0
else
IndrawCase2 = 1
end
如此,排除回波是饱和回波,且回波相对于峰值的脉宽过大,则认为是连波过近形成内吸(也即前述第二种内吸)。其中,第二标记IndrawCase2 = 1表示回波存在内吸,第二标记IndrawCase2 = 0表示回波不存在内吸。
前述两种情况中的以上两个标记(第一标记IndrawCase1和第二标记IndrawCase2),只要有一个符合预设条件(取值均为1),就判断为回波存在内吸,即IndrawSign = IndrawCase1| IndrawCase2。
根据上述可知,根据获取的回波数据,确定回波的峰值点以及峰值点的位置和幅值,在前述峰值点的位置和幅值满足预设条件时,判定回波存在内吸;回波存在内吸是造成激光雷达出现测量失误的原因,上述实施例根据回波数据检测出回波存在内吸,有利于避免误测物体以及保证距离测量数据的准确性,能避免激光雷达的测量失误。
根据峰值点的位置,在峰值点的两侧各取N个离散采样点,其中,N为正整数,然后确定峰值点和2N个离散采样点共同对应的波形的脉宽,若前述脉宽符合第三条件且峰值点的幅值的大小符合第四条件,则判定回波存在内吸,这样能准确判定内吸且适用性广。
上述实施例根据内吸点云回波数据的特点,即回波的峰值大小以及峰值点距离的关系,提供一种点云内吸的识别方法,为一种稳定可靠的检测方法,能够及时检测出当前回波的距离检测结果是否为内吸,有利于避免近距离点云内吸的弊端。
对应于上文实施例所述方法,图8示出本申请的实施例提供的激光雷达的检测装置的结构框图,为了便于说明,仅示出与本申请实施例相关的部分。
参考图8,该装置包括回波数据获取单元1、回波数据处理单元2和内吸判定单元3。
回波数据获取单元1,用于获取回波数据。
回波数据处理单元2,用于:根据回波数据,确定回波的峰值点以及峰值点的位置和幅值。
内吸判定单元3,用于在峰值点的位置和幅值满足预设条件时,判定回波存在内吸。
在一些实施例中,参考图9,图9是本申请一实施例提供的内吸判定单元的结构示意图,内吸判定单元3包括距离差确定单元31A、相对大小确定单元32A和第一判决单元33A。
距离差确定单元31A,用于:根据峰值点的位置,确定两个相邻的峰值点之间的距离差。
相对大小确定单元32A,用于确定两个相邻的峰值点的幅值的相对大小。
第一判决单元33A,用于:若距离差符合第一条件且相对大小符合第二条件,则判定回波存在内吸。
在一些实施例中,参考图10,图10是本申请一实施例提供的内吸判定单元的一种变型方式的结构示意图,内吸判定单元3包括采样点确定单元31B、采样点处理单元32B和第二判决单元33B。
采样点确定单元31B,用于:根据峰值点的位置,在峰值点的两侧各取N个离散采样点,N为正整数。
采样点处理单元32B,用于:确定峰值点和2N个离散采样点共同对应的波形的脉宽。
第二判决单元33B,用于:若脉宽符合第三条件且峰值点的幅值的大小符合第四条件,则判定回波存在内吸。
在一些实施例中,参考图11,图11是本申请一实施例提供的采样点处理单元的结构示意图,采样点处理单元32B包括差值确定单元321B、数值化单元322B、以及相加单元323B。
差值确定单元321B,用于确定2N个离散采样点的幅值分别与指定值的差值。
数值化单元322B,用于:将各个差值的符号数值化,得到各个符号对应的数值。
相加单元323B,用于确定各前述数值的相加之和。
其中,参考图12,图12是本申请一实施例提供的激光雷达的检测装置的一种变型方式的结构示意图,前述回波数据处理单元2包括峰值检测器21、峰值位置和幅度锁存单元22,据此对前述第一种内吸的判断进行说明。在峰值检测器21中判断当前样点是否为回波峰值:如果当前样点比前一个样点大,不比后一个样点小,则认为当前点为回波的一个峰值点。当判断当前样点为回波峰值点后,在峰值位置和幅度锁存单元22中依次存储多个峰值点的峰值以及峰值位置。在第一判决单元33A中,如果相邻峰值点的距离差(也可称为位置差)小于设定的阈值,同时相邻的峰值点的峰值差别不大,满足差别阈值关系,则认为当前的峰值点所在的回波为吸入回波类型。
参考图12,前述采样点确定单元31B和采样点处理单元32B为脉宽检测器100,据此对前述第二种内吸的判断进行说明。将所有的回波数据依次送入脉宽检测器100,计算回波数据中比峰值的特定百分比还大的样点的个数。在第二判决单元33B中,如果比峰值特定百分比大的样点的个数大于设定的阈值,同时峰值小于设定的阈值,则认为回波是第二种类型的内吸。
在最后的判断中,第一判决单元33A和第二判决单元33B任何一个的判定结果为内吸,则认为是内吸的回波类型,将判决结果合并,输出内吸标记(比如前述第一标记和第二标记)。
本申请的实施例通过判断近距离回波是否为内吸,能给自动驾驶车辆或低速机器人一个可靠的参考,能避免因内吸导致突发刹车停止不前。
需要说明的是,上述装置/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见方法实施例部分,此处不再赘述。
图13为本申请一实施例提供的终端设备的结构示意图。如图13所示,该实施例的终端设备13包括:至少一个处理器130(图13中仅示出一个)处理器、存储器131以及存储在存储器131中并可在至少一个处理器130上运行的计算机程序132;处理器130执行计算机程序132时实现上述任意各个方法实施例中的步骤。
终端设备13可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。该终端设备可包括,但不仅限于,处理器130和存储器131。本领域技术人员可以理解,图13仅仅是终端设备的举例,并不构成对终端设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括输入输出设备、网络接入设备、总线等。
处理器130可以是中央处理单元(Central Processing Unit,CPU),该处理器130还可以是其他通用处理器、数字信号处理器 (Digital Signal Processor,DSP)、专用集成电路 (Application Specific Integrated Circuit,ASIC)、现成可编程门阵列 (Field-Programmable Gate Array,FPGA) 或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器131在一些实施例中可以是终端设备13的内部存储单元,例如终端设备的硬盘或内存。存储器131在另一些实施例中也可以是终端设备的外部存储设备,例如终端设备上配备的插接式硬盘,智能存储卡(Smart Media Card, SMC),安全数字(Secure Digital, SD)卡,闪存卡(Flash Card)等。进一步地,存储器131还可以既包括终端设备的内部存储单元也包括外部存储设备。存储器131用于存储操作系统、应用程序、引导装载程序(Boot Loader)、数据以及其他程序等,例如计算机程序的程序代码等。存储器131还可以用于暂时地存储已经输出或者将要输出的数据。
示例性的,计算机程序132可以被分割成一个或多个模块/单元,一个或者多个模块/单元被存储在存储器131中,并由处理器130执行,以完成本申请。一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述计算机程序132在终端设备13中的执行过程。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
前述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,该计算机程序可存储于计算机可读存储介质中;该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,计算机程序包括计算机程序代码,计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。计算机可读介质包括:能够将计算机程序代码携带到装置/终端设备的任何实体或装置、记录介质、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质。例如U盘、移动硬盘、磁碟或者光盘等。在某些司法管辖区,根据立法和专利实践,计算机可读介质不可以是电载波信号和电信信号。
本申请的实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现可实现上述各个方法实施例中的步骤。
本申请的实施例提供一种计算机程序产品,当计算机程序产品在终端设备比如激光雷达上运行时,使得激光雷达可实现上述各个方法实施例中的步骤。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
前述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种激光雷达的检测方法,其特征在于,所述方法包括:
    获取回波数据;
    根据所述回波数据,确定所述回波的峰值点以及所述峰值点的位置和幅值;
    在所述峰值点的位置和幅值满足预设条件时,判定所述回波存在内吸。
  2. 如权利要求1所述的检测方法,其特征在于,所述在所述峰值点的位置和幅值满足预设条件时,判定所述回波存在内吸,包括:
    根据所述峰值点的位置,确定两个相邻的所述峰值点之间的距离差;
    确定两个相邻的所述峰值点的幅值的相对大小;
    若所述距离差符合第一条件且所述相对大小符合第二条件,则判定所述回波存在内吸。
  3. 如权利要求1所述的检测方法,其特征在于,所述在所述峰值点的位置和幅值满足预设条件时,判定所述回波存在内吸,还包括:
    根据所述峰值点的位置,在所述峰值点的两侧各取N个离散采样点,N为正整数;
    确定所述峰值点和2N个所述离散采样点共同对应的波形的脉宽;
    若所述脉宽符合第三条件且所述峰值点的幅值的大小符合第四条件,则判定所述回波存在内吸。
  4. 如权利要求3所述的方法,其特征在于,所述确定所述峰值点和2N个所述离散采样点共同对应的波形的脉宽,包括:确定在2N个所述离散采样点中,幅值大于指定值的所述离散采样点的数量,所述数量表示所述波形的脉宽。
  5. 如权利要求4所述的方法,其特征在于,所述确定在2N个所述离散采样点中,幅值大于指定值的所述离散采样点的数量,包括:
    确定2N个所述离散采样点的幅值分别与指定值的差值;
    将各个所述差值的符号数值化,得到各个所述符号对应的数值;
    确定各个所述数值的相加之和,所述相加之和表示幅值大于指定值的所述离散采样点的数量。
  6. 如权利要求4所述的方法,其特征在于,所述确定在2N个所述离散采样点中,幅值大于指定值的所述离散采样点的数量,包括:将所述峰值点的幅值与指定比例的积确定为所述指定值,所述指定比例位于0%到100%之间。
  7. 如权利要求3至6任一项所述的方法,其特征在于,所述根据所述峰值点的位置,在所述峰值点的两侧各取N个离散采样点,包括:按照时间前后顺序,在所述峰值点的前面和后面各取N个时间连续的离散采样点。
  8. 一种激光雷达的检测装置,其特征在于,所述装置包括:
    回波数据获取单元,用于获取回波数据;
    回波数据处理单元,用于:根据所述回波数据,确定所述回波的峰值点以及所述峰值点的位置和幅值;
    内吸判定单元,用于在所述峰值点的位置和幅值满足预设条件时,判定所述回波存在内吸。
  9. 一种终端设备,其特征在于,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1至7任一项所述的方法。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述的方法。
PCT/CN2021/091052 2021-04-29 2021-04-29 激光雷达的检测方法、装置、终端设备及存储介质 WO2022226905A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/091052 WO2022226905A1 (zh) 2021-04-29 2021-04-29 激光雷达的检测方法、装置、终端设备及存储介质
CN202180095239.XA CN117157553A (zh) 2021-04-29 2021-04-29 激光雷达的检测方法、装置、终端设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/091052 WO2022226905A1 (zh) 2021-04-29 2021-04-29 激光雷达的检测方法、装置、终端设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022226905A1 true WO2022226905A1 (zh) 2022-11-03

Family

ID=83846568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091052 WO2022226905A1 (zh) 2021-04-29 2021-04-29 激光雷达的检测方法、装置、终端设备及存储介质

Country Status (2)

Country Link
CN (1) CN117157553A (zh)
WO (1) WO2022226905A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140145871A1 (en) * 2012-11-28 2014-05-29 Fujitsu Ten Limited Radar apparatus and signal processing method
CN103926575A (zh) * 2014-03-05 2014-07-16 南京理工大学 一种激光雷达全波形信号分析方法
CN106199561A (zh) * 2016-07-22 2016-12-07 武汉海达数云技术有限公司 脉冲波的处理方法及装置
CN111123237A (zh) * 2018-10-30 2020-05-08 北京万集科技股份有限公司 激光雷达回波信号识别的方法、装置、设备及存储介质
CN111670379A (zh) * 2019-01-09 2020-09-15 深圳市大疆创新科技有限公司 回波信号处理方法、设备及存储介质
US10969491B1 (en) * 2020-08-14 2021-04-06 Aeva, Inc. LIDAR window blockage detection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140145871A1 (en) * 2012-11-28 2014-05-29 Fujitsu Ten Limited Radar apparatus and signal processing method
CN103926575A (zh) * 2014-03-05 2014-07-16 南京理工大学 一种激光雷达全波形信号分析方法
CN106199561A (zh) * 2016-07-22 2016-12-07 武汉海达数云技术有限公司 脉冲波的处理方法及装置
CN111123237A (zh) * 2018-10-30 2020-05-08 北京万集科技股份有限公司 激光雷达回波信号识别的方法、装置、设备及存储介质
CN111670379A (zh) * 2019-01-09 2020-09-15 深圳市大疆创新科技有限公司 回波信号处理方法、设备及存储介质
US10969491B1 (en) * 2020-08-14 2021-04-06 Aeva, Inc. LIDAR window blockage detection

Also Published As

Publication number Publication date
CN117157553A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
EP3650884B1 (en) Method and apparatus for determining relative pose, device and medium
EP3936895B1 (en) Distance measurement method, apparatus and device
CN112255636A (zh) 一种距离测量方法、系统及设备
US11954918B2 (en) Object detection device, object detection method, and storage medium
CN110443275A (zh) 去除噪声的方法、设备及存储介质
US20230341529A1 (en) Target detection method, lidar and storage medium
WO2023024087A1 (zh) 处理激光雷达点云的方法、装置、设备及存储介质
WO2022205199A1 (zh) 一种干扰处理方法和装置
CN113325388A (zh) 一种自动驾驶中激光雷达泛光噪点的过滤方法和装置
WO2021179583A1 (zh) 探测方法及探测设备
WO2022226905A1 (zh) 激光雷达的检测方法、装置、终端设备及存储介质
EP4123337A1 (en) Target detection method and apparatus
WO2022160622A1 (zh) 一种距离测量方法、装置及系统
EP4202477A2 (en) Lidar control method, terminal apparatus, and computer-readable storage medium
US20230126462A1 (en) Radar data processing method, terminal device, and computer-readable storage medium
WO2022160879A1 (zh) 一种转换参数的确定方法和装置
WO2023004629A1 (zh) 激光雷达抗干扰方法、装置、可读存储介质及终端设备
WO2023015407A1 (zh) 一种伪像点识别方法、终端设备及计算机可读存储介质
CN111045026B (zh) 一种识别充电桩位姿的方法及装置
CN109765397B (zh) 测速方法、装置及系统
CN108872999B (zh) 一种物体识别方法、装置、识别设备及存储介质
CN112896070A (zh) 一种车位障碍物检测方法、装置及计算机可读存储介质
WO2023226388A1 (zh) 数据处理方法与处理装置
CN115754972A (zh) 激光雷达的滤波方法、终端设备及计算机可读存储介质
CN118091694A (zh) 地面点的辅助识别方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938385

Country of ref document: EP

Kind code of ref document: A1