WO2017126101A1 - 医療用マニピュレータシステム - Google Patents

医療用マニピュレータシステム Download PDF

Info

Publication number
WO2017126101A1
WO2017126101A1 PCT/JP2016/051833 JP2016051833W WO2017126101A1 WO 2017126101 A1 WO2017126101 A1 WO 2017126101A1 JP 2016051833 W JP2016051833 W JP 2016051833W WO 2017126101 A1 WO2017126101 A1 WO 2017126101A1
Authority
WO
WIPO (PCT)
Prior art keywords
manipulator
mode
unit
control unit
obstacle
Prior art date
Application number
PCT/JP2016/051833
Other languages
English (en)
French (fr)
Inventor
満彰 長谷川
卓未 磯田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2016/051833 priority Critical patent/WO2017126101A1/ja
Priority to JP2017513569A priority patent/JP6157786B1/ja
Priority to CN201680019275.7A priority patent/CN107427328B/zh
Priority to EP16886342.1A priority patent/EP3406221A4/en
Publication of WO2017126101A1 publication Critical patent/WO2017126101A1/ja
Priority to US15/785,496 priority patent/US20180036090A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/74Manipulators with manual electric input means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2059Mechanical position encoders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • A61B2090/065Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring contact or contact pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension
    • A61B2090/066Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension for measuring torque
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation

Definitions

  • the present invention relates to a medical manipulator system.
  • Patent Document 1 has a plurality of arms to which a surgical tool can be attached, and the arms are moved so that the surgical tool is swung around an incision position for introducing the surgical tool into the body (remote center).
  • a medical manipulator system that can be used is disclosed.
  • the medical manipulator system disclosed in Patent Literature 1 can move the arm automatically or manually while maintaining the position of the remote center.
  • an operator of the medical manipulator system may temporarily suspend the treatment in order to manually eliminate the interference between the arms.
  • the manipulator described in Patent Document 1 cannot recognize obstacles (operator, assistant, patient, other medical equipment, etc.) located around the manipulator, the arm is automatically moved to avoid arm interference.
  • the arm When the arm is operated, the arm may collide with the obstacle when there is an obstacle on the movement path of the arm.
  • the present invention has been made in view of the above-described circumstances, and provides a medical manipulator system capable of quickly avoiding interference between arms even when there is an obstacle on a movement path for avoiding interference between arms.
  • the purpose is to do.
  • One aspect of the present invention includes a first manipulator having a joint group, a first operation unit that issues a command for operating the first manipulator, and one operation mode among a plurality of operation modes that receives the command.
  • the control unit for controlling the first manipulator according to the operation, the contact detection unit for detecting that the first manipulator and the obstacle are in contact, and the first manipulator can operate independently or in cooperation.
  • a second manipulator wherein the joint group includes one or more joints belonging to the first group and one or more joints belonging to the second group, and the plurality of operation modes are the first operation mode.
  • the first manipulator moves so that the first manipulator moves along a second movement path in which the first manipulator is moved using the first mode and the joint belonging to the first group and the joint belonging to the second group.
  • a third mode for operating the first manipulator so as to eliminate the contact when the contact detection unit detects contact between the first manipulator and the obstacle.
  • the control unit interferes with the second manipulator when the first manipulator and the second manipulator are moved along the first movement path, the position recognition unit recognizing the positions of the first manipulator and the second manipulator.
  • An interference prediction unit that predicts whether or not the first manipulator does not interfere with the second manipulator between the first mode and the second mode so that the first mode and the second manipulator interfere with the second manipulator, and the interference prediction unit predicts the second mode when predicted.
  • the contact detection unit detects contact between the first manipulator and the obstacle while the control unit is operating in the first mode or the second mode
  • a mode selection unit that selects one mode from a plurality of operation modes so as to shift from one mode or the second mode to the third mode, and the control unit in the second mode
  • the medical manipulator system is characterized in that a path that bypasses the position of the two manipulators is set as the second movement path.
  • the joints included in the second group may include redundant joints that have a redundant relationship with the joints included in the first group.
  • the control unit as a control procedure of the first manipulator in the third mode, a command stop step for stopping the control of the first manipulator based on the command, and the first for eliminating contact with the obstacle.
  • a movement amount calculating step for calculating a movement amount of one manipulator; a movement step for moving the first manipulator by the movement amount calculated in the movement amount calculation step; and the first mode and the second mode.
  • a return step for returning to the mode before the transition to the third mode, and controlling the first manipulator along the control procedure.
  • the first manipulator further includes a second operation unit that can operate the first manipulator and is different from the first operation unit, and the control unit is configured to control the first manipulator in the third mode.
  • a command stop step for stopping the control of the first manipulator based on the command, and a permission step for permitting the operation of the first manipulator by the second operation unit, wherein the first manipulator is controlled according to the control procedure. You may control.
  • the second operation unit includes an end detection unit that detects the end of an operation by the second operation unit, and the control unit includes the end detection unit as a control procedure of the first manipulator in the third mode.
  • a return step of returning to the mode before the transition to the third mode when the end of the operation by the second operation unit is detected may be further controlled, and the first manipulator may be controlled according to the control procedure.
  • FIG. 1 is a schematic diagram showing the medical manipulator system of the present embodiment.
  • FIG. 2 is a schematic diagram showing the first manipulator of the medical manipulator system.
  • FIG. 3 is a block diagram showing a main part of the medical manipulator system.
  • a medical manipulator system 1 of the present embodiment shown in FIG. 1 is a master-slave manipulator system.
  • the medical manipulator system 1 includes a plurality of slave manipulators (first manipulator 10, second manipulator 20, third manipulator 30, and fourth manipulator 40), an operating table 50, an operation unit 60, an input processing circuit 70, The image processing circuit 80, the display unit 90, and the control unit 100 are included.
  • the plurality of slave manipulators 10, 20, 30, and 40 are installed in the vicinity of the operating table 50 on which the patient P is placed.
  • the slave manipulators 10, 20, 30, 40 may be installed on the operating table 50.
  • the configuration of the first manipulator 10 will be described in detail. Since the 2nd manipulator 20, the 3rd manipulator 30, and the 4th manipulator 40 have the same composition as the 1st manipulator 10, detailed explanation is omitted.
  • the first manipulator 10 has an arm 11 and an adapter 18 for attaching a surgical instrument 19.
  • the heel arm 11 includes a link group 12, a joint group 13, a torque sensor 14, an actuator 15, and an encoder 16.
  • the link group 12 has a plurality of links 12a, 12b, 12c, 12d, 12e, and 12f.
  • the plurality of links 12 a, 12 b, 12 c, 12 d, 12 e, and 12 f can be moved by the joints described later included in the joint group 13 with the rotation axes unique to these joints as the center of rotation.
  • An adapter 18 for attaching the surgical instrument 19 is arranged on the link 12f located on the most distal side among the plurality of links 12a, 12b, 12c, 12d, 12e, and 12f.
  • the joint group 13 has joints 13A1, 13A2, 13A3 belonging to the first group (ordinary joint 13A) and joints 13B1, 13B2, 13B3 belonging to the second group (redundant joint 13B).
  • the joints 13A1, 13A2, and 13A3 included in the regular joint 13A serve as at least one drive shaft of, for example, yaw, pitch, and roll. used.
  • the number of joints included in the regular joint 13 ⁇ / b> A may be appropriately selected in consideration of the degree of freedom necessary for the first manipulator 10.
  • the joints 13B1, 13B2, and 13B3 included in the redundant joint 13B have a redundant relationship with the above-described regular joints (joints 13A1, 13A2, and 13A3), respectively.
  • the redundant joint 13 ⁇ / b> B gives the first manipulator 10 more redundant degrees of freedom than the regular joint 13 ⁇ / b> A gives to the first manipulator 10.
  • redundant joints 13B are assigned to all joints belonging to the regular joint 13A.
  • the torque sensor 14 is a sensor that detects the magnitude of torque applied to each joint constituting the joint group 13.
  • the torque sensor 14 is connected to the control unit 100.
  • Actuator 15 operates joint group 13.
  • the actuator 15 can operate only the joints included in the regular joint 13A or operate both the regular joint 13A and the redundant joint 13B according to control by the control unit 100.
  • Encoder 16 detects the amount of movement of joint group 13.
  • the encoder 16 is connected to the control unit 100. Thereby, the control part 100 can recognize the operation amount of the joint group 13.
  • the surgical instrument 19 attached to the first manipulator 10 includes an end effector 19a at the distal end of the elongated shaft 19b.
  • the end effector 19a of the surgical instrument 19 is operated by a drive unit (not shown) provided in the adapter 18 in response to an operation on the operation unit 60 (see FIG. 1).
  • the surgical tools 29, 39, and 49 attached to the other slave manipulators 20, 30, and 40 may have the same configuration as the surgical tool 19 described above.
  • the second manipulator 20, the third manipulator 30, and the fourth manipulator 40 shown in FIG. 1 also have arms 21, 31, 41 and adapters 28, 38, 48, respectively, as in the first manipulator 10. And surgical tools 29, 39, 49 can be connected via adapters 28, 38, 48.
  • an operation for operating the plurality of slave manipulators 10, 20, 30, 40 and the surgical tools 19, 29, 39, 49 is input to the operation unit 60.
  • the operation unit 60 includes a master arm 61 configured to be operated by an operator holding it in his / her hand.
  • the operation amount of the master arm 61 is detected by the input processing circuit 70.
  • the input processing circuit 70 analyzes the operation signal from the operation unit 60, generates a control signal (command) for controlling the medical manipulator system 1 according to the analysis result of the operation signal, and inputs the control signal (command) to the control unit 100.
  • the image processing circuit 80 performs various kinds of image processing for displaying the image signal input from the control unit 100 to generate image data for display on the display unit 90.
  • the display unit 90 is configured by, for example, a liquid crystal display, and displays an image based on the image data generated in the image processing circuit 80 in accordance with an image signal acquired through the observation instrument.
  • the control unit 100 shown in FIGS. 1 and 3 is a computer configured with, for example, a CPU and a memory.
  • the control unit 100 stores a predetermined program for controlling the plurality of slave manipulators 10, 20, 30, and 40, and in accordance with a control signal (command) from the input processing circuit 70, the plurality of slave manipulators 10, The operations of 20, 30, 40 and the surgical tools 19, 29, 39, 49 are controlled.
  • the control unit 100 controls the plurality of slave manipulators 10, 20, 30, and 40 according to one operation mode among the plurality of operation modes. Below, paying attention to the relationship between the first manipulator 10 and the second manipulator 20, a plurality of operation modes used when the control unit 100 operates the first manipulator 10 will be described.
  • the plurality of operation modes for the control unit 100 to operate the first manipulator 10 include a first mode, a second mode, and a third mode.
  • the first mode is a mode in which the first manipulator 10 is operated using only joints belonging to the regular joint 13A shown in FIG.
  • the control unit 100 (see FIG. 1) can move the first manipulator 10 using only the joints belonging to the regular joint 13A based on the operation of the operator with respect to the operation unit 60 (the first mode). 1 movement path) is set, and the first manipulator 10 is controlled so that the first manipulator 10 moves along the first movement path.
  • the shortest path to the target position of the first manipulator 10 defined by the command generated based on the operation in the operation unit 60 (the path that minimizes the movement amount of the joint group 13 as a whole) is the first. If it is adopted as a candidate for one movement path and interference described later is not predicted, the first movement path is determined as the movement path of the first manipulator 10.
  • the second mode is a mode in which the first manipulator 10 is operated using a joint belonging to the regular joint 13A and a joint belonging to the redundant joint 13B shown in FIG.
  • the control unit 100 uses the joints belonging to the regular joint 13A and the joints belonging to the redundant joint 13B to move the first manipulator 10 based on the operation of the operator with respect to the operation unit 60.
  • a path that can be moved (second movement path) is set, and the first manipulator 10 is controlled so that the first manipulator 10 moves along the second movement path.
  • the selection of the second movement path in the second mode is restricted according to the position of the second manipulator 20. That is, the route set as the second movement route is set to a route that does not include the position of the second manipulator 20.
  • the second movement route is set as a route that bypasses the position of the second manipulator 20.
  • the setting of the second movement path in the second mode is performed so that the first manipulator 10 can move without contacting the second manipulator 20 in consideration of the shape of the arm 21 of the second manipulator 20.
  • the third mode is a mode in which the first manipulator 10 is operated so as to eliminate contact with the obstacle when the torque sensor 14 (see FIGS. 2 and 3) detects contact between the first manipulator 10 and the obstacle. is there.
  • the control unit 100 moves the first manipulator 10 in the direction in which the first manipulator 10 is separated from the obstacle.
  • the control unit 100 includes a position recognition unit 101, a redundant control utilization determination unit 102, a return operation determination unit 105, a mode selection unit 107, and a drive signal generation unit 108.
  • the program stored in the control unit 100 functions as the position recognition unit 101, the redundant control utilization determination unit 102, the return operation determination unit 105, the mode selection unit 107, and the drive signal generation unit 108. Including a program for
  • the position recognition unit 101 recognizes the positions of the first manipulator 10 and the second manipulator 20.
  • the positions of the first manipulator 10 and the second manipulator 20 are stored in the control unit 100 as coordinates in a coordinate system based on a predetermined origin in the medical manipulator system 1.
  • the position recognition unit 101 of this embodiment may recognize the postures of the first manipulator 10 and the second manipulator 20 in addition to the positions of the first manipulator 10 and the second manipulator 20.
  • the redundant control utilization determination unit 102 includes an interference prediction unit 103 and an interference avoidance operation setting unit 104.
  • the redundancy control utilization determination unit 102 determines whether or not it is necessary to shift to the second mode. Further, when it is determined that the redundant control utilization determination unit 102 shifts to the second mode, the redundant control utilization determination unit 102 hands over to the mode selection unit 107 information specifying the movement route (second movement route) of the first manipulator 10 in the second mode.
  • the interference prediction unit 103 predicts whether or not the first manipulator 10 and the second manipulator 20 interfere when the first manipulator 10 is moved along the first movement path.
  • the interference prediction unit 103 predicts that the first manipulator 10 and the second manipulator 20 can interfere when the second manipulator 20 is located on the first movement path.
  • the interference prediction unit 103 predicts that the first manipulator 10 and the second manipulator 20 do not interfere with each other.
  • the interference prediction unit 103 considers the shape of the arm 21 of the second manipulator 20 and sets a predetermined region including coordinates indicating the position of the second manipulator 20 as the first manipulator 10 and the second manipulator 10. It is recognized as an area where the manipulator 20 can interfere. Then, the interference prediction unit 103 predicts that the first manipulator 10 and the second manipulator 20 can interfere when at least a part of this region is located on the first movement path.
  • the interference avoidance operation setting unit 104 is configured to bypass the position of the second manipulator 20 on the movement path between the start point and the end point of the first manipulator based on the command input from the operation unit 60 to the control unit 100. Calculate and set as the movement path (second movement path) of the first manipulator.
  • the return operation determination unit 105 refers to the magnitude of the load in the torque sensor 14 to detect whether or not the first manipulator 10 has touched an obstacle and determines whether or not it is necessary to shift to the third mode. Further, the return operation determination unit 105 includes a return operation setting unit 106 that sets the operation amount of the first manipulator 10 in the third mode.
  • the mode selection unit 107 selects one mode from a plurality of operation modes (first mode, second mode, and third mode) for operating the control unit 100, and the control unit 100 according to the selected mode.
  • the mode selection unit 107 of the present embodiment selects the first mode when the interference prediction unit 103 predicts that the first manipulator 10 does not interfere with the second manipulator 20. Further, when the interference predicting unit 103 predicts that the first manipulator 10 interferes with the second manipulator 20, the redundancy control utilization determining unit 102 determines that the transition to the second mode is necessary, so that the mode selecting unit 107 selects the second mode.
  • the return operation determination unit 105 is set in the first mode.
  • the mode selection unit 107 selects the third mode.
  • FIG. 4 is a flowchart showing a control procedure in the control unit 100 of the medical manipulator system 1 of the present embodiment.
  • the control unit 100 shown in FIG. 3 first interrupts the control of the first manipulator 10 in the first mode and the second mode (step S1, command stop step, see FIG. 4).
  • the mode selection unit 107 stores a command output from the input processing circuit 70 based on an operation on the operation unit 60 to the control unit 100 in a buffer (primary storage) (not shown) of the control unit 100.
  • the control part 100 stops control of the 1st manipulator 10 based on instruction
  • the command stored in the buffer of the control unit 100 is read out when returning from the third mode to the operation mode before the transition (first mode or second mode), and the control unit for operating the first manipulator 10 It will continue to be used as a command to 100.
  • step S1 the return operation setting unit 106 of the control unit 100 calculates the movement amount of the first manipulator 10 for eliminating the contact with the obstacle (step S2, movement amount calculation step). At this time, for example, the control unit 100 calculates the movement amount of the first manipulator 10 so that the first manipulator 10 moves toward the side opposite to the direction in which the first manipulator 10 contacts the obstacle.
  • step S2 the control unit 100 outputs a drive signal from the drive signal generation unit 108 to the first manipulator 10 based on the movement amount calculated in step S2, thereby moving the first manipulator 10 by the above movement amount.
  • Move step S3, move step).
  • control unit 100 After step S3, the control unit 100 returns to the mode before the transition to the third mode among the first mode and the second mode (step S4, return step). At this time, the control unit 100 sets the movement target position of the first manipulator 10 by reading the command stored in the buffer, and moves the first manipulator 10 to move the first manipulator 10 to the movement target position. Control.
  • the control unit 100 controls the operation of the slave manipulator 10 and the like to be operated by the operation unit 60 based on the command. At this time, the control unit 100 outputs a drive signal to the corresponding slave manipulator 10 and the like, and according to the detection signal input from the torque sensor 14 and the encoder 16 according to the operation of the corresponding slave manipulator 10 and the like, The slave manipulator 10 to be operated can be operated while detecting the drive amount and load of the slave manipulator 10 to be operated.
  • FIG. 5 is a flowchart showing a flow of operation using the medical manipulator system 1 of the present embodiment.
  • the control unit 100 shown in FIG. 3 controls the first manipulator 10 according to the operation mode selected by the mode selection unit 107.
  • the initial operation mode in the mode selection unit 107 is the first mode (see step S11, FIG. 5). If the control unit 100 starts to operate in the first mode in step S11, the process proceeds to step S12.
  • Step S12 is a step in which the mode selection unit 107 refers to the prediction result in the interference prediction unit 103 and branches the process according to the prediction result.
  • the second manipulator 20 (see FIG. 2) is positioned on the route (first movement route) set in the first mode (that is, the first manipulator 10 and the second manipulator 20 interfere with each other). If it is determined that it is predicted to be obtained), the process proceeds to step S13. If it is determined in step S12 that the second manipulator 20 is located outside the path (first movement path) set in the first mode, the process returns to step S11 and the first mode is continued.
  • Step S13 is a step in which the mode selection unit 107 selects the second mode and causes the control unit 100 to operate in the second mode.
  • the first manipulator 10 can move without interfering with the second manipulator 20 by moving the first manipulator 10 along the second movement path in consideration of the position of the second manipulator 20. If the control unit 100 starts operating in the second mode in step S13, the process proceeds to step S14.
  • Step S14 is a step in which the return operation determination unit 105 refers to the magnitude of the load detected by the torque sensor 14 shown in FIG. 3 and branches the process according to the magnitude of the load.
  • step S14 when the magnitude of the load detected by the torque sensor 14 exceeds a predetermined threshold, it is determined that the first manipulator 10 has contacted an obstacle that the medical manipulator system 1 does not recognize, and the process proceeds to step S15. .
  • step S14 when the magnitude of the load detected by the torque sensor 14 is equal to or less than a predetermined threshold value, it is determined that the first manipulator 10 is not in contact with an obstacle, and the process returns to step S12.
  • Step S15 is a step in which the mode selection unit 107 selects the third mode and causes the control unit 100 to operate in the third mode.
  • the control unit 100 moves the first manipulator 10 in a direction to cancel the contact between the first manipulator 10 and the obstacle.
  • step S15 the first manipulator 10 is moved based on the operation amount set by the return operation setting unit 106, and the process returns to step S14. Even if the operation amount of the first manipulator 10 is insufficient and the contact with the obstacle is not eliminated by repeating Step S14 and Step S15, the first manipulator 10 moves until the contact with the obstacle is eliminated. After the contact with the obstacle is resolved, the process returns to step S12. In the repeated operation of step S14 and step S15, not only the operation amount set by the return operation setting unit 106, but also a first minute amount in the direction to cancel the contact between the first manipulator 10 and the obstacle. The manipulator 10 may be moved.
  • the control unit 100 changes between the first mode, the second mode, and the third mode, and according to any one of the operation modes.
  • the first manipulator 10 is controlled.
  • the first mode may be directly shifted to the third mode (return mode). In that case, when the contact between the first manipulator 10 and the obstacle is eliminated, the mode returns to the first mode.
  • the control of the first manipulator 10 by the control unit 100 shown in FIG. 1 is performed in consideration of the positions of the third manipulator 30 and the fourth manipulator 40 in addition to the position of the second manipulator 20. Further, when the second manipulator 20 is a control target, the second manipulator 20 is controlled by the control unit 100 in consideration of the positions of the first manipulator 10, the third manipulator 30, and the fourth manipulator 40. The same applies to the case where the third manipulator 30 and the fourth manipulator 40 are controlled by the control unit 100.
  • the four slave manipulators are controlled by the control unit 100 so as to avoid mutual interference based on the positions of each other, and the contact is automatically made when contacting an obstacle. It is controlled by the control unit 100 so as to be resolved.
  • 6 to 8 are diagrams for explaining the operation of the medical manipulator system 1 of the present embodiment.
  • the medical manipulator system 1 of the present embodiment is used in a state where the surgical tools 19 and 29 are attached to the first manipulator 10 and the second manipulator 20.
  • an endoscope may be combined with the medical manipulator system 1 of the present embodiment.
  • the operation of the endoscope may be controlled by the control unit 100.
  • the endoscope combined with the medical manipulator system 1 of the present embodiment performs treatment using surgical tools (first surgical tool 19 and second surgical tool 29) attached to the first manipulator 10 and the second manipulator 20. A part of the body to be performed is imaged, and an endoscopic image is displayed on the display unit 90 (see FIG. 1).
  • a treatment is performed on the treatment target site while moving the surgical tools 19 and 29 using the first manipulator 10 and the second manipulator 20.
  • the operator performs an operation for moving the first surgical tool 19 on the operation unit 60.
  • the operator who operates the operation unit 60 grasps the position and posture of the end effector 19a at the distal end of the first surgical instrument 19 by looking at the endoscope image displayed on the display unit 90.
  • the position of the arm 11 of the manipulator 10 may not be grasped.
  • the operation on the operation unit 60 is performed without considering the possibility that a part of the arm 11 of the first manipulator 10 interferes with the second manipulator 20.
  • control unit 100 when the control unit 100 accepts a command generated based on an operation in the operation unit 60, the control unit 100 uses only the regular joint 13A (see FIG. 2) based on the command. A first movement route for moving 10 is calculated. Further, as shown in steps S11 to S15, the control unit 100 predicts the presence or absence of interference between the first manipulator 10 and the second manipulator 20, and performs the first mode or the second mode in the first mode. The manipulator 10 is controlled.
  • the first manipulator 10 is moved so as to be in the position and posture according to the command using only the regular joint 13A shown in FIG.
  • the end effector 19a of the first surgical instrument 19 has a position and posture corresponding to the operation on the operation unit 60 (see, for example, FIG. 7).
  • the position and posture of the first surgical instrument 19 after the movement of the end effector 19a at this time may be, for example, a pivoted operation with the insertion point of the first surgical instrument 19 as the remote center, It may have been rotated and moved.
  • the first manipulator 10 moves so as to bypass the position of the second manipulator 20 using the redundant joint 13B in addition to the regular joint 13A shown in FIG.
  • the end effector 19a of the first surgical instrument 19 has a position and posture corresponding to the operation on the operation unit 60 (see FIG. 1).
  • the operation on the operation unit 60 is the same as the operation in the first mode
  • the posture of the arm 11 of the first manipulator 10 after the movement is different from that in the first mode.
  • the position and posture of the end effector 19a of the tool 19 can be made substantially the same as in the first mode.
  • the first manipulator 10 and the second manipulator 20 do not interfere with each other in the first mode or the second mode, and the first surgical tool 19 is in contact with the operation unit 60.
  • the position and posture correspond to the operation.
  • the 1st manipulator 10 contacts the obstacle X (refer to Drawing 8) which the medical manipulator system 1 of this embodiment has not recognized.
  • the first manipulator 10 contacts the abdominal wall (obstacle X) of the patient P.
  • the position of the patient P in the space where the medical manipulator system 1 of the present embodiment is installed, the position of a medical device (not shown) other than the medical manipulator system 1, or the operation of the medical manipulator system 1 of the present embodiment is assisted.
  • the position of the assistant may change during the operation, and it is difficult to grasp all these positions in real time.
  • the medical manipulator system 1 of the present embodiment is a torque sensor 14 (see FIG. 3) that is a contact detection unit when the first manipulator 10 is in contact with an object other than an object that the medical manipulator system 1 recognizes in advance. Detects the presence of the object, and the control unit 100 recognizes the object as an obstacle. When the first manipulator 10 comes into contact with the obstacle, the control unit 100 shifts from the first mode or the second mode to the third mode in accordance with the selection by the mode selection unit 107, and comes into contact with the obstacle. The first manipulator 10 is operated so as to eliminate the above.
  • the control unit 100 moves the first manipulator 10 so that the first manipulator 10 is separated from the obstacle (see steps S1 to S4 shown in FIG. 4).
  • the mode is changed from the third mode to the mode before the transition (first mode or second mode). It can return automatically.
  • the first manipulator 10 when returning from the third mode to the first mode, the first manipulator 10 is moved along the shortest path based on an operation on the operation unit 60 shown in FIG. 1 using only the service joint 13A (see FIG. 2). Control is performed.
  • the second joint 13A and the redundant joint 13B are used to determine the second mode based on the operation on the operation unit 60 shown in FIG. Control is performed to move the first manipulator 10 along a path that takes into account the position of the manipulator 20.
  • the first manipulator 10 does not interfere with the second manipulator 20 regardless of which of the first mode and the second mode is selected.
  • One surgical tool 19 can be in a desired position and posture.
  • the medical manipulator system 1 of the present embodiment even if the first manipulator 10 contacts an obstacle when the first manipulator 10 is moved, the contact between the first manipulator 10 and the obstacle is automatically resolved.
  • the first surgical tool 19 can be in a desired position and posture.
  • the medical manipulator system 1 of the present embodiment even if there is an obstacle on the movement path for avoiding the interference between the arm 11 of the first manipulator 10 and the arm 21 of the second manipulator 20, interference occurs. It can be avoided quickly.
  • the operator who operates the operation unit 60 does not consider the presence of the arms 11 and 21 and their movement and interference, and the end effector 19a displayed on the display unit 90 is displayed. It is possible to focus on performing an appropriate treatment on the treatment target site by operating the.
  • FIG. 9 is a schematic diagram showing a first manipulator in the present modification.
  • the torque sensor 14 disclosed by 1st Embodiment, and has the contact sensor 17 as shown in FIG.
  • the contact sensor 17 is disposed on the outer surface of the arm 11 of the first manipulator 10.
  • the contact sensor 17 is connected to the control unit 100.
  • the control unit 100 When an object that is not recognized at the start of use of the medical manipulator system 1 contacts the contact sensor 17, the object is recognized as an obstacle by the contact sensor 17 and the control unit 100.
  • the first manipulator 10 can be operated so as to eliminate the contact between the obstacle and the first manipulator 10 as in the first embodiment. .
  • the contact between the first manipulator 10 and the obstacle can be detected by the torque sensor 14 even in the region of the arm 11 of the first manipulator 10 where the contact sensor 17 is not attached, and the contact sensor 17 is attached. In the region, contact with an obstacle can be detected without applying torque by the actuator 15 of the first manipulator 10.
  • FIG. 10 is a schematic diagram of the medical manipulator system of the present embodiment.
  • FIG. 11 is a diagram for explaining the operation of the medical manipulator system of the present embodiment.
  • the medical manipulator system 2 of the present embodiment differs from the first embodiment in the operation of the control unit 100 in the third mode.
  • the second manipulator 20 moves in addition to the first manipulator 10 in the third mode. That is, the second manipulator 20 can operate independently of the first manipulator 10 or in cooperation with the first manipulator 10 under the control of the control unit 100.
  • the first manipulator 10 when the first manipulator 10 is moving in the direction away from the obstacle X in the third mode as shown in FIG. 10, the direction in which the second manipulator 20 is separated from the first manipulator 10 as shown in FIG. The second manipulator 20 moves.
  • the first manipulator 10 and the second manipulator 20 when the contact between the first manipulator 10 and the obstacle is eliminated in the third mode, the first manipulator 10 and the second manipulator 20 are in the positions separated from each other. The probability that the first manipulator 10 interferes with the second manipulator 20 by the movement of the manipulator 10 can be reduced.
  • control unit 100 may analyze a command by an operation performed by the operator on the operation unit 60, and the second manipulator 20 may be retracted outside the movement path of the first manipulator 10 after the end of the third mode. . In this case, after shifting from the second mode to the third mode, the mode returns to the first mode without returning to the second mode.
  • the second manipulator 20 cooperates with the first manipulator 10
  • the options of the movement path of the first manipulator 10 are expanded, so that another interference occurs due to the movement of the arm 11 to avoid interference. Such a possibility can be suppressed low.
  • FIG. 12 is a block diagram showing a main part of the medical manipulator system of the present embodiment.
  • 13 and 14 are diagrams for explaining the operation of the medical manipulator system of the present embodiment.
  • the medical manipulator system 3 is configured such that when the first manipulator 10 comes into contact with an object that is not recognized at the start of use of the medical manipulator system 3,
  • the configuration is different from that of the first embodiment in that it has a storage unit 109 that recognizes it as an obstacle and stores the position.
  • the control unit 100 of the medical manipulator system 3 according to the present embodiment uses the coordinates of the obstacle stored in the storage unit 109 as the entry prohibition position of the first manipulator 10.
  • the first manipulator 10 when the coordinates that are the entry prohibition positions of the first manipulator 10 are not stored in the storage unit 109, the first manipulator 10 is configured so that the maximum movable range of the surgical instrument 19 by the arm 11 (for example, FIG. It can be moved in the whole area (shown as A1).
  • the range of motion of the first manipulator 10 is limited to the range A2 up to the position where the first manipulator 10 contacts the obstacle X in the maximum movable range A1 of the surgical instrument 19 by the arm 11.
  • the entry prohibition position of the first manipulator 10 is set, and the movable range of the first manipulator 10 continues to be limited after the entry prohibition position is set.
  • the control unit 100 In the state where the entry prohibition position of the first manipulator 10 is set, the control unit 100 (see FIG. 12) of the present embodiment performs the first movement so as to bypass the entry prohibition position as control according to the first mode. Set the route. If the entry prohibition position cannot be circumvented by using only the regular joint 13A (see FIG. 2) (the first movement route cannot be set), the mode is shifted to the second mode. Further, in the state where the entry prohibition position of the first manipulator 10 is set, the control unit 100 of the present embodiment bypasses the entry prohibition position and the position of the second manipulator 20 as control according to the second mode. To set the second movement route.
  • the storage of the coordinates of the entry prohibition position in the storage unit 109 is held until the use of the medical manipulator system 3 is completed. Further, if necessary, the first manipulator 10 may be allowed to enter again at the position where the entry is prohibited by deleting the coordinates of any entry prohibited position. For example, when the position of the assistant who is near the first manipulator 10 when the medical manipulator system 3 is used is stored as the entry prohibition position, the coordinates are deleted from the storage unit after the assistant moves from the position. Thus, the limitation on the movable range of the first manipulator 10 can be eliminated.
  • the medical manipulator system 3 of the present embodiment has the same effects as those of the first embodiment. Moreover, in this embodiment, since the obstacle recognized after the use start time of the medical manipulator system 3 does not contact after that, useless operation
  • the control unit 100 allows the first manipulator 10 to pass through the entry prohibition position only when a movement route that does not include the entry prohibition position cannot be set.
  • FIG. 15 is a block diagram showing a main part of the medical manipulator system of the present embodiment.
  • FIG. 16 is a flowchart showing a flow of operation using the medical manipulator system of the present embodiment.
  • the medical manipulator system 4 (see FIG. 15) of the present embodiment differs from the medical manipulator system 1 disclosed in the first embodiment in the content of the third mode.
  • the first manipulator 10 (see FIG. 2) is not automatically operated, but an assistant can operate the first manipulator 10 by manual operation near the first manipulator 10. This is the direct drive mode.
  • the arm 11 and the torque sensor 14 of the first manipulator 10 become a second operation unit 62 that can operate the first manipulator 10 by a method different from the operation unit 60. Yes.
  • the return operation determination unit 105 of the control unit 100 includes a direct drive utilization determination unit 112 that determines whether or not an operation using the second operation unit 62 is possible instead of the return operation setting unit 106. .
  • control unit 100 of the present embodiment in a state where the third mode is selected first stops the control of the first manipulator 10 based on the command by storing the command in the buffer as in the first embodiment. (Command stop step).
  • the direct drive utilization determination unit 112 of the control unit 100 releases the brake of the joint group 13 of the first manipulator 10 and performs an operation following the first manipulator 10 when there is an input to the torque sensor 14 of the arm 11. Allow to let. That is, in the third mode of the present embodiment, an operation on the torque sensor 14 is that an assistant pushes and pulls or rotates the arm 11 of the first manipulator 10. The operation on the torque sensor 14 is a command for moving the arm 11 by the actuator 15 in the direction in which the arm 11 is pushed and pulled by the assistant.
  • the control part 100 permits operation of the first manipulator by the second operation part 62 by releasing the brake of the joint group 13 and controlling the copying operation of the first manipulator 10 (permission step). .
  • the control unit 100 may restrain the insertion point (remote center RC, see FIG. 2) of the first surgical tool 19 or a joint group that connects the link group 12 of the arm 11 as necessary. Some joints of 13 may be restrained, or all the joints may be freely movable.
  • a timer 110 that counts no input time with respect to the torque sensor 14 is provided in the control unit 100.
  • the control unit 100 determines that the operation of moving the first manipulator 10 by the assistant is completed after a lapse of a certain time after the input to the torque sensor 14 is lost. That is, the torque sensor 14 and the timer 110 constitute an end detection unit 111 that detects the end of the operation by the second operation unit 62.
  • control unit 100 ends the third mode and returns to the first mode or the second mode (return step).
  • the control unit 100 operates in the first mode by shifting to the first mode (see step S21, FIG. 16). Subsequently, the redundant control utilization determination unit 102 predicts the occurrence of interference between the first manipulator 10 and the second manipulator 20 (step S22). When it is predicted that no interference occurs in step S22, the first mode is continued (step S23), and it is determined whether or not the procedure is completed (step S24). In step S24, if the procedure is in progress, the process returns to step S21 to continue the first mode, and if the procedure is completed, the series of steps ends.
  • step S22 If it is predicted that interference may occur in step S22, the process shifts from the first mode to the second mode (step S25). After shifting to the second mode in step S25, the first manipulator 10 is controlled by the control unit 100 so as to avoid interference with the second manipulator 20.
  • step S25 it is detected whether or not the first manipulator 10 has touched the obstacle (step S26).
  • step S ⁇ b> 26 when contact between the first manipulator 10 and the obstacle is not detected, the process proceeds to step S ⁇ b> 27 and the second mode is continued, and the first manipulator 10 is avoided while avoiding interference with the second manipulator 20. It is determined whether or not the target position has been reached and interference avoidance has been completed (step S28). If interference avoidance is not completed in step S28, the process returns to step S26, and if interference avoidance is completed in step S28, the process returns to step S21.
  • step S26 when contact between the first manipulator 10 and the obstacle is detected, the process proceeds to step S29, and the second mode is shifted to the third mode.
  • the third mode in this embodiment is that the assistant moves the arm 11 directly rather than using the operation unit 60 in that the arm 11 of the first manipulator 10 is moved directly and separated from the obstacle by manual operation. It is a mode that can.
  • the end detection unit 111 While the assistant is manually operating the arm 11 in step S29, the end detection unit 111 continues to determine whether or not the manual operation has ended (step S30). In the present embodiment, the end detection unit 111 determines that the manual operation is completed when the moving operation on the arm 11 is not performed for a certain period of time. When the end detection unit 111 determines that the manual operation has been completed, the process returns to step S21 to start the operation in the first mode.
  • the assistant Since the arm 11 can be moved at discretion, it is easy to eliminate contact between the obstacle and the first manipulator 10.
  • FIG. 17 is a schematic diagram showing a first manipulator in the present modification.
  • the first manipulator 10 has an indicator 120 that indicates how each joint is controlled.
  • the first manipulator 10 is “constrained (does not move)”, “operates according to an operation by the first operation unit”, and “automatically controlled to avoid interference with other manipulators” 3
  • Each joint of the joint group 13 has lamps 121 to 126 showing the states in different colors as indicators.
  • the lamps 121 to 126 arranged at the respective joints of the joint group 13 allow the assistant to easily grasp the current state of the joints by the colors of the lamps 121 to 126. Thereby, in this modification, an assistant can grasp in advance which joint can move now, and the assistant can easily retreat so that the arm 11 and the assistant do not contact.
  • the indicator 120 may also be provided in other manipulators 20, 30, 40 (see FIG. 1).
  • Modification 2 of the fourth embodiment will be described.
  • the first manipulator 10 has a navigator 130 that indicates in which direction it is preferable for the assistant to move the arm 11 in the third mode.
  • the control unit (not shown) controls the navigator 130 based on the positional relationship among the first manipulator 10, the second manipulator, and the obstacle.
  • control unit moves the first manipulator 10 so as to move the first manipulator 10 approximately between the obstacle and the second manipulator based on the position of the obstacle and the position of the second manipulator.
  • a signal indicating the recommended moving direction is output to the navigator 130.
  • the navigator 130 includes, for example, an arrow-shaped lamp, a liquid crystal monitor, and the like, and displays the recommended moving direction of the first manipulator 10 by, for example, an arrow.
  • the navigator 130 assists in moving the first manipulator 10 between the obstacle and the second manipulator to the position farthest from the obstacle and the second manipulator, so that the assistant displays on the navigator 130. It is only necessary to move the first manipulator 10 as described, and the operation can be simplified.
  • the present invention can be used for a manipulator system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Robotics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

医療用マニピュレータシステムの制御部(100)は、第一マニピュレータ及び第二マニピュレータの位置を認識する位置認識部(101)と、第一移動経路に沿って第一マニピュレータを移動させた場合に第二マニピュレータに干渉するか否かを予測する干渉予測部(103)と、第一マニピュレータが第二マニピュレータに干渉しないと干渉予測部(103)が予測した場合には第一モード、第一マニピュレータが第二マニピュレータに干渉すると干渉予測部(103)が予測した場合には第二モードとなるように第一モードと第二モードとのいずれか一方を選択し、第一モード又は第二モードで制御部(100)が動作している間にトルクセンサ(14)が第一マニピュレータと障害物との接触を検知した場合に第一モード又は第二モードから第三モードへ移行するように複数の動作モードから1つのモードを選択するモード選択部(107)と、を有する。

Description

医療用マニピュレータシステム
 本発明は、医療用マニピュレータシステムに関する。
 従来、複数のアームを動作させることにより外科手術を行う医療用マニピュレータシステムが知られている。たとえば特許文献1には、術具を装着可能な複数のアームを有し、術具を体内に導入するための切開位置を中心(遠隔中心)として術具を揺動させるようにアームを移動させることができる医療用マニピュレータシステムが開示されている。
 特許文献1に開示された医療用マニピュレータシステムは、遠隔中心の位置を維持しながらアームを自動又は手動で移動させることができる。
米国特許出願公開第2013/325031号公報
 医療用マニピュレータシステムの複数のアーム同士が干渉した場合には、医療用マニピュレータシステムの操作者等がアーム同士の干渉を手動で解消させるために処置を一時中断させることがある。アーム同士の干渉による処置の中断を起こりにくくするために、アーム同士の干渉を予測して干渉を回避するようにアームを自動的に動作させることが考えられる。しかしながら、特許文献1に記載のマニピュレータでは、マニピュレータの周辺に位置する障害物(術者、助手、患者、他の医療機器等)を認識できないので、アームの干渉を回避するようにアームを自動的に動作させると、アームの移動経路に障害物があった場合にアームが障害物に衝突する可能性がある。
 本発明は、上述した事情に鑑みてなされたものであって、アーム同士の干渉を回避するための移動経路に障害物があってもアーム同士の干渉を迅速に回避できる医療用マニピュレータシステムを提供することを目的とする。
 本発明の一態様は、関節群を有する第一マニピュレータと、前記第一マニピュレータを操作するための指令を発する第一操作部と、前記指令を受け付けて複数の動作モードのうちの1つの動作モードに応じて前記第一マニピュレータを制御する制御部と、前記第一マニピュレータと障害物とが接触したことを検知する接触検知部と、前記第一マニピュレータとは独立して又は協働して動作可能な第二マニピュレータと、を備え、前記関節群は、第一グループに属する1以上の関節と、第二グループに属する1以上の関節と、を有し、前記複数の動作モードは、前記第一グループに属する関節のみを用いて前記第一マニピュレータを動作させる第一移動経路に沿って前記第一マニピュレータが移動するように前記第一マニピュレータを制御する第一モードと、前記第一グループに属する関節及び前記第二グループに属する関節を用いて前記第一マニピュレータを移動させる第二移動経路に沿って前記第一マニピュレータが移動するように前記第一マニピュレータを制御する第二モードと、前記接触検知部が前記第一マニピュレータと前記障害物との接触を検知したときに前記接触を解消するように前記第一マニピュレータを動作させる第三モードと、を含み、前記制御部は、前記第一マニピュレータ及び前記第二マニピュレータの位置を認識する位置認識部と、前記第一移動経路に沿って前記第一マニピュレータを移動させた場合に前記第二マニピュレータに干渉するか否かを予測する干渉予測部と、前記第一マニピュレータが前記第二マニピュレータに干渉しないと前記干渉予測部が予測した場合には第一モード、前記第一マニピュレータが前記第二マニピュレータに干渉すると前記干渉予測部が予測した場合には第二モードとなるように前記第一モードと前記第二モードとのいずれか一方を選択し、前記第一モード又は前記第二モードで前記制御部が動作している間に前記接触検知部が前記第一マニピュレータと前記障害物との接触を検知した場合に前記第一モード又は前記第二モードから前記第三モードへ移行するように複数の動作モードから1つのモードを選択するモード選択部と、を有し、前記制御部は、前記第二モードにおいて、前記第二マニピュレータの位置を迂回する経路を前記第二移動経路として設定することを特徴とする医療用マニピュレータシステムである。
 前記第二グループに含まれる関節は前記第一グループに含まれる関節と冗長関係にある冗長関節を含んでいてもよい。
 前記制御部は、前記第三モードにおける前記第一マニピュレータの制御手順として、前記指令に基づく前記第一マニピュレータの制御を停止する指令停止ステップと、前記障害物との接触を解消するための前記第一マニピュレータの移動量を算出する移動量算出ステップと、前記移動量算出ステップにおいて算出された移動量だけ前記第一マニピュレータを移動させる移動ステップと、前記第一モードと前記第二モードとのうち前記第三モードへの移行前のモードに復帰する復帰ステップと、を含み、前記制御手順に沿って前記第一マニピュレータを制御してもよい。
 前記第一マニピュレータは、前記第一マニピュレータを操作可能であり前記第一操作部とは異なる第二操作部をさらに有し、前記制御部は、前記第三モードにおける前記第一マニピュレータの制御手順として、前記指令に基づく前記第一マニピュレータの制御を停止する指令停止ステップと、前記第二操作部による前記第一マニピュレータの操作を許可する許可ステップと、を含み、前記制御手順に従って前記第一マニピュレータを制御してもよい。
 前記第二操作部は、前記第二操作部による操作の終了を検知する終了検知部を有し、前記制御部は、前記第三モードにおける前記第一マニピュレータの制御手順として、前記終了検知部が前記第二操作部による操作の終了を検知した場合に前記第三モードへの移行前のモードに復帰する復帰ステップをさらに有し、前記制御手順に従って前記第一マニピュレータを制御してもよい。
 本発明によれば、アーム同士の干渉を回避するための移動経路に障害物があってもアーム同士の干渉を迅速に回避できる医療用マニピュレータシステムを提供することができる。
本発明の第1実施形態の医療用マニピュレータシステムを示す模式図である。 同医療用マニピュレータシステムの第一マニピュレータを示す模式図である。 同医療用マニピュレータシステムの要部を示すブロック図である。 同医療用マニピュレータシステムの制御部における制御手順を示すフローチャートである。 同医療用マニピュレータシステムを使用した操作の流れを示すフローチャートである。 同医療用マニピュレータシステムの作用を説明するための図である。 同医療用マニピュレータシステムの作用を説明するための図である。 同医療用マニピュレータシステムの作用を説明するための図である。 同実施形態の医療用マニピュレータシステムの変形例における第一マニピュレータを示す模式図である。 本発明の第2実施形態の医療用マニピュレータシステムの模式図である。 同医療用マニピュレータシステムの作用を説明するための図である。 本発明の第3実施形態の医療用マニピュレータシステムの要部を示すブロック図である。 同医療用マニピュレータシステムの作用を説明するための図である。 同医療用マニピュレータシステムの作用を説明するための図である。 本発明の第4実施形態の医療用マニピュレータシステムの要部を示すブロック図である。 同医療用マニピュレータシステムを使用した操作の流れを示すフローチャートである。 同実施形態の医療用マニピュレータシステムの変形例における第一マニピュレータを示す模式図である。
(第1実施形態)
 本発明の第1実施形態について説明する。図1は、本実施形態の医療用マニピュレータシステムを示す模式図である。図2は、医療用マニピュレータシステムの第一マニピュレータを示す模式図である。図3は、医療用マニピュレータシステムの要部を示すブロック図である。
 図1に示す本実施形態の医療用マニピュレータシステム1は、マスタースレーブ方式のマニピュレータシステムである。医療用マニピュレータシステム1は、複数のスレーブマニピュレータ(第一マニピュレータ10、第二マニピュレータ20、第三マニピュレータ30、第四マニピュレータ40)と、手術台50と、操作部60と、入力処理回路70と、画像処理回路80と、表示部90と、制御部100と、を有している。
 複数のスレーブマニピュレータ10,20,30,40は、患者Pが載置される手術台50の近傍に設置される。なお、スレーブマニピュレータ10,20,30,40を手術台50に設置するようにしてもよい。
 以下では、第一マニピュレータ10の構成について詳述する。第二マニピュレータ20、第三マニピュレータ30、第四マニピュレータ40は、第一マニピュレータ10と同様の構成を有しているので、詳細な説明は省略する。
 図2に示すように、第一マニピュレータ10は、アーム11と、術具19を取り付けるためのアダプタ18とを有している。
  アーム11は、リンク群12と、関節群13と、トルクセンサ14と、アクチュエータ15と、エンコーダ16を有している。
 リンク群12は、複数のリンク12a,12b,12c,12d,12e,12fを有している。複数のリンク12a,12b,12c,12d,12e,12fは、関節群13に含まれる後述する各関節によって、これらの関節に固有の回動軸を回動の中心として移動可能である。複数のリンク12a,12b,12c,12d,12e,12fのうち最も遠位側に位置するリンク12fには、術具19を取り付けるためのアダプタ18が配されている。
 関節群13は、第一グループ(常用関節13A)に属する関節13A1,13A2,13A3と、第二グループ(冗長関節13B)に属する関節13B1,13B2,13B3とを有している。
 第一マニピュレータ10の関節群13のうち、常用関節13Aに含まれる関節13A1,13A2,13A3は、例えばヨー、ピッチ、ロールの少なくとも1つの駆動軸となり、第一マニピュレータ10の動作時において優先的に使用される。常用関節13Aに含まれる関節の数は、第一マニピュレータ10に必要な自由度を考慮して適宜選択されてよい。
 第一マニピュレータ10の関節群13のうち、冗長関節13Bに含まれる関節13B1,13B2,13B3は、それぞれ、上記の常用関節(関節13A1,13A2,13A3)に対して冗長関係を有している。冗長関節13Bは、常用関節13Aが第一マニピュレータ10に与える自由度より多くの冗長自由度を第一マニピュレータ10に与える。本実施形態では、常用関節13Aに属するすべての関節に対して冗長関節13Bが割り当てられている。
 トルクセンサ14は、関節群13を構成する各関節にかかるトルクの大きさを検知するセンサである。トルクセンサ14は、制御部100に接続されている。
 アクチュエータ15は、関節群13を動作させる。アクチュエータ15は、制御部100による制御に従って、常用関節13Aに含まれる関節のみを動作させたり、常用関節13A及び冗長関節13Bをともに動作させたりすることができる。
 エンコーダ16は、関節群13の動作量を検知する。エンコーダ16は、制御部100に接続されている。これにより、関節群13の動作量を制御部100が認識可能である。
 第一マニピュレータ10に取り付けられる術具19は、細長のシャフト19bの遠位端にエンドエフェクタ19aを備えている。術具19のエンドエフェクタ19aは、アダプタ18に設けられた不図示の駆動部によって、操作部60(図1参照)における操作に対応して動作する。他のスレーブマニピュレータ20,30,40に取り付けられる術具29,39,49も上記の術具19と同様の構成であってよい。
 詳細は省略するが、図1に示す第二マニピュレータ20,第三マニピュレータ30,及び第四マニピュレータ40も、第一マニピュレータ10と同様に、アーム21,31,41及びアダプタ28,38,48をそれぞれ有し、アダプタ28,38,48を介して術具29,39,49を接続可能である。
 図1に示すように、操作部60は、複数のスレーブマニピュレータ10,20,30,40及び術具19,29,39,49を動作させるための操作が入力される。操作部60は、操作者が手に持って操作するように構成されたマスターアーム61を有する。マスターアーム61の操作量は入力処理回路70において検出される。
 入力処理回路70は、操作部60からの操作信号を解析し、操作信号の解析結果に従って本医療用マニピュレータシステム1を制御するための制御信号(指令)を生成して制御部100に入力する。
 画像処理回路80は、制御部100から入力された画像信号を表示させるための各種の画像処理を施して、表示部90における表示用の画像データを生成する。
 表示部90は、例えば液晶ディスプレイで構成され、観察器具を介して取得された画像信号に従って画像処理回路80において生成された画像データに基づく画像を表示する。
 図1及び図3に示す制御部100は、例えばCPUやメモリ等を有して構成されたコンピュータである。制御部100は、複数のスレーブマニピュレータ10,20,30,40の制御を行うための所定のプログラムを記憶しており、入力処理回路70からの制御信号(指令)に従って、複数のスレーブマニピュレータ10,20,30,40及び術具19,29,39,49の動作を制御する。
 制御部100は、複数の動作モードのうちの1つの動作モードに応じて複数のスレーブマニピュレータ10,20,30,40を制御する。以下では、第一マニピュレータ10と第二マニピュレータ20との関係に注目して、制御部100が第一マニピュレータ10を動作させる場合に使用される複数の動作モードについて説明する。
 制御部100が第一マニピュレータ10を動作させるための複数の動作モードは、第一モード,第二モード,及び第三モードを含む。
 第一モードは、図2に示す常用関節13Aに属する関節のみを用いて第一マニピュレータ10を動作させるモードである。第一モードにおいて、制御部100(図1参照)は、操作部60に対する操作者の操作に基づいて、常用関節13Aに属する関節のみを用いて第一マニピュレータ10を移動させることができる経路(第一移動経路)を設定し、第一移動経路に沿って第一マニピュレータ10が移動するように第一マニピュレータ10を制御する。本実施形態では、操作部60における操作に基づいて生成される指令によって規定される第一マニピュレータ10の到達目標位置までの最短経路(関節群13の動作量が全体として最小となる経路)が第一移動経路の候補として採用され、後述する干渉が予測されなければ第一移動経路が第一マニピュレータ10の移動経路として決定される。
 第二モードは、図2に示す常用関節13Aに属する関節及び冗長関節13Bに属する関節を用いて第一マニピュレータ10を動作させるモードである。第二モードにおいて、制御部100(図1参照)は、操作部60に対する操作者の操作に基づいて、常用関節13Aに属する関節及び冗長関節13Bに属する関節の両方を用いて第一マニピュレータ10を移動させることができる経路(第二移動経路)を設定し、第二移動経路に沿って第一マニピュレータ10が移動するように第一マニピュレータ10を制御する。第二モードにおける第二移動経路の選択は、第二マニピュレータ20の位置に応じた制限を受ける。すなわち、第二移動経路として設定される経路は、第二マニピュレータ20の位置を含まない経路に設定される。これにより、第二移動経路は、第二マニピュレータ20の位置を迂回する経路として設定される。なお、第二モードにおける第二移動経路の設定は、第二マニピュレータ20のアーム21の形状も考慮して、第二マニピュレータ20に第一マニピュレータ10が接触せずに移動できるように行われる。
 第三モードは、トルクセンサ14(図2,3参照)が第一マニピュレータ10と障害物との接触を検知したときに障害物との接触を解消するように第一マニピュレータ10を動作させるモードである。本実施形態では、第三モードにおいて、制御部100は、障害物から第一マニピュレータ10が離間する方向に第一マニピュレータ10を移動させる。
 次に、制御部100の構成について説明する。図3に示すように、制御部100は、位置認識部101と、冗長制御活用判定部102と、復帰動作判定部105と、モード選択部107と、駆動信号生成部108とを有している。本実施形態では、制御部100に記憶されたプログラムは、位置認識部101、冗長制御活用判定部102、復帰動作判定部105、モード選択部107、及び駆動信号生成部108として制御部100を機能させるためのプログラムを含む。
 位置認識部101は、第一マニピュレータ10及び第二マニピュレータ20の位置を認識する。第一マニピュレータ10及び第二マニピュレータ20の位置は、医療用マニピュレータシステム1における所定の原点を基準とした座標系における座標として制御部100に記憶される。本実施形態の位置認識部101は、第一マニピュレータ10及び第二マニピュレータ20の位置に加えて、第一マニピュレータ10及び第二マニピュレータ20の姿勢を認識してもよい。
 冗長制御活用判定部102は、干渉予測部103と、干渉回避動作設定部104とを有している。冗長制御活用判定部102は、第二モードへの移行の要否を判定する。さらに、冗長制御活用判定部102は、第二モードへ移行すると判定したときに、第二モードにおける第一マニピュレータ10の移動経路(第二移動経路)を特定する情報をモード選択部107に引き渡す。
 干渉予測部103は、上記の第一移動経路に沿って第一マニピュレータ10を移動させた場合に第一マニピュレータ10と第二マニピュレータ20とが干渉するか否かを予測する。干渉予測部103は、第一移動経路上に第二マニピュレータ20が位置している場合には、第一マニピュレータ10と第二マニピュレータ20とが干渉し得ると予測する。干渉予測部103は、第一移動経路外に第二マニピュレータ20が位置している場合には、第一マニピュレータ10と第二マニピュレータ20とが干渉しないと予測する。たとえば、本実施形態では、干渉予測部103は、第二マニピュレータ20のアーム21の形状を考慮して、第二マニピュレータ20の位置を示す座標を含む所定の領域を、第一マニピュレータ10と第二マニピュレータ20とが干渉し得る領域として認識する。そして、干渉予測部103は、この領域の少なくとも一部が第一移動経路上に位置している場合に、第一マニピュレータ10と第二マニピュレータ20とが干渉し得ると予測する。
 干渉回避動作設定部104は、操作部60から制御部100へ入力された指令に基づいた第一マニピュレータの始点と終点との間の移動経路を、第二マニピュレータ20の位置を迂回する条件下で算出し、第一マニピュレータの移動経路(第二移動経路)として設定する。
 復帰動作判定部105は、トルクセンサ14における負荷の大きさを参照して、第一マニピュレータ10が障害物に接触したか否かを検知し、第三モードへの移行の要否を判定する。また、復帰動作判定部105は、第三モードにおける第一マニピュレータ10の動作量を設定する復帰動作設定部106を有している。
 モード選択部107は、制御部100を動作させるための複数の動作モード(第一モード,第二モード,及び第三モード)から1つのモードを選択し、選択されたモードに応じて制御部100を動作させる。本実施形態のモード選択部107は、第一マニピュレータ10が第二マニピュレータ20に干渉しないと干渉予測部103が予測した場合には第一モードを選択する。また、第一マニピュレータ10が第二マニピュレータ20に干渉すると干渉予測部103が予測した場合には、冗長制御活用判定部102が第二モードへの移行が必要であると判定するので、モード選択部107は、第二モードを選択する。さらに、第一モード又は第二モードで制御部100が動作している間にトルクセンサ14が第一マニピュレータ10と障害物との接触を検知した場合には、復帰動作判定部105が第一モード又は第二モードから第三モードの移行が必要であると判定するので、モード選択部107は第三モードを選択する。
 本実施形態では、モード選択部107が第三モードを選択する場合には、制御部100は、以下の各ステップに示す制御手順で動作する。図4は、本実施形態の医療用マニピュレータシステム1の制御部100における制御手順を示すフローチャートである。
 図3に示す制御部100は、まず、第一モード及び第二モードによる第一マニピュレータ10の制御を中断する(ステップS1,指令停止ステップ,図4参照)。このとき、モード選択部107は、操作部60に対する操作に基づいた入力処理回路70から制御部100へ出力された指令を制御部100の不図示のバッファ(一次記憶)に保存する。これにより、制御部100は、指令に基づく第一マニピュレータ10の制御を停止する。制御部100のバッファに保存された指令は、第三モードから移行前の動作モード(第一モード又は第二モード)に復帰したときに読み出され、第一マニピュレータ10を動作させるための制御部100への指令として引き続き使用される。
 ステップS1の後、制御部100の復帰動作設定部106は、障害物との接触を解消するための第一マニピュレータ10の移動量を算出する(ステップS2,移動量算出ステップ)。このとき、制御部100は、例えば第一マニピュレータ10が障害物に接触した方向とは反対側へ向けて第一マニピュレータ10が移動するように第一マニピュレータ10の移動量を算出する。
 ステップS2の後、制御部100は、ステップS2で算出された移動量に基づいて駆動信号生成部108から第一マニピュレータ10へ駆動信号を出力することにより、上記の移動量だけ第一マニピュレータ10を移動させる(ステップS3,移動ステップ)。
 ステップS3の後、制御部100は、第一モードと第二モードとのうち、第三モードへの移行前のモードに復帰する(ステップS4,復帰ステップ)。このとき、制御部100は、上記のバッファに保存された指令を読み出すことで第一マニピュレータ10の移動目標位置を設定し、移動目標位置へ第一マニピュレータ10を移動させるように第一マニピュレータ10を制御する。
 制御部100は、指令に基づいて、操作部60の操作対象となるスレーブマニピュレータ10等の動作を制御する。この際、制御部100は、対応したスレーブマニピュレータ10等へ駆動信号を出力するとともに、対応したスレーブマニピュレータ10等の動作に応じてトルクセンサ14及びエンコーダ16から入力されてくる検出信号に応じて、操作対象のスレーブマニピュレータ10等の駆動量及び負荷を検知しながら操作対象のスレーブマニピュレータ10等を動作させることができる。
 制御部100による第一マニピュレータ10の制御について図1から図3並びに図5を参照して詳述する。図5は、本実施形態の医療用マニピュレータシステム1を使用した操作の流れを示すフローチャートである。
 図3に示す制御部100は、モード選択部107によって選択された動作モードに応じて第一マニピュレータ10を制御する。モード選択部107における初期の動作モードは第一モードである(ステップS11,図5参照)。ステップS11において制御部100を第一モードで動作開始させたらステップS12へ進む。
 ステップS12は、モード選択部107が干渉予測部103における予測結果を参照して、予測結果に応じて処理を分岐するステップである。ステップS12では、第一モードにおいて設定された経路(第一移動経路)上に第二マニピュレータ20(図2参照)が位置している(すなわち、第一マニピュレータ10と第二マニピュレータ20とが干渉し得ると予測される)と判定されたら、ステップS13へ進む。ステップS12において、第一モードにおいて設定された経路(第一移動経路)外に第二マニピュレータ20が位置していると判定されたら、ステップS11へ戻って第一モードが継続される。
 ステップS13は、モード選択部107が第二モードを選択して、制御部100を第二モードで動作させるステップである。第二モードでは、第二マニピュレータ20の位置を考慮した第二移動経路に沿って第一マニピュレータ10が移動することにより、第一マニピュレータ10が第二マニピュレータ20と干渉せずに移動可能である。ステップS13において制御部100を第二モードで動作開始させたらステップS14へ進む。
 ステップS14は、図3に示すトルクセンサ14が検知する負荷の大きさを復帰動作判定部105が参照して、負荷の大きさに応じて処理を分岐するステップである。ステップS14では、トルクセンサ14が検知する負荷の大きさが規定の閾値を超える場合に、医療用マニピュレータシステム1が認識していない障害物に第一マニピュレータ10が接触したと判定されステップS15へ進む。ステップS14では、トルクセンサ14が検知する負荷の大きさが規定の閾値以下の場合に、第一マニピュレータ10は障害物に接触していないと判定されステップS12へ戻る。
 ステップS15は、モード選択部107が第三モードを選択して、制御部100を第三モードで動作させるステップである。第三モードでは、第一マニピュレータ10と障害物との接触を解消する方向へ制御部100が第一マニピュレータ10を移動させる。ステップS15では、復帰動作設定部106によって設定された動作量に基づいて第一マニピュレータ10を移動させてステップS14へ戻る。
 ステップS14及びステップS15の繰り返しにより、第一マニピュレータ10の動作量が不足していて障害物との接触が解消しなかった場合にも、障害物との接触が解消するまで第一マニピュレータ10が移動し、障害物との接触が解消した後にステップS12へ戻る。なお、ステップS14とステップS15との繰り返し動作では、復帰動作設定部106によって設定された動作量に限らず、第一マニピュレータ10と障害物との接触を解消する方向へ所定の微小量だけ第一マニピュレータ10を移動させてもよい。
 上記のステップS11からステップS15までの各ステップにより、制御部100は、第一モード、第二モード、及び第三モードを遷移して、各動作モードのうちのいずれか1つの動作モードに応じて第一マニピュレータ10を制御する。
 なお、第一モードで移動中に第一マニピュレータ10と障害物との接触を検知した場合は第一モードから第三モード(復帰モード)に直接遷移してもよい。その場合は、第一マニピュレータ10と障害物との接触が解消すると第一モードに戻る。
 詳細は省略するが、図1に示す制御部100による第一マニピュレータ10の制御は、第二マニピュレータ20の位置に加えて、第三マニピュレータ30及び第四マニピュレータ40の位置も考慮して行われる。また、第二マニピュレータ20が制御対象である場合には、第一マニピュレータ10、第三マニピュレータ30、及び第四マニピュレータ40の位置を考慮して第二マニピュレータ20が制御部100により制御される。第三マニピュレータ30及び第四マニピュレータ40が制御部100の制御対象である場合にも同様である。すなわち、本実施形態では、4つのスレーブマニピュレータが、互いの位置に基づいて相互に干渉を回避するように制御部100により制御され、さらに、障害物に対して接触したときにその接触を自動的に解消するように制御部100により制御される。
 本実施形態の医療用マニピュレータシステム1の作用について説明する。図6から図8までは、本実施形態の医療用マニピュレータシステム1の作用を説明するための図である。
 本実施形態の医療用マニピュレータシステム1は、第一マニピュレータ10及び第二マニピュレータ20に術具19,29が取り付けられた状態で使用される。なお、必要に応じて、本実施形態の医療用マニピュレータシステム1に内視鏡が組み合わされてもよい。この場合、内視鏡は、制御部100によって動作制御されるようになっていてもよい。本実施形態の医療用マニピュレータシステム1に組み合わされる内視鏡は、第一マニピュレータ10及び第二マニピュレータ20に取り付けられた術具(第一術具19,第二術具29)を用いて処置を行う対象となる体内の部位を撮像し、内視鏡画像を表示部90(図1参照)に表示させる。
 図1及び図6に示す医療用マニピュレータシステム1の使用時には、第一マニピュレータ10及び第二マニピュレータ20を用いて各術具19,29を移動させながら処置対象部位に対して処置を行う。ここで、例えば第一マニピュレータ10に取り付けられた第一術具19を移動させるためには、操作者が、操作部60に対して、第一術具19を移動させるための操作を行う。操作部60を操作する操作者は、表示部90に表示された内視鏡画像を見て第一術具19の遠位端のエンドエフェクタ19aの位置及び姿勢を把握しているが、第一マニピュレータ10のアーム11の位置を把握していない場合がある。この場合、第一マニピュレータ10のアーム11の一部が第二マニピュレータ20に干渉する可能性を考慮しないで操作部60に対する操作が行われる。
 本実施形態では、操作部60における操作に基づいて生成された指令を制御部100が受け付けると、制御部100は、指令に基づいて、常用関節13A(図2参照)のみを用いて第一マニピュレータ10を移動させるための第一移動経路を算出する。さらに、上記のステップS11からステップS15までに示すように、制御部100は、第一マニピュレータ10と第二マニピュレータ20との干渉可能性の有無を予測し、第一モードあるいは第二モードで第一マニピュレータ10を制御する。
 第一モードでは、図2に示す常用関節13Aのみを用いて第一マニピュレータ10が指令に応じた位置及び姿勢となるように移動される。その結果、第一術具19のエンドエフェクタ19aは操作部60に対する操作に対応した位置及び姿勢(たとえば図7参照)となる。このときの第一術具19のエンドエフェクタ19aの移動後の位置及び姿勢は、例えば第一術具19の刺入点を遠隔中心とするピボット動作したものであってもよいし、平行移動や回転移動したものであってもよい。
 第二モードでは、図2に示す常用関節13Aに加えて冗長関節13Bも用いて、第二マニピュレータ20の位置を迂回するように第一マニピュレータ10が移動する。その結果、第一術具19のエンドエフェクタ19aは、操作部60(図1参照)に対する操作に対応した位置及び姿勢となる。第二モードでは、操作部60に対する操作が上記の第一モードにおける操作と同じであれば、移動後の第一マニピュレータ10のアーム11の姿勢は第一モードと異なるが、移動後の第一術具19のエンドエフェクタ19aの位置及び姿勢は第一モードと略同じにすることができる。
 このように、本実施形態では、第一モードであっても第二モードであっても、第一マニピュレータ10と第二マニピュレータ20との干渉は起こらず、第一術具19は操作部60に対する操作に対応した位置及び姿勢となる。
 ところで、第一モード及び第二モードでは、第一マニピュレータ10を移動させるので、本実施形態の医療用マニピュレータシステム1が認識していない障害物X(図8参照)に第一マニピュレータ10が接触する可能性が考えられる。たとえば、図8に示すように、第一マニピュレータ10が患者Pの腹壁(障害物X)に接触する可能性が考えられる。本実施形態の医療用マニピュレータシステム1が設置された空間における患者Pの位置、医療用マニピュレータシステム1以外の不図示の医療機器の位置、あるいは本実施形態の医療用マニピュレータシステム1の操作を補助する助手の位置などは、術中に変化する可能性があり、リアルタイムでこれらのすべての位置を把握することが困難である。
 本実施形態の医療用マニピュレータシステム1は、医療用マニピュレータシステム1があらかじめ認識している物体以外の物体に第一マニピュレータ10が接した場合に、接触検知部であるトルクセンサ14(図3参照)がその物体の存在を検知し、制御部100がその物体を障害物として認識する。そして、第一マニピュレータ10が障害物に接したときに、モード選択部107による選択に応じて制御部100が第一モードまたは第二モードから第三モードへと移行して、障害物との接触を解消するように第一マニピュレータ10を動作させる。
 第三モードでは、障害物から第一マニピュレータ10が離れるように制御部100が第一マニピュレータ10を移動させる(図4に示すステップS1からステップS4まで参照)。本実施形態の医療用マニピュレータシステム1では、トルクセンサ14が第一マニピュレータと障害物との接触を検知しなくなったら、第三モードから、移行前のモード(第一モード又は第二モード)へと自動的に復帰することができる。
 たとえば第三モードから第一モードへと復帰した場合には、常用関節13A(図2参照)のみを用いて、図1に示す操作部60に対する操作に基づいて第一マニピュレータ10を最短経路で移動させる制御が行われる。
 たとえば第三モードから第二モードへと復帰した場合には、常用関節13Aと冗長関節13Bとの両方(図2参照)を用いて、図1に示す操作部60に対する操作に基づいて、第二マニピュレータ20の位置を考慮した経路で第一マニピュレータ10を移動させる制御が行われる。
 以上に説明したように、本実施形態の医療用マニピュレータシステム1によれば、第一モードと第二モードとのどちらが選択されても、第一マニピュレータ10は第二マニピュレータ20と干渉することなく第一術具19を所望の位置及び姿勢とすることができる。さらに、本実施形態の医療用マニピュレータシステム1によれば、第一マニピュレータ10の移動時に第一マニピュレータ10が障害物に接触しても第一マニピュレータ10と障害物との接触を自動的に解消して第一術具19を所望の位置及び姿勢とすることができる。その結果、本実施形態の医療用マニピュレータシステム1によれば、第一マニピュレータ10のアーム11と第二マニピュレータ20のアーム21との干渉を回避するための移動経路に障害物があっても干渉を迅速に回避できる。このように干渉が自動的に回避されるので、操作部60を操作する操作者は、アーム11,21の存在やその移動及び干渉を考慮することなく、表示部90に表示されるエンドエフェクタ19aを操作して処置対象部位に対して適切な処置をすることに注力することができる。
(変形例)
 上記第1実施形態の変形例について説明する。図9は、本変形例における第一マニピュレータを示す模式図である。
 本変形例では、接触検知部として、第1実施形態に開示されたトルクセンサ14(図2参照)に代えて、図9に示すように接触センサ17を有している。
 接触センサ17は、第一マニピュレータ10のアーム11の外面に配されている。また、接触センサ17は制御部100に接続されている。医療用マニピュレータシステム1の使用開始時点で認識されていない物体が接触センサ17に接触することにより、接触センサ17及び制御部100によってこの物体は障害物と認識される。
 本変形例では、接触センサ17に障害物が接触した場合に、上記第1実施形態と同様に障害物と第一マニピュレータ10との接触を解消するように第一マニピュレータ10を動作させることができる。
 なお、本変形例の接触検知部としてトルクセンサ14と接触センサ17との両方を備えていてもよい。この場合、第一マニピュレータ10のアーム11のうち接触センサ17が取り付けられていない領域でも第一マニピュレータ10と障害物との接触をトルクセンサ14により検知することができ、接触センサ17が取り付けられた領域では、第一マニピュレータ10のアクチュエータ15によるトルクをかけずに障害物との接触を検知することができる。
(第2実施形態)
 本発明の第2実施形態について説明する。図10は、本実施形態の医療用マニピュレータシステムの模式図である。図11は、本実施形態の医療用マニピュレータシステムの作用を説明するための図である。
 本実施形態の医療用マニピュレータシステム2は、第三モードにおける制御部100の動作が上記の第1実施形態と異なっている。
 本実施形態の医療用マニピュレータシステム2は、第三モードにおいて、第一マニピュレータ10に加えて第二マニピュレータ20が移動する。すなわち、制御部100による制御によって、第二マニピュレータ20は、第一マニピュレータ10とは独立して、又は第一マニピュレータ10と協働して動作可能である。
 たとえば、図10に示すように第三モードにおいて第一マニピュレータ10が障害物Xから離れる方向へ移動しているときに、図11に示すように、第一マニピュレータ10から第二マニピュレータ20が離れる方向へ、第二マニピュレータ20が移動する。これにより、本実施形態では、第三モードにおいて第一マニピュレータ10と障害物との接触が解消したときに、第一マニピュレータ10と第二マニピュレータ20とが離れた位置にあるので、その後の第一マニピュレータ10の移動により第一マニピュレータ10が第二マニピュレータ20に干渉する確率を下げることができる。
 また、操作部60に対して操作者が行った操作による指令を制御部100が解析し、第三モードの終了後における第一マニピュレータ10の移動経路外に第二マニピュレータ20を退避させてもよい。この場合、第二モードから第三モードに移行した後に、第二モードに復帰せずに第一モードへ復帰することとなる。
 本実施形態では、第二マニピュレータ20が第一マニピュレータ10と協働することにより、第一マニピュレータ10の移動経路の選択肢が広がるので、干渉を回避するためのアーム11の移動により別の干渉が生じるような可能性を低く抑えることができる。
(第3実施形態)
 本発明の第3実施形態について説明する。図12は、本実施形態の医療用マニピュレータシステムの要部を示すブロック図である。図13及び図14は、本実施形態の医療用マニピュレータシステムの作用を説明するための図である。
 本実施形態の医療用マニピュレータシステム3は、図12に示すように、制御部100が、医療用マニピュレータシステム3の使用開始時点で認識されていない物体に第一マニピュレータ10が接触した時に、その物体の障害物として認識して位置を記憶する記憶部109を有している点で上記第1実施形態と構成が異なっている。
 また、本実施形態の医療用マニピュレータシステム3の制御部100は、記憶部109に記憶された障害物の座標を、第一マニピュレータ10の進入禁止位置として利用する。
 たとえば、第一マニピュレータ10の進入禁止位置となる座標が記憶部109に記憶されていない場合には、第一マニピュレータ10は、アーム11による術具19の最大可動範囲(たとえば一例として図13に符号A1で示す)の全域で移動可能である。
 ここで、第一マニピュレータ10が移動して図14に示すように障害物X(本実施形態では患者Pの体壁)に接触すると、第一マニピュレータ10の進入禁止位置となる座標が記憶部109に記憶されて、アーム11による術具19の最大可動範囲A1のうち、第一マニピュレータ10が障害物Xに接触した位置までの範囲A2に第一マニピュレータ10の可動域が制限される。これにより、第一マニピュレータ10の進入禁止位置が設定され、進入禁止位置の設定以後は第一マニピュレータ10の可動域は制限され続ける。
 第一マニピュレータ10の進入禁止位置が設定されている状態において、本実施形態の制御部100(図12参照)は、第一モードに応じた制御として、進入禁止位置を迂回するように第一移動経路を設定する。常用関節13A(図2参照)のみの使用では進入禁止位置を迂回できない場合(第一移動経路の設定ができない場合)には、第二モードへ移行する。また、第一マニピュレータ10の進入禁止位置が設定されている状態において、本実施形態の制御部100は、第二モードに応じた制御として、進入禁止位置及び第二マニピュレータ20の位置を迂回するように第二移動経路を設定する。
 記憶部109における進入禁止位置の座標の記憶は、医療用マニピュレータシステム3の使用終了まで保持される。また、必要に応じて、任意の進入禁止位置の座標を消去することで進入禁止位置であった位置に第一マニピュレータ10を再度進入可能としてもよい。例えば、医療用マニピュレータシステム3の使用時の第一マニピュレータ10のそばにいる助手の位置が進入禁止位置として記憶された場合に、助手がその位置から移動した後にその座標を記憶部から消去することで、第一マニピュレータ10の可動範囲の制限を解消することができる。
 本実施形態の医療用マニピュレータシステム3は、上記第1実施形態と同様の効果を奏する。また、本実施形態では、医療用マニピュレータシステム3の使用開始時以降に認識された障害物にはその後接触しないので、第一マニピュレータ10の無駄な動作が削減される。
 なお、本実施形態において、障害物に接触しても大きな問題とならないような場合には、第一マニピュレータ10の移動経路の選定時に通過する座標に進入禁止位置を含むことを許容してもよい。この場合、進入禁止位置を含む移動経路は、進入禁止位置を含まない移動経路よりも優先度を下げる。これにより、制御部100は、進入禁止位置を含まない移動経路を設定できない場合にのみ第一マニピュレータ10が進入禁止位置を通過することを許容する。
(第4実施形態)
 本発明の第4実施形態について説明する。図15は、本実施形態の医療用マニピュレータシステムの要部を示すブロック図である。図16は、本実施形態の医療用マニピュレータシステムを使用した操作の流れを示すフローチャートである。
 本実施形態の医療用マニピュレータシステム4(図15参照)は、上記第1実施形態に開示された医療用マニピュレータシステム1と比較して、第三モードの内容が異なっている。
 本実施形態における第三モードは、第一マニピュレータ10(図2参照)を自動的に動作させるのではなく、第一マニピュレータ10の近くで助手が第一マニピュレータ10を手動操作により動作させることを可能とするダイレクトドライブモードである。
 本実施形態では、図15に示すように、第一マニピュレータ10のアーム11及びトルクセンサ14が、操作部60とは別の方法で第一マニピュレータ10を操作可能な第二操作部62となっている。本実施形態では、制御部100の復帰動作判定部105が、復帰動作設定部106に代えて、第二操作部62を用いた操作の可否を判定するダイレクトドライブ活用判定部112を有している。
 一例として、第三モードが選択された状態の本実施形態の制御部100は、まず、第1実施形態と同様に指令をバッファに保存することで指令に基づく第一マニピュレータ10の制御を停止させる(指令停止ステップ)。
 さらに、制御部100のダイレクトドライブ活用判定部112は、第一マニピュレータ10の関節群13のブレーキを解除し、アーム11のトルクセンサ14に対して入力があった場合に第一マニピュレータ10を倣い動作させるのを許可する。
 すなわち、本実施形態の第三モードでは、第一マニピュレータ10のアーム11を助手が押し引きしたり回転させたりすることがトルクセンサ14に対する操作である。トルクセンサ14に対する操作は、アーム11を助手が押し引きした方向へとアクチュエータ15によってアーム11を移動させるための指令である。このように、本実施形態では、関節群13のブレーキの解除及び第一マニピュレータ10の倣い動作制御によって、制御部100は、第二操作部62による第一マニピュレータの操作を許可する(許可ステップ)。
 本実施形態の制御部100は、必要に応じて、第一術具19の刺入点(遠隔中心RC,図2参照)を拘束してもよいし、アーム11のリンク群12を繋ぐ関節群13のうちの一部の関節を拘束してもよいし、全ての関節を自在に移動可能としてもよい。
 また、図15に示すように、トルクセンサ14に対する無入力時間をカウントするタイマ110が制御部100に設けられている。トルクセンサ14に対する入力がなくなってから一定時間経過後に、第一マニピュレータ10を助手が移動させる操作が終了したと制御部100が判定する。すなわち、トルクセンサ14及びタイマ110によって、第二操作部62による操作の終了を検知する終了検知部111が構成されている。
 終了検知部111が第二操作部62による操作の終了を検知した後、制御部100は、第三モードを終了して第一モードまたは第二モードに復帰する(復帰ステップ)。
 本実施形態の医療用マニピュレータシステム4の動作について図16に示すフローチャートに沿って詳述する。
 本実施形態では、医療用マニピュレータシステム4の開始後は、まず、第一モードに移行して制御部100が第一モードで動作する(ステップS21,図16参照)。続いて、冗長制御活用判定部102が第一マニピュレータ10と第二マニピュレータ20との干渉発生の予測を行う(ステップS22)。ステップS22において干渉しないと予測された場合には、第一モードが継続され(ステップS23),手技完了か否かが判定される(ステップS24)。ステップS24では、手技中であればステップS21へ戻って第一モードがさらに継続され、手技が完了していれば一連のステップが終了する。
 上記のステップS22において干渉し得ると予測された場合には、第一モードから第二モードへ移行する(ステップS25)。ステップS25により第二モードへ移行した後は、第一マニピュレータ10は、第二マニピュレータ20に対する干渉を回避するように制御部100により制御される。
 ステップS25の後、第一マニピュレータ10が障害物に接触したか否かの検知が行われる(ステップS26)。ステップS26では、第一マニピュレータ10と障害物との接触が検知されていない場合には、ステップS27へ進んで第二モードが継続され、第二マニピュレータ20との干渉を回避しつつ第一マニピュレータ10が到達目標位置に達して干渉回避が完了したか否かが判定される(ステップS28)。ステップS28において干渉回避が完了していなければステップS26へ戻り、ステップS28において干渉回避が完了していればステップS21へ戻る。
 上記のステップS26において、第一マニピュレータ10と障害物との接触が検知されている場合には、ステップS29へ進み、第二モードから第三モードへ移行する。本実施形態における第三モードは、助手が第一マニピュレータ10のアーム11を直接移動させて手動操作により障害物から離間させる点で、操作部60を使用するよりも直接的にアーム10を移動させることができるモードである。
 ステップS29において助手がアーム11の手動操作を行っている間、終了検知部111が、手動操作が終了したか否かを判定し続けている(ステップS30)。本実施形態では、アーム11対する移動操作が一定時間以上行われないことを持って終了検知部111が手動操作の完了と判定する。手動操作が完了したと終了検知部111が判定したらステップS21に戻って第一モードで動作を開始する。
 本実施形態の医療用マニピュレータシステム4によれば、障害物と第一マニピュレータ10との接触を解消させるためのアーム11の移動が複雑であって自動的に解消できない場合であっても、助手の裁量でアーム11を移動させることができるので、障害物と第一マニピュレータ10との接触を解消しやすい。
 (変形例1)
 上記第4実施形態の変形例1について説明する。図17は、本変形例における第一マニピュレータを示す模式図である。
 本変形例では、図17に示すように、第一マニピュレータ10が、各関節がどのように制御されているかを示すインジケータ120を有している。
 たとえば、第一マニピュレータ10は、「拘束されている(動かない)」、「第一操作部による操作に従って動作する」、「他のマニピュレータとの干渉を回避するために自動制御される」という3状態をそれぞれ別の色で示すランプ121~126をインジケータとして関節群13の各関節に有する。
 関節群13の各関節に配されたランプ121~126は、ランプ121~126の色によって、関節の現在の状態を助手に容易に把握させる。これにより、本変形例では、どの関節が今動き得るのかを事前に助手が把握することができ、アーム11と助手とが接触しないように助手が容易に退避できるようになる。
 なお、インジケータ120は他のマニピュレータ20,30,40(図1参照)にも設けられていてもよい。
 (変形例2)
 上記第4実施形態の変形例2について説明する。
 本変形例では、図17に示すように、第一マニピュレータ10が、第三モードにおいて助手がアーム11をどの方向に移動させるのが好ましいのかを示すナビゲーター130を有している。また、本変形例では、制御部(不図示)は、第一マニピュレータ10と第二マニピュレータと障害物との位置関係に基づいてナビゲーター130を制御する。
 本変形例において、制御部は、障害物の位置と第二マニピュレータの位置とに基づいて、障害物と第二マニピュレータとの概ね中間に第一マニピュレータ10を移動させるように、第一マニピュレータ10の移動推奨方向を示す信号をナビゲーター130に出力する。
 ナビゲーター130は、例えば矢印形状のランプや液晶モニタ等を有し、第一マニピュレータ10の移動推奨方向を、たとえば矢印で表示させる。
 本変形例では、障害物と第二マニピュレータとの間で障害物及び第二マニピュレータから最も離れた位置に第一マニピュレータ10を移動させるのをナビゲーター130が補助するので、助手は、ナビゲーター130に表示された通りに第一マニピュレータ10を移動させればよく、操作を簡便とすることができる。
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 また、上述の各実施形態及び各変形例において示した構成要素は適宜に組み合わせて構成することが可能である。
 本発明は、マニピュレータシステムに利用できる。
 1,2,3,4 医療用マニピュレータシステム
 10 第一マニピュレータ(スレーブマニピュレータ)
 11 アーム
 12 リンク群
 13 関節群
 13A 常用関節
 13B 冗長関節
 14 トルクセンサ(接触検知部)
 15 アクチュエータ
 16 エンコーダ
 17 接触センサ(接触検知部)
 18 アダプタ
 19 術具(第一術具)
 19a エンドエフェクタ
 20 第二マニピュレータ(スレーブマニピュレータ)
 21 アーム
 28 アダプタ
 29 術具(第二術具)
 30 第三マニピュレータ(スレーブマニピュレータ)
 31 アーム
 38 アダプタ
 39 術具
 40 第四マニピュレータ(スレーブマニピュレータ)
 41 アーム
 48 アダプタ
 49 術具
 50 手術台
 60 操作部
 61 マスターアーム
 62 第二操作部
 70 入力処理回路
 80 画像処理回路
 90 表示部
 100 制御部
 101 位置認識部
 102 冗長制御活用判定部
 103 干渉予測部
 104 干渉回避動作設定部
 105 復帰動作判定部
 106 復帰動作設定部
 107 モード選択部
 108 駆動信号生成部
 109 記憶部
 110 タイマ
 111 終了検知部
 112 ダイレクトドライブ活用判定部
 120 インジケータ
 121~126 ランプ
 130 ナビゲーター

Claims (5)

  1.  関節群を有する第一マニピュレータと、
     前記第一マニピュレータを操作するための指令を発する第一操作部と、
     前記指令を受け付けて複数の動作モードのうちの1つの動作モードに応じて前記第一マニピュレータを制御する制御部と、
     前記第一マニピュレータと障害物とが接触したことを検知する接触検知部と、
     前記第一マニピュレータとは独立して又は協働して動作可能な第二マニピュレータと、
     を備え、
     前記関節群は、
      第一グループに属する1以上の関節と、
      第二グループに属する1以上の関節と、
      を有し、
     前記複数の動作モードは、
      前記第一グループに属する関節のみを用いて前記第一マニピュレータを動作させる第一移動経路に沿って前記第一マニピュレータが移動するように前記第一マニピュレータを制御する第一モードと、
      前記第一グループに属する関節及び前記第二グループに属する関節を用いて前記第一マニピュレータを移動させる第二移動経路に沿って前記第一マニピュレータが移動するように前記第一マニピュレータを制御する第二モードと、
      前記接触検知部が前記第一マニピュレータと前記障害物との接触を検知したときに前記接触を解消するように前記第一マニピュレータを動作させる第三モードと、
      を含み、
     前記制御部は、
      前記第一マニピュレータ及び前記第二マニピュレータの位置を認識する位置認識部と、
      前記第一移動経路に沿って前記第一マニピュレータを移動させた場合に前記第二マニピュレータに干渉するか否かを予測する干渉予測部と、
      前記第一マニピュレータが前記第二マニピュレータに干渉しないと前記干渉予測部が予測した場合には第一モード、前記第一マニピュレータが前記第二マニピュレータに干渉すると前記干渉予測部が予測した場合には第二モードとなるように前記第一モードと前記第二モードとのいずれか一方を選択し、前記第一モード又は前記第二モードで前記制御部が動作している間に前記接触検知部が前記第一マニピュレータと前記障害物との接触を検知した場合に前記第一モード又は前記第二モードから前記第三モードへ移行するように複数の動作モードから1つのモードを選択するモード選択部と、
      を有し、
     前記制御部は、前記第二モードにおいて、前記第二マニピュレータの位置を迂回する経路を前記第二移動経路として設定する
     ことを特徴とする医療用マニピュレータシステム。
  2.  前記第二グループに含まれる関節は前記第一グループに含まれる関節と冗長関係にある冗長関節を含む請求項1に記載の医療用マニピュレータシステム。
  3.  前記制御部は、前記第三モードにおける前記第一マニピュレータの制御手順として
      前記指令に基づく前記第一マニピュレータの制御を停止する指令停止ステップと、
      前記障害物との接触を解消するための前記第一マニピュレータの移動量を算出する移動量算出ステップと、
      前記移動量算出ステップにおいて算出された移動量だけ前記第一マニピュレータを移動させる移動ステップと、
      前記第一モードと前記第二モードとのうち前記第三モードへの移行前のモードに復帰する復帰ステップと、
      を含み、前記制御手順に沿って前記第一マニピュレータを制御する
     ことを特徴とする請求項1または2に記載の医療用マニピュレータシステム。
  4.  前記第一マニピュレータは、前記第一マニピュレータを操作可能であり前記第一操作部とは異なる第二操作部をさらに有し、
     前記制御部は、前記第三モードにおける前記第一マニピュレータの制御手順として、
      前記指令に基づく前記第一マニピュレータの制御を停止する指令停止ステップと、
      前記第二操作部による前記第一マニピュレータの操作を許可する許可ステップと、
      を含み、前記制御手順に従って前記第一マニピュレータを制御する
     ことを特徴とする請求項1または2に記載の医療用マニピュレータシステム。
  5.  前記第二操作部は、前記第二操作部による操作の終了を検知する終了検知部を有し、
     前記制御部は、前記第三モードにおける前記第一マニピュレータの制御手順として、前記終了検知部が前記第二操作部による操作の終了を検知した場合に前記第三モードへの移行前のモードに復帰する復帰ステップをさらに有し、前記制御手順に従って前記第一マニピュレータを制御する
     ことを特徴とする請求項4に記載の医療用マニピュレータシステム。
PCT/JP2016/051833 2016-01-22 2016-01-22 医療用マニピュレータシステム WO2017126101A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2016/051833 WO2017126101A1 (ja) 2016-01-22 2016-01-22 医療用マニピュレータシステム
JP2017513569A JP6157786B1 (ja) 2016-01-22 2016-01-22 医療用マニピュレータシステム
CN201680019275.7A CN107427328B (zh) 2016-01-22 2016-01-22 医疗用机械手系统
EP16886342.1A EP3406221A4 (en) 2016-01-22 2016-01-22 MEDICAL MANIPULATOR SYSTEM
US15/785,496 US20180036090A1 (en) 2016-01-22 2017-10-17 Medical manipulator system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/051833 WO2017126101A1 (ja) 2016-01-22 2016-01-22 医療用マニピュレータシステム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/785,496 Continuation US20180036090A1 (en) 2016-01-22 2017-10-17 Medical manipulator system

Publications (1)

Publication Number Publication Date
WO2017126101A1 true WO2017126101A1 (ja) 2017-07-27

Family

ID=59273044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051833 WO2017126101A1 (ja) 2016-01-22 2016-01-22 医療用マニピュレータシステム

Country Status (5)

Country Link
US (1) US20180036090A1 (ja)
EP (1) EP3406221A4 (ja)
JP (1) JP6157786B1 (ja)
CN (1) CN107427328B (ja)
WO (1) WO2017126101A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6469304B1 (ja) * 2018-10-23 2019-02-13 株式会社A−Traction 手術支援装置、その制御方法及びプログラム
JP2020163551A (ja) * 2019-03-29 2020-10-08 セイコーエプソン株式会社 制御方法およびロボットシステム
JP2022526593A (ja) * 2019-04-04 2022-05-25 メモリアル スローン ケタリング キャンサー センター ロボット解剖学的操作システム及び方法
WO2022172590A1 (ja) * 2021-02-12 2022-08-18 川崎重工業株式会社 手術支援システム、患者側装置および手術支援システムの制御方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019023390A2 (en) 2017-07-27 2019-01-31 Intuitive Surgical Operations, Inc. MEDICAL DEVICE HANDLE
US12029512B2 (en) 2017-08-10 2024-07-09 Intuitive Surgical Operations, Inc. Increased usable instrument life in telesurgical systems
US11617628B2 (en) 2017-08-10 2023-04-04 Intuitive Surgical Operations, Inc. Increased usable instrument life in telesurgical systems
CN108527457B (zh) * 2018-06-26 2019-10-01 珠海格力电器股份有限公司 具有安全指示灯的工业机器人和安全指示灯的工作方法
GB2575113B (en) 2018-06-29 2022-06-08 Cmr Surgical Ltd Detecting collisions of robot arms
JP7467252B2 (ja) 2020-06-23 2024-04-15 Nissha株式会社 回路配線板とその製造方法
WO2022037392A1 (zh) * 2020-08-19 2022-02-24 北京术锐技术有限公司 机器人系统以及控制方法
WO2022037356A1 (zh) * 2020-08-19 2022-02-24 北京术锐技术有限公司 机器人系统以及控制方法
CN112245011B (zh) * 2020-10-23 2022-02-01 上海微创医疗机器人(集团)股份有限公司 手术机器人系统、调整方法、存储介质及终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206312A (ja) * 2010-03-30 2011-10-20 Terumo Corp 医療用ロボットシステム
JP2015519146A (ja) * 2012-06-01 2015-07-09 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 手術器具マニピュレータの態様
JP2015521086A (ja) * 2012-06-01 2015-07-27 インテュイティブ サージカル オペレーションズ, インコーポレイテッド ハードウェア拘束リモートセンタロボットマニピュレータのための冗長な軸及び自由度
JP2015531624A (ja) * 2012-08-15 2015-11-05 インテュイティブ サージカル オペレーションズ, インコーポレイテッド ゼロ空間を使用した関節運動の相殺のためのシステム及び方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9510911B2 (en) * 1999-09-17 2016-12-06 Intuitive Surgical Operations, Inc. System and methods for managing multiple null-space objectives and SLI behaviors
US8004229B2 (en) * 2005-05-19 2011-08-23 Intuitive Surgical Operations, Inc. Software center and highly configurable robotic systems for surgery and other uses
US20060200026A1 (en) * 2005-01-13 2006-09-07 Hansen Medical, Inc. Robotic catheter system
US9789608B2 (en) * 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US9579088B2 (en) * 2007-02-20 2017-02-28 Board Of Regents Of The University Of Nebraska Methods, systems, and devices for surgical visualization and device manipulation
JP5669590B2 (ja) * 2011-01-20 2015-02-12 オリンパス株式会社 マスタスレーブマニピュレータ及び医療用マスタスレーブマニピュレータ
WO2013181503A1 (en) * 2012-06-01 2013-12-05 Intuitive Surgical Operations, Inc. Manipulator arm-to-patient collision avoidance using a null-space
JP6262216B2 (ja) * 2012-06-01 2018-01-17 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 零空間を使用して操作アーム間の衝突を回避するためのシステム及び方法
EP2928407B1 (en) * 2012-12-10 2021-09-29 Intuitive Surgical Operations, Inc. Collision avoidance during controlled movement of image capturing device and manipulatable device movable arms
US9452532B2 (en) * 2014-01-27 2016-09-27 Panasonic Intellectual Property Management Co., Ltd. Robot, device and method for controlling robot, and computer-readable non-transitory recording medium
US10792464B2 (en) * 2014-07-01 2020-10-06 Auris Health, Inc. Tool and method for using surgical endoscope with spiral lumens
WO2016044574A1 (en) * 2014-09-17 2016-03-24 Intuitive Surgical Operations, Inc. Systems and methods for utilizing augmented jacobian to control manipulator joint movement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206312A (ja) * 2010-03-30 2011-10-20 Terumo Corp 医療用ロボットシステム
JP2015519146A (ja) * 2012-06-01 2015-07-09 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 手術器具マニピュレータの態様
JP2015521086A (ja) * 2012-06-01 2015-07-27 インテュイティブ サージカル オペレーションズ, インコーポレイテッド ハードウェア拘束リモートセンタロボットマニピュレータのための冗長な軸及び自由度
JP2015531624A (ja) * 2012-08-15 2015-11-05 インテュイティブ サージカル オペレーションズ, インコーポレイテッド ゼロ空間を使用した関節運動の相殺のためのシステム及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3406221A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6469304B1 (ja) * 2018-10-23 2019-02-13 株式会社A−Traction 手術支援装置、その制御方法及びプログラム
JP2020065644A (ja) * 2018-10-23 2020-04-30 株式会社A−Traction 手術支援装置、その制御方法及びプログラム
US11622822B2 (en) 2018-10-23 2023-04-11 A-Traction Inc. Surgery supporting apparatus for controlling motion of robot arm, control method of the same, and non-transitory computer-readable storage medium
JP2020163551A (ja) * 2019-03-29 2020-10-08 セイコーエプソン株式会社 制御方法およびロボットシステム
JP7259487B2 (ja) 2019-03-29 2023-04-18 セイコーエプソン株式会社 制御方法およびロボットシステム
JP2022526593A (ja) * 2019-04-04 2022-05-25 メモリアル スローン ケタリング キャンサー センター ロボット解剖学的操作システム及び方法
WO2022172590A1 (ja) * 2021-02-12 2022-08-18 川崎重工業株式会社 手術支援システム、患者側装置および手術支援システムの制御方法

Also Published As

Publication number Publication date
JPWO2017126101A1 (ja) 2018-01-25
JP6157786B1 (ja) 2017-07-05
EP3406221A1 (en) 2018-11-28
EP3406221A4 (en) 2019-10-02
CN107427328A (zh) 2017-12-01
US20180036090A1 (en) 2018-02-08
CN107427328B (zh) 2020-03-20

Similar Documents

Publication Publication Date Title
JP6157786B1 (ja) 医療用マニピュレータシステム
US12114948B2 (en) Detecting uncontrolled movement
US20230355334A1 (en) Instrument collision detection and feedback
JP6007194B2 (ja) 使用者指定によって決定される変位情報に基づいて手術を行う手術用ロボットシステムとその制御方法
JP5744455B2 (ja) マスタ・スレーブ方式マニピュレータの制御装置及びその制御方法
JP5537204B2 (ja) 医療用マニピュレータシステム
JP6134336B2 (ja) 入力装置の操作者が視認可能なディスプレイ領域に器具が入ったときのその器具の制御権限の入力装置への切り換え
JP5612971B2 (ja) マスタスレーブマニピュレータ
JP5784670B2 (ja) 医療用ロボットに関する自動化された動作のための方法、装置、及びシステム
JP5893362B2 (ja) マスタ操作入力装置及びマスタスレーブマニピュレータ
EP2639018B1 (en) Master-slave manipulator and medical master-slave manipulator
CN110035707B (zh) 医疗系统及其控制方法
CN103648428B (zh) 用于微创手术的医学主/从式装置
Onda et al. Asynchronous force and visual feedback in teleoperative laparoscopic surgical system
US11974827B2 (en) Association processes and related systems for manipulators
WO2018003049A1 (ja) 医療システムとその制御方法
CN115697241A (zh) 用于在计算机辅助系统中选择性的关节浮动的技术

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017513569

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016886342

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016886342

Country of ref document: EP

Effective date: 20180822