JP2014097431A - 手術ロボットの合成表現 - Google Patents
手術ロボットの合成表現 Download PDFInfo
- Publication number
- JP2014097431A JP2014097431A JP2014038429A JP2014038429A JP2014097431A JP 2014097431 A JP2014097431 A JP 2014097431A JP 2014038429 A JP2014038429 A JP 2014038429A JP 2014038429 A JP2014038429 A JP 2014038429A JP 2014097431 A JP2014097431 A JP 2014097431A
- Authority
- JP
- Japan
- Prior art keywords
- tool
- view
- image
- robot
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 abstract description 46
- 239000002131 composite material Substances 0.000 description 95
- 239000012636 effector Substances 0.000 description 42
- 230000008569 process Effects 0.000 description 21
- 230000000007 visual effect Effects 0.000 description 17
- 238000001514 detection method Methods 0.000 description 14
- 238000009877 rendering Methods 0.000 description 14
- 238000001356 surgical procedure Methods 0.000 description 11
- 230000000712 assembly Effects 0.000 description 9
- 238000000429 assembly Methods 0.000 description 9
- 230000008859 change Effects 0.000 description 9
- 238000012937 correction Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000000547 structure data Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 3
- 238000002324 minimally invasive surgery Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 210000000245 forearm Anatomy 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000002432 robotic surgery Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 208000036829 Device dislocation Diseases 0.000 description 1
- 125000002066 L-histidyl group Chemical group [H]N1C([H])=NC(C([H])([H])[C@](C(=O)[*])([H])N([H])[H])=C1[H] 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000001839 endoscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1694—Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
- B25J9/1697—Vision controlled systems
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/40—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/25—User interfaces for surgical systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/30—Surgical robots
- A61B34/37—Master-slave robots
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/361—Image-producing devices, e.g. surgical cameras
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1664—Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
- B25J9/1666—Avoiding collision or forbidden zones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1656—Programme controls characterised by programming, planning systems for manipulators
- B25J9/1671—Programme controls characterised by programming, planning systems for manipulators characterised by simulation, either to verify existing program or to create and verify new program, CAD/CAM oriented, graphic oriented programming systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
- B25J9/1689—Teleoperation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
- B25J9/1692—Calibration of manipulator
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/42—Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
- G05B19/4202—Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine preparation of the programme medium using a drawing, a model
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2059—Mechanical position encoders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2061—Tracking techniques using shape-sensors, e.g. fiber shape sensors with Bragg gratings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/371—Surgical systems with images on a monitor during operation with simultaneous use of two cameras
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/36—Nc in input of data, input key till input tape
- G05B2219/36432—By putting some constraints on some DOF, move within limited volumes, areas, planes, limits motion in x, y or z planes, virtual reality constraints
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/39—Robotics, robotics to robotics hand
- G05B2219/39083—Robot interference, between two robot arms
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/39—Robotics, robotics to robotics hand
- G05B2219/39096—Self-collision, internal collison, collision between links of one robot
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/39—Robotics, robotics to robotics hand
- G05B2219/39449—Pendant, pda displaying camera images overlayed with graphics, augmented reality
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/40—Robotics, robotics mapping to robotics vision
- G05B2219/40607—Fixed camera to observe workspace, object, workpiece, global
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/45—Nc applications
- G05B2219/45117—Medical, radio surgery manipulator
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/45—Nc applications
- G05B2219/45123—Electrogoniometer, neuronavigator, medical robot used by surgeon to operate
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H40/00—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
- G16H40/60—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
- G16H40/67—ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Robotics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Mechanical Engineering (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Pathology (AREA)
- Human Computer Interaction (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- Radiology & Medical Imaging (AREA)
- Gynecology & Obstetrics (AREA)
- Urology & Nephrology (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Manipulator (AREA)
- Surgical Instruments (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
- Endoscopes (AREA)
Abstract
【課題】低侵襲ロボット手術システムを提供すること。
【解決手段】ロボットシステムのユーザインターフェース上に表示するためのロボットツールの合成表現。合成表現は、ロボットに対する画像取込み機器の視体積の位置を示すために使用され得る。また、合成表現は、視野外にあるツールを探索するため、ツールの移動領域の限界を表示するため、ロボットに関する情報を遠隔通信するため、および衝突を検出するためにも使用され得る。一実施形態では、ロボットシステムのツールの移動領域を提供する方法が提供される。本方法は、ツールの位置を表す第1の画像を表示するステップと、ツールの移動の限界を表す第2の画像を第1の画像に重ね合わせるステップとを含む。
【選択図】なし
【解決手段】ロボットシステムのユーザインターフェース上に表示するためのロボットツールの合成表現。合成表現は、ロボットに対する画像取込み機器の視体積の位置を示すために使用され得る。また、合成表現は、視野外にあるツールを探索するため、ツールの移動領域の限界を表示するため、ロボットに関する情報を遠隔通信するため、および衝突を検出するためにも使用され得る。一実施形態では、ロボットシステムのツールの移動領域を提供する方法が提供される。本方法は、ツールの位置を表す第1の画像を表示するステップと、ツールの移動の限界を表す第2の画像を第1の画像に重ね合わせるステップとを含む。
【選択図】なし
Description
ロボット手術システムによって行われる低侵襲手術が知られており、遠隔環境または他の環境において一般的に使用され、この場合、人が手術を行わないことが利点である。このような遠隔ロボット手術システムの一例として、本出願人による米国特許第7,155,315号に説明する低侵襲ロボット手術システムが挙げられる。Intuitive Surgical,Inc.of Sunnyvale,Californiaが製造するda Vinci(登録商標) Surgical Systemsは、低侵襲ロボット手術システム(例えば、遠隔操作型;遠隔手術型)の例示的な実装である。
低侵襲手術の一般的な形式は、内視鏡検査である。低侵襲医療技術における内視鏡手術器具は、概して、手術野を視認するための内視鏡と、エンドエフェクタを含む作業ツールとを含む。一般的な手術エンドエフェクタには、例として、クランプ、グラスパ、ハサミ、ステープラ、または持針器が含まれる。作業ツールは、従来の(観血的)手術に使用される作業ツールに類似するが、各ツールのエンドエフェクタが、例えば、約12インチの長さの延長チューブの端部上に支持されることは例外とする。
エンドエフェクタを操作するために、人の操作者、一般的には、外科医は、局所的に提供されるマスタマニピュレータを操作するか、あるいはこれにコマンドを送る。マスタマニピュレータからのコマンドは、適宜変換され、遠隔配備されたスレーブマニピュレータに送信される。次いで、スレーブマニピュレータは、操作者のコマンドに従って、エンドエフェクタを操作する。
力フィードバックが、低侵襲ロボット手術システムに含まれ得る。このようなフィードバックを提供するために、遠隔スレーブマニピュレータは、一般的には、力情報をマスタマニピュレータに提供し、スレーブマニピュレータに作用する力を感知する知覚が外科医に与えられるように、力情報を利用して、力フィードバックを外科医に提供する。いくつかの力フィードバック実装では、触覚フィードバックが、作業ツールおよびそのエンドエフェクタに対する組織反力の人工的な感触を外科医に提供し得る。
しばしば、一般的には外科医コンソールに位置するマスタ制御は、患者の部位における作業ツールのうちの1つを解放するためのクラッチまたは他のデバイスを含む。この特徴は、例えば、3つ以上の作業ツールが存在するシステムにおいて使用され得る。このようなシステムでは、外科医は、1つのマスタによって1つの作業ツールの制御を解放し、そのマスタで別の作業ツールに対する制御を確立し得る。
外科医は、一般的には、内視鏡の視野内にある作業ツールの遠位端のみの画像を視認する。外科医は、視野外にあるツールの部分またはツール全体を見ることができない。したがって、外科医は、2つ以上のツールが視野外で相互に干渉する場合に、ツールを見ることができない。さらに、内視鏡は、手術部位に関して、および外科医の身体の基準枠に関して、種々の位置および配向にあるように操作され得るので、外科医は、ツールの概略位置に関して混乱する場合がある。結果として、外科医は、ツール間干渉を回避するために、または手術部位に関して1つ以上のツールを再配向するために、マスタマニピュレータを最良に移動させる方法を理解することができない。
以下は、本発明の基本的な理解を提供するために、本発明のいくつかの側面および実施形態に関する簡略化された要約を提示する。本要約は、本発明に関する広範囲に及ぶ概説ではない。本発明の主要/重要な要素を識別すること、または本発明の範囲を説明することを意図しない。その唯一の目的は、後に提示されるより詳細な説明に対する序文として、本発明のいくつかの側面および実施形態を、簡略化された形式で提示することにある。
ある実施形態では、ロボット手術システムが提供される。本システムは、患者に手術を実行するための少なくとも1つのツールを支持するリンク装置を含むロボットと、リンク装置からの接合状態情報を取得するためにロボットに連結された運動構成要素と、ディスプレイと、リンク装置に関するリンク装置構造データ、および接合状態情報に基づいて、リンク装置の少なくとも一部分のグラフィック表現を含むロボットの合成表現を表示するために、ディスプレイを運動構成要素と連結する第1の構成要素とを含む。
別の実施形態では、ロボット手術システムが提供される。本システムは、視野を有する画像取込み機器と、患者に手術を実行するための少なくとも1つのツールを支持するリンク装置とを含むロボットと、リンク装置に関する接合状態情報を取得するように、リンク装置に連結された運動構成要素と、第1のリンク装置および少なくとも1つのツールの構造に関するデータと、警告を生成するように、データおよび運動構成要素に連結された衝突検出構成要素とを含む。
さらに別の実施形態では、ロボットシステムにおいてツールの位置を制御する方法が提供される。本方法は、第1の画像をディスプレイ上に表示するステップであって、第1の画像は視野内におけるロボットのツールまたはリンク装置の映像供給物を含む、ステップと、第2の画像をディスプレイ上に表示するステップであって、第2の画像は、ツールまたはリンク装置の3次元モデルを表し、3次元モデルの第2の画像は、ツールまたはリンク装置の第1の画像と整列させられるステップと、ツールまたはリンク装置の動きを制御するために、ディスプレイ上の第1および第2の画像に関して、入力機器を移動させるステップとを含む方法。
またさらに別の実施形態では、ロボットシステムのツールの移動領域を提供する方法が提供される。本方法は、ツールの位置を表す第1の画像を表示するステップと、ツールの移動の限界を表す第2の画像を第1の画像に重ね合わせるステップとを含む。
また別の実施形態では、ロボットシステムが提供される。本方法は、ロボットシステムのツールの位置に関する情報を保持するステップと、ツールが、ツールの移動の限界から閾値距離以内にある結果として、信号を生成するステップとを含む。
別の実施形態では、ロボット手術システムが提供される。本システムは、患者に手術を実行するための少なくとも1つのツールを支持するリンク装置を含むロボットと、ツールを包囲する視野を有する画像取込み機器と、リンク装置から接合状態情報を取得するためにロボットに連結された運動構成要素と、視野を表示するために画像取込み機器に連結されたディスプレイと、視野に表されたツールに関する情報を表示するためにディスプレイを運動構成要素と連結する第1の構成要素であって、情報の位置は、リンク装置に関するリンク装置構造データ、および接合状態情報に基づいている、第1の構成要素とを含む。
さらに別の実施形態では、ロボットシステムにおける方法が提供される。本方法は、視野内のロボットによって支持されたツールの映像供給物を含む第1の画像を表示するステップと、ツールを含むロボットの合成3次元表現を表示するステップとを含む。
別の実施形態では、ロボットシステムにおける方法が提供される。本方法は、視野内におけるロボットにより支持されたツールの映像供給物を含む第1の画像を表示するステップであって、第1の画像は、ロボットの第1の部分から成るステップと、ツールを含むロボットの合成3次元表現を表示するステップであって、合成3次元表現は、第1の部分より大きいロボットの第2の部分を含むステップとを含む。
また別の実施形態では、方法がロボットシステムにおいて提供され、本方法は、視野内におけるロボットにより支持されたツールの映像供給物を含む第1の画像を表示するステップであって、第1の画像は、第1の方向から視認されたロボットの第1の部分から成るステップと、ツールを含むロボットの合成3次元表現を表示するステップであって、合成3次元表現は、第2の方向から視認されるステップとを含む。
例えば、本発明は以下の項目を提供する。
(項目1)
少なくとも1つの手術ツールを支持するリンクを含むロボットと、
該リンクと関連付けられた運動位置情報を取得するように、該ロボットに連結された運動構成要素と、
ディスプレイと、
第1の構成要素であって、該ディスプレイを該運動構成要素と連結して、
該リンクに関するリンク構造データと、
該運動位置情報と
に基づいて、該リンクの少なくとも一部分のグラフィック3次元モデルを含む該ロボットの合成表現を表示する、第1の構成要素と
を備える、ロボット手術システム。
(項目2)
前記ツールを包囲する視野を有する画像取込み機器と、
ディスプレイ、および該ツールを移動させるコマンドを受信するために配置される入力部を備える外科医コンソールと
をさらに備え、
該ディスプレイは、該画像取込み機器の該視野内の画像を受信するように連結される、項目1に記載のシステム。
(項目3)
第2のディスプレイをさらに備え、
該第2のディスプレイは、前記外科医コンソールの遠隔にあり、
該第2のディスプレイは、前記ロボットの前記合成表現を表示する、
項目2に記載のシステム。
(項目4)
前記第2のディスプレイを前記運動構成要素と連結する第2の構成要素をさらに備え、それにより、前記リンクに関する前記リンク構造データ、および前記運動位置情報に基づいて、該リンクの少なくとも一部分のグラフィック表現を含む前記ロボットの合成表現を前記第2のディスプレイ上に表示する、項目3に記載のシステム。
(項目5)
前記合成表現は、前記ツールのモデルを含む、項目1に記載のシステム。
(項目6)
前記モデルは、前記ツールの3次元モデルを含む、項目5に記載のシステム。
(項目7)
前記画像取込み機器の視野内の前記ツールの画像を取り込む画像取込み機器と、
該画像取込み機器を前記ディスプレイに連結して、該画像取込み機器からの該画像を該ディスプレイ上に表示する第2の構成要素と
をさらに備える、項目1に記載のシステム。
(項目8)
前記合成表現は、前記取込み機器からの前記表示された画像の外部の前記ディスプレイ上に見えるように表示される、項目7に記載のシステム。
(項目9)
手術を実行するツールを含むロボットと、
該ツールを包囲する視野を取り込む画像取込み機器と、
該ロボットの少なくとも一部分の合成表現を提供するデータであって、該一部分は、該画像取込み機器を含む、データと、
ディスプレイと、
該データを該ディスプレイに連結して、該画像取込み機器の該視野の3次元表現を含む該ロボットの該合成表現を表示する、第1の構成要素と
を備える、ロボット手術システム。
(項目10)
前記ディスプレイは、前記ロボット手術システムの外科医コンソールのビューアを含む、項目9に記載のシステム。
(項目11)
前記合成表現は、前記ツールのモデルを含む、項目9に記載のシステム。
(項目12)
前記モデルは、前記ツールの3次元モデルを含む、項目11に記載のシステム。
(項目13)
第1の手術ツールを支持する第1のリンク、および第2の手術ツールまたは画像取込み機器を支持する第2のリンクを含むロボットと、
該第1のリンクおよび該第2のリンクに連結されて、該リンクに関する接合状態情報を取得する運動構成要素と、
該第1のリンク、該第2のリンク、該第1の手術ツール、および該第2の手術ツールまたは該画像取込み機器の構造に関するデータと、
該データおよび該運動構成要素に連結されて、(i)該第1のリンクまたは第1の手術ツールと、(ii)該第2のリンクまたは該第2の手術ツールまたは該画像取込み機器との起こりうる衝突または実際の衝突に関する警告信号を生成する、衝突検出構成要素と
を備える、ロボット手術システム。
(項目14)
前記衝突検出構成要素は、前記データおよび前記運動構成要素によって決定されるとき、前記第1のリンクまたは前記第1の手術ツールと、前記第2のリンクまたは前記第2の手術ツールまたは前記画像取込み機器との近接の結果として警告信号を生成するように構成される、項目13に記載のシステム。
(項目15)
ディスプレイをさらに備え、前記衝突検出構成要素は、前記信号を該ディスプレイに伝送して、前記起こりうる衝突または実際の衝突に関する情報を表示するように構成される、項目13に記載のシステム。
(項目16)
前記起こりうる衝突または実際の衝突に関する前記情報は、(i)前記第1のリンクまたは前記第1の手術ツールと、(ii)前記第2のリンクまたは前記第2の手術ツールまたは前記画像取込み機器との間の該起こりうる衝突または実際の衝突の合成表現を含む、項目15に記載のシステム。
(項目17)
前記起こりうる衝突または実際の衝突に関する前記情報は、衝突を回避または是正することに関する情報を含む、項目15に記載のシステム。
(項目18)
前記起こりうる衝突または実際の衝突に関する前記情報は、該起こりうる衝突または実際の衝突の場所をハイライトすることを含む、項目15に記載のシステム。
(項目19)
前記起こりうる衝突または実際の衝突に関する前記情報は、前記場所に隣接するテキストメッセージを含む、項目18に記載のシステム。
(項目20)
ロボットシステムにおいてツールの位置を制御する方法であって、該方法は、
第1の画像をディスプレイ上に表示することであって、該第1の画像は、画像取込み機器の視野内におけるロボットのツールまたはリンクの映像供給物を含むことと、
第2の画像を該ディスプレイ上に表示することであって、該第2の画像は、該ツールまたはリンクの3次元モデルを表し、該第2の画像に表された該ツールまたはリンクは、該第1の画像における該ツールまたはリンクと整列させられることと、
該ディスプレイ上の該第1および第2の画像に関して移動させられる入力機器からコマンドを受信して、該ツールまたはリンクの動きを制御することと
を含む、方法。
(項目21)
ロボットシステムのツールのための移動領域の標示を提供する方法であって、
該ツールの位置を表す第1の画像を表示することと、
該ツールの移動の限界を表す第2の画像を該第1の画像に重ね合わせることと
を含む、方法。
(項目22)
ロボットシステムにおいて、
ロボットシステムのツールの位置に関する情報を保持することと、
該ツールが、該ツールの移動の限界から閾値距離以内にある結果として信号を生成することと
を含む、方法。
(項目23)
少なくとも1つの手術ツールを支持するリンクを含むロボットと、
該ツールを包囲する視野を有する画像取込み機器と、
該ロボットに連結されて、該リンクに関連付けられた運動位置情報を取得する運動構成要素と、
該画像取込み機器の該視野内における画像を受信および表示するように連結されたディスプレイと、
該ディスプレイを該運動構成要素と連結して、該表示された画像において表わされた該ツールと結び付けられた情報を表示する第1の構成要素であって、該情報の位置は、
該リンクに関するリンク構造データと、
該運動位置情報と
に基づいている、第1の構成要素と
を備える、ロボット手術システム。
(項目24)
前記画像取込み機器および前記ディスプレイに連結されて、該画像取込み機器の前記視野における前記ツールの3次元ビューを生成する、立体画像システムと、
前記第1の構成要素および該ディスプレイに連結されて、該ツールの該3次元ビューに一致する前記表示情報の3次元外観を提供する、較正カメラモデルと
をさらに備える、項目23に記載のシステム。
(項目25)
前記ツールと結び付けられた前記情報は、テキストを含む、項目23に記載のシステム。
(項目26)
ロボットシステムにおいて、
画像取込み機器の視野内のロボットによって支持されたツールの映像供給物を含む第1の画像を第1のディスプレイに表示することと、
該ツールを含む該ロボットの少なくとも一部分の合成3次元表現を該第1のディスプレイに表示することと
を含む、方法。
(項目27)
前記3次元表現は、前記画像取込み機器の前記表示された視野の外に見えるように表示される、項目26に記載のシステム。
(項目28)
ロボットシステムにおいて、
画像取込み機器の視野内のロボットによって支持されたツールの映像供給物を含む第1の画像を表示することであって、該第1の画像は、該ロボットの第1の部分を含む、ことと、
該ツールを含む該ロボットの少なくとも一部分の合成3次元表現を表示することであって、該合成3次元表現は、該第1の部分よりも大きい該ロボットの第2の部分を含む、ことと
を含む、方法。
(項目29)
ロボットシステムにおいて、
画像取込み機器の視野内のロボットによって支持されたツールの映像供給物を含む第1の画像を表示することであって、該第1の画像は、第1の方向から視認されるように該ロボットの第1の部分を含む、ことと、
該ツールを含む該ロボットの少なくとも一部分の合成3次元表現を表示することであって、該表示された合成3次元表現は、該第1の方向とは異なる第2の方向から視認されるように見える、ことと
を含む、方法。
(項目30)
前記3次元表現の前記表示を変更することをさらに含むことにより、前記第1および前記第2の方向とは異なる第3の方向から視認されるように見える、項目29に記載のシステム。
(項目31)
前記3次元表現の前記表示を変更することをさらに含むことにより、前記第1の方向から視認されるように見える、項目29に記載のシステム。
(項目32)
少なくとも1つのツールまたは画像取込み機器を支持するリンクを含むロボットと、
該リンクに連結されて、該リンクに関連付けられた運動位置情報を取得する運動構成要素と、
該リンクおよび該少なくとも1つのツールまたは画像取込み機器の構造に関する第1のデータと、
患者の位置に関する患者データと、
衝突検出構成要素であって、該衝突検出構成要素は、該第1のデータを受信するように連結され、該患者データを受信するように連結され、および該運動構成要素に連結されることにより、該リンクの該患者との起こりうる衝突または実際の衝突、または該少なくとも1つのツールまたは画像取込み機器の該患者との起こりうる衝突または実際の衝突に関する警告信号を生成する、衝突検出構成要素と
を備える、ロボット手術システム。
(項目33)
ディスプレイをさらに備え、前記衝突検出構成要素は、前記信号を該ディスプレイに伝送して、前記起こりうる衝突または実際の衝突に関する情報を表示するように構成される、項目32に記載のシステム。
(項目34)
前記起こりうる衝突または実際の衝突に関する前記情報は、前記リンクまたは前記少なくとも1つのツールの前記患者との該起こりうる衝突または実際の衝突の合成表現を含む、項目33に記載のシステム。
(項目35)
前記起こりうる衝突または実際の衝突に関する前記情報は、衝突を回避または是正することに関する情報を含む、項目34に記載のシステム。
(項目36)
ロボットシステムにおけるツールに対してツール移動を教示する方法であって、
第1の画像をディスプレイ上に表示することであって、該第1の画像は、画像取込み機器の視野内のロボットのツールまたはリンクの映像供給物を含む、ことと、
第2の画像を該ディスプレイ上に表示することであって、該第2の画像は、該ツールまたはリンクのモデルを表す、ことと、
第1の制御器からの入力に応答して、該第2の画像を移動させることと、
第2の制御器からの入力に応答して、該ツールを移動させることと
を含む、方法。
(項目37)
リアルタイム映像画像が取り込まれる視野を有する画像取込み機器と、
手術ツールを支持するリンクと、
ディスプレイと、
モデル化構成要素と
を備える、手術ロボットシステムであって、
該モデル化構成要素は、該視野の3次元レンダリングを生成し、該視野の外の該手術ツールの少なくとも一部分の3次元レンダリングを生成し、
該ディスプレイは、該視野のレンダリング、該視野の外の該手術ツールの該少なくとも一部分のレンダリング、および該リアルタイム映像画像を同時に表示し、
該手術ツールの該少なくとも一部分のレンダリングは、該視野の該レンダリングに関して、該画像取込み機器の該視野に関して該手術ツールが有する場所と実質的に同じ場所に位置して見えるように表示され、
該リアルタイム映像画像は、該視野の該レンダリングに関して、該リアルタイム映像画像が、該画像取込み機器の該視野内に取り込まれた場所と実質的に同じ場所に位置して見えるように表示される、手術ロボットシステム。
(項目38)
前記視野の前記レンダリングに関して、前記リアルタイム映像画像の前記表示された場所は、該視野の該レンダリングの表示されるビュー角度が前記ディスプレイにおいて変更される際に、実質的に一定のままである、項目37に記載の手術ロボットシステム。
例えば、本発明は以下の項目を提供する。
(項目1)
少なくとも1つの手術ツールを支持するリンクを含むロボットと、
該リンクと関連付けられた運動位置情報を取得するように、該ロボットに連結された運動構成要素と、
ディスプレイと、
第1の構成要素であって、該ディスプレイを該運動構成要素と連結して、
該リンクに関するリンク構造データと、
該運動位置情報と
に基づいて、該リンクの少なくとも一部分のグラフィック3次元モデルを含む該ロボットの合成表現を表示する、第1の構成要素と
を備える、ロボット手術システム。
(項目2)
前記ツールを包囲する視野を有する画像取込み機器と、
ディスプレイ、および該ツールを移動させるコマンドを受信するために配置される入力部を備える外科医コンソールと
をさらに備え、
該ディスプレイは、該画像取込み機器の該視野内の画像を受信するように連結される、項目1に記載のシステム。
(項目3)
第2のディスプレイをさらに備え、
該第2のディスプレイは、前記外科医コンソールの遠隔にあり、
該第2のディスプレイは、前記ロボットの前記合成表現を表示する、
項目2に記載のシステム。
(項目4)
前記第2のディスプレイを前記運動構成要素と連結する第2の構成要素をさらに備え、それにより、前記リンクに関する前記リンク構造データ、および前記運動位置情報に基づいて、該リンクの少なくとも一部分のグラフィック表現を含む前記ロボットの合成表現を前記第2のディスプレイ上に表示する、項目3に記載のシステム。
(項目5)
前記合成表現は、前記ツールのモデルを含む、項目1に記載のシステム。
(項目6)
前記モデルは、前記ツールの3次元モデルを含む、項目5に記載のシステム。
(項目7)
前記画像取込み機器の視野内の前記ツールの画像を取り込む画像取込み機器と、
該画像取込み機器を前記ディスプレイに連結して、該画像取込み機器からの該画像を該ディスプレイ上に表示する第2の構成要素と
をさらに備える、項目1に記載のシステム。
(項目8)
前記合成表現は、前記取込み機器からの前記表示された画像の外部の前記ディスプレイ上に見えるように表示される、項目7に記載のシステム。
(項目9)
手術を実行するツールを含むロボットと、
該ツールを包囲する視野を取り込む画像取込み機器と、
該ロボットの少なくとも一部分の合成表現を提供するデータであって、該一部分は、該画像取込み機器を含む、データと、
ディスプレイと、
該データを該ディスプレイに連結して、該画像取込み機器の該視野の3次元表現を含む該ロボットの該合成表現を表示する、第1の構成要素と
を備える、ロボット手術システム。
(項目10)
前記ディスプレイは、前記ロボット手術システムの外科医コンソールのビューアを含む、項目9に記載のシステム。
(項目11)
前記合成表現は、前記ツールのモデルを含む、項目9に記載のシステム。
(項目12)
前記モデルは、前記ツールの3次元モデルを含む、項目11に記載のシステム。
(項目13)
第1の手術ツールを支持する第1のリンク、および第2の手術ツールまたは画像取込み機器を支持する第2のリンクを含むロボットと、
該第1のリンクおよび該第2のリンクに連結されて、該リンクに関する接合状態情報を取得する運動構成要素と、
該第1のリンク、該第2のリンク、該第1の手術ツール、および該第2の手術ツールまたは該画像取込み機器の構造に関するデータと、
該データおよび該運動構成要素に連結されて、(i)該第1のリンクまたは第1の手術ツールと、(ii)該第2のリンクまたは該第2の手術ツールまたは該画像取込み機器との起こりうる衝突または実際の衝突に関する警告信号を生成する、衝突検出構成要素と
を備える、ロボット手術システム。
(項目14)
前記衝突検出構成要素は、前記データおよび前記運動構成要素によって決定されるとき、前記第1のリンクまたは前記第1の手術ツールと、前記第2のリンクまたは前記第2の手術ツールまたは前記画像取込み機器との近接の結果として警告信号を生成するように構成される、項目13に記載のシステム。
(項目15)
ディスプレイをさらに備え、前記衝突検出構成要素は、前記信号を該ディスプレイに伝送して、前記起こりうる衝突または実際の衝突に関する情報を表示するように構成される、項目13に記載のシステム。
(項目16)
前記起こりうる衝突または実際の衝突に関する前記情報は、(i)前記第1のリンクまたは前記第1の手術ツールと、(ii)前記第2のリンクまたは前記第2の手術ツールまたは前記画像取込み機器との間の該起こりうる衝突または実際の衝突の合成表現を含む、項目15に記載のシステム。
(項目17)
前記起こりうる衝突または実際の衝突に関する前記情報は、衝突を回避または是正することに関する情報を含む、項目15に記載のシステム。
(項目18)
前記起こりうる衝突または実際の衝突に関する前記情報は、該起こりうる衝突または実際の衝突の場所をハイライトすることを含む、項目15に記載のシステム。
(項目19)
前記起こりうる衝突または実際の衝突に関する前記情報は、前記場所に隣接するテキストメッセージを含む、項目18に記載のシステム。
(項目20)
ロボットシステムにおいてツールの位置を制御する方法であって、該方法は、
第1の画像をディスプレイ上に表示することであって、該第1の画像は、画像取込み機器の視野内におけるロボットのツールまたはリンクの映像供給物を含むことと、
第2の画像を該ディスプレイ上に表示することであって、該第2の画像は、該ツールまたはリンクの3次元モデルを表し、該第2の画像に表された該ツールまたはリンクは、該第1の画像における該ツールまたはリンクと整列させられることと、
該ディスプレイ上の該第1および第2の画像に関して移動させられる入力機器からコマンドを受信して、該ツールまたはリンクの動きを制御することと
を含む、方法。
(項目21)
ロボットシステムのツールのための移動領域の標示を提供する方法であって、
該ツールの位置を表す第1の画像を表示することと、
該ツールの移動の限界を表す第2の画像を該第1の画像に重ね合わせることと
を含む、方法。
(項目22)
ロボットシステムにおいて、
ロボットシステムのツールの位置に関する情報を保持することと、
該ツールが、該ツールの移動の限界から閾値距離以内にある結果として信号を生成することと
を含む、方法。
(項目23)
少なくとも1つの手術ツールを支持するリンクを含むロボットと、
該ツールを包囲する視野を有する画像取込み機器と、
該ロボットに連結されて、該リンクに関連付けられた運動位置情報を取得する運動構成要素と、
該画像取込み機器の該視野内における画像を受信および表示するように連結されたディスプレイと、
該ディスプレイを該運動構成要素と連結して、該表示された画像において表わされた該ツールと結び付けられた情報を表示する第1の構成要素であって、該情報の位置は、
該リンクに関するリンク構造データと、
該運動位置情報と
に基づいている、第1の構成要素と
を備える、ロボット手術システム。
(項目24)
前記画像取込み機器および前記ディスプレイに連結されて、該画像取込み機器の前記視野における前記ツールの3次元ビューを生成する、立体画像システムと、
前記第1の構成要素および該ディスプレイに連結されて、該ツールの該3次元ビューに一致する前記表示情報の3次元外観を提供する、較正カメラモデルと
をさらに備える、項目23に記載のシステム。
(項目25)
前記ツールと結び付けられた前記情報は、テキストを含む、項目23に記載のシステム。
(項目26)
ロボットシステムにおいて、
画像取込み機器の視野内のロボットによって支持されたツールの映像供給物を含む第1の画像を第1のディスプレイに表示することと、
該ツールを含む該ロボットの少なくとも一部分の合成3次元表現を該第1のディスプレイに表示することと
を含む、方法。
(項目27)
前記3次元表現は、前記画像取込み機器の前記表示された視野の外に見えるように表示される、項目26に記載のシステム。
(項目28)
ロボットシステムにおいて、
画像取込み機器の視野内のロボットによって支持されたツールの映像供給物を含む第1の画像を表示することであって、該第1の画像は、該ロボットの第1の部分を含む、ことと、
該ツールを含む該ロボットの少なくとも一部分の合成3次元表現を表示することであって、該合成3次元表現は、該第1の部分よりも大きい該ロボットの第2の部分を含む、ことと
を含む、方法。
(項目29)
ロボットシステムにおいて、
画像取込み機器の視野内のロボットによって支持されたツールの映像供給物を含む第1の画像を表示することであって、該第1の画像は、第1の方向から視認されるように該ロボットの第1の部分を含む、ことと、
該ツールを含む該ロボットの少なくとも一部分の合成3次元表現を表示することであって、該表示された合成3次元表現は、該第1の方向とは異なる第2の方向から視認されるように見える、ことと
を含む、方法。
(項目30)
前記3次元表現の前記表示を変更することをさらに含むことにより、前記第1および前記第2の方向とは異なる第3の方向から視認されるように見える、項目29に記載のシステム。
(項目31)
前記3次元表現の前記表示を変更することをさらに含むことにより、前記第1の方向から視認されるように見える、項目29に記載のシステム。
(項目32)
少なくとも1つのツールまたは画像取込み機器を支持するリンクを含むロボットと、
該リンクに連結されて、該リンクに関連付けられた運動位置情報を取得する運動構成要素と、
該リンクおよび該少なくとも1つのツールまたは画像取込み機器の構造に関する第1のデータと、
患者の位置に関する患者データと、
衝突検出構成要素であって、該衝突検出構成要素は、該第1のデータを受信するように連結され、該患者データを受信するように連結され、および該運動構成要素に連結されることにより、該リンクの該患者との起こりうる衝突または実際の衝突、または該少なくとも1つのツールまたは画像取込み機器の該患者との起こりうる衝突または実際の衝突に関する警告信号を生成する、衝突検出構成要素と
を備える、ロボット手術システム。
(項目33)
ディスプレイをさらに備え、前記衝突検出構成要素は、前記信号を該ディスプレイに伝送して、前記起こりうる衝突または実際の衝突に関する情報を表示するように構成される、項目32に記載のシステム。
(項目34)
前記起こりうる衝突または実際の衝突に関する前記情報は、前記リンクまたは前記少なくとも1つのツールの前記患者との該起こりうる衝突または実際の衝突の合成表現を含む、項目33に記載のシステム。
(項目35)
前記起こりうる衝突または実際の衝突に関する前記情報は、衝突を回避または是正することに関する情報を含む、項目34に記載のシステム。
(項目36)
ロボットシステムにおけるツールに対してツール移動を教示する方法であって、
第1の画像をディスプレイ上に表示することであって、該第1の画像は、画像取込み機器の視野内のロボットのツールまたはリンクの映像供給物を含む、ことと、
第2の画像を該ディスプレイ上に表示することであって、該第2の画像は、該ツールまたはリンクのモデルを表す、ことと、
第1の制御器からの入力に応答して、該第2の画像を移動させることと、
第2の制御器からの入力に応答して、該ツールを移動させることと
を含む、方法。
(項目37)
リアルタイム映像画像が取り込まれる視野を有する画像取込み機器と、
手術ツールを支持するリンクと、
ディスプレイと、
モデル化構成要素と
を備える、手術ロボットシステムであって、
該モデル化構成要素は、該視野の3次元レンダリングを生成し、該視野の外の該手術ツールの少なくとも一部分の3次元レンダリングを生成し、
該ディスプレイは、該視野のレンダリング、該視野の外の該手術ツールの該少なくとも一部分のレンダリング、および該リアルタイム映像画像を同時に表示し、
該手術ツールの該少なくとも一部分のレンダリングは、該視野の該レンダリングに関して、該画像取込み機器の該視野に関して該手術ツールが有する場所と実質的に同じ場所に位置して見えるように表示され、
該リアルタイム映像画像は、該視野の該レンダリングに関して、該リアルタイム映像画像が、該画像取込み機器の該視野内に取り込まれた場所と実質的に同じ場所に位置して見えるように表示される、手術ロボットシステム。
(項目38)
前記視野の前記レンダリングに関して、前記リアルタイム映像画像の前記表示された場所は、該視野の該レンダリングの表示されるビュー角度が前記ディスプレイにおいて変更される際に、実質的に一定のままである、項目37に記載の手術ロボットシステム。
以下の説明では、本発明の種々の側面および実施形態について説明する。説明する目的で、実施形態について十分な理解を提供するために、具体的な構成および詳細について記述する。しかしながら、具体的な詳細が無くても本発明を実施することができることも当業者に明らかである。さらに、周知の特徴を、本説明から省略してもよく、または説明される実施形態を曖昧にしないように簡略化してもよい。
次に、同様の参照番号がいくつかの図面において同様の部分を表す図面を参照すると、図1は、ある実施形態に従う、操作者ステーションまたは外科医コンソール30を有する低侵襲遠隔手術システム20を示す。外科医コンソール30は、手術部位の画像が外科医Sに表示されるビューア32を含む。既知であるように、外科医Sが自身の前腕を置くことができるとともに、2つのマスタ制御700(図5)を片手に1つ把持することができる支持体(図示せず)が提供される。より多くのエンドエフェクタが利用可能である場合、より多くの制御を提供してもよいが、一般的には、外科医は、一度に2つの制御のみを操作し、複数のツールを使用する場合、外科医は、マスタ制御700によって1つのツールを解放し、同じマスタ制御で別のツールを把持する。外科医コンソール30を使用する場合、外科医Sは、一般的には、外科医コンソールの前の椅子に座り、自身の両目をビューア32の前に合わせ、マスタ制御700を片手に一つ把持するとともに、自身の前腕を支持体上に置く。
遠隔手術システム20の患者側カート40は、患者Pに隣接して設置される。使用中、患者側カート40は、手術を必要とする患者Pの近くに設置される。患者側カート40は、一般的には、外科手術中は固定されており、移動できるように車輪またはキャスタを含む。外科医コンソール30は、一般的には、患者側カート40から遠隔に設置され、患者側カートから遠く離れて(何マイルも離れて)分離され得るが、一般的には、患者側カートと同じ手術室内において使用される。
図2においてより詳細に示す患者側カート40は、一般的には、2つ以上のロボットアーム組立体を含む。図2に示す実施形態では、患者側カート40は、4つのロボットアーム組立体42、44、46、48を含むが、より多くのまたはより少ないロボットアーム組立体を提供してもよい。各ロボットアーム組立体42、44、46、48は、通常、外科医コンソール30のマスタ制御のうちの1つに動作可能に接続される。したがって、ロボットアーム組立体44、46、48のマニピュレータ部分の動きは、マスタ制御の操作によって制御される。
参照数字42により示されるロボットアーム組立体のうちの1つは、画像取込み機器50、例えば、内視鏡またはその同等物を保持するように配置される。内視鏡または画像取込み機器50は、細長いシャフト54の遠隔端部に視認端部56を含む。細長いシャフト54によって、患者Pの手術侵入ポートを通して視認端部56を挿入することが可能になる。画像取込み機器50は、その視認端部56において取り込まれた画像を表示するために、外科医コンソール30のビューア32に動作可能に接続される。
他のロボットアーム組立体44、46、48のうちの各々は、着脱可能な手術器具またはツール60、62、64をそれぞれ支持および含むリンク装置である。ロボットアーム組立体44、46、48のツール60、62、64は、それぞれエンドエフェクタ66、68、70を含む。エンドエフェクタ66、68、70は、当技術分野において既知であるように、ツールの細長いシャフトの遠位端上に装着されるリスト部材上に装着される。ツール60、62、64は、患者Pの手術侵入ポートを通してエンドエフェクタ66、68、70を挿入することを可能にするように、細長いシャフトを有する。ツール60、62、64のシャフトの端部に対するエンドエフェクタ66、68、70の動きは、外科医コンソール30のマスタ制御によって制御される。
示される遠隔手術システム20は、視覚カート80を含み、視覚カート80は、画像取込み機器に関連する設備を含む。別の実施形態では、視覚カート80は、遠隔手術システム20を動作させるためのコンピュータ設備または他の制御(「コア」データ処理設備)の大部分を含む他の設備と組み合わせられることができる。例として、外科医コンソール30のマスタ制御器により送信された信号は、視覚/コアカート80に送信され得、次いで、視覚/コアカート80は、信号を解釈し、エンドエフェクタ66、68、70および/またはロボットアーム組立体44、46、48のためのコマンドを生成する。加えて、画像取込み機器50からビューア34に送信された映像は、視覚カート80によって処理され得るか、または視覚カート80によって単に転送され得る。
図3は、遠隔手術システム20の図表示である。示されるように、システムは、外科医コンソール30、患者側カート40、および視覚カート80を含む。加えて、ある実施形態によると、追加のコンピュータ82およびディスプレイ84が提供される。これらの構成要素は、外科医コンソール30、患者側カート40、および/または視覚カート80のうちの1つ以上に組み込まれてもよい。例えば、コンピュータ82の特徴は、視覚カート80に組み込まれてもよい。加えて、ディスプレイ84の特徴は、外科医コンソール30、例えば、ビューア32に組み込まれてもよく、または外科医コンソールもしくは別の位置の完全に別個のディスプレイによって提供されてもよい。加えて、ある実施形態によると、コンピュータ82は、ディスプレイ84等のディスプレイを含まずに利用され得る情報を生成してもよい。
「コンピュータ」として説明されるが、コンピュータ82は、本明細書に説明する機能を実行することができるコンピュータシステムの構成要素または任意の他のソフトウェアもしくはハードウェアであってもよい。さらに、上述のように、コンピュータ82の機能および特徴は、いくつかの機器またはソフトウェア構成要素に分散されてもよい。したがって、図示するコンピュータ82は、論議の利便性のためのものであり、制御器によって置換されてもよく、またはその機能は、1つ以上の他の構成要素によって提供されてもよい。
図4は、ある実施形態に従うコンピュータ82の構成要素を示す。位置構成要素が、コンピュータ82に含まれるか、あるいはコンピュータ82に関連付けられる。位置構成要素は、エンドエフェクタ66、68、70のうちの1つ等のエンドエフェクタの位置に関する情報を提供する。図示する実施形態では、ツール追跡構成要素90が、位置構成要素のために使用され、エンドエフェクタ66、68、70等のエンドエフェクタの位置に関する情報を提供する。本明細書で使用する際、「位置」は、エンドエフェクタの場所および/または配向のうちの少なくとも1つを意味する。多種多様な異なる技術を使用して、エンドエフェクタの位置に関する情報を提供してもよく、このような技術は、考察されるツール追跡機器であってもよく、またはそうでなくてもよい。単純な実施形態では、位置構成要素は、画像取込み機器50からの映像供給物を利用して、エンドエフェクタの位置に関する情報を提供するが、この視覚情報の代わりに、またはこの視覚情報に加えて、他の情報を使用してもよく、他の情報には、センサ情報、運動情報、これらの任意の組み合わせ、またはエンドエフェクタ66、68、70の位置および/もしくは配向を提供し得る追加の情報が含まれる。ツール追跡構成要素90に使用され得るシステムの例は、米国特許第5,950,629号(1994年4月28日出願)、米国特許第6,468,265号(1999年11月9日出願)、米国特許出願公報第US2006/0258938Al号(2005年5月16日出願)、および米国特許出願公報第US2008/0004603Al号(2006年6月29日出願)に開示される。ある実施形態によると、ツール追跡構成要素90は、本出願人による米国特許出願第61/204,084号(2008年12月31日出願)に説明するシステムおよび方法を利用する。概して、位置構成要素は、エンドエフェクタの実際の位置および配向に関する情報を保持する。この情報は、情報が利用可能である時に依存して更新され、例えば、非同期情報であり得る。
運動構成要素92は、概して、位置、本明細書では、エンドエフェクタの「運動位置」を、遠隔手術システム20を介して利用可能である情報を利用して推定する任意の機器である。ある実施形態では、運動構成要素92は、エンドエフェクタに対するリンク装置の接合状態からの運動位置情報を利用する。例えば、運動構成要素92は、遠隔手術システム20のマスタ/スレーブアーキテクチャを利用して、ツール60、62、64の各々のリンク装置における接合についてのエンコーダ信号に基づいて、エンドエフェクタ66、68、70の対象のデカルト位置を計算し得る。例として、運動構成要素は、スレーブエンコーダ102および/またはマスタマニピュレータエンコーダを利用して、ツールの位置を推定し得る。運動構成要素のある実施形態を利用するシステムの例は、参照により本明細書に組み込まれる米国特許第7,155,315号に説明されるが、他の例を利用してもよい。また、エンドエフェクタまたはリンク装置および/もしくはツールの任意の部分の運動位置情報は、他の方式で提供されてもよく、例えば、光ファイバ形状検知、リンク装置、ツール、またはエンドエフェクタに沿った種々の場所に埋め込まれた構成要素(例えば、電磁構成要素)の位置の検知、種々の映像ツール追跡方法等の使用が挙げられる。
図示する実施形態では、誤差訂正構成要素94が提供される。概して、誤差訂正構成要素は、ツール追跡構成要素90が提供するツールの場所および/または配向を、運動構成要素92が提供するツールの場所および/または配向と比べた差異を計算する。接合および可動の部品が多数あるので、現在の運動測定は、一般的には、空間における手術用エンドエフェクタの場所について正確な情報を提供しない。十分な剛性および検知を有するシステムであれば、論理的に、ほぼ正確な動力学的情報を提供することができる。しかしながら、現在の低侵襲ロボット手術システムでは、しばしば、運動情報が空間において採取される場合に、任意の方向に最大1インチ不正確である場合がある。したがって、ある実施形態によると、オフセットが、誤差訂正構成要素94によって生成され得る。このオフセットは、運動構成要素が提供する運動情報と、ツール追跡構成要素が提供する実際の位置情報との差異に関する情報を提供する。オフセットを利用して、運動情報および実際の位置情報は、同じ場所および/または配向に位置合わせされ得る。
ある実施形態によると、モデル化構成要素108が、患者側カート40等の患者側カートまたはその任意の部分の合成画像120(図6)を生成するために提供される。図示する実施形態では、合成画像120は、患者側カート40とは異なる患者側カート構成を有する(3つのアームを有するda Vinci(登録商標) Surgical System Model IS2000患者側カートの例示的モデルが示される)が、患者側カート40が追加のロボットアーム組立体およびツールを含むこと以外は、2つの患者側カートの基本構成要素は同じである。ある実施形態によると、合成画像120は、ディスプレイ84またはビューア32上に表示され得る。このために、視覚カート80および/またはコンピュータ82に関連付けられるモデル化データ104(図3)が提供され得る。モデル化データ104は、例えば、患者側カート40またはその任意の部分の画像等の、2次元(2−D)または3次元(3−D)表現であってもよい。ある実施形態では、このような表現は、患者側カート40またはその任意の部分の3−Dモデルであるため、患者側カート40またはその任意の部分の実際のソリッドモデルを表し得る。モデル化データ104は、例えば、患者側カート40の構成要素を表すCADデータまたは他の3−Dソリッドモデルデータであってもよい。ある実施形態では、3−Dモデルは、患者側カートの動きが患者側カート40の合成画像120によって模倣され得るように、患者側カート40の各接合において操作可能である。モデル化データは、患者側カート全体、または患者側カートのツールのみ等のその任意の部分を表してもよい。
接合場所および配向は、概して、例えば、運動構成要素92が提供する運動データから既知である。この情報を利用して、患者側カートの各構成要素は、外科医に対して3−Dで見える患者側カートの画像を生成するように、場所にレンダリングされ得る。したがって、ある実施形態では、モデル化データ104は、患者側カートロボットの構成要素またはリンク装置毎に個別情報を含む。
ある実施形態によると、モデル化構成要素108は、ツール追跡構成要素90および/または運動構成要素92が提供する情報に従って、合成画像120の構成要素の場所および/または配向を絶えず更新する。例えば、患者側カートの1つ以上のエンドエフェクタの位置を含む運動構成要素92の初期状態が決定され得る。これらの位置は、ツール追跡構成要素90が提供する位置情報と比較され得る。上述のように、ツール追跡構成要素90が決定する実際の位置と、運動構成要素92が提供するエンドエフェクタの推定位置との差異は、結果としてオフセットされ得、このオフセットは、誤差訂正構成要素94に格納され得るか、あるいは誤差訂正構成要素94によって使用され得る。このオフセットを使用して、ツール追跡構成要素90が決定するエンドエフェクタの位置および配向を、運動構成要素92が推定する位置および配向に位置合わせし得る。
データが、ツール追跡構成要素90から利用可能である場合、エンドエフェクタの実際の位置が追跡され、運動構成要素92が提供する情報と位置合わせされ得る。ツール追跡情報がツール追跡構成要素90から利用不可能である場合、運動構成要素92が提供する運動情報における任意の変化が、エンドエフェクタによる実際の動きを標示することが仮定され得る。すなわち、ツール追跡が利用不可能である場合、エンドエフェクタの位置は、運動構成要素92が計算する現在の位置と最後に既知であった位置との間の座標位置の変化によって正確に決定され得る。ここで、位置の変化が、ツール追跡情報を使用せずに、運動データのみを使用して正確に計算され得ることが仮定される。運動情報は、空間におけるエンドエフェクタの位置を計算するためにはしばしば不正確であるが、一般的には、その運動情報は、特に短時間において、または少量の動きについて一旦位置が把握されると、位置の変化を計算するには正確であることから、この仮定は、合理的である。したがって、非同期データが、ツール追跡構成要素90によって提供され得、同期データが、運動構成要素92によって提供され得る。この情報の組み合わせによって、患者側カート40の構成要素の位置および配向に関するデータが提供される。
ロボットアーム組立体の構成要素の位置は、運動構成要素が提供する接合状態を利用して決定され得る。これらの接合状態は、上述のように、その位置が既知であるエンドエフェクタから逆行して計算される。加えて、患者側カートのロボットアーム組立体122の接合部におけるスレーブエンコーダ102が、接合部毎の状態情報の変化を提供することから、ロボットアーム組立体の各区画の相対位置が、正確に推定および追跡され得る。したがって、ロボットアーム組立体の端部におけるツール124またはロボットアーム組立体のうちの1つの端部における内視鏡126を含むロボットアーム組立体122の区画の各々の位置により、モデル化構成要素108がモデル化データ104を利用して合成画像120を生成することができることに十分である情報を、モデル化構成要素108に提供することができる。
再び図6を参照すると、ある実施形態では、患者側カートの合成画像120に加えて、内視鏡の視体積130が提供される。視体積130は、内視鏡126の視野の投影を表す。視野は、内視鏡によって可視であるビューであり、視体積は、視野の境界の投影である。すなわち、視体積130は、内視鏡126によって可視である3−D空間を表す。必要に応じて、図4に示すように、カメラ情報132が、モデル化構成要素108に提供され得る。カメラ情報は、カメラに関する較正された組の固有パラメータおよび外的パラメータを含む。固有パラメータには、例えば、光学の透視マッピングをモデル化する焦点距離および主点が含まれる。加えて、固有パラメータは、レンズ歪みの要因となり得る。外的パラメータは、例えば、立体的な内視鏡ビュー間の相対位置および配向の要因となり得る。理解できるように、内視鏡のズーム等のパラメータを変更することによって、視体積を狭くまたは広くする等の内視鏡の視体積が変更される。加えて、内視鏡126が移動すると、視体積130は、適宜移動する。カメラ情報によって、後述するように、画像取込み機器からのエンドエフェクタの立体的ビューに重ね合わされ得る3−D立体的レンダリングの作成が可能になる。
図7は、ある実施形態に従う、合成画像120のレンダリングを更新するためのプロセスを表すフローチャートである。401で開始して、患者側カートまたはその任意の部分の位置および配向が検知される。この検知は、上述のように、例えば、ツール追跡構成要素90および/または運動構成要素92を介して発生し得る。
402において、401からの位置および配向情報を使用して、モデル(例えば、合成画像120)を生成する。上述のように、モデル化構成要素108は、モデル化データ104を使用してモデルを生成する。401から提供された位置および配向情報を利用して、患者側カートの位置および配向に一致するように、合成モデルの位置および配向を正確に配置する。
404において、患者側カートの移動の結果として、情報が受信される。動きは、例えば、ロボットアーム組立体のうちの1つの動き、内視鏡の動き、内視鏡の焦点の変化、またはエンドエフェクタのうちの1つによる動きであってもよい。エンドエフェクタの動きは、例えば、ペンチの閉鎖またはエンドエフェクタの他の操作上の動きを含む、場所または配向の変化であってもよい。
406において、ツール追跡情報が利用可能であるか否かの決定が行われる。図4に示す実施形態では、内視鏡126の視野(例えば、視体積130)にあるエンドエフェクタまたはツールの任意の部分の実際の位置がツール追跡構成要素90を使用して探索され得るために、画像が利用可能であるか否かの決定が行われる。一側面では、ツール追跡が利用可能である場合、406は、408に分岐し、408において、ツール追跡情報を利用して、ツールおよび/またはエンドエフェクタの位置および配向に関する情報を更新する。
410において、運動情報を使用して、患者側カートのロボットの各リンク装置の接合部の場所および配合に関する情報を更新する。412において、必要に応じてオフセットが更新される。414において、合成画像120の表示が更新され、プロセスは、分岐して404に戻る。
406において、ツール追跡情報が利用不可能である場合、プロセスは、416に分岐して、416において、運動構成要素92が提供する運動情報を利用して、エンドエフェクタの位置を決定する。次いで、プロセスは、410に進み、続いて、プロセスを通るが、ツール追跡情報が本ループにおいて利用不可能であるので、オフセットは、おそらく更新されず、412は省略される。
図7に示す方法を利用して、合成画像120の3−Dレンダリングが生成され、合成画像は、外科手術における任意の時点において、患者側カートの物理的構成を正確に表す。この情報を、外科医Sまたは他の誰かが利用および視認して、患者側カートの状態を評価することができる。後述するように、ビューア34またはディスプレイ84は、内視鏡の視点と同じ視点からか、または別の角度もしくは距離からの合成画像120を示してもよい。合成画像120によって、ビューア32を介して患者ビューカートの全ての部分の観測が可能になるので、外科医Sは、ロボットおよびツールの動きを監視することが可能になる。加えて、ある実施形態によると、これらの構成要素の視認は、視体積130に関連して利用可能であり、外科医は、空間に対する内視鏡の視野の場所に関する良好な透視を有することが可能になる。視体積130は、ビューア32内を見ている場合に、外科医Sが見えるものの3次元表現を提供する。
必要に応じて、内視鏡の視野および合成画像120の両方を示すための単一表示が提供され得る。例えば、図8に示すように、ビューア32またはディスプレイ84により提供されたビュー200は、内視鏡126の実際の視野画像202および合成画像120の両方を提供する。合成画像120は、別のタイルウィンドウ204で示される。図8に示す実施形態では、タイル204は、視野202とほぼ同じサイズであるが、必要に応じて、タイルウィンドウは、視野202よりも小さくてもまたは大きくてもよい。また、必要に応じて、合成画像120または視野202のより大きい提示を外科医が交互に切り替えることができるように、トグルまたは他の特徴を提供してもよい。加えて、合成画像120および/またはタイルウィンドウ204は、継続的ベースまたは要求に応じて、視野の一部分の上に部分的に重ね合わされてもよい。
合成画像120または視野202のより大きな提示を交互にトグルで切り替える例として、マスタマニピュレータに接続されるカメラ制御が提供され得る。例えば、使用者は、内視鏡ビューを見始め、カメラ制御モード中に、自身に向かって自身の手を引くことによって内視鏡を後方に引っ張ってもよい。ある点において、内視鏡をこれ以上引っ張ることができなくなり、視野は、最大範囲を包囲する。マスタ制御(触覚戻り止めまたは他の標示を含むまたは含まない)を引っ張り続けると、現実の画像(例えば、視野202に取り込まれた画像)の境界に沿って合成画像120の区画を示すビューが露呈される。マスタ制御(触覚戻り止めまたは他の標示を含むまたは含まない)をまたさらに引っ張ると、視野202に取り込まれた画像が画面の中心区画のみであるビューが提供され得る。制御(触覚戻り止めまたは他の標示を含むまたは含まない)をまたさらに引っ張ると、全体の合成画像120が提供され得る。マスタ制御方向を逆行させることを使用して、このような現実から合成へのズームアウト機能を逆行させて、合成から現実へのズームイン機能を制御することができる。マスタマニピュレータの動きを使用するカメラ制御の代替として、システムは、別の制御入力(例えば、足踏みペダル、マニピュレータ上の指ボタン、マスタマニピュレータグリップのロール、およびその同等物)を使用して、ズーム機能を制御するように構成されてもよい。
図9は、合成画像120の一部分を視認するための代替角度を表示するタイルウィンドウ208を示す。図示する実施形態では、視体積130は、内視鏡の実際の視野から若干傾けられるが、視体積130のビューの特定の角度は、視体積に関連するツール124の構成に関する関連情報を示す。
合成画像120の特徴によって、低侵襲遠隔手術システム20の使用者に別の便益が提供される。これらの利点のうちのいくつかについて以下に記載する。
(衝突検出)
一般的には、低侵襲遠隔手術システムでは、ツール124等の手術ツールの最遠位部分のみが、常に、内視鏡126の視野において外科医に可視的であり得る。患者側カートの構成に依存して、視野において外科医に非可視的であるロボット組立体の可動部品間の衝突が発生し得る可能性がある。これらの衝突のうちのいくつか(内視鏡126の視野外であることから「外側衝突」)は、ツールに至るロボットアーム組立体のリンク装置の間で発生し得るか、衝突は、2つのツールの間で発生し得るか、またはツールとリンク装置との間で発生し得る。このような外側衝突は、身体の外部または身体の内部で発生し得るが、視野内では発生し得ない。加えて、外側衝突は、視野にある一方のツールと視野の若干外部にある別のツールとの間で発生し得る。身体の内部および内視鏡の視野において発生する衝突は、「内側衝突」である。
一般的には、低侵襲遠隔手術システムでは、ツール124等の手術ツールの最遠位部分のみが、常に、内視鏡126の視野において外科医に可視的であり得る。患者側カートの構成に依存して、視野において外科医に非可視的であるロボット組立体の可動部品間の衝突が発生し得る可能性がある。これらの衝突のうちのいくつか(内視鏡126の視野外であることから「外側衝突」)は、ツールに至るロボットアーム組立体のリンク装置の間で発生し得るか、衝突は、2つのツールの間で発生し得るか、またはツールとリンク装置との間で発生し得る。このような外側衝突は、身体の外部または身体の内部で発生し得るが、視野内では発生し得ない。加えて、外側衝突は、視野にある一方のツールと視野の若干外部にある別のツールとの間で発生し得る。身体の内部および内視鏡の視野において発生する衝突は、「内側衝突」である。
ある実施形態によると、モデル化構成要素128が生成する合成画像120および/または情報を、衝突検出に利用してもよい。例として、ビューア32を視認する外科医、またはディスプレイ84を視認する別の個人は、差し迫った衝突または実際の衝突の標示を見るために合成画像120を視認し得る。
衝突検出は、衝突の視覚画像のみではなくそれ以上のものに関与し得る。ロボットリンク装置およびツールの相対場所に関する情報は、モデル化構成要素128によって維持され、この情報を使用して、2つの構成要素が相互に接近し過ぎであると検知される場合に、信号を生成してもよい。例えば、各ツールは、ツールの表面の外部に特定の半径または緩衝帯を有するカプセルまたはシリンダのように処理され得る。ツール追跡構成要素からの実際の位置情報および/または運動構成要素92からの運動情報を使用して、モデル化構成要素108は、衝突を予測または警告し得る。例えば、2つのツール124が各々半インチの半径を有すると想定される場合、ツールのうちの一方の中心線が第2のツールの中心線の1インチ以内に近づく場合に、モデル化構成要素108は、衝突が発生したことを仮定し得る。2つのツールが相互に接近しているが、接触していないと計算される場合、別の信号が生成されてもよい。上記例では、この距離は、1.20インチのツールの間の中心線距離であってもよい。
図10は、2つのツール252、254が衝突していることを実際の視野画像250が示すディスプレイタイルウィンドウを下側に示す。図10における衝突は視野250内にあるが、上述のように、衝突は、視野外または患者の身体外でも発生し得る。視野内であっても、ツール252、254は、必ずしも可視的であるとは限らず、これは、ツールが、例として、焼灼の煙、血液、または器官によって妨害される場合があるからである。図10では、内側衝突が視野250に見られるが、内部衝突は、モデル化構成要素108によっても検出される。
図10の上側に、合成画像120を表すディスプレイタイルウィンドウ260が存在する。図10に示す実施形態では、タイルウィンドウ260は、視野250と同じ視点から取られるが、上述のように、異なる視点を提供してもよい。加えて、上述のように、外側衝突および内側衝突が検出されてもよい。
図11は、ある実施形態に従う、衝突情報を提供するための例示的プロセスを示すフローチャートである。本プロセスは、1100から開始する。1102において、合成画像120等のモデルが生成される。この生成プロセスについては、図7を参照して説明される。1104において、患者側カートのロボットが移動させられる。1105において、ロボットアーム組立体122のリンク装置および/またはツールの近接が計算される。1106において、近接が高閾値内にあるか否かの決定が行われる。高閾値は、衝突の警告が発せられるツール間またはリンク装置間の間隔を表す。例えば、上述のように、2つのツールが半インチの半径を有することが仮定される場合、高閾値は、1.2インチの中心線の離間距離であり得る。患者側カートの構成要素が高閾値内にない場合、1106は、分岐して1104に戻り、ロボットは引き続き移動する。
患者側カートの2つの構成要素が高閾値内にある場合、1106は、1108に分岐し、1108において、警告が生成される。この警告は、可聴警告、視覚警告(例えば、ビューア32内またはディスプレイ84上に提供される)、または別の適切な衝突近接標示であってもよい。視覚警告である場合、警告は、例えば、視野250(図10)において提示されてもよい。図10に示す実施形態では、実際の衝突を標示する単語の「内側衝突エラー」が示される。代替として、警告メッセージでは、ツールが接近し過ぎであること、または類似の状態であることを記述するメッセージが提供され得る。加えて、合成画像120のビューでは、ツール124の色は、警告を発するように変化してもよく、例えば、金属色から警告のための黄色に変化する。
外科医は、1108において警告が生成された後に、ロボットを再配置するように選択してもよく、または選択しなくてもよい。いずれの場合であっても、プロセスは、1110に進み、1110において、ロボットは再び移動している。1112において、ロボットが低閾値内にあるか否かの決定が行われる。ある実施形態では、低閾値は、衝突が仮定される中心線距離等の距離を表す。低閾値を満たさない場合、プロセスは、分岐して1104に戻り、ループし続け、おそらくは、1106において高閾値外まで患者側カートの構成要素が移動しない限り、警告メッセージを生成し続ける。
構成要素が低閾値内にある場合、1112は、1114に分岐し、1114において、衝突警告またはメッセージ等の衝突情報が生成される。例として、図10において、衝突エラー警告は、視野250に提供される。(近似の衝突警告および実際の衝突警告の両方は、同じまたは異なる標示を使用してもよい。)類似の衝突エラー警告をタイルウィンドウ260に提供してもよく、ツール124は、衝突エラーを示すために、赤色等の色に変化してもよい。次いで、プロセスは、ループして1104に戻る。
上述のように、衝突検出では、構成要素は、ビューア32の視野にある必要はない。したがって、患者側カートの構成要素が不適切に整列させられ、衝突が迫っている場合、または実際に衝突している場合、視覚形式または警告もしくはエラーメッセージの形式のどちらかで、情報が提供され得る。警告は、使用者がロボットの動作に不慣れであり、ツールまたはロボットアーム組立体を不自然な位置に置く可能性のある場合に特に役立ち得る。ビューア32を視認する者は、2つのロボットマニピュレータ間の近似の衝突点または実際の衝突点を決定するために、ロボットの異なる合成ビュー角度および距離を選択し得る。操作者が衝突点を視認すると、操作者は、ロボットの運動アーム(受動的「設定」部分または能動的に制御されるマニピュレータ部分のいずれか)のうちの1つ以上を調整して、実際の衝突状態または近似の衝突状態を是正し、さらなる衝突を回避し得る。一側面では、操作者が内視鏡の視野に対応する合成ビューを視認している場合、衝突警告または実際の衝突が発生している場合に、合成ビューは、衝突点を示すように自動的に変更され得る。
ある実施形態では、患者および/または患者の組織構造の部分の場所(例えば、術前撮像からの、または組織構造場所を位置合わせする他の適切な方法による)が、システムに提供され得、位置合わせされた患者場所データは、ロボットと、患者または患者における指定組織構造との間の実際の衝突または起こりうる衝突を検出、警告、および表示するためのものであり得る。衝突は、上述のように検出され得る。
また、ある実施形態では、視覚インジケータ、可聴インジケータ、または他のインジケータを提供して、衝突状態の低減または是正を支援してもよい。例えば、上述の警告状態では、情報を外科医に提供して、外科医が衝突を回避することを支援し得る。例えば、視覚インジケータは、衝突が発生する可能性のある動き方向に関する情報を提供してもよく、または衝突を回避もしくは是正するために外科医が行う動き方向を標示してもよい。
(消失ツール回復)
低侵襲手術では、内視鏡カメラの視体積の外部に器具を設置することが可能である。この可能性によって、器具をビューに戻すように内視鏡を移動させる方法、または器具を内視鏡の視野に戻す方法を外科医が必ずしも把握する必要が無いので、ツールを事実上見失う状況がもたらされ得る。さらに、観測不可能である器具を外科医が移動させることができるので、この状況は、患者の安全性を危険にさらす可能性がある。
低侵襲手術では、内視鏡カメラの視体積の外部に器具を設置することが可能である。この可能性によって、器具をビューに戻すように内視鏡を移動させる方法、または器具を内視鏡の視野に戻す方法を外科医が必ずしも把握する必要が無いので、ツールを事実上見失う状況がもたらされ得る。さらに、観測不可能である器具を外科医が移動させることができるので、この状況は、患者の安全性を危険にさらす可能性がある。
合成画像120は、各ツール124の位置の正確な表示とともに、内視鏡の視体積130のより広いビューを外科医に提示することによって、この問題に対する解決策を提供する。このようなより広いビューとツール表示とは、種々の視点から提供されてもよい。ある実施形態では、広いビューおよびツール表示は、内視鏡視野と同じ視点または方向から提供される。この方向に広いビューを提供することによって、外科医は、実際の内視鏡画像を視認する際に自身が通常遭遇する直感的なツールの動きを保持するともに、ツールが視体積130に戻るようにツールを適切な位置に移動させることができる。代替として、他の角度から視体積130を視認してもよく、これによって、外科医は、内視鏡126が視認するものについて異なる透視を有することが可能になる。例として、図8および図9は、合成画像120のために示され得るビューのうち、異なる角度および面で取られた3つの異なるビューを示す。図8の下側部分は、実際の画像を示すが、合成画像120が、同じ方向から提供されてもよく、合成のツールが実際のツールの映像供給物の代わりに示され得ること以外は類似して見え得る。視野によって確立されたビューが、図8の下側に示され、合成画像の前側から取られたビュー(患者側カートの大部分を示すように外側にズームされる)が、図8の上部に示される。内視鏡の視野の方向の若干後方および前方で取られ、かつ視体積130を示すように外側にズームされたビューが、図9に示される。このビューにおける若干の変動によって、ツール124が視体積130に対してある場所の良好な透視が提供される。外科医は、図9に示すように、視野に一致するビューと、視野から少し離れたビューとをトグルで切り替えることができる。このために、合成画像120の異なるビューを外科医がトグルで切り替えることを可能にするために、制御器または他の機器を提供してもよい。代替として、別々の制御器またはマスタ制御器を利用して、合成画像120の無限の位置決め(例えば、種々の面、傾き、回転、当て盤、トラック、クレーン、およびズーム画像動作)を可能にしてもよい。
図12は、ある実施形態に従う、消失ツール回復のためのプロセスを表すフローチャートである。本プロセスは、1200から開始する。1202において、合成画像120が上述のように生成される。1204において、患者側カートまたはロボットが移動させられる。
1206において、ツールのうちの1つ以上が視野外にあるか否かの決定が行われる。視野外にない場合、プロセスはループして1204に戻る。ツールのうちの1つ以上が視野外にある場合、プロセスは、1208に移動し得、1208において、合成画像が示される。合成画像は、自動的に示されてもよく、または示されなくてもよく、合成画像表示は、外科医によって選択され得る。このために、1208は、外科医または別の操作者による要求を受けて行われてもよく、ツールが視野外にあることによってトリガされてもよく、またはトリガされなくてもよい。しかしながら、必要に応じて、合成画像は、ツールの画像の消失を受けて自動的に示されてもよい。しかしながら、このようなある実施形態では、外科医から離れた視野を取る代わりに、視野に加えて、タイルウィンドウに合成画像を示すことが望ましくあり得る。
消失ツール表示オプションが利用可能である場合、1208において、合成ビュー120が要求あるいは提供され得る。1208において提供された合成画像は、上述のように、内視鏡126の視野またはモデル化システムの任意の数の透視と実質的に同じであり得る。所望の角度が示されない場合、外科医は、異なるビューを示すことを1210において選択し得る。外科医が異なるビューを示すことを選択する場合、1210は、1212に分岐し、1212において、合成画像120は、例えば、異なるビューを示すように回転する。必要に応じて、この動きの一部として、ビューが表示されている位置に対してビューが開始した位置に関して外科医が把握することができるように、合成画像は、空間において回転し得る。加えて、ある実施形態によると、合成画像120のビューが視野と同じ視点と一致しない場合、自身が視野の方向とは異なる方向から視体積130を見ていることを外科医が理解することができるように、警告メッセージまたは他のインジケータが外科医に提供され得る。
1210において、外科医が異なるビューを要求しなかった場合、プロセスは、ループして1204に戻る。
上述のように、合成画像120は、視体積130よりも大きく、かつ視体積130の外部にある患者側カートの画像を提供する。したがって、内視鏡126の視野と同じ視点に沿っていたとしても、外科医は、視体積130の少し外部にあるツールを見ることができるように外側にズームしてもよい。次いで、外科医は、これらのツールまたは内視鏡を、視野内に入るように所望の位置に移動させ得る。
(映像およびレンダリングビューの混合)
上述のように、システムがロボットの合成画像120を外科医に提示し得る多数の方式が存在する。図8に関連して説明された第1のオプションは、視野画像202の上に合成ビューを示すタイルウィンドウ204を含み、両方ともが同時に示される。図9に示す別のオプションは、合成画像120のみを示す。
上述のように、システムがロボットの合成画像120を外科医に提示し得る多数の方式が存在する。図8に関連して説明された第1のオプションは、視野画像202の上に合成ビューを示すタイルウィンドウ204を含み、両方ともが同時に示される。図9に示す別のオプションは、合成画像120のみを示す。
ある実施形態によると、内視鏡からの映像表示が合成画像120の上に、位置を一致させた状態で重ね合わされる第3のオプションが提供され、映像画像は、患者側カート全体の合成画像120の背景にレンダリングされる。このビューによって、患者カートの構成要素の相対位置が外科医に提供され、外科医は、空間に対する外科医の場所を理解することが可能になる。また、ビューは、映像表示のみと合成画像120のみとの間の移行時に十分適している。移行中、外科医は、ロボットのそれぞれの位置と、内視鏡からの映像画像とを関連付けることができる。
本特徴の簡略化バージョンが図13に示され、本図面において、視野300内の画像は、合成画像120を含むウィンドウタイル306の上に投影される。視野画像300は、動作を実行する2つのツール302、304を含む。ウィンドウタイル306は、視野300により提供されたビューを拡張し、ツール302、304の追加の区画(それぞれ参照数字308、310によって示される)が提供される。外科医は、患者側カートの他の部分に対するツールの場所に関する追加の情報を提供するようにズームインおよびズームアウトし得る。加えて、図13に示す実施形態に関して説明する特徴を利用して、視野のすぐ外部にある消失したツールを、例えば、ウィンドウタイル306において探索し得るが、視野300において探索し得ない。
(視覚トラブルシューティングインジケータ)
ある実施形態によると、合成画像120の代わりに、または合成画像120に追加して、モデル化データ104を利用して、患者側カートの部分の視覚表現以外の画像を投影してもよい。例えば、ツール追跡構成要素90および/または運動構成要素92が提供する位置情報を使用して、モデル化構成要素108は、異なる色で合成画像120の一部分を表示し得るか、またはモデル化構成要素108は、合成画像の一部分の上に、または合成画像の代わりに、テキストを表示し得る。このようなある実施形態では、テキストは、視野における実際のツールの上に重ね合わされて、そのツールに注目するか、または他の情報を提供するようにし得る。例として、図13におけるツール304では、モデル化構成要素108を利用して、ツールのクランプが閉鎖していることを標示するために、ツール304の映像画像の上に配列されたテキストメッセージ「閉鎖」320を表示し得る。カメラ情報によって、上述のように、画像取込み機器からのツール304の立体的ビューに重ね合わされ得る3−D立体的レンダリングの作成が可能になる。また、エラーメッセージも提供してもよい。
ある実施形態によると、合成画像120の代わりに、または合成画像120に追加して、モデル化データ104を利用して、患者側カートの部分の視覚表現以外の画像を投影してもよい。例えば、ツール追跡構成要素90および/または運動構成要素92が提供する位置情報を使用して、モデル化構成要素108は、異なる色で合成画像120の一部分を表示し得るか、またはモデル化構成要素108は、合成画像の一部分の上に、または合成画像の代わりに、テキストを表示し得る。このようなある実施形態では、テキストは、視野における実際のツールの上に重ね合わされて、そのツールに注目するか、または他の情報を提供するようにし得る。例として、図13におけるツール304では、モデル化構成要素108を利用して、ツールのクランプが閉鎖していることを標示するために、ツール304の映像画像の上に配列されたテキストメッセージ「閉鎖」320を表示し得る。カメラ情報によって、上述のように、画像取込み機器からのツール304の立体的ビューに重ね合わされ得る3−D立体的レンダリングの作成が可能になる。また、エラーメッセージも提供してもよい。
図14は、ある実施形態に従う、モデル化構成要素108を利用して情報を表示するためのプロセスを表すフローチャートである。1400から開始して、患者側カートの構成要素の場所、例えば、ツール124の場所が決定される。1402において、モデル化構成要素108は、上述のようにツールと整列させられる。1404において、所望の情報が、ツールの上に表示される。例えば、上述のように、単語をツールの上に表示してもよい。加えて、必要に応じて、情報をツールまたは他の特徴の周囲またはそれに隣接して表示してもよい。
理解できるように、メッセージを視野における実際のツールの上に重ね合わせるために、モデル化データ104は、ツールの外周に関する情報のみを含む必要がある。患者側カートの他の構成要素は、本実施形態に必要とされない。
(通信支援)
合成画像120は、患者側カートの動作の遠隔画像を提供する際に有用であり得る。例えば、いくつかの状況では、患者側カートから遠隔にいる個人が、患者側カートの動作を視認することを望む場合がある。このような状況では、合成画像120は、ビューア32および遠隔ディスプレイ(例えば、ディスプレイ84)の両方にレンダリングされ得る。このような状況では、一実施形態によると、モデル化データは、全て1つの場所に保持され得、合成画像120は、遠隔場所において表示するために遠隔場所に送信される。
合成画像120は、患者側カートの動作の遠隔画像を提供する際に有用であり得る。例えば、いくつかの状況では、患者側カートから遠隔にいる個人が、患者側カートの動作を視認することを望む場合がある。このような状況では、合成画像120は、ビューア32および遠隔ディスプレイ(例えば、ディスプレイ84)の両方にレンダリングされ得る。このような状況では、一実施形態によると、モデル化データは、全て1つの場所に保持され得、合成画像120は、遠隔場所において表示するために遠隔場所に送信される。
代替実施形態では、ツール追跡構成要素90および/または運動構成要素92が提供する位置および配向情報は、遠隔コンピュータに送信されてもよい。次いで、遠隔コンピュータは、モデル化構成要素108およびモデル化データ104を含む。本実施形態では、合成画像120は、ビューア32のための合成画像120を生成することとは別の動作で、遠隔場所において生成される。
遠隔場所に合成画像120を提供することができることによって、外科医のコンソールを視認する操作外科医が、支援モニターを視認する手術の助手と通信することが可能になる。加えて、一方の外科医コンソールにおける実習外科医は、別の外科医コンソールにおける遠隔監督官と通信してもよい。
別の実施形態によると、遠隔使用者または監督官は、合成画像120等の合成画像の動きについて制御してもよい。合成画像の動きは、外科医コンソールにおいて外科医または実習生によって観察されてもよく、これによって、使用者は、外科手術および動作を習得すること、および外科医または実習生の制御(ひいてはツール)によりこれらの動作を模倣することが可能になる。
(移動領域の限界)
患者側カートのロボットアーム組立体のリンク装置は、動作領域の限界を有し、各アームまたはリンク装置により支持されたツールの動作を限界する。患者のロボットが移動領域の限界に直面する場合、ロボットが継続して移動することができない理由が、常に外科医(新人または熟練)に明白になるわけではない。遠隔手術システムでは、一般的には、2つの移動領域限界源、つまり、マスタマニピュレータの接合限界およびスレーブマニピュレータの接合限界が存在する。
患者側カートのロボットアーム組立体のリンク装置は、動作領域の限界を有し、各アームまたはリンク装置により支持されたツールの動作を限界する。患者のロボットが移動領域の限界に直面する場合、ロボットが継続して移動することができない理由が、常に外科医(新人または熟練)に明白になるわけではない。遠隔手術システムでは、一般的には、2つの移動領域限界源、つまり、マスタマニピュレータの接合限界およびスレーブマニピュレータの接合限界が存在する。
ある実施形態によると、モデル化構成要素108は、ツールの動作領域の限界が接近していることを標示するために信号を生成する。信号を使用して、例えば、限界に到達した部品の色分け等の視覚的合図を外科医に生成してもよい。代替として、仮想壁340(図6)としての合成幾何学的形状により限界を表してもよく、仮想壁340は、合成モデル120とともに示されてもよく、または代替として、視野の上に重ね合わされてもよい。仮想壁340は、最右ツール124のためのものであり、凹状、平坦、あるいは運動領域の曲線に一致する形状として示されてもよい。仮想壁340は、器具先端の妨げられた運動方向に対して垂直である位置および方向に表示される。
他の変形は、本発明の精神の中に存在する。したがって、本発明は、種々の修正および代替構成の影響を受けやすいが、本発明の一定の図示する実施形態は、図面に示され、詳細に上述されている。しかしながら、本発明を特定の1つまたは複数の開示された形式に限界することを意図せず、反対に、添付の請求項に規定される本発明の精神および範囲内に入る全ての修正、代替構成、および同等物を含めることを意図することを理解されたい。
本明細書に引用された出版物、特許出願、および特許を含む全ての参考文献は、各参考文献が個々にかつ具体的に参照により組み込まれるように標示され、かつその全体が本明細書に組み込まれるかのように、同程度に参照により本明細書に組み込まれる。
本発明の説明の内容において(特に、以下の請求項の内容において)、用語の「ある」および「前記」ならびに類似の指示語を使用することは、別途本明細書において指示または内容により明確に否定されない限り、単数形および複数形の両方を含むように解釈される。用語の「備える」、「有する」、「含む」、および「含有する」は、別途記述されない限り、無限界の用語として解釈されるべきである(すなわち、「含むが、これらに限定されない」を意味する)。用語の「接続される」は、介在する何かが存在する場合であっても、部分的または全体的にその中に含有されるか、取り付けられるか、一緒に接合されるように解釈されるべきである。本明細書における値の範囲の記述は、別途本明細書に指示されない限り、単に、その範囲にある各別々の値を個々に言及する省略方法としての役割を果たすように意図されるだけであり、各別々の値は、本明細書に個々に記述されるかのように本明細書に組み込まれる。本明細書に説明する全ての方法は、別途本明細書に指定されない限り、または別途内容により明確に否定されない限り、任意の適切な順番で実行されることができる。本明細書に提供するあらゆる例または例示的言語(例えば、「等」)の使用は、単に、本発明の実施形態をより明らかにするように意図されるだけであり、別途主張されない限り、本発明の範囲に限界を課さない。明細書におけるいかなる言語も、本発明の実施に必須であるものとして任意の請求されない要素を標示するように解釈されるべきである。
本発明を実行するために発明者に既知である最良の形態を含む本発明の好適な実施形態について本明細書に説明する。これらの好適な実施形態の変形は、前述の説明を熟読することによって、当業者に明らかになり得る。発明者は、当業者がこのような変形を適宜用いることを予測し、発明者は、本発明が、本明細書に具体的に説明するものとは違って実施されることを意図する。したがって、本発明は、適用法が認めるように、本明細書に添付される請求項において列挙する主題に関する全ての修正および同等物を含む。さらに、その全ての可能な変形における上述の要素の任意の組み合わせは、別途本明細書に指定されない限り、または別途内容により明確に否定されない限り、本発明によって包含される。
Claims (1)
- 明細書に記載の発明。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/415,354 | 2009-03-31 | ||
US12/415,354 US9789608B2 (en) | 2006-06-29 | 2009-03-31 | Synthetic representation of a surgical robot |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012503535A Division JP5840121B2 (ja) | 2009-03-31 | 2010-03-26 | 手術ロボットの合成表現 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014097431A true JP2014097431A (ja) | 2014-05-29 |
Family
ID=42261901
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012503535A Active JP5840121B2 (ja) | 2009-03-31 | 2010-03-26 | 手術ロボットの合成表現 |
JP2014038429A Pending JP2014097431A (ja) | 2009-03-31 | 2014-02-28 | 手術ロボットの合成表現 |
JP2015202607A Pending JP2016052521A (ja) | 2009-03-31 | 2015-10-14 | 手術ロボットの合成表現 |
JP2015242062A Active JP6576002B2 (ja) | 2009-03-31 | 2015-12-11 | 手術ロボットの合成表現 |
JP2015242064A Active JP6058111B2 (ja) | 2009-03-31 | 2015-12-11 | 手術ロボットの合成表現 |
JP2015242063A Pending JP2016064155A (ja) | 2009-03-31 | 2015-12-11 | 手術ロボットの合成表現 |
JP2017097171A Withdrawn JP2017176848A (ja) | 2009-03-31 | 2017-05-16 | 手術ロボットの合成表現 |
JP2019124321A Withdrawn JP2019202158A (ja) | 2009-03-31 | 2019-07-03 | 手術ロボットの合成表現 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012503535A Active JP5840121B2 (ja) | 2009-03-31 | 2010-03-26 | 手術ロボットの合成表現 |
Family Applications After (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015202607A Pending JP2016052521A (ja) | 2009-03-31 | 2015-10-14 | 手術ロボットの合成表現 |
JP2015242062A Active JP6576002B2 (ja) | 2009-03-31 | 2015-12-11 | 手術ロボットの合成表現 |
JP2015242064A Active JP6058111B2 (ja) | 2009-03-31 | 2015-12-11 | 手術ロボットの合成表現 |
JP2015242063A Pending JP2016064155A (ja) | 2009-03-31 | 2015-12-11 | 手術ロボットの合成表現 |
JP2017097171A Withdrawn JP2017176848A (ja) | 2009-03-31 | 2017-05-16 | 手術ロボットの合成表現 |
JP2019124321A Withdrawn JP2019202158A (ja) | 2009-03-31 | 2019-07-03 | 手術ロボットの合成表現 |
Country Status (6)
Country | Link |
---|---|
US (4) | US9789608B2 (ja) |
EP (5) | EP2414137B1 (ja) |
JP (8) | JP5840121B2 (ja) |
KR (1) | KR101705921B1 (ja) |
CN (1) | CN102448680B (ja) |
WO (1) | WO2010117685A2 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016194539A1 (ja) * | 2015-05-29 | 2017-07-06 | オリンパス株式会社 | 医療用マニピュレータシステム |
CN108463184A (zh) * | 2016-01-19 | 2018-08-28 | 提坦医疗公司 | 用于机器人外科手术系统的图形用户界面 |
US10582840B2 (en) | 2015-05-14 | 2020-03-10 | Olympus Corporation | Endoscope apparatus |
JP2020536754A (ja) * | 2017-10-10 | 2020-12-17 | オーリス ヘルス インコーポレイテッド | 手術ロボットアームに対する不適切な力の検出 |
US10959787B2 (en) | 2016-01-14 | 2021-03-30 | Olympus Corporation | Medical manipulator system |
JP2022502187A (ja) * | 2018-10-03 | 2022-01-11 | シーエムアール サージカル リミテッドCmr Surgical Limited | 外科手術ロボットシステムのユーザに支援を提供するための方法およびシステム |
Families Citing this family (227)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8944070B2 (en) | 1999-04-07 | 2015-02-03 | Intuitive Surgical Operations, Inc. | Non-force reflecting method for providing tool force information to a user of a telesurgical system |
US20060041252A1 (en) * | 2004-08-17 | 2006-02-23 | Odell Roger C | System and method for monitoring electrosurgical instruments |
US9492240B2 (en) | 2009-06-16 | 2016-11-15 | Intuitive Surgical Operations, Inc. | Virtual measurement tool for minimally invasive surgery |
US8971597B2 (en) * | 2005-05-16 | 2015-03-03 | Intuitive Surgical Operations, Inc. | Efficient vision and kinematic data fusion for robotic surgical instruments and other applications |
US8073528B2 (en) | 2007-09-30 | 2011-12-06 | Intuitive Surgical Operations, Inc. | Tool tracking systems, methods and computer products for image guided surgery |
US10555775B2 (en) | 2005-05-16 | 2020-02-11 | Intuitive Surgical Operations, Inc. | Methods and system for performing 3-D tool tracking by fusion of sensor and/or camera derived data during minimally invasive robotic surgery |
US9789608B2 (en) | 2006-06-29 | 2017-10-17 | Intuitive Surgical Operations, Inc. | Synthetic representation of a surgical robot |
US7930065B2 (en) | 2005-12-30 | 2011-04-19 | Intuitive Surgical Operations, Inc. | Robotic surgery system including position sensors using fiber bragg gratings |
US7907166B2 (en) * | 2005-12-30 | 2011-03-15 | Intuitive Surgical Operations, Inc. | Stereo telestration for robotic surgery |
US9962066B2 (en) | 2005-12-30 | 2018-05-08 | Intuitive Surgical Operations, Inc. | Methods and apparatus to shape flexible entry guides for minimally invasive surgery |
US8062211B2 (en) | 2006-06-13 | 2011-11-22 | Intuitive Surgical Operations, Inc. | Retrograde instrument |
US10008017B2 (en) | 2006-06-29 | 2018-06-26 | Intuitive Surgical Operations, Inc. | Rendering tool information as graphic overlays on displayed images of tools |
US10258425B2 (en) * | 2008-06-27 | 2019-04-16 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide |
US9718190B2 (en) | 2006-06-29 | 2017-08-01 | Intuitive Surgical Operations, Inc. | Tool position and identification indicator displayed in a boundary area of a computer display screen |
US20090192523A1 (en) | 2006-06-29 | 2009-07-30 | Intuitive Surgical, Inc. | Synthetic representation of a surgical instrument |
US9084623B2 (en) | 2009-08-15 | 2015-07-21 | Intuitive Surgical Operations, Inc. | Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide |
US9089256B2 (en) | 2008-06-27 | 2015-07-28 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide |
US9096033B2 (en) * | 2007-06-13 | 2015-08-04 | Intuitive Surgical Operations, Inc. | Surgical system instrument sterile adapter |
US8620473B2 (en) | 2007-06-13 | 2013-12-31 | Intuitive Surgical Operations, Inc. | Medical robotic system with coupled control modes |
US9469034B2 (en) | 2007-06-13 | 2016-10-18 | Intuitive Surgical Operations, Inc. | Method and system for switching modes of a robotic system |
US8903546B2 (en) * | 2009-08-15 | 2014-12-02 | Intuitive Surgical Operations, Inc. | Smooth control of an articulated instrument across areas with different work space conditions |
US9138129B2 (en) | 2007-06-13 | 2015-09-22 | Intuitive Surgical Operations, Inc. | Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide |
JP4912993B2 (ja) * | 2007-09-12 | 2012-04-11 | オリンパスメディカルシステムズ株式会社 | 医療機器システム |
US8864652B2 (en) | 2008-06-27 | 2014-10-21 | Intuitive Surgical Operations, Inc. | Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the positioning and orienting of its tip |
US9833281B2 (en) | 2008-08-18 | 2017-12-05 | Encision Inc. | Enhanced control systems including flexible shielding and support systems for electrosurgical applications |
US8500728B2 (en) | 2008-08-18 | 2013-08-06 | Encision, Inc. | Enhanced control systems including flexible shielding and support systems for electrosurgical applications |
US8184880B2 (en) | 2008-12-31 | 2012-05-22 | Intuitive Surgical Operations, Inc. | Robust sparse image matching for robotic surgery |
US8594841B2 (en) * | 2008-12-31 | 2013-11-26 | Intuitive Surgical Operations, Inc. | Visual force feedback in a minimally invasive surgical procedure |
US8830224B2 (en) | 2008-12-31 | 2014-09-09 | Intuitive Surgical Operations, Inc. | Efficient 3-D telestration for local robotic proctoring |
US8374723B2 (en) | 2008-12-31 | 2013-02-12 | Intuitive Surgical Operations, Inc. | Obtaining force information in a minimally invasive surgical procedure |
KR100961661B1 (ko) * | 2009-02-12 | 2010-06-09 | 주식회사 래보 | 수술용 항법 장치 및 그 방법 |
US8337397B2 (en) | 2009-03-26 | 2012-12-25 | Intuitive Surgical Operations, Inc. | Method and system for providing visual guidance to an operator for steering a tip of an endoscopic device toward one or more landmarks in a patient |
US10004387B2 (en) | 2009-03-26 | 2018-06-26 | Intuitive Surgical Operations, Inc. | Method and system for assisting an operator in endoscopic navigation |
US9155592B2 (en) * | 2009-06-16 | 2015-10-13 | Intuitive Surgical Operations, Inc. | Virtual measurement tool for minimally invasive surgery |
US8423186B2 (en) * | 2009-06-30 | 2013-04-16 | Intuitive Surgical Operations, Inc. | Ratcheting for master alignment of a teleoperated minimally-invasive surgical instrument |
US8918211B2 (en) | 2010-02-12 | 2014-12-23 | Intuitive Surgical Operations, Inc. | Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument |
US9492927B2 (en) | 2009-08-15 | 2016-11-15 | Intuitive Surgical Operations, Inc. | Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose |
KR101620831B1 (ko) * | 2009-10-26 | 2016-05-13 | (주)미래컴퍼니 | 수술용 인스트루먼트 |
NO20100339A1 (no) * | 2010-03-10 | 2011-05-23 | Seabed Rig As | Fremgangsmåte og anordning for å sikre drift av automatisk eller autonomt utstyr |
US9486189B2 (en) | 2010-12-02 | 2016-11-08 | Hitachi Aloka Medical, Ltd. | Assembly for use with surgery system |
US9119655B2 (en) | 2012-08-03 | 2015-09-01 | Stryker Corporation | Surgical manipulator capable of controlling a surgical instrument in multiple modes |
JP6113666B2 (ja) * | 2011-02-15 | 2017-04-12 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | ステープル又は血管シール器具におけるナイフ位置のインジケータ |
US10350431B2 (en) | 2011-04-28 | 2019-07-16 | Gt Medical Technologies, Inc. | Customizable radioactive carriers and loading system |
US9089353B2 (en) | 2011-07-11 | 2015-07-28 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
ITFI20110186A1 (it) * | 2011-08-26 | 2013-02-27 | Scuola Superiore Di Studi Universit Arie Di Perfe | Dispositivo robotico per l'impianto di interfacce neurali nel sistema nervoso periferico |
FR2980683B1 (fr) * | 2011-09-30 | 2014-11-21 | Univ Paris Curie | Dispositif de guidage d'un instrument medical insere dans une voie naturelle ou une voie artificielle d'un patient |
US9452276B2 (en) | 2011-10-14 | 2016-09-27 | Intuitive Surgical Operations, Inc. | Catheter with removable vision probe |
US20130303944A1 (en) | 2012-05-14 | 2013-11-14 | Intuitive Surgical Operations, Inc. | Off-axis electromagnetic sensor |
US9333044B2 (en) | 2011-12-30 | 2016-05-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for detection and avoidance of collisions of robotically-controlled medical devices |
DE102012206350A1 (de) * | 2012-04-18 | 2013-10-24 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Verfahren zum Betreiben eines Roboters |
EP3845190B1 (en) | 2012-05-01 | 2023-07-12 | Board of Regents of the University of Nebraska | Single site robotic device and related systems |
CN104334110B (zh) * | 2012-06-01 | 2017-10-03 | 直观外科手术操作公司 | 使用零空间回避操纵器臂与患者碰撞 |
US11857149B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | Surgical robotic systems with target trajectory deviation monitoring and related methods |
US11045267B2 (en) | 2012-06-21 | 2021-06-29 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
US11896446B2 (en) | 2012-06-21 | 2024-02-13 | Globus Medical, Inc | Surgical robotic automation with tracking markers |
US11399900B2 (en) | 2012-06-21 | 2022-08-02 | Globus Medical, Inc. | Robotic systems providing co-registration using natural fiducials and related methods |
US11298196B2 (en) | 2012-06-21 | 2022-04-12 | Globus Medical Inc. | Surgical robotic automation with tracking markers and controlled tool advancement |
US11974822B2 (en) | 2012-06-21 | 2024-05-07 | Globus Medical Inc. | Method for a surveillance marker in robotic-assisted surgery |
US11864839B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical Inc. | Methods of adjusting a virtual implant and related surgical navigation systems |
US11857266B2 (en) | 2012-06-21 | 2024-01-02 | Globus Medical, Inc. | System for a surveillance marker in robotic-assisted surgery |
US11317971B2 (en) | 2012-06-21 | 2022-05-03 | Globus Medical, Inc. | Systems and methods related to robotic guidance in surgery |
US11793570B2 (en) | 2012-06-21 | 2023-10-24 | Globus Medical Inc. | Surgical robotic automation with tracking markers |
US11864745B2 (en) | 2012-06-21 | 2024-01-09 | Globus Medical, Inc. | Surgical robotic system with retractor |
US11786324B2 (en) | 2012-06-21 | 2023-10-17 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
US12004905B2 (en) | 2012-06-21 | 2024-06-11 | Globus Medical, Inc. | Medical imaging systems using robotic actuators and related methods |
US10624710B2 (en) | 2012-06-21 | 2020-04-21 | Globus Medical, Inc. | System and method for measuring depth of instrumentation |
US11963755B2 (en) | 2012-06-21 | 2024-04-23 | Globus Medical Inc. | Apparatus for recording probe movement |
US11253327B2 (en) | 2012-06-21 | 2022-02-22 | Globus Medical, Inc. | Systems and methods for automatically changing an end-effector on a surgical robot |
US11589771B2 (en) | 2012-06-21 | 2023-02-28 | Globus Medical Inc. | Method for recording probe movement and determining an extent of matter removed |
US10799298B2 (en) | 2012-06-21 | 2020-10-13 | Globus Medical Inc. | Robotic fluoroscopic navigation |
KR102235965B1 (ko) | 2012-08-03 | 2021-04-06 | 스트리커 코포레이션 | 로봇 수술을 위한 시스템 및 방법 |
US9226796B2 (en) | 2012-08-03 | 2016-01-05 | Stryker Corporation | Method for detecting a disturbance as an energy applicator of a surgical instrument traverses a cutting path |
EP2882331A4 (en) | 2012-08-08 | 2016-03-23 | Univ Nebraska | ROBOTIC SURGICAL DEVICES, SYSTEMS AND CORRESPONDING METHODS |
US9770305B2 (en) | 2012-08-08 | 2017-09-26 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems, and related methods |
US20140051049A1 (en) | 2012-08-17 | 2014-02-20 | Intuitive Surgical Operations, Inc. | Anatomical model and method for surgical training |
US20140148673A1 (en) | 2012-11-28 | 2014-05-29 | Hansen Medical, Inc. | Method of anchoring pullwire directly articulatable region in catheter |
EP3932628A1 (en) | 2012-12-10 | 2022-01-05 | Intuitive Surgical Operations, Inc. | Collision avoidance during controlled movement of image capturing device and manipulatable device movable arms |
KR101740168B1 (ko) * | 2012-12-25 | 2017-05-25 | 가와사끼 쥬고교 가부시끼 가이샤 | 수술 로봇 |
US10507066B2 (en) | 2013-02-15 | 2019-12-17 | Intuitive Surgical Operations, Inc. | Providing information of tools by filtering image areas adjacent to or on displayed images of the tools |
CA2906672C (en) | 2013-03-14 | 2022-03-15 | Board Of Regents Of The University Of Nebraska | Methods, systems, and devices relating to force control surgical systems |
US9492683B2 (en) | 2013-03-15 | 2016-11-15 | Gammatile Llc | Dosimetrically customizable brachytherapy carriers and methods thereof in the treatment of tumors |
US10667883B2 (en) | 2013-03-15 | 2020-06-02 | Virtual Incision Corporation | Robotic surgical devices, systems, and related methods |
US11747895B2 (en) * | 2013-03-15 | 2023-09-05 | Intuitive Surgical Operations, Inc. | Robotic system providing user selectable actions associated with gaze tracking |
WO2014153396A1 (en) | 2013-03-20 | 2014-09-25 | Covidien Lp | System and method for enhancing picture-in-picture display for imaging devices used for surgical procedures |
JP6265630B2 (ja) * | 2013-06-13 | 2018-01-24 | オリンパス株式会社 | 内視鏡装置及び内視鏡装置の作動方法 |
CA2918531A1 (en) | 2013-07-17 | 2015-01-22 | Board Of Regents Of The University Of Nebraska | Robotic surgical devices, systems and related methods |
DE102013012839B4 (de) * | 2013-08-02 | 2019-05-09 | Abb Schweiz Ag | Robotersystem |
US9724493B2 (en) * | 2013-08-27 | 2017-08-08 | Catheter Precision, Inc. | Components and methods for balancing a catheter controller system with a counterweight |
US10744646B2 (en) | 2013-08-29 | 2020-08-18 | Wayne State University | Camera control system and method |
EP3084747B1 (en) | 2013-12-20 | 2022-12-14 | Intuitive Surgical Operations, Inc. | Simulator system for medical procedure training |
JP5785284B2 (ja) * | 2014-02-17 | 2015-09-24 | ファナック株式会社 | 搬送対象物の落下事故を防止するロボットシステム |
EP3119323B1 (en) | 2014-03-17 | 2019-08-28 | Intuitive Surgical Operations, Inc. | System and machine readable medium executing a method for recentering imaging devices and input controls |
CN110192919B (zh) | 2014-03-17 | 2022-11-25 | 直观外科手术操作公司 | 用于保持工具姿态的系统和方法 |
WO2015142956A1 (en) * | 2014-03-17 | 2015-09-24 | Intuitive Surgical Operations, Inc. | Systems and methods for offscreen indication of instruments in a teleoperational medical system |
EP3119338B1 (en) * | 2014-03-17 | 2020-05-06 | Intuitive Surgical Operations, Inc. | Automatic push-out to avoid range of motion limits |
EP3243476B1 (en) | 2014-03-24 | 2019-11-06 | Auris Health, Inc. | Systems and devices for catheter driving instinctiveness |
EP3125806B1 (en) | 2014-03-28 | 2023-06-14 | Intuitive Surgical Operations, Inc. | Quantitative three-dimensional imaging of surgical scenes |
EP3122281B1 (en) | 2014-03-28 | 2022-07-20 | Intuitive Surgical Operations, Inc. | Quantitative three-dimensional imaging and 3d modeling of surgical implants |
EP3125809B1 (en) | 2014-03-28 | 2020-09-09 | Intuitive Surgical Operations, Inc. | Surgical system with haptic feedback based upon quantitative three-dimensional imaging |
KR102373714B1 (ko) | 2014-03-28 | 2022-03-15 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 멀티포트 투시에 의한 수술 장면의 정량적 3차원 영상화 |
CN111184577A (zh) * | 2014-03-28 | 2020-05-22 | 直观外科手术操作公司 | 器械在视野中的定量三维可视化 |
KR20150128049A (ko) * | 2014-05-08 | 2015-11-18 | 삼성전자주식회사 | 수술 로봇 및 그 제어방법 |
DE102014210116A1 (de) * | 2014-05-27 | 2015-12-03 | Carl Zeiss Meditec Ag | Vorrichtung zur Steuerung einer Beobachtungseinrichtung |
JP6689832B2 (ja) | 2014-09-30 | 2020-04-28 | オーリス ヘルス インコーポレイテッド | 仮軌道および可撓性内視鏡を有する構成可能なロボット手術システム |
US10314463B2 (en) | 2014-10-24 | 2019-06-11 | Auris Health, Inc. | Automated endoscope calibration |
EP3217890B1 (en) | 2014-11-11 | 2020-04-08 | Board of Regents of the University of Nebraska | Robotic device with compact joint design |
US9821174B1 (en) * | 2015-02-06 | 2017-11-21 | Gammatile Llc | Radioactive implant planning system and placement guide system |
WO2016164311A1 (en) | 2015-04-06 | 2016-10-13 | Intuitive Surgical Operations, Inc. | Systems and methods of registration compensation in image guided surgery |
WO2016176755A1 (en) | 2015-05-01 | 2016-11-10 | Titan Medical Inc. | Instrument collision detection and feedback |
EP3294185B1 (en) * | 2015-05-15 | 2020-04-01 | Intuitive Surgical Operations Inc. | System for reducing blade exposures |
WO2017014517A1 (ko) * | 2015-07-17 | 2017-01-26 | 주식회사 레이언스 | 의료용 엑스선 영상 촬영 시스템 및 이를 이용한 의료용 엑스선 영상 촬영 장치의 동작 제어 방법 |
CN114027986B (zh) | 2015-08-03 | 2024-06-14 | 内布拉斯加大学董事会 | 机器人手术装置系统及相关方法 |
EP3310286A1 (en) * | 2015-08-13 | 2018-04-25 | Siemens Healthcare GmbH | Device and method for controlling a system comprising an imaging modality |
EP3321044A4 (en) * | 2015-08-25 | 2019-05-29 | Kawasaki Jukogyo Kabushiki Kaisha | REMOTELY CONTROLLED MANIPULATOR SYSTEM AND METHOD FOR OPERATION THEREOF |
WO2017037705A1 (en) * | 2015-08-30 | 2017-03-09 | M.S.T. Medical Surgery Technologies Ltd | An intelligent surgical tool control system for laparoscopic surgeries |
AU2016323982A1 (en) | 2015-09-18 | 2018-04-12 | Auris Health, Inc. | Navigation of tubular networks |
US10772688B2 (en) * | 2015-10-30 | 2020-09-15 | Covidien Lp | Input handles for robotic surgical systems having visual feedback |
US9949749B2 (en) | 2015-10-30 | 2018-04-24 | Auris Surgical Robotics, Inc. | Object capture with a basket |
US9955986B2 (en) | 2015-10-30 | 2018-05-01 | Auris Surgical Robotics, Inc. | Basket apparatus |
US10231793B2 (en) | 2015-10-30 | 2019-03-19 | Auris Health, Inc. | Object removal through a percutaneous suction tube |
US10143526B2 (en) | 2015-11-30 | 2018-12-04 | Auris Health, Inc. | Robot-assisted driving systems and methods |
WO2017103984A1 (ja) * | 2015-12-15 | 2017-06-22 | オリンパス株式会社 | 医療用マニピュレータシステムとその作動方法 |
WO2017126101A1 (ja) * | 2016-01-22 | 2017-07-27 | オリンパス株式会社 | 医療用マニピュレータシステム |
US11883217B2 (en) | 2016-02-03 | 2024-01-30 | Globus Medical, Inc. | Portable medical imaging system and method |
JP6733239B2 (ja) * | 2016-03-18 | 2020-07-29 | セイコーエプソン株式会社 | 制御装置及びロボットシステム |
JP6857649B2 (ja) * | 2016-04-15 | 2021-04-14 | 川崎重工業株式会社 | 外科手術システムの制御方法および外科手術システム |
JP6831642B2 (ja) * | 2016-04-15 | 2021-02-17 | 川崎重工業株式会社 | 外科手術システム |
US10751136B2 (en) | 2016-05-18 | 2020-08-25 | Virtual Incision Corporation | Robotic surgical devices, systems and related methods |
CN113854933A (zh) * | 2016-06-01 | 2021-12-31 | 恩达马斯特有限公司 | 内窥镜检查手术器械控制器 |
CN206063225U (zh) * | 2016-06-04 | 2017-04-05 | 深圳市前海康启源科技有限公司 | 用于辅助手术的医疗机器人 |
CN113893032B (zh) * | 2016-07-14 | 2024-10-15 | 直观外科手术操作公司 | 用于远程操作医疗系统中的屏幕菜单的系统和方法 |
CN109195544B (zh) | 2016-07-14 | 2021-07-20 | 直观外科手术操作公司 | 计算机辅助式远程操作系统中的次级器械控制 |
KR102410247B1 (ko) * | 2016-07-14 | 2022-06-20 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | 원격조작 시스템에서 기구 내비게이터를 디스플레이하기 위한 시스템들 및 방법들 |
US20180036086A1 (en) * | 2016-08-03 | 2018-02-08 | Amith Derek Mendonca | Novel robotic surgical device |
US10413373B2 (en) | 2016-08-16 | 2019-09-17 | Ethicon, Llc | Robotic visualization and collision avoidance |
US10182875B2 (en) | 2016-08-16 | 2019-01-22 | Ethicon Llc | Robotic visualization and collision avoidance |
EP3503834B1 (en) * | 2016-08-23 | 2024-06-12 | Intuitive Surgical Operations, Inc. | Systems for monitoring patient motion during a medical procedure |
EP3515348A4 (en) * | 2016-09-19 | 2020-05-20 | Intuitive Surgical Operations Inc. | BASIC POSITIONING SYSTEM FOR A CONTROLLED ARM AND RELATED METHODS |
US9931025B1 (en) * | 2016-09-30 | 2018-04-03 | Auris Surgical Robotics, Inc. | Automated calibration of endoscopes with pull wires |
US10888710B1 (en) | 2016-11-29 | 2021-01-12 | Gt Medical Technologies, Inc. | Transparent loading apparatus |
DE102016223841A1 (de) * | 2016-11-30 | 2018-05-30 | Siemens Healthcare Gmbh | Berechnen eines Kalibrierungsparameters eines Roboterwerkzeugs |
WO2018122946A1 (ja) | 2016-12-27 | 2018-07-05 | オリンパス株式会社 | 医療用マニピュレータの形状取得方法および制御方法 |
US10244926B2 (en) | 2016-12-28 | 2019-04-02 | Auris Health, Inc. | Detecting endolumenal buckling of flexible instruments |
JP6699583B2 (ja) * | 2017-02-14 | 2020-05-27 | 信越化学工業株式会社 | 付加硬化型シリコーン組成物 |
JP6858593B2 (ja) * | 2017-03-02 | 2021-04-14 | ソニー・オリンパスメディカルソリューションズ株式会社 | 医療用観察装置、および制御方法 |
WO2018170031A1 (en) * | 2017-03-15 | 2018-09-20 | Covidien Lp | Robotic surgical systems, instruments, and controls |
USD849953S1 (en) * | 2017-04-21 | 2019-05-28 | Intuitive Surgical Operations, Inc. | Surgical apparatus |
CN110831498B (zh) | 2017-05-12 | 2022-08-12 | 奥瑞斯健康公司 | 活检装置和系统 |
CN107049492B (zh) | 2017-05-26 | 2020-02-21 | 微创(上海)医疗机器人有限公司 | 手术机器人系统及手术器械位置的显示方法 |
KR102341451B1 (ko) | 2017-06-28 | 2021-12-23 | 아우리스 헬스, 인코포레이티드 | 기기의 삽입 보상을 위한 로봇 시스템, 방법 및 비일시적 컴퓨터 가독 저장 매체 |
USD840542S1 (en) * | 2017-06-29 | 2019-02-12 | Intuitive Surgical Operations, Inc. | Surgical system base |
US10610303B2 (en) | 2017-06-29 | 2020-04-07 | Verb Surgical Inc. | Virtual reality laparoscopic tools |
US11270601B2 (en) | 2017-06-29 | 2022-03-08 | Verb Surgical Inc. | Virtual reality system for simulating a robotic surgical environment |
US11011077B2 (en) * | 2017-06-29 | 2021-05-18 | Verb Surgical Inc. | Virtual reality training, simulation, and collaboration in a robotic surgical system |
US11284955B2 (en) | 2017-06-29 | 2022-03-29 | Verb Surgical Inc. | Emulation of robotic arms and control thereof in a virtual reality environment |
US10426559B2 (en) | 2017-06-30 | 2019-10-01 | Auris Health, Inc. | Systems and methods for medical instrument compression compensation |
WO2019032450A1 (en) * | 2017-08-08 | 2019-02-14 | Intuitive Surgical Operations, Inc. | SYSTEMS AND METHODS FOR RENDERING ALERTS ON A SCREEN OF A TELEOPERATION SYSTEM |
EP3678572A4 (en) * | 2017-09-05 | 2021-09-29 | Covidien LP | COLLISION HANDLING ALGORITHMS FOR SURGICAL ROBOTIC SYSTEMS |
US11051894B2 (en) * | 2017-09-27 | 2021-07-06 | Virtual Incision Corporation | Robotic surgical devices with tracking camera technology and related systems and methods |
WO2019083886A1 (en) | 2017-10-25 | 2019-05-02 | Intuitive Surgical Operations, Inc. | SYSTEM AND METHOD FOR REPOSITIONING INPUT CONTROL DEVICES |
US11589939B2 (en) | 2017-10-30 | 2023-02-28 | Intuitive Surgical Operations, Inc. | Systems and methods for guided port placement selection |
WO2019113249A1 (en) | 2017-12-06 | 2019-06-13 | Auris Health, Inc. | Systems and methods to correct for uncommanded instrument roll |
US11071595B2 (en) * | 2017-12-14 | 2021-07-27 | Verb Surgical Inc. | Multi-panel graphical user interface for a robotic surgical system |
CN110869173B (zh) | 2017-12-14 | 2023-11-17 | 奥瑞斯健康公司 | 用于估计器械定位的系统与方法 |
CN117140580A (zh) | 2018-01-05 | 2023-12-01 | 内布拉斯加大学董事会 | 具有紧凑型关节设计的单臂机器人装置及相关系统和方法 |
CN110891514B (zh) | 2018-02-13 | 2023-01-20 | 奥瑞斯健康公司 | 用于驱动医疗器械的系统和方法 |
WO2019159361A1 (ja) | 2018-02-19 | 2019-08-22 | オリンパス株式会社 | 医療システム |
CN110913791B (zh) | 2018-03-28 | 2021-10-08 | 奥瑞斯健康公司 | 用于显示所估计的器械定位的系统和方法 |
CN108777001A (zh) * | 2018-06-26 | 2018-11-09 | 宁波极呈光电有限公司 | 手术模拟方法及装置 |
JP6936282B2 (ja) * | 2018-06-28 | 2021-09-15 | グローバス メディカル インコーポレイティッド | ロボットアームの衝突を回避するための手術用ロボットの制御 |
EP3846727A1 (en) * | 2018-09-05 | 2021-07-14 | Nuvasive, Inc. | Systems and methods for spinal surgical procedures |
US12076100B2 (en) | 2018-09-28 | 2024-09-03 | Auris Health, Inc. | Robotic systems and methods for concomitant endoscopic and percutaneous medical procedures |
CN112770690A (zh) | 2018-09-28 | 2021-05-07 | 奥瑞斯健康公司 | 用于对接医疗器械的系统和方法 |
CN112804931A (zh) * | 2018-10-04 | 2021-05-14 | 直观外科手术操作公司 | 用于可转向装置的运动控制的系统和方法 |
US12008721B2 (en) * | 2018-10-26 | 2024-06-11 | Intuitive Surgical Operations, Inc. | Mixed reality systems and methods for indicating an extent of a field of view of an imaging device |
US10926416B2 (en) * | 2018-11-21 | 2021-02-23 | Ford Global Technologies, Llc | Robotic manipulation using an independently actuated vision system, an adversarial control scheme, and a multi-tasking deep learning architecture |
CN109620410B (zh) * | 2018-12-04 | 2021-01-26 | 微创(上海)医疗机器人有限公司 | 机械臂防碰撞的方法及系统、医疗机器人 |
CN109288591B (zh) * | 2018-12-07 | 2021-12-03 | 上海微创医疗机器人(集团)股份有限公司 | 手术机器人系统 |
US11903658B2 (en) | 2019-01-07 | 2024-02-20 | Virtual Incision Corporation | Robotically assisted surgical system and related devices and methods |
US10981018B2 (en) | 2019-02-14 | 2021-04-20 | Gt Medical Technologies, Inc. | Radioactive seed loading apparatus |
CN113453642A (zh) | 2019-02-22 | 2021-09-28 | 奥瑞斯健康公司 | 具有用于可调式臂支撑件的机动臂的外科平台 |
EP3962396A1 (en) * | 2019-04-29 | 2022-03-09 | Smith&Nephew, Inc. | Multi-level positional tracking |
WO2020236814A1 (en) * | 2019-05-23 | 2020-11-26 | Intuitive Surgical Operations, Inc. | Systems and methods for generating workspace volumes and identifying reachable workspaces of surgical instruments |
US11369386B2 (en) | 2019-06-27 | 2022-06-28 | Auris Health, Inc. | Systems and methods for a medical clip applier |
EP3989793A4 (en) | 2019-06-28 | 2023-07-19 | Auris Health, Inc. | CONSOLE OVERLAY ITS METHODS OF USE |
CN114040727A (zh) | 2019-06-28 | 2022-02-11 | 奥瑞斯健康公司 | 包括具有混合重定向表面的腕部的医疗器械 |
US20210030483A1 (en) * | 2019-07-29 | 2021-02-04 | Verily Life Sciences Llc | Surgery tool segmentation with robot kinematics |
US20210030501A1 (en) * | 2019-08-02 | 2021-02-04 | Auris Health, Inc. | Systems and methods for adjusting remote center distances in medical procedures |
US11896330B2 (en) | 2019-08-15 | 2024-02-13 | Auris Health, Inc. | Robotic medical system having multiple medical instruments |
US11548140B2 (en) * | 2019-08-15 | 2023-01-10 | Covidien Lp | System and method for radio based location of modular arm carts in a surgical robotic system |
CN114449971A (zh) * | 2019-09-26 | 2022-05-06 | 奥瑞斯健康公司 | 使用对象模型来避免碰撞的系统和方法 |
EP4034349A1 (en) | 2019-09-26 | 2022-08-03 | Auris Health, Inc. | Systems and methods for collision detection and avoidance |
WO2021064536A1 (en) | 2019-09-30 | 2021-04-08 | Auris Health, Inc. | Medical instrument with capstan |
US11737835B2 (en) | 2019-10-29 | 2023-08-29 | Auris Health, Inc. | Braid-reinforced insulation sheath |
EP4021686A1 (en) * | 2019-11-19 | 2022-07-06 | Google LLC | Methods and systems for graphical user interfaces to control remotely located robots |
CN114786611A (zh) * | 2019-12-19 | 2022-07-22 | 柯惠Lp公司 | 用于减轻机器人系统的碰撞的系统和方法 |
CN118383870A (zh) | 2019-12-31 | 2024-07-26 | 奥瑞斯健康公司 | 用于经皮进入的对准界面 |
JP2023508718A (ja) | 2019-12-31 | 2023-03-03 | オーリス ヘルス インコーポレイテッド | 高度バスケット駆動モード |
WO2021137109A1 (en) | 2019-12-31 | 2021-07-08 | Auris Health, Inc. | Alignment techniques for percutaneous access |
EP4084721A4 (en) | 2019-12-31 | 2024-01-03 | Auris Health, Inc. | IDENTIFICATION OF AN ANATOMIC FEATURE AND AIMING |
EP4084717A4 (en) | 2019-12-31 | 2024-02-14 | Auris Health, Inc. | DYNAMIC PULLEY SYSTEM |
US20210251706A1 (en) * | 2020-02-18 | 2021-08-19 | Verb Surgical Inc. | Robotic Surgical System and Method for Providing a Stadium View with Arm Set-Up Guidance |
GB2593473B (en) * | 2020-03-23 | 2024-09-04 | Cmr Surgical Ltd | Virtual console for controlling a surgical robot |
JP7439602B2 (ja) * | 2020-03-23 | 2024-02-28 | Toppanホールディングス株式会社 | 可視化装置、可視化方法、およびプログラム |
US20210298851A1 (en) * | 2020-03-30 | 2021-09-30 | Auris Health, Inc. | Workspace optimization for robotic surgery |
CN115427201A (zh) * | 2020-04-27 | 2022-12-02 | 发那科株式会社 | 工业机械的显示装置 |
WO2022003485A1 (en) * | 2020-06-29 | 2022-01-06 | Auris Health, Inc. | Systems and methods for detecting contact between a link and an external object |
US11931901B2 (en) * | 2020-06-30 | 2024-03-19 | Auris Health, Inc. | Robotic medical system with collision proximity indicators |
US11357586B2 (en) | 2020-06-30 | 2022-06-14 | Auris Health, Inc. | Systems and methods for saturated robotic movement |
WO2022030047A1 (ja) * | 2020-08-03 | 2022-02-10 | 三菱電機株式会社 | 遠隔操作装置 |
CN111991084B (zh) * | 2020-10-08 | 2022-04-26 | 深圳市精锋医疗科技股份有限公司 | 手术机器人及其虚拟成像控制方法、虚拟成像控制装置 |
CN112043396B (zh) * | 2020-10-08 | 2022-03-04 | 深圳市精锋医疗科技股份有限公司 | 手术机器人及其图形化控制装置、图形化显示方法 |
KR102430468B1 (ko) * | 2020-10-13 | 2022-08-09 | 서울대학교 산학협력단 | 헤드셋 기반의 음성인식 마이크로폰을 이용한 수술로봇 시스템 |
JP7566601B2 (ja) | 2020-12-03 | 2024-10-15 | 株式会社メディカロイド | ロボット手術システムおよび表示方法 |
CN112587244A (zh) * | 2020-12-15 | 2021-04-02 | 深圳市精锋医疗科技有限公司 | 手术机器人及其控制方法、控制装置 |
WO2022204010A1 (en) * | 2021-03-26 | 2022-09-29 | Think Surgical, Inc. | System and method for detecting a potential collision between a bone and an end-effector |
US20220335696A1 (en) * | 2021-04-14 | 2022-10-20 | Cilag Gmbh International | Mixed reality feedback systems that cooperate to increase efficient perception of complex data feeds |
US11948226B2 (en) | 2021-05-28 | 2024-04-02 | Covidien Lp | Systems and methods for clinical workspace simulation |
CN113648066B (zh) * | 2021-08-20 | 2022-10-11 | 苏州康多机器人有限公司 | 一种碰撞检测方法、电子设备及主从手术机器人 |
US20230100698A1 (en) * | 2021-09-29 | 2023-03-30 | Cilag Gmbh International | Methods for Controlling Cooperative Surgical Instruments |
WO2023065988A1 (zh) * | 2021-10-21 | 2023-04-27 | 上海微创医疗机器人(集团)股份有限公司 | 碰撞检测方法、装置、设备、可读存储介质 |
US12053644B2 (en) | 2021-12-30 | 2024-08-06 | Gt Medical Technologies, Inc. | Radiation shielding apparatus for implantable radioactive seeds |
US20230355324A1 (en) * | 2022-05-05 | 2023-11-09 | Meditrina, Inc. | Medical robotic system |
WO2024013651A1 (en) * | 2022-07-13 | 2024-01-18 | Auris Health, Inc. | Dynamic flexible scope drive and methods of using same |
KR20240100959A (ko) * | 2022-12-23 | 2024-07-02 | (주)미래컴퍼니 | 로봇 수술 시스템에서 수술 기구의 제어에 보조 입력 장치를 할당하는 방법 및 그 로봇 수술 시스템 |
WO2024201216A1 (en) * | 2023-03-31 | 2024-10-03 | Covidien Lp | Surgical robotic system and method for preventing instrument collision |
CN117562674A (zh) * | 2024-01-11 | 2024-02-20 | 科弛医疗科技(北京)有限公司 | 手术机器人及由其执行的方法 |
Family Cites Families (439)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3628535A (en) | 1969-11-12 | 1971-12-21 | Nibot Corp | Surgical instrument for implanting a prosthetic heart valve or the like |
US3818284A (en) | 1972-12-07 | 1974-06-18 | Marotta Scientific Controls | Valve control with pulse width modulation |
US3890552A (en) | 1972-12-29 | 1975-06-17 | George C Devol | Dual-armed multi-axes program controlled manipulators |
US3923166A (en) | 1973-10-11 | 1975-12-02 | Nasa | Remote manipulator system |
US3905215A (en) | 1974-06-26 | 1975-09-16 | John R Wright | Ultrasensitive force measuring instrument employing torsion balance |
US4150326A (en) | 1977-09-19 | 1979-04-17 | Unimation, Inc. | Trajectory correlation and error detection method and apparatus |
US4349837A (en) | 1979-07-03 | 1982-09-14 | Spar Aerospace Limited | Satellite servicing |
US5493595A (en) | 1982-02-24 | 1996-02-20 | Schoolman Scientific Corp. | Stereoscopically displayed three dimensional medical imaging |
US4588348A (en) | 1983-05-27 | 1986-05-13 | At&T Bell Laboratories | Robotic system utilizing a tactile sensor array |
US4577621A (en) * | 1984-12-03 | 1986-03-25 | Patel Jayendrakumar I | Endoscope having novel proximate and distal portions |
JPS61230895A (ja) | 1985-04-04 | 1986-10-15 | 三菱重工業株式会社 | マニプレ−タ干渉防止装置 |
US4673988A (en) | 1985-04-22 | 1987-06-16 | E.I. Du Pont De Nemours And Company | Electronic mosaic imaging process |
US4672963A (en) | 1985-06-07 | 1987-06-16 | Israel Barken | Apparatus and method for computer controlled laser surgery |
US4644237A (en) * | 1985-10-17 | 1987-02-17 | International Business Machines Corp. | Collision avoidance system |
US4722056A (en) | 1986-02-18 | 1988-01-26 | Trustees Of Dartmouth College | Reference display systems for superimposing a tomagraphic image onto the focal plane of an operating microscope |
JPH085018B2 (ja) | 1986-02-26 | 1996-01-24 | 株式会社日立製作所 | 遠隔マニピユレ−シヨン方法及び装置 |
US4762456A (en) | 1986-06-11 | 1988-08-09 | Nelson Arthur J | Accommodations to exchange containers between vessels |
JPH0766290B2 (ja) * | 1986-06-26 | 1995-07-19 | 東芝機械株式会社 | 工具経路生成方法 |
US4791934A (en) | 1986-08-07 | 1988-12-20 | Picker International, Inc. | Computer tomography assisted stereotactic surgery system and method |
GB2194656B (en) | 1986-09-03 | 1991-10-09 | Ibm | Method and system for solid modelling |
US4759074A (en) | 1986-10-28 | 1988-07-19 | General Motors Corporation | Method for automatically inspecting parts utilizing machine vision and system utilizing same |
JPH0829509B2 (ja) | 1986-12-12 | 1996-03-27 | 株式会社日立製作所 | マニピユレ−タの制御装置 |
US4839838A (en) | 1987-03-30 | 1989-06-13 | Labiche Mitchell | Spatial input apparatus |
US4860215A (en) | 1987-04-06 | 1989-08-22 | California Institute Of Technology | Method and apparatus for adaptive force and position control of manipulators |
US4863133A (en) | 1987-05-26 | 1989-09-05 | Leonard Medical | Arm device for adjustable positioning of a medical instrument or the like |
US4762455A (en) | 1987-06-01 | 1988-08-09 | Remote Technology Corporation | Remote manipulator |
US4831549A (en) * | 1987-07-28 | 1989-05-16 | Brigham Young University | Device and method for correction of robot inaccuracy |
US4833383A (en) | 1987-08-13 | 1989-05-23 | Iowa State University Research Foundation, Inc. | Means and method of camera space manipulation |
US5170347A (en) | 1987-11-27 | 1992-12-08 | Picker International, Inc. | System to reformat images for three-dimensional display using unique spatial encoding and non-planar bisectioning |
US5079699A (en) | 1987-11-27 | 1992-01-07 | Picker International, Inc. | Quick three-dimensional display |
US4815450A (en) * | 1988-02-01 | 1989-03-28 | Patel Jayendra I | Endoscope having variable flexibility |
US5251127A (en) | 1988-02-01 | 1993-10-05 | Faro Medical Technologies Inc. | Computer-aided surgery apparatus |
EP0326768A3 (en) | 1988-02-01 | 1991-01-23 | Faro Medical Technologies Inc. | Computer-aided surgery apparatus |
US5046022A (en) | 1988-03-10 | 1991-09-03 | The Regents Of The University Of Michigan | Tele-autonomous system and method employing time/position synchrony/desynchrony |
US5187796A (en) | 1988-03-29 | 1993-02-16 | Computer Motion, Inc. | Three-dimensional vector co-processor having I, J, and K register files and I, J, and K execution units |
US4989253A (en) | 1988-04-15 | 1991-01-29 | The Montefiore Hospital Association Of Western Pennsylvania | Voice activated microscope |
US4979949A (en) | 1988-04-26 | 1990-12-25 | The Board Of Regents Of The University Of Washington | Robot-aided system for surgery |
US4891767A (en) * | 1988-06-02 | 1990-01-02 | Combustion Engineering, Inc. | Machine vision system for position sensing |
JPH01310875A (ja) | 1988-06-07 | 1989-12-14 | Fujitsu Ltd | 双腕マニピュレータの遠隔操作方法 |
US4984157A (en) | 1988-09-21 | 1991-01-08 | General Electric Company | System and method for displaying oblique planar cross sections of a solid body using tri-linear interpolation to determine pixel position dataes |
GB2226245A (en) | 1988-11-18 | 1990-06-27 | Alan Crockard | Endoscope, remote actuator and aneurysm clip applicator. |
US4942539A (en) | 1988-12-21 | 1990-07-17 | Gmf Robotics Corporation | Method and system for automatically determining the position and orientation of an object in 3-D space |
US5099846A (en) | 1988-12-23 | 1992-03-31 | Hardy Tyrone L | Method and apparatus for video presentation from a variety of scanner imaging sources |
US5098426A (en) | 1989-02-06 | 1992-03-24 | Phoenix Laser Systems, Inc. | Method and apparatus for precision laser surgery |
US5184009A (en) | 1989-04-10 | 1993-02-02 | Wright Scott M | Optical attenuator movement detection system |
US5053976A (en) | 1989-05-22 | 1991-10-01 | Honda Giken Kogyo Kabushiki Kaisha | Method of teaching a robot |
US5257203A (en) | 1989-06-09 | 1993-10-26 | Regents Of The University Of Minnesota | Method and apparatus for manipulating computer-based representations of objects of complex and unique geometry |
DE3935256C1 (ja) * | 1989-10-23 | 1991-01-03 | Bauerfeind, Peter, Dr., 8264 Waldkraiburg, De | |
US5181823A (en) | 1989-10-27 | 1993-01-26 | Grumman Aerospace Corporation | Apparatus and method for producing a video display |
ES2085885T3 (es) * | 1989-11-08 | 1996-06-16 | George S Allen | Brazo mecanico para sistema interactivo de cirugia dirigido por imagenes. |
US5086401A (en) | 1990-05-11 | 1992-02-04 | International Business Machines Corporation | Image-directed robotic system for precise robotic surgery including redundant consistency checking |
EP0487110B1 (en) | 1990-11-22 | 1999-10-06 | Kabushiki Kaisha Toshiba | Computer-aided diagnosis system for medical use |
US5217453A (en) | 1991-03-18 | 1993-06-08 | Wilk Peter J | Automated surgical system and apparatus |
US5217003A (en) | 1991-03-18 | 1993-06-08 | Wilk Peter J | Automated surgical system and apparatus |
US5176702A (en) | 1991-04-04 | 1993-01-05 | Symbiosis Corporation | Ratchet locking mechanism for surgical instruments |
US5251611A (en) | 1991-05-07 | 1993-10-12 | Zehel Wendell E | Method and apparatus for conducting exploratory procedures |
US5313306A (en) | 1991-05-13 | 1994-05-17 | Telerobotics International, Inc. | Omniview motionless camera endoscopy system |
US5181514A (en) | 1991-05-21 | 1993-01-26 | Hewlett-Packard Company | Transducer positioning system |
US5266875A (en) | 1991-05-23 | 1993-11-30 | Massachusetts Institute Of Technology | Telerobotic system |
US5417210A (en) | 1992-05-27 | 1995-05-23 | International Business Machines Corporation | System and method for augmentation of endoscopic surgery |
US5279309A (en) | 1991-06-13 | 1994-01-18 | International Business Machines Corporation | Signaling device and method for monitoring positions in a surgical operation |
US5182641A (en) | 1991-06-17 | 1993-01-26 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Composite video and graphics display for camera viewing systems in robotics and teleoperation |
US5261404A (en) | 1991-07-08 | 1993-11-16 | Mick Peter R | Three-dimensional mammal anatomy imaging system and method |
US5184601A (en) | 1991-08-05 | 1993-02-09 | Putman John M | Endoscope stabilizer |
US5889670A (en) | 1991-10-24 | 1999-03-30 | Immersion Corporation | Method and apparatus for tactilely responsive user interface |
US5230623A (en) | 1991-12-10 | 1993-07-27 | Radionics, Inc. | Operating pointer with interactive computergraphics |
US5531742A (en) | 1992-01-15 | 1996-07-02 | Barken; Israel | Apparatus and method for computer controlled cryosurgery |
US6963792B1 (en) | 1992-01-21 | 2005-11-08 | Sri International | Surgical method |
US5631973A (en) | 1994-05-05 | 1997-05-20 | Sri International | Method for telemanipulation with telepresence |
EP0776738B1 (en) | 1992-01-21 | 2002-04-03 | Sri International | An endoscopic surgical instrument |
DE4204397C2 (de) | 1992-02-14 | 2001-08-30 | Sinz Dirk Peter | Transportbehälter |
US5737500A (en) | 1992-03-11 | 1998-04-07 | California Institute Of Technology | Mobile dexterous siren degree of freedom robot arm with real-time control system |
US5430643A (en) | 1992-03-11 | 1995-07-04 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Configuration control of seven degree of freedom arms |
US5321353A (en) | 1992-05-13 | 1994-06-14 | Storage Technolgy Corporation | System and method for precisely positioning a robotic tool |
US5482029A (en) | 1992-06-26 | 1996-01-09 | Kabushiki Kaisha Toshiba | Variable flexibility endoscope system |
US5361768A (en) | 1992-06-30 | 1994-11-08 | Cardiovascular Imaging Systems, Inc. | Automated longitudinal position translator for ultrasonic imaging probes, and methods of using same |
US5239246A (en) | 1992-07-08 | 1993-08-24 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Force reflection with compliance control |
AT399647B (de) * | 1992-07-31 | 1995-06-26 | Truppe Michael | Anordnung zur darstellung des inneren von körpern |
US5515478A (en) | 1992-08-10 | 1996-05-07 | Computer Motion, Inc. | Automated endoscope system for optimal positioning |
US5754741A (en) | 1992-08-10 | 1998-05-19 | Computer Motion, Inc. | Automated endoscope for optimal positioning |
US5524180A (en) | 1992-08-10 | 1996-06-04 | Computer Motion, Inc. | Automated endoscope system for optimal positioning |
US5762458A (en) | 1996-02-20 | 1998-06-09 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
US5657429A (en) | 1992-08-10 | 1997-08-12 | Computer Motion, Inc. | Automated endoscope system optimal positioning |
US5397323A (en) | 1992-10-30 | 1995-03-14 | International Business Machines Corporation | Remote center-of-motion robot for surgery |
US5788688A (en) | 1992-11-05 | 1998-08-04 | Bauer Laboratories, Inc. | Surgeon's command and control |
US5629594A (en) | 1992-12-02 | 1997-05-13 | Cybernet Systems Corporation | Force feedback system |
DE9302650U1 (de) | 1993-02-24 | 1993-04-15 | Karl Storz GmbH & Co, 7200 Tuttlingen | Medizinische Zange |
AU687045B2 (en) | 1993-03-31 | 1998-02-19 | Luma Corporation | Managing information in an endoscopy system |
WO1994026167A1 (en) | 1993-05-14 | 1994-11-24 | Sri International | Remote center positioner |
US5791231A (en) | 1993-05-17 | 1998-08-11 | Endorobotics Corporation | Surgical robotic system and hydraulic actuator therefor |
AU7468494A (en) | 1993-07-07 | 1995-02-06 | Cornelius Borst | Robotic system for close inspection and remote treatment of moving parts |
US5382885A (en) | 1993-08-09 | 1995-01-17 | The University Of British Columbia | Motion scaling tele-operating system with force feedback suitable for microsurgery |
US5343385A (en) * | 1993-08-17 | 1994-08-30 | International Business Machines Corporation | Interference-free insertion of a solid body into a cavity |
US5503320A (en) | 1993-08-19 | 1996-04-02 | United States Surgical Corporation | Surgical apparatus with indicator |
FR2709656B1 (fr) | 1993-09-07 | 1995-12-01 | Deemed Int Sa | Installation pour opération de microchirurgie assistée par ordinateur et procédés mis en Óoeuvre par ladite installation. |
SE9303253D0 (sv) | 1993-10-05 | 1993-10-05 | Siemens Elema Ab | Instrument för titthålskirurgi |
JPH08107875A (ja) | 1994-08-18 | 1996-04-30 | Olympus Optical Co Ltd | 内視鏡形状検出装置 |
US6059718A (en) | 1993-10-18 | 2000-05-09 | Olympus Optical Co., Ltd. | Endoscope form detecting apparatus in which coil is fixedly mounted by insulating member so that form is not deformed within endoscope |
US5876325A (en) * | 1993-11-02 | 1999-03-02 | Olympus Optical Co., Ltd. | Surgical manipulation system |
US5842473A (en) | 1993-11-29 | 1998-12-01 | Life Imaging Systems | Three-dimensional imaging system |
US6241725B1 (en) | 1993-12-15 | 2001-06-05 | Sherwood Services Ag | High frequency thermal ablation of cancerous tumors and functional targets with image data assistance |
AU7601094A (en) | 1993-12-15 | 1995-07-03 | Computer Motion, Inc. | Automated endoscope system for optimal positioning |
JPH07184923A (ja) | 1993-12-28 | 1995-07-25 | Hitachi Ltd | 遠隔微細手術支援装置 |
US5454827A (en) | 1994-05-24 | 1995-10-03 | Aust; Gilbert M. | Surgical instrument |
US5835693A (en) | 1994-07-22 | 1998-11-10 | Lynch; James D. | Interactive system for simulation and display of multi-body systems in three dimensions |
US6115053A (en) * | 1994-08-02 | 2000-09-05 | New York University | Computer animation method and system for synthesizing human-like gestures and actions |
NO300407B1 (no) | 1994-08-30 | 1997-05-26 | Vingmed Sound As | Apparat for endoskop- eller gastroskopundersökelse av pasienter |
US6120433A (en) * | 1994-09-01 | 2000-09-19 | Olympus Optical Co., Ltd. | Surgical manipulator system |
US5528955A (en) * | 1994-09-08 | 1996-06-25 | Hannaford; Blake | Five axis direct-drive mini-robot having fifth actuator located at non-adjacent joint |
JP3695779B2 (ja) | 1994-09-27 | 2005-09-14 | オリンパス株式会社 | マニピュレータシステム |
US5765561A (en) | 1994-10-07 | 1998-06-16 | Medical Media Systems | Video-based surgical targeting system |
JPH08132372A (ja) * | 1994-11-08 | 1996-05-28 | Toshiba Corp | ロボットの制御方法 |
US5649032A (en) | 1994-11-14 | 1997-07-15 | David Sarnoff Research Center, Inc. | System for automatically aligning images to form a mosaic image |
JP3642812B2 (ja) | 1994-11-17 | 2005-04-27 | 株式会社町田製作所 | 医療用観察装置 |
JP3640087B2 (ja) | 1994-11-29 | 2005-04-20 | 豊田工機株式会社 | 工作機械 |
JPH08154321A (ja) | 1994-11-29 | 1996-06-11 | Tokyo Electric Power Co Inc:The | 遠隔操作ロボット |
JPH08164148A (ja) | 1994-12-13 | 1996-06-25 | Olympus Optical Co Ltd | 内視鏡下手術装置 |
US5575764A (en) | 1994-12-14 | 1996-11-19 | Van Dyne; Leonard A. | Prosthetic joint with dynamic torque compensator |
JP3539645B2 (ja) | 1995-02-16 | 2004-07-07 | 株式会社日立製作所 | 遠隔手術支援装置 |
JPH08224241A (ja) | 1995-02-22 | 1996-09-03 | Olympus Optical Co Ltd | 医療用マニピュレータ |
US6019724A (en) | 1995-02-22 | 2000-02-01 | Gronningsaeter; Aage | Method for ultrasound guidance during clinical procedures |
US5836880A (en) | 1995-02-27 | 1998-11-17 | Micro Chemical, Inc. | Automated system for measuring internal tissue characteristics in feed animals |
US5817022A (en) | 1995-03-28 | 1998-10-06 | Sonometrics Corporation | System for displaying a 2-D ultrasound image within a 3-D viewing environment |
US5797849A (en) | 1995-03-28 | 1998-08-25 | Sonometrics Corporation | Method for carrying out a medical procedure using a three-dimensional tracking and imaging system |
JPH08275958A (ja) | 1995-04-07 | 1996-10-22 | Olympus Optical Co Ltd | 手術用マニピュレータ装置 |
US5887121A (en) | 1995-04-21 | 1999-03-23 | International Business Machines Corporation | Method of constrained Cartesian control of robotic mechanisms with active and passive joints |
JP3986099B2 (ja) | 1995-05-02 | 2007-10-03 | オリンパス株式会社 | 手術用マニピュレータシステム |
US5649956A (en) | 1995-06-07 | 1997-07-22 | Sri International | System and method for releasably holding a surgical instrument |
US5759151A (en) * | 1995-06-07 | 1998-06-02 | Carnegie Mellon University | Flexible steerable device for conducting exploratory procedures |
US5814038A (en) | 1995-06-07 | 1998-09-29 | Sri International | Surgical manipulator for a telerobotic system |
US5551432A (en) | 1995-06-19 | 1996-09-03 | New York Eye & Ear Infirmary | Scanning control system for ultrasound biomicroscopy |
WO1997000649A1 (en) | 1995-06-20 | 1997-01-09 | Wan Sing Ng | Articulated arm for medical procedures |
US6702736B2 (en) | 1995-07-24 | 2004-03-09 | David T. Chen | Anatomical visualization system |
US6256529B1 (en) | 1995-07-26 | 2001-07-03 | Burdette Medical Systems, Inc. | Virtual reality 3D visualization for surgical procedures |
DE19529950C1 (de) | 1995-08-14 | 1996-11-14 | Deutsche Forsch Luft Raumfahrt | Verfahren zum Nachführen eines Stereo-Laparoskops in der minimalinvasiven Chirurgie |
US5638819A (en) | 1995-08-29 | 1997-06-17 | Manwaring; Kim H. | Method and apparatus for guiding an instrument to a target |
US5784542A (en) | 1995-09-07 | 1998-07-21 | California Institute Of Technology | Decoupled six degree-of-freedom teleoperated robot system |
US5825982A (en) | 1995-09-15 | 1998-10-20 | Wright; James | Head cursor control interface for an automated endoscope system for optimal positioning |
US5601085A (en) | 1995-10-02 | 1997-02-11 | Nycomed Imaging As | Ultrasound imaging |
JPH09141580A (ja) | 1995-11-22 | 1997-06-03 | Yaskawa Electric Corp | 直接教示ロボットの動作範囲制限装置 |
US5987591A (en) | 1995-12-27 | 1999-11-16 | Fanuc Limited | Multiple-sensor robot system for obtaining two-dimensional image and three-dimensional position information |
US5624398A (en) | 1996-02-08 | 1997-04-29 | Symbiosis Corporation | Endoscopic robotic surgical tools and methods |
US6436107B1 (en) | 1996-02-20 | 2002-08-20 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive surgical procedures |
US5971976A (en) | 1996-02-20 | 1999-10-26 | Computer Motion, Inc. | Motion minimization and compensation system for use in surgical procedures |
US6699177B1 (en) | 1996-02-20 | 2004-03-02 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive surgical procedures |
US6063095A (en) | 1996-02-20 | 2000-05-16 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive surgical procedures |
US5855583A (en) | 1996-02-20 | 1999-01-05 | Computer Motion, Inc. | Method and apparatus for performing minimally invasive cardiac procedures |
WO1997044089A1 (en) * | 1996-05-17 | 1997-11-27 | Biosense Inc. | Self-aligning catheter |
US5807377A (en) | 1996-05-20 | 1998-09-15 | Intuitive Surgical, Inc. | Force-reflecting surgical instrument and positioning mechanism for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US5797900A (en) | 1996-05-20 | 1998-08-25 | Intuitive Surgical, Inc. | Wrist mechanism for surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US5792135A (en) | 1996-05-20 | 1998-08-11 | Intuitive Surgical, Inc. | Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US6167296A (en) * | 1996-06-28 | 2000-12-26 | The Board Of Trustees Of The Leland Stanford Junior University | Method for volumetric image navigation |
GB9616261D0 (en) | 1996-08-02 | 1996-09-11 | Philips Electronics Nv | Virtual environment manipulation device modelling and control |
US6642836B1 (en) | 1996-08-06 | 2003-11-04 | Computer Motion, Inc. | General purpose distributed operating room control system |
JP3550966B2 (ja) | 1996-09-18 | 2004-08-04 | 株式会社日立製作所 | 手術装置 |
US7302288B1 (en) | 1996-11-25 | 2007-11-27 | Z-Kat, Inc. | Tool position indicator |
DE19649082C1 (de) | 1996-11-27 | 1998-01-08 | Fraunhofer Ges Forschung | Vorrichtung zur Fernsteuerung eines Werkzeugs |
US5810008A (en) | 1996-12-03 | 1998-09-22 | Isg Technologies Inc. | Apparatus and method for visualizing ultrasonic images |
US7666191B2 (en) | 1996-12-12 | 2010-02-23 | Intuitive Surgical, Inc. | Robotic surgical system with sterile surgical adaptor |
US6331181B1 (en) | 1998-12-08 | 2001-12-18 | Intuitive Surgical, Inc. | Surgical robotic tools, data architecture, and use |
US5853367A (en) | 1997-03-17 | 1998-12-29 | General Electric Company | Task-interface and communications system and method for ultrasound imager control |
US6656110B1 (en) | 1997-04-16 | 2003-12-02 | Karl Storz Gmbh & Co. Kg | Endoscopic system |
KR100223601B1 (ko) | 1997-05-29 | 1999-10-15 | 윤종용 | 액정 표시 장치 |
US5938678A (en) | 1997-06-11 | 1999-08-17 | Endius Incorporated | Surgical instrument |
JPH11309A (ja) | 1997-06-12 | 1999-01-06 | Hitachi Ltd | 画像処理装置 |
US6231565B1 (en) | 1997-06-18 | 2001-05-15 | United States Surgical Corporation | Robotic arm DLUs for performing surgical tasks |
WO1999000052A1 (en) * | 1997-06-27 | 1999-01-07 | The Board Of Trustees Of The Leland Stanford Junior University | Method and apparatus for volumetric image navigation |
US6330837B1 (en) | 1997-08-28 | 2001-12-18 | Microdexterity Systems, Inc. | Parallel mechanism |
US6002184A (en) | 1997-09-17 | 1999-12-14 | Coactive Drive Corporation | Actuator with opposing repulsive magnetic forces |
US6714839B2 (en) | 1998-12-08 | 2004-03-30 | Intuitive Surgical, Inc. | Master having redundant degrees of freedom |
EP1015944B1 (en) | 1997-09-19 | 2013-02-27 | Massachusetts Institute Of Technology | Surgical robotic apparatus |
US5993391A (en) | 1997-09-25 | 1999-11-30 | Kabushiki Kaisha Toshiba | Ultrasound diagnostic apparatus |
AU1452199A (en) | 1997-11-07 | 1999-05-31 | Hill-Rom, Inc. | Medical equipment controller |
US6129670A (en) | 1997-11-24 | 2000-10-10 | Burdette Medical Systems | Real time brachytherapy spatial registration and visualization system |
US6358749B1 (en) | 1997-12-02 | 2002-03-19 | Ozo Diversified Automation, Inc. | Automated system for chromosome microdissection and method of using same |
US5842993A (en) | 1997-12-10 | 1998-12-01 | The Whitaker Corporation | Navigable ultrasonic imaging probe assembly |
US6292712B1 (en) | 1998-01-29 | 2001-09-18 | Northrop Grumman Corporation | Computer interface system for a robotic system |
WO1999038646A1 (en) | 1998-02-03 | 1999-08-05 | Hexel Corporation | Systems and methods employing a rotary track for machining and manufacturing |
DE69922791T2 (de) * | 1998-02-19 | 2005-12-08 | California Institute Of Technology, Pasadena | Gerät zur bereitstellung eines spherischen sehfeldes während endoskopischen eingriffen |
US6810281B2 (en) * | 2000-12-21 | 2004-10-26 | Endovia Medical, Inc. | Medical mapping system |
US7297142B2 (en) | 1998-02-24 | 2007-11-20 | Hansen Medical, Inc. | Interchangeable surgical instrument |
JP3582348B2 (ja) | 1998-03-19 | 2004-10-27 | 株式会社日立製作所 | 手術装置 |
US5980461A (en) | 1998-05-01 | 1999-11-09 | Rajan; Subramaniam D. | Ultrasound imaging apparatus for medical diagnostics |
EP2289423A1 (en) | 1998-05-14 | 2011-03-02 | David N. Krag | System for bracketing tissue |
US6425865B1 (en) | 1998-06-12 | 2002-07-30 | The University Of British Columbia | Robotically assisted medical ultrasound |
US6184868B1 (en) * | 1998-09-17 | 2001-02-06 | Immersion Corp. | Haptic feedback control devices |
AU5391999A (en) | 1998-08-04 | 2000-02-28 | Intuitive Surgical, Inc. | Manipulator positioning linkage for robotic surgery |
US6383951B1 (en) | 1998-09-03 | 2002-05-07 | Micron Technology, Inc. | Low dielectric constant material for integrated circuit fabrication |
US5993390A (en) | 1998-09-18 | 1999-11-30 | Hewlett- Packard Company | Segmented 3-D cardiac ultrasound imaging method and apparatus |
JP4101951B2 (ja) | 1998-11-10 | 2008-06-18 | オリンパス株式会社 | 手術用顕微鏡 |
WO2000028882A2 (en) | 1998-11-18 | 2000-05-25 | Microdexterity Systems, Inc. | Medical manipulator for use with an imaging device |
US6468265B1 (en) | 1998-11-20 | 2002-10-22 | Intuitive Surgical, Inc. | Performing cardiac surgery without cardioplegia |
US8527094B2 (en) | 1998-11-20 | 2013-09-03 | Intuitive Surgical Operations, Inc. | Multi-user medical robotic system for collaboration or training in minimally invasive surgical procedures |
US6459926B1 (en) | 1998-11-20 | 2002-10-01 | Intuitive Surgical, Inc. | Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery |
US6659939B2 (en) | 1998-11-20 | 2003-12-09 | Intuitive Surgical, Inc. | Cooperative minimally invasive telesurgical system |
US6398726B1 (en) | 1998-11-20 | 2002-06-04 | Intuitive Surgical, Inc. | Stabilizer for robotic beating-heart surgery |
US6951535B2 (en) | 2002-01-16 | 2005-10-04 | Intuitive Surgical, Inc. | Tele-medicine system that transmits an entire state of a subsystem |
US6852107B2 (en) | 2002-01-16 | 2005-02-08 | Computer Motion, Inc. | Minimally invasive surgical training using robotics and tele-collaboration |
US6342889B1 (en) * | 1998-11-27 | 2002-01-29 | Dicomit Dicom Information Technologies Corp. | Method and system for selecting at least one optimal view of a three dimensional image |
US6620173B2 (en) * | 1998-12-08 | 2003-09-16 | Intuitive Surgical, Inc. | Method for introducing an end effector to a surgical site in minimally invasive surgery |
US6325808B1 (en) | 1998-12-08 | 2001-12-04 | Advanced Realtime Control Systems, Inc. | Robotic system, docking station, and surgical tool for collaborative control in minimally invasive surgery |
US6770081B1 (en) | 2000-01-07 | 2004-08-03 | Intuitive Surgical, Inc. | In vivo accessories for minimally invasive robotic surgery and methods |
US6522906B1 (en) * | 1998-12-08 | 2003-02-18 | Intuitive Surgical, Inc. | Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure |
US6799065B1 (en) | 1998-12-08 | 2004-09-28 | Intuitive Surgical, Inc. | Image shifting apparatus and method for a telerobotic system |
US6493608B1 (en) | 1999-04-07 | 2002-12-10 | Intuitive Surgical, Inc. | Aspects of a control system of a minimally invasive surgical apparatus |
JP2000193893A (ja) | 1998-12-28 | 2000-07-14 | Suzuki Motor Corp | 検査用挿入管の屈曲装置 |
US6224542B1 (en) * | 1999-01-04 | 2001-05-01 | Stryker Corporation | Endoscopic camera system with non-mechanical zoom |
US6394998B1 (en) | 1999-01-22 | 2002-05-28 | Intuitive Surgical, Inc. | Surgical tools for use in minimally invasive telesurgical applications |
US6602185B1 (en) | 1999-02-18 | 2003-08-05 | Olympus Optical Co., Ltd. | Remote surgery support system |
US6084371A (en) | 1999-02-19 | 2000-07-04 | Lockheed Martin Energy Research Corporation | Apparatus and methods for a human de-amplifier system |
CN1202882C (zh) | 1999-02-25 | 2005-05-25 | 是永哲也 | 电气治疗仪 |
US7324081B2 (en) | 1999-03-02 | 2008-01-29 | Siemens Aktiengesellschaft | Augmented-reality system for situation-related support of the interaction between a user and an engineering apparatus |
US6243624B1 (en) * | 1999-03-19 | 2001-06-05 | Northwestern University | Non-Linear muscle-like compliant controller |
US6569084B1 (en) | 1999-03-31 | 2003-05-27 | Olympus Optical Co., Ltd. | Endoscope holder and endoscope device |
US8944070B2 (en) | 1999-04-07 | 2015-02-03 | Intuitive Surgical Operations, Inc. | Non-force reflecting method for providing tool force information to a user of a telesurgical system |
US6594552B1 (en) | 1999-04-07 | 2003-07-15 | Intuitive Surgical, Inc. | Grip strength with tactile feedback for robotic surgery |
US6424885B1 (en) | 1999-04-07 | 2002-07-23 | Intuitive Surgical, Inc. | Camera referenced control in a minimally invasive surgical apparatus |
JP2000300579A (ja) | 1999-04-26 | 2000-10-31 | Olympus Optical Co Ltd | 多機能マニピュレータ |
JP3668865B2 (ja) | 1999-06-21 | 2005-07-06 | 株式会社日立製作所 | 手術装置 |
US7637905B2 (en) * | 2003-01-15 | 2009-12-29 | Usgi Medical, Inc. | Endoluminal tool deployment system |
US8574243B2 (en) | 1999-06-25 | 2013-11-05 | Usgi Medical, Inc. | Apparatus and methods for forming and securing gastrointestinal tissue folds |
JP4302246B2 (ja) | 1999-08-25 | 2009-07-22 | 住友ベークライト株式会社 | 医療用処置具挿入具 |
US8004229B2 (en) | 2005-05-19 | 2011-08-23 | Intuitive Surgical Operations, Inc. | Software center and highly configurable robotic systems for surgery and other uses |
US7594912B2 (en) | 2004-09-30 | 2009-09-29 | Intuitive Surgical, Inc. | Offset remote center manipulator for robotic surgery |
US8768516B2 (en) | 2009-06-30 | 2014-07-01 | Intuitive Surgical Operations, Inc. | Control of medical robotic system manipulator about kinematic singularities |
JP3454235B2 (ja) | 1999-10-06 | 2003-10-06 | 株式会社日立製作所 | 生体磁場計測装置 |
JP2001104333A (ja) | 1999-10-07 | 2001-04-17 | Hitachi Ltd | 手術支援装置 |
US6312435B1 (en) | 1999-10-08 | 2001-11-06 | Intuitive Surgical, Inc. | Surgical instrument with extended reach for use in minimally invasive surgery |
US6654031B1 (en) | 1999-10-15 | 2003-11-25 | Hitachi Kokusai Electric Inc. | Method of editing a video program with variable view point of picked-up image and computer program product for displaying video program |
JP2001202531A (ja) | 1999-10-15 | 2001-07-27 | Hitachi Kokusai Electric Inc | 動画像編集方法 |
AU4305201A (en) * | 1999-11-29 | 2001-06-04 | Board Of Trustees Of The Leland Stanford Junior University | Method and apparatus for transforming view orientations in image-guided surgery |
US6204620B1 (en) * | 1999-12-10 | 2001-03-20 | Fanuc Robotics North America | Method of controlling an intelligent assist device |
US20190090967A1 (en) | 1999-12-14 | 2019-03-28 | Intuitive Surgical Operations, Inc. | Display of computer generated image of an out-of-view portion of a medical device adjacent a real-time image of an in-view portion of the medical device |
DE19961971B4 (de) | 1999-12-22 | 2009-10-22 | Forschungszentrum Karlsruhe Gmbh | Vorrichtung zum sicheren automatischen Nachführen eines Endoskops und Verfolgen eines Instruments |
US6847922B1 (en) * | 2000-01-06 | 2005-01-25 | General Motors Corporation | Method for computer-aided layout of manufacturing cells |
JP2001287183A (ja) | 2000-01-31 | 2001-10-16 | Matsushita Electric Works Ltd | 自動搬送ロボット |
DE10004264C2 (de) | 2000-02-01 | 2002-06-13 | Storz Karl Gmbh & Co Kg | Vorrichtung zur intrakorporalen, minimal-invasiven Behandlung eines Patienten |
US6817973B2 (en) | 2000-03-16 | 2004-11-16 | Immersion Medical, Inc. | Apparatus for controlling force for manipulation of medical instruments |
US7819799B2 (en) | 2000-03-16 | 2010-10-26 | Immersion Medical, Inc. | System and method for controlling force applied to and manipulation of medical instruments |
DE10015826A1 (de) | 2000-03-30 | 2001-10-11 | Siemens Ag | System und Verfahren zur Erzeugung eines Bildes |
US6984203B2 (en) * | 2000-04-03 | 2006-01-10 | Neoguide Systems, Inc. | Endoscope with adjacently positioned guiding apparatus |
US20010055062A1 (en) | 2000-04-20 | 2001-12-27 | Keiji Shioda | Operation microscope |
DE10025285A1 (de) * | 2000-05-22 | 2001-12-06 | Siemens Ag | Vollautomatische, robotergestützte Kameraführung unter Verwendung von Positionssensoren für laparoskopische Eingriffe |
US6645196B1 (en) | 2000-06-16 | 2003-11-11 | Intuitive Surgical, Inc. | Guided tool change |
US6599247B1 (en) | 2000-07-07 | 2003-07-29 | University Of Pittsburgh | System and method for location-merging of real-time tomographic slice images with human vision |
EP1182541A3 (de) | 2000-08-22 | 2005-11-30 | Siemens Aktiengesellschaft | System und Verfahren zum kombinierten Einsatz verschiedener Display-/Gerätetypen mit systemgesteuerter kontextabhängiger Informationsdarstellung |
JP4765155B2 (ja) | 2000-09-28 | 2011-09-07 | ソニー株式会社 | オーサリング・システム及びオーサリング方法、並びに記憶媒体 |
US7194118B1 (en) | 2000-11-10 | 2007-03-20 | Lucid, Inc. | System for optically sectioning and mapping surgically excised tissue |
US6718194B2 (en) | 2000-11-17 | 2004-04-06 | Ge Medical Systems Global Technology Company, Llc | Computer assisted intramedullary rod surgery system with enhanced features |
DE10063089C1 (de) | 2000-12-18 | 2002-07-25 | Siemens Ag | Anwendergesteuerte Verknüpfung von Informationen innerhalb eines Augmented-Reality-Systems |
EP1351619A4 (en) | 2001-01-16 | 2011-01-05 | Microdexterity Systems Inc | SURGICAL MANIPULATOR |
US7766894B2 (en) * | 2001-02-15 | 2010-08-03 | Hansen Medical, Inc. | Coaxial catheter system |
US6765569B2 (en) | 2001-03-07 | 2004-07-20 | University Of Southern California | Augmented-reality tool employing scene-feature autocalibration during camera motion |
JP3769469B2 (ja) | 2001-03-28 | 2006-04-26 | 株式会社東芝 | 操作訓練用装置 |
US6456901B1 (en) * | 2001-04-20 | 2002-09-24 | Univ Michigan | Hybrid robot motion task level control system |
US6862561B2 (en) | 2001-05-29 | 2005-03-01 | Entelos, Inc. | Method and apparatus for computer modeling a joint |
US7607440B2 (en) * | 2001-06-07 | 2009-10-27 | Intuitive Surgical, Inc. | Methods and apparatus for surgical planning |
US6887245B2 (en) | 2001-06-11 | 2005-05-03 | Ge Medical Systems Global Technology Company, Llc | Surgical drill for use with a computer assisted surgery system |
CA2486525C (en) | 2001-06-13 | 2009-02-24 | Volume Interactions Pte. Ltd. | A guide system and a probe therefor |
WO2002100284A1 (en) | 2001-06-13 | 2002-12-19 | Volume Interactions Pte Ltd | A guide system |
US6817974B2 (en) | 2001-06-29 | 2004-11-16 | Intuitive Surgical, Inc. | Surgical tool having positively positionable tendon-actuated multi-disk wrist joint |
US20040243147A1 (en) * | 2001-07-03 | 2004-12-02 | Lipow Kenneth I. | Surgical robot and robotic controller |
WO2003007129A2 (en) | 2001-07-13 | 2003-01-23 | Broks Automation, Inc. | Trajectory planning and motion control strategies for a planar three-degree-of-freedom robotic arm |
US6550757B2 (en) * | 2001-08-07 | 2003-04-22 | Hewlett-Packard Company | Stapler having selectable staple size |
JP3579379B2 (ja) | 2001-08-10 | 2004-10-20 | 株式会社東芝 | 医療用マニピュレータシステム |
US6587750B2 (en) | 2001-09-25 | 2003-07-01 | Intuitive Surgical, Inc. | Removable infinite roll master grip handle and touch sensor for robotic surgery |
US20040238732A1 (en) | 2001-10-19 | 2004-12-02 | Andrei State | Methods and systems for dynamic virtual convergence and head mountable display |
JP3529373B2 (ja) | 2001-11-09 | 2004-05-24 | ファナック株式会社 | 作業機械のシミュレーション装置 |
US6663559B2 (en) * | 2001-12-14 | 2003-12-16 | Endactive, Inc. | Interface for a variable direction of view endoscope |
US6941192B2 (en) * | 2002-01-31 | 2005-09-06 | Abb Research Ltd. | Robot machining tool position and orientation calibration |
AU2003218010A1 (en) | 2002-03-06 | 2003-09-22 | Z-Kat, Inc. | System and method for using a haptic device in combination with a computer-assisted surgery system |
US7831292B2 (en) * | 2002-03-06 | 2010-11-09 | Mako Surgical Corp. | Guidance system and method for surgical procedures with improved feedback |
US8010180B2 (en) * | 2002-03-06 | 2011-08-30 | Mako Surgical Corp. | Haptic guidance system and method |
JP2003300444A (ja) | 2002-04-11 | 2003-10-21 | Hitachi Ltd | 移動体の運転支援装置 |
JP4056791B2 (ja) | 2002-05-22 | 2008-03-05 | 策雄 米延 | 骨折整復誘導装置 |
US6678582B2 (en) | 2002-05-30 | 2004-01-13 | Kuka Roboter Gmbh | Method and control device for avoiding collisions between cooperating robots |
US6783491B2 (en) | 2002-06-13 | 2004-08-31 | Vahid Saadat | Shape lockable apparatus and method for advancing an instrument through unsupported anatomy |
EP1531749A2 (en) * | 2002-08-13 | 2005-05-25 | Microbotics Corporation | Microsurgical robot system |
US20040176751A1 (en) | 2002-08-14 | 2004-09-09 | Endovia Medical, Inc. | Robotic medical instrument system |
US20040044295A1 (en) * | 2002-08-19 | 2004-03-04 | Orthosoft Inc. | Graphical user interface for computer-assisted surgery |
JP4169549B2 (ja) * | 2002-09-06 | 2008-10-22 | オリンパス株式会社 | 内視鏡 |
US7331967B2 (en) | 2002-09-09 | 2008-02-19 | Hansen Medical, Inc. | Surgical instrument coupling mechanism |
JP2004105638A (ja) | 2002-09-20 | 2004-04-08 | Shimadzu Corp | 超音波診断装置 |
US20040077940A1 (en) * | 2002-10-11 | 2004-04-22 | Kienzle Thomas C. | Instrument guide for use with a tracking system |
US6899672B2 (en) | 2002-11-08 | 2005-05-31 | Scimed Life Systems, Inc. | Endoscopic imaging system including removable deflection device |
JP2004174662A (ja) | 2002-11-27 | 2004-06-24 | Fanuc Ltd | ロボットの動作状態解析装置 |
EP2901959B1 (en) | 2002-12-06 | 2019-02-06 | Intuitive Surgical Operations, Inc. | Flexible wrist for surgical tool |
SE0203908D0 (sv) | 2002-12-30 | 2002-12-30 | Abb Research Ltd | An augmented reality system and method |
JP2004223128A (ja) | 2003-01-27 | 2004-08-12 | Hitachi Ltd | 医療行為支援装置および方法 |
FR2850775B1 (fr) * | 2003-01-30 | 2005-07-22 | Ge Med Sys Global Tech Co Llc | Dispositif d'imagerie medicale a reorientation semi-automatique d'objet radiologique |
JP3972854B2 (ja) | 2003-04-10 | 2007-09-05 | ソニー株式会社 | ロボットの運動制御装置 |
US7381183B2 (en) | 2003-04-21 | 2008-06-03 | Karl Storz Development Corp. | Method for capturing and displaying endoscopic maps |
JP3975959B2 (ja) | 2003-04-23 | 2007-09-12 | トヨタ自動車株式会社 | ロボット動作規制方法とその装置およびそれを備えたロボット |
CA2522097C (en) | 2003-04-28 | 2012-09-25 | Stephen James Crampton | Cmm arm with exoskeleton |
WO2005000139A1 (en) * | 2003-04-28 | 2005-01-06 | Bracco Imaging Spa | Surgical navigation imaging system |
EP1628632B1 (en) * | 2003-05-21 | 2013-10-09 | The Johns Hopkins University | Devices and systems for minimally invasive surgery of the throat and other portions of mammalian body |
CN1846181A (zh) | 2003-06-20 | 2006-10-11 | 美国发那科机器人有限公司 | 多个机械手的跟踪和镜像微动 |
US8753262B2 (en) | 2003-07-29 | 2014-06-17 | Hoya Corporation | Internal treatment apparatus having circumferential side holes |
US20050054895A1 (en) * | 2003-09-09 | 2005-03-10 | Hoeg Hans David | Method for using variable direction of view endoscopy in conjunction with image guided surgical systems |
DE202004014857U1 (de) | 2003-09-29 | 2005-04-21 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung zur virtuellen Lagebetrachtung wenigstens eines in einen Körper intrakorporal eingebrachten medizinischen Instruments |
JP2005110878A (ja) | 2003-10-06 | 2005-04-28 | Olympus Corp | 手術支援システム |
JP3708097B2 (ja) * | 2003-10-08 | 2005-10-19 | ファナック株式会社 | ロボットの手動送り装置 |
WO2005043319A2 (en) | 2003-10-21 | 2005-05-12 | The Board Of Trustees Of The Leland Stanford Junior University | Systems and methods for intraoperative targeting |
US20050096502A1 (en) * | 2003-10-29 | 2005-05-05 | Khalili Theodore M. | Robotic surgical device |
JP3732494B2 (ja) | 2003-10-31 | 2006-01-05 | ファナック株式会社 | シミュレーション装置 |
US20050107680A1 (en) | 2003-11-18 | 2005-05-19 | Kopf J. D. | Stereotaxic instrument with linear coordinate scales coupled to split-image microscopic image display system |
US7774044B2 (en) * | 2004-02-17 | 2010-08-10 | Siemens Medical Solutions Usa, Inc. | System and method for augmented reality navigation in a medical intervention procedure |
US9615772B2 (en) * | 2004-02-20 | 2017-04-11 | Karl Storz Imaging, Inc. | Global endoscopic viewing indicator |
US20050267359A1 (en) | 2004-05-27 | 2005-12-01 | General Electric Company | System, method, and article of manufacture for guiding an end effector to a target position within a person |
DE102004026813A1 (de) | 2004-06-02 | 2005-12-29 | Kuka Roboter Gmbh | Verfahren und Vorrichtung zum Steuern von Handhabungsgeräten |
US20060013523A1 (en) | 2004-07-16 | 2006-01-19 | Luna Innovations Incorporated | Fiber optic position and shape sensing device and method relating thereto |
US7979157B2 (en) * | 2004-07-23 | 2011-07-12 | Mcmaster University | Multi-purpose robotic operating system and method |
US8480566B2 (en) | 2004-09-24 | 2013-07-09 | Vivid Medical, Inc. | Solid state illumination for endoscopy |
US7238056B2 (en) | 2004-10-12 | 2007-07-03 | Dekko Technologies, Inc. | Electrical connector |
WO2006086021A2 (en) * | 2004-10-25 | 2006-08-17 | University Of Dayton | Method and system to provide improved accuracies in multi-jointed robots through kinematic robot model parameters determination |
US8872906B2 (en) | 2005-01-05 | 2014-10-28 | Avantis Medical Systems, Inc. | Endoscope assembly with a polarizing filter |
US20060149129A1 (en) | 2005-01-05 | 2006-07-06 | Watts H D | Catheter with multiple visual elements |
US7763015B2 (en) | 2005-01-24 | 2010-07-27 | Intuitive Surgical Operations, Inc. | Modular manipulator support for robotic surgery |
US7837674B2 (en) | 2005-01-24 | 2010-11-23 | Intuitive Surgical Operations, Inc. | Compact counter balance for robotic surgical systems |
CN101160104B (zh) | 2005-02-22 | 2012-07-04 | 马科外科公司 | 触觉引导系统及方法 |
WO2006111966A2 (en) | 2005-04-18 | 2006-10-26 | M.S.T. Medical Surgery Technologies Ltd | Means and methods of improving laparoscopic surgery |
US8208988B2 (en) | 2005-05-13 | 2012-06-26 | General Electric Company | System and method for controlling a medical imaging device |
US9492240B2 (en) | 2009-06-16 | 2016-11-15 | Intuitive Surgical Operations, Inc. | Virtual measurement tool for minimally invasive surgery |
US10555775B2 (en) * | 2005-05-16 | 2020-02-11 | Intuitive Surgical Operations, Inc. | Methods and system for performing 3-D tool tracking by fusion of sensor and/or camera derived data during minimally invasive robotic surgery |
US8108072B2 (en) * | 2007-09-30 | 2012-01-31 | Intuitive Surgical Operations, Inc. | Methods and systems for robotic instrument tool tracking with adaptive fusion of kinematics information and image information |
US8073528B2 (en) * | 2007-09-30 | 2011-12-06 | Intuitive Surgical Operations, Inc. | Tool tracking systems, methods and computer products for image guided surgery |
US8971597B2 (en) | 2005-05-16 | 2015-03-03 | Intuitive Surgical Operations, Inc. | Efficient vision and kinematic data fusion for robotic surgical instruments and other applications |
US9789608B2 (en) | 2006-06-29 | 2017-10-17 | Intuitive Surgical Operations, Inc. | Synthetic representation of a surgical robot |
JP2006321027A (ja) | 2005-05-20 | 2006-11-30 | Hitachi Ltd | マスタ・スレーブ式マニピュレータシステム及びその操作入力装置 |
EP1887961B1 (en) | 2005-06-06 | 2012-01-11 | Intuitive Surgical Operations, Inc. | Laparoscopic ultrasound robotic surgical system |
US8398541B2 (en) * | 2006-06-06 | 2013-03-19 | Intuitive Surgical Operations, Inc. | Interactive user interfaces for robotic minimally invasive surgical systems |
US20070005002A1 (en) * | 2005-06-30 | 2007-01-04 | Intuitive Surgical Inc. | Robotic surgical instruments for irrigation, aspiration, and blowing |
EP3395508A1 (en) | 2005-06-30 | 2018-10-31 | Intuitive Surgical Operations Inc. | Indicator for tool state communication in multi-arm robotic telesurgery |
JP2007029232A (ja) | 2005-07-25 | 2007-02-08 | Hitachi Medical Corp | 内視鏡手術操作支援システム |
CN101247852B (zh) | 2005-07-25 | 2011-12-07 | 卡尔·奥托 | 用于计划和供给放射治疗的方法和装置 |
JP2009507617A (ja) * | 2005-09-14 | 2009-02-26 | ネオガイド システムズ, インコーポレイテッド | 経腔的及び他の操作を行うための方法及び装置 |
JP4728075B2 (ja) * | 2005-09-28 | 2011-07-20 | オリンパスメディカルシステムズ株式会社 | 内視鏡システム |
JP2007090481A (ja) | 2005-09-28 | 2007-04-12 | Fanuc Ltd | ロボットシミュレーション装置 |
US20070106307A1 (en) | 2005-09-30 | 2007-05-10 | Restoration Robotics, Inc. | Methods for implanting follicular units using an automated system |
US8111904B2 (en) | 2005-10-07 | 2012-02-07 | Cognex Technology And Investment Corp. | Methods and apparatus for practical 3D vision system |
EP1937176B1 (en) * | 2005-10-20 | 2019-04-17 | Intuitive Surgical Operations, Inc. | Auxiliary image display and manipulation on a computer display in a medical robotic system |
US8303505B2 (en) | 2005-12-02 | 2012-11-06 | Abbott Cardiovascular Systems Inc. | Methods and apparatuses for image guided medical procedures |
US8190238B2 (en) | 2005-12-09 | 2012-05-29 | Hansen Medical, Inc. | Robotic catheter system and methods |
US9241767B2 (en) | 2005-12-20 | 2016-01-26 | Intuitive Surgical Operations, Inc. | Method for handling an operator command exceeding a medical device state limitation in a medical robotic system |
CN101340852B (zh) * | 2005-12-20 | 2011-12-28 | 直观外科手术操作公司 | 机器人外科系统的器械对接装置 |
US7819859B2 (en) | 2005-12-20 | 2010-10-26 | Intuitive Surgical Operations, Inc. | Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator |
US7453227B2 (en) | 2005-12-20 | 2008-11-18 | Intuitive Surgical, Inc. | Medical robotic system with sliding mode control |
US7741802B2 (en) | 2005-12-20 | 2010-06-22 | Intuitive Surgical Operations, Inc. | Medical robotic system with programmably controlled constraints on error dynamics |
US7689320B2 (en) * | 2005-12-20 | 2010-03-30 | Intuitive Surgical Operations, Inc. | Robotic surgical system with joint motion controller adapted to reduce instrument tip vibrations |
US9266239B2 (en) | 2005-12-27 | 2016-02-23 | Intuitive Surgical Operations, Inc. | Constraint based control in a minimally invasive surgical apparatus |
US7930065B2 (en) | 2005-12-30 | 2011-04-19 | Intuitive Surgical Operations, Inc. | Robotic surgery system including position sensors using fiber bragg gratings |
US9962066B2 (en) | 2005-12-30 | 2018-05-08 | Intuitive Surgical Operations, Inc. | Methods and apparatus to shape flexible entry guides for minimally invasive surgery |
US7835823B2 (en) | 2006-01-05 | 2010-11-16 | Intuitive Surgical Operations, Inc. | Method for tracking and reporting usage events to determine when preventive maintenance is due for a medical robotic system |
US20110295295A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument having recording capabilities |
EP1815949A1 (en) | 2006-02-03 | 2007-08-08 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Medical robotic system with manipulator arm of the cylindrical coordinate type |
EP1815950A1 (en) * | 2006-02-03 | 2007-08-08 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Robotic surgical system for performing minimally invasive medical procedures |
US8167823B2 (en) | 2009-03-24 | 2012-05-01 | Biomet Manufacturing Corp. | Method and apparatus for aligning and securing an implant relative to a patient |
ITMI20060443A1 (it) * | 2006-03-13 | 2007-09-14 | Ethicon Endo Surgery Inc | Dispositivo per la manipolazione di tessuto corporeo |
US8016749B2 (en) | 2006-03-21 | 2011-09-13 | Boston Scientific Scimed, Inc. | Vision catheter having electromechanical navigation |
JP4382052B2 (ja) | 2006-03-28 | 2009-12-09 | 川崎重工業株式会社 | 駆動体の制御装置および制御方法 |
US8518024B2 (en) | 2006-04-24 | 2013-08-27 | Transenterix, Inc. | System and method for multi-instrument surgical access using a single access port |
US8924021B2 (en) | 2006-04-27 | 2014-12-30 | Honda Motor Co., Ltd. | Control of robots from human motion descriptors |
JP4883563B2 (ja) | 2006-04-27 | 2012-02-22 | 学校法人慶應義塾 | マニピュレータ装置 |
DE602007007610D1 (de) * | 2006-05-17 | 2010-08-19 | Hansen Medical Inc | Roboterinstrumentensystem |
US7683565B2 (en) | 2006-05-19 | 2010-03-23 | Mako Surgical Corp. | Method and apparatus for controlling a haptic device |
CA2651784C (en) | 2006-05-19 | 2015-01-27 | Mako Surgical Corp. | Method and apparatus for controlling a haptic device |
WO2007137208A2 (en) | 2006-05-19 | 2007-11-29 | Neoguide Systems, Inc. | Methods and apparatus for displaying three-dimensional orientation of a steerable distal tip of an endoscope |
US8597280B2 (en) | 2006-06-13 | 2013-12-03 | Intuitive Surgical Operations, Inc. | Surgical instrument actuator |
US8029516B2 (en) | 2006-06-13 | 2011-10-04 | Intuitive Surgical Operations, Inc. | Bracing of bundled medical devices for single port entry, robotically assisted medical procedures |
US8062211B2 (en) | 2006-06-13 | 2011-11-22 | Intuitive Surgical Operations, Inc. | Retrograde instrument |
US8377045B2 (en) | 2006-06-13 | 2013-02-19 | Intuitive Surgical Operations, Inc. | Extendable suction surface for bracing medial devices during robotically assisted medical procedures |
EP2038712B2 (en) | 2006-06-13 | 2019-08-28 | Intuitive Surgical Operations, Inc. | Control system configured to compensate for non-ideal actuator-to-joint linkage characteristics in a medical robotic system |
US8517933B2 (en) | 2006-06-13 | 2013-08-27 | Intuitive Surgical Operations, Inc. | Retraction of tissue for single port entry, robotically assisted medical procedures |
US10258425B2 (en) * | 2008-06-27 | 2019-04-16 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide |
US9718190B2 (en) | 2006-06-29 | 2017-08-01 | Intuitive Surgical Operations, Inc. | Tool position and identification indicator displayed in a boundary area of a computer display screen |
US20090192523A1 (en) | 2006-06-29 | 2009-07-30 | Intuitive Surgical, Inc. | Synthetic representation of a surgical instrument |
US10008017B2 (en) | 2006-06-29 | 2018-06-26 | Intuitive Surgical Operations, Inc. | Rendering tool information as graphic overlays on displayed images of tools |
DE102006046689A1 (de) * | 2006-09-29 | 2008-04-10 | Siemens Ag | Medizintechnisches Behandlungssystem |
US7831096B2 (en) * | 2006-11-17 | 2010-11-09 | General Electric Company | Medical navigation system with tool and/or implant integration into fluoroscopic image projections and method of use |
US10354410B2 (en) | 2006-11-28 | 2019-07-16 | Koninklijke Philips N.V. | Apparatus for determining a position of a first object within a second object |
US9456877B2 (en) | 2006-12-01 | 2016-10-04 | Boston Scientific Scimed, Inc. | Direct drive instruments and methods of use |
US8814779B2 (en) | 2006-12-21 | 2014-08-26 | Intuitive Surgical Operations, Inc. | Stereoscopic endoscope |
DE102006061178A1 (de) * | 2006-12-22 | 2008-06-26 | Siemens Ag | System zur Durchführung und Überwachung minimal-invasiver Eingriffe |
EP2143038A4 (en) | 2007-02-20 | 2011-01-26 | Philip L Gildenberg | VIDEOSTEREREOTAXY- AND AUDIOSTEREOTAXY-ASSISTED SURGICAL PROCEDURES AND METHODS |
JP4891823B2 (ja) * | 2007-03-29 | 2012-03-07 | オリンパスメディカルシステムズ株式会社 | 内視鏡装置 |
JP5030639B2 (ja) | 2007-03-29 | 2012-09-19 | オリンパスメディカルシステムズ株式会社 | 内視鏡装置の処置具位置制御装置 |
JP5543331B2 (ja) | 2007-04-16 | 2014-07-09 | ニューロアーム サージカル リミテッド | マニピュレータのツールの一軸に沿った移動を非機械的に制限および/またはプログラミングする方法、装置、およびシステム |
WO2009044287A2 (en) | 2007-04-16 | 2009-04-09 | The Governors Of The University Of Calgary | Methods, devices, and systems for automated movements involving medical robots |
EP2148629B1 (en) | 2007-04-16 | 2012-06-06 | NeuroArm Surgical, Ltd. | Frame mapping and force feedback methods, devices and systems |
US8931682B2 (en) * | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US9138129B2 (en) | 2007-06-13 | 2015-09-22 | Intuitive Surgical Operations, Inc. | Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide |
US9089256B2 (en) | 2008-06-27 | 2015-07-28 | Intuitive Surgical Operations, Inc. | Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide |
US8620473B2 (en) | 2007-06-13 | 2013-12-31 | Intuitive Surgical Operations, Inc. | Medical robotic system with coupled control modes |
US8903546B2 (en) * | 2009-08-15 | 2014-12-02 | Intuitive Surgical Operations, Inc. | Smooth control of an articulated instrument across areas with different work space conditions |
US9084623B2 (en) * | 2009-08-15 | 2015-07-21 | Intuitive Surgical Operations, Inc. | Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide |
US9469034B2 (en) | 2007-06-13 | 2016-10-18 | Intuitive Surgical Operations, Inc. | Method and system for switching modes of a robotic system |
JP2009006410A (ja) | 2007-06-26 | 2009-01-15 | Fuji Electric Systems Co Ltd | 遠隔操作支援装置および遠隔操作支援プログラム |
DE102007029884A1 (de) | 2007-06-28 | 2009-01-15 | Siemens Ag | Verfahren und Einrichtung zum Erzeugen eines aus einer Mehrzahl von endoskopischen Einzelbildern zusammengesetztes Gesamtbildes von einer Innenoberfläche eines Körperhohlraums |
JP2009012106A (ja) | 2007-07-03 | 2009-01-22 | Fuji Electric Systems Co Ltd | 遠隔操作支援装置および遠隔操作支援プログラム |
JP2009039814A (ja) | 2007-08-08 | 2009-02-26 | Toyota Motor Corp | パワーアシスト装置及びその制御方法 |
WO2009046234A2 (en) | 2007-10-05 | 2009-04-09 | Ethicon Endo-Surgery, Inc | Ergonomic surgical instruments |
US9037295B2 (en) | 2008-03-07 | 2015-05-19 | Perception Raisonnement Action En Medecine | Dynamic physical constraint for hard surface emulation |
GB0804633D0 (en) | 2008-03-12 | 2008-04-16 | Prosurgics Ltd | a telescopic support |
US8808164B2 (en) | 2008-03-28 | 2014-08-19 | Intuitive Surgical Operations, Inc. | Controlling a robotic surgical tool with a display monitor |
US8155479B2 (en) * | 2008-03-28 | 2012-04-10 | Intuitive Surgical Operations Inc. | Automated panning and digital zooming for robotic surgical systems |
US20090259105A1 (en) | 2008-04-10 | 2009-10-15 | Miyano Hiromichi | Medical treatment system and suturing method |
JP5384178B2 (ja) | 2008-04-21 | 2014-01-08 | 株式会社森精機製作所 | 加工シミュレーション方法及び加工シミュレーション装置 |
US8315738B2 (en) | 2008-05-21 | 2012-11-20 | Fanuc Robotics America, Inc. | Multi-arm robot system interference check via three dimensional automatic zones |
EP2138366B1 (en) | 2008-06-26 | 2013-03-20 | Kawasaki Jukogyo Kabushiki Kaisha | Slip suppression control system for vehicle |
US8414469B2 (en) | 2008-06-27 | 2013-04-09 | Intuitive Surgical Operations, Inc. | Medical robotic system having entry guide controller with instrument tip velocity limiting |
US9179832B2 (en) | 2008-06-27 | 2015-11-10 | Intuitive Surgical Operations, Inc. | Medical robotic system with image referenced camera control using partitionable orientational and translational modes |
US8864652B2 (en) | 2008-06-27 | 2014-10-21 | Intuitive Surgical Operations, Inc. | Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the positioning and orienting of its tip |
WO2010030397A1 (en) * | 2008-09-12 | 2010-03-18 | Accuray Incorporated | Controlling x-ray imaging based on target motion |
US8315720B2 (en) | 2008-09-26 | 2012-11-20 | Intuitive Surgical Operations, Inc. | Method for graphically providing continuous change of state directions to a user of a medical robotic system |
US8126642B2 (en) * | 2008-10-24 | 2012-02-28 | Gray & Company, Inc. | Control and systems for autonomously driven vehicles |
US20100331856A1 (en) | 2008-12-12 | 2010-12-30 | Hansen Medical Inc. | Multiple flexible and steerable elongate instruments for minimally invasive operations |
WO2010069430A1 (de) | 2008-12-17 | 2010-06-24 | Kuka Roboter Gmbh | Verfahren zum abfahren einer vorgegebenen bahn durch einen manipulator, sowie steuervorrichtung zur durchführung eines solchen verfahrens |
US8335590B2 (en) | 2008-12-23 | 2012-12-18 | Intuitive Surgical Operations, Inc. | System and method for adjusting an image capturing device attribute using an unused degree-of-freedom of a master control device |
US8594841B2 (en) | 2008-12-31 | 2013-11-26 | Intuitive Surgical Operations, Inc. | Visual force feedback in a minimally invasive surgical procedure |
US8306656B1 (en) | 2009-01-12 | 2012-11-06 | Titan Medical Inc. | Method and system for performing medical procedure |
US8120301B2 (en) * | 2009-03-09 | 2012-02-21 | Intuitive Surgical Operations, Inc. | Ergonomic surgeon control console in robotic surgical systems |
US8423182B2 (en) | 2009-03-09 | 2013-04-16 | Intuitive Surgical Operations, Inc. | Adaptable integrated energy control system for electrosurgical tools in robotic surgical systems |
US8337397B2 (en) | 2009-03-26 | 2012-12-25 | Intuitive Surgical Operations, Inc. | Method and system for providing visual guidance to an operator for steering a tip of an endoscopic device toward one or more landmarks in a patient |
JP2011013294A (ja) | 2009-06-30 | 2011-01-20 | Toshiba Corp | 情報処理装置および輝度制御方法 |
US8918211B2 (en) | 2010-02-12 | 2014-12-23 | Intuitive Surgical Operations, Inc. | Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument |
US9492927B2 (en) | 2009-08-15 | 2016-11-15 | Intuitive Surgical Operations, Inc. | Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose |
US8244402B2 (en) * | 2009-09-22 | 2012-08-14 | GM Global Technology Operations LLC | Visual perception system and method for a humanoid robot |
EP2533678B1 (en) * | 2010-02-11 | 2020-03-25 | Intuitive Surgical Operations, Inc. | System for automatically maintaining an operator selected roll orientation at a distal tip of a robotic endoscope |
US8589814B2 (en) | 2010-04-16 | 2013-11-19 | Honeywell International Inc. | System and method for visual presentation of information in a process control system |
JP5782515B2 (ja) | 2010-08-02 | 2015-09-24 | ザ・ジョンズ・ホプキンス・ユニバーシティ | ロボットの協働制御および音声フィードバックを用いて力覚センサ情報を提示する方法 |
CN103607971B (zh) | 2011-07-07 | 2016-08-31 | 奥林巴斯株式会社 | 医疗主从操作器 |
US9387048B2 (en) | 2011-10-14 | 2016-07-12 | Intuitive Surgical Operations, Inc. | Catheter sensor systems |
KR20130080909A (ko) | 2012-01-06 | 2013-07-16 | 삼성전자주식회사 | 수술 로봇 및 그 제어 방법 |
US8891924B2 (en) | 2012-04-26 | 2014-11-18 | Bio-Medical Engineering (HK) Limited | Magnetic-anchored robotic system |
KR101800189B1 (ko) | 2012-04-30 | 2017-11-23 | 삼성전자주식회사 | 수술 로봇의 힘 제어 장치 및 방법 |
US10507066B2 (en) | 2013-02-15 | 2019-12-17 | Intuitive Surgical Operations, Inc. | Providing information of tools by filtering image areas adjacent to or on displayed images of the tools |
KR102115447B1 (ko) | 2013-03-27 | 2020-05-27 | 한양대학교 에리카산학협력단 | 내시경 장치 |
US9949798B2 (en) | 2016-01-06 | 2018-04-24 | Ethicon Endo-Surgery, Llc | Methods, systems, and devices for controlling movement of a robotic surgical system |
WO2019126863A1 (en) | 2017-12-28 | 2019-07-04 | Orbsurgical Ltd. | Iviicrosurgery-specific haptic hand controller |
-
2009
- 2009-03-31 US US12/415,354 patent/US9789608B2/en active Active
-
2010
- 2010-03-26 WO PCT/US2010/028897 patent/WO2010117685A2/en active Application Filing
- 2010-03-26 CN CN201080023529.5A patent/CN102448680B/zh active Active
- 2010-03-26 EP EP10717330.4A patent/EP2414137B1/en active Active
- 2010-03-26 EP EP17175195.1A patent/EP3246135A1/en not_active Withdrawn
- 2010-03-26 KR KR1020117025321A patent/KR101705921B1/ko active IP Right Grant
- 2010-03-26 EP EP21158299.4A patent/EP3842190A1/en active Pending
- 2010-03-26 JP JP2012503535A patent/JP5840121B2/ja active Active
- 2010-03-26 EP EP19201566.7A patent/EP3613547B1/en active Active
- 2010-03-26 EP EP18173423.7A patent/EP3385039B1/en active Active
-
2014
- 2014-02-28 JP JP2014038429A patent/JP2014097431A/ja active Pending
-
2015
- 2015-10-14 JP JP2015202607A patent/JP2016052521A/ja active Pending
- 2015-12-11 JP JP2015242062A patent/JP6576002B2/ja active Active
- 2015-12-11 JP JP2015242064A patent/JP6058111B2/ja active Active
- 2015-12-11 JP JP2015242063A patent/JP2016064155A/ja active Pending
-
2017
- 2017-05-16 JP JP2017097171A patent/JP2017176848A/ja not_active Withdrawn
- 2017-06-21 US US15/629,533 patent/US10137575B2/en active Active
-
2018
- 2018-10-16 US US16/161,204 patent/US10737394B2/en active Active
-
2019
- 2019-07-03 JP JP2019124321A patent/JP2019202158A/ja not_active Withdrawn
-
2020
- 2020-07-17 US US16/932,373 patent/US11638999B2/en active Active
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10582840B2 (en) | 2015-05-14 | 2020-03-10 | Olympus Corporation | Endoscope apparatus |
US10537398B2 (en) | 2015-05-29 | 2020-01-21 | Olympus Corporation | Medical manipulator system |
CN107249500A (zh) * | 2015-05-29 | 2017-10-13 | 奥林巴斯株式会社 | 医疗用机械手系统 |
JPWO2016194539A1 (ja) * | 2015-05-29 | 2017-07-06 | オリンパス株式会社 | 医療用マニピュレータシステム |
US10959787B2 (en) | 2016-01-14 | 2021-03-30 | Olympus Corporation | Medical manipulator system |
CN108463184B (zh) * | 2016-01-19 | 2021-08-13 | 提坦医疗公司 | 用于机器人外科手术系统的图形用户界面 |
JP2019500945A (ja) * | 2016-01-19 | 2019-01-17 | タイタン メディカル インコーポレイテッドTitan Medical Inc. | ロボット手術システムのためのグラフィカルユーザインタフェース |
JP2020062521A (ja) * | 2016-01-19 | 2020-04-23 | タイタン メディカル インコーポレイテッドTitan Medical Inc. | ロボット手術システムのためのグラフィカルユーザインタフェース |
KR20180104047A (ko) * | 2016-01-19 | 2018-09-19 | 타이탄 메디칼 아이엔씨. | 로봇 수술 시스템용 그래픽 사용자 인터페이스 |
KR102258511B1 (ko) | 2016-01-19 | 2021-05-31 | 타이탄 메디칼 아이엔씨. | 로봇 수술 시스템용 그래픽 사용자 인터페이스 |
KR20210064404A (ko) * | 2016-01-19 | 2021-06-02 | 타이탄 메디칼 아이엔씨. | 로봇 수술 시스템용 그래픽 사용자 인터페이스 |
CN108463184A (zh) * | 2016-01-19 | 2018-08-28 | 提坦医疗公司 | 用于机器人外科手术系统的图形用户界面 |
US11504191B2 (en) | 2016-01-19 | 2022-11-22 | Titan Medical Inc. | Graphical user interface for a robotic surgical system |
KR102518492B1 (ko) | 2016-01-19 | 2023-04-05 | 타이탄 메디칼 아이엔씨. | 로봇 수술 시스템용 그래픽 사용자 인터페이스 |
JP2020536754A (ja) * | 2017-10-10 | 2020-12-17 | オーリス ヘルス インコーポレイテッド | 手術ロボットアームに対する不適切な力の検出 |
JP7139421B2 (ja) | 2017-10-10 | 2022-09-20 | オーリス ヘルス インコーポレイテッド | 手術ロボットアームに対する不適切な力の検出 |
US11796410B2 (en) | 2017-10-10 | 2023-10-24 | Auris Health, Inc. | Robotic manipulator force determination |
JP2022502187A (ja) * | 2018-10-03 | 2022-01-11 | シーエムアール サージカル リミテッドCmr Surgical Limited | 外科手術ロボットシステムのユーザに支援を提供するための方法およびシステム |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6058111B2 (ja) | 手術ロボットの合成表現 | |
US20200331147A1 (en) | Tool position and identification indicator displayed in a boundary area of a computer display screen | |
US9801690B2 (en) | Synthetic representation of a surgical instrument | |
US8374723B2 (en) | Obtaining force information in a minimally invasive surgical procedure | |
US8594841B2 (en) | Visual force feedback in a minimally invasive surgical procedure | |
JP2018508301A (ja) | 遠隔操作医療システムにおける器具の画面上での識別のためのシステム及び方法 | |
JP2018508300A (ja) | 遠隔操作医療システムにおける器具の画面上での識別をレンダリングするためのシステム及び方法 | |
US20230249354A1 (en) | Synthetic representation of a surgical robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140228 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141204 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20141231 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150618 |