JP2014037473A - 硬化性樹脂組成物、硬化物、及びプリント配線基板 - Google Patents

硬化性樹脂組成物、硬化物、及びプリント配線基板 Download PDF

Info

Publication number
JP2014037473A
JP2014037473A JP2012179834A JP2012179834A JP2014037473A JP 2014037473 A JP2014037473 A JP 2014037473A JP 2012179834 A JP2012179834 A JP 2012179834A JP 2012179834 A JP2012179834 A JP 2012179834A JP 2014037473 A JP2014037473 A JP 2014037473A
Authority
JP
Japan
Prior art keywords
resin
naphthol
group
skeleton
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012179834A
Other languages
English (en)
Other versions
JP5994474B2 (ja
Inventor
Yosuke Hirota
陽祐 広田
Yasushi Sato
泰 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2012179834A priority Critical patent/JP5994474B2/ja
Publication of JP2014037473A publication Critical patent/JP2014037473A/ja
Application granted granted Critical
Publication of JP5994474B2 publication Critical patent/JP5994474B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Epoxy Resins (AREA)

Abstract

【課題】得られる硬化物が耐熱性に優れ、熱膨張係数が低く、かつ、熱履歴後の耐熱性変化が小さい硬化性組成物、これを硬化させてなる硬化物及びプリント配線基板の提供。
【解決手段】エポキシ樹脂(A)とフェノール樹脂(B)とを含有する硬化性樹脂組成物であって、前記エポキシ樹脂(A)が、下記構造式(1)
Figure 2014037473

(式中、R及びRは、それぞれ独立して水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基を示し、Gはグリシジル基を表す。)で表される3量体(a1)とグリシジル基で置換されたナフトール化合物がメチレン結合を介して結合した2量体(a2)とを必須として含有するもので前記フェノール樹脂(B)がナフトール骨格(n)とナフトキノン骨格(q)とがメチレン結合を介して結合した樹脂構造を有す。
【選択図】なし

Description

本発明は、得られる硬化物が耐熱性に優れ、熱履歴後の耐熱性変化が小さく、かつ、耐湿耐半田性にも優れる硬化性樹脂組成物、これを硬化させてなる硬化物及びプリント配線基板に関する。
エポキシ化合物及びフェノール化合物からなる組成物は、その硬化物が耐熱性や耐湿耐はんだ性、絶縁性などに優れることから、半導体封止剤やプリント配線基板用の絶縁材料として幅広く用いられている。
このうちプリント配線基板用途においては、電子機器の小型化や高性能化の流れに伴い、配線ピッチの狭小化による高密度な配線の実現が求められており、これに対応した半導体実装方式として、従来のワイヤボンディング方式に替えて、はんだボールにより半導体装置と配線基板とを接合させるフリップチップ接続方式が主流となっている。このフリップチップ接続方式では、配線基板と半導体との間にはんだボールを配置し、全体を加熱することによりはんだをリフローさせて接合するため、配線基板用絶縁材料にはこれまで以上に高い耐熱性が要求されるのみならず、更に、熱履歴後の耐熱性の変化が小さいこと、耐湿耐半田性に優れることなど、総合的な性能バランスの向上が求められている。
特に耐熱性に優れる材料として、例えば、ナフトールとホルムアルデヒドとを反応させることで得られるナフトール樹脂が知られている(下記特許文献1参照)。このようなナフトール樹脂は、一般的なフェノールノボラック樹脂と比較して化学骨格の剛直性が高いことから、これをエポキシ樹脂硬化剤として用いた場合、硬化物の耐熱性はより高いものとなるが、しかしながら、昨今益々高まる要求レベルを満たすものではなかった。また、熱履歴後の耐熱性の変化が大きく、耐湿耐半田性も十分なものではないことから、配線基板材料として更に高い性能を有する樹脂材料の開発が求められていた。
特開2007−31527号公報
従って、本発明が解決しようとする課題は、得られる硬化物が耐熱性に優れ、熱履歴後の耐熱性変化が小さく、かつ、耐湿耐半田性にも優れる硬化性樹脂組成物、これを硬化させてなる硬化物及びプリント配線基板を提供することにある。
本発明者らは、上記の課題を解決するため鋭意検討した結果、主剤としてナフトールノボラック樹脂のポリグリシジルエーテルであって、特定構造の3量体と2量体とを含有するエポキシ樹脂を用い、硬化剤としてナフトール骨格とナフトキノン骨格とがメチレン結合を介して結合した樹脂構造を有するフェノール樹脂を用いた場合に、その硬化物が非常に高い耐熱性を有し、熱履歴後の耐熱性変化も小さく、かつ、耐湿耐半田性にも優れるものとなることを見出し、本発明を完成するに至った。
即ち、本発明は、エポキシ樹脂(A)とフェノール樹脂(B)とを含有する硬化性樹脂組成物であって、前記エポキシ樹脂(A)が、
下記構造式(1)
Figure 2014037473
(式中、R及びRは、それぞれ独立して水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基を示し、Gはグリシジル基を表す。)
で表される3量体(a1)と、
下記構造式(2)
Figure 2014037473
(式中、R及びRは、それぞれ独立して水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基を示し、Gはグリシジル基を表す。)
で表される2量体(a2)とを必須の成分として含有するものであり、かつ、前記フェノール樹脂(B)が、ナフトール骨格(n)とナフトキノン骨格(q)とがメチレン結合を介して結合した樹脂構造を有するものであることを特徴とする硬化性樹脂組成物に関する。
本発明は、更に、前記硬化性樹脂組成物を硬化させてなる硬化物に関する。
本発明は、更に、前記硬化樹脂性組成物に、更に有機溶剤を配合したワニス組成物を、補強基材に含浸し銅箔を重ねて加熱圧着させることにより得られるプリント配線基板に関する。
本発明によれば、得られる硬化物が耐熱性に優れ、熱履歴後の耐熱性変化が小さく、かつ、耐湿耐半田性にも優れる硬化性樹脂組成物、これを硬化させてなる硬化物及びプリント配線基板を提供することができる。
図1は、製造例1で得られたエポキシ樹脂(A−1)のGPCチャート図である。 図2は、製造例1で得られたエポキシ樹脂(A−1)の13C−NMRチャート図である。 図3は、製造例1で得られたエポキシ樹脂(A−1)のMSスペクトルである。 図4は、製造例2で得られたエポキシ樹脂(A−2)のGPCチャート図である。 図5は、製造例3で得られたエポキシ樹脂(A−3)のGPCチャート図である。 図6は、製造例4で得られたフェノール樹脂(B−1)のGPCチャート図である。 図7は、製造例5で得られたフェノール樹脂(B−2)のGPCチャート図である。 図8は、製造例5で得られたフェノール樹脂(B−2)の13C−NMRチャート図である。 図9は、製造例5で得られたフェノール樹脂(B−2)のMSスペクトルである。 図10は、製造例5で得られたフェノール樹脂(B−2)のFT−IRチャートである。 図11は、製造例6で得られたフェノール樹脂(B−3)のGPCチャート図である。 図12は、製造例7で得られたフェノール樹脂(B−4)のGPCチャート図である。 図13は、製造例8で得られたフェノール樹脂(B−5)のGPCチャート図である。
以下、本発明を詳細に説明する。
本発明のエポキシ樹脂(A)は、下記構造式(1)
Figure 2014037473
(式中、R及びRは、それぞれ独立して水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基を示し、Gはグリシジル基を表す。)
で表される3量体(a1)と、
下記構造式(2)
Figure 2014037473
(式中、R及びRは、それぞれ独立して水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基を示し、Gはグリシジル基を表す。)
で表される2量体(a2)とを必須の成分として含有するものである。
このようなエポキシ樹脂は、より具体的には、例えば、α−ナフトール化合物、β−ナフトール化合物、及びホルムアルデヒドを原料とする重縮合体のポリグリシジルエーテルであって、その中に、前記3量体(a1)と前記2量体(a2)とを所定料含むものが挙げられる。
本発明では、エポキシ樹脂(A)が前記3量体(a1)を含むことから、分子レベルでの配向性が高く、その硬化物において優れた耐湿耐半田性を発現すると共に、該3量体(a1)自体の反応性が高いために、硬化物における熱履歴後の耐熱性変化が少なく、プリント配線基板用途におけるリフロー後の物性変化が少ない材料となる。中でも、より溶剤溶解性に優れる樹脂となり、かつ、硬化物の熱履歴後の耐熱性変化を抑制できることから、前記3量体(a1)を、GPC測定における面積比率で15〜35%となる割合で含有することが好ましい。
斯かる3量体(a1)は、具体的には、下記構造式(1−1)〜(1−6)
Figure 2014037473

で表される化合物が挙げられる。これらのなかでも特に前記構造式1−1で表されるもの、即ち、前記構造式(1)におけるR及びRが、全て水素原子であるものが、硬化物における熱履歴後の耐熱性変化が小さくなる点から好ましい。
また、本発明では、前記エポキシ樹脂(A)が前記2量体(a2)を含むことから、熱膨張性が低く、熱履歴後の耐熱性変化が少ない硬化物が得られる。また、溶剤溶解性に優れるエポキシ樹脂となることから、プリント配線基板用ワニスとしての利用が可能となる。中でも、溶剤溶解性に優れ、かつ、硬化物の熱履歴後の耐熱性変化を抑制できることから、前記2量体(a2)をGPC測定における面積比率で1〜25%となる割合で含有することが好ましい。
本発明のエポキシ樹脂は、更に、前記3量体(a1)、前記2量体(a2)に加え、更に下記構造式(3)
Figure 2014037473
(式中、R及びRは、それぞれ独立して水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基を示し、Gはグリシジル基を表し、nは繰り返し単位であって2〜10の整数である。)
で表されるカリックスアレーン化合物(a3)を含有することが、硬化物が耐熱性に優れ、熱履歴後の耐熱性変化がより小さいものとなることから好ましい。中でも、エポキシ樹脂(A)中GPC測定における面積比率で1〜40%となる割合で含有することが、硬化物における熱履歴後の耐熱性変化をより一層低減できることから好ましい。
ここで、前記構造式(3)中のR及びRは、前記構造式(1)におけるものと同義である。繰り返し単位nは、2〜10の整数であるが、本発明のエポキシ樹脂(A)の硬化物における熱履歴後の耐熱性変化をより一層低減できることから、nは4であることが好ましい。
本発明における前記3量体(a1)、前記2量体(a2)、及び前記カリックスアレーン化合物(a3)のエポキシ樹脂(A)中の含有率とは、下記の条件によるGPC測定によって計算される、本発明のエポキシ樹脂(A)の全ピーク面積に対する、前記各構造体のピーク面積の存在割合である。
<GPC測定条件>
測定装置 :東ソー株式会社製「HLC−8220 GPC」、
カラム:東ソー株式会社製ガードカラム「HXL−L」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G3000HXL」
+東ソー株式会社製「TSK−GEL G4000HXL」
検出器: RI(示差屈折計)
データ処理:東ソー株式会社製「GPC−8020モデルIIバージョン4.10」
測定条件: カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 : 前記「GPC−8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料 : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
本発明のエポキシ樹脂(A)は、上記した、前記3量体(a1)、前記2量体(a2)、及びカリックスアレーン化合物(a3)の他、高分子量成分(a4)を含んでいてもよい。
斯かる高分子量成分(a4)は、本発明のエポキシ樹脂(A)中、前記(a1)〜(a3)を除く高分子量成分であり、具体的には、下記構造式(I)
Figure 2014037473
(式中、R及びRは、それぞれ独立して水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基を示し、Gはグリシジル基を表す。)
で表される構造ユニット(I)と、
下記、構造式(II)
Figure 2014037473
(式中、R及びRは、それぞれ独立して水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基を示し、Gはグリシジル基を表し、mは繰り返し単位であり、0以上の整数である。)
で表される構造ユニット(II)とが、メチレン結合により結節され、高分子量化した基本構造を有するエポキシ樹脂である。
GPC測定によって保持時間が長い順に、前記2量体(a2)、3量体(a1)、カリックスアレーン化合物(a3)の順に検出され、前記高分子量成分(a4)は、カリックスアレーン化合物(a3)より、保持時間の短い領域に検出される成分である。高分子量成分(a4)のエポキシ樹脂(A)中の存在割合は、GPC測定における面積比率で、40〜75質量%の範囲であることが該エポキシ樹脂(A)の溶剤溶解性に優れる点から好ましい。また、前記高分子量成分(a4)の具体的構造としては、前記構造ユニット(I)と構造ユニット(II)とがメチレン結合を介して交互に結合する樹脂構造(a4−1)や、前記構造ユニット(II)の両端又は前記構造ユニット(II)が複数メチレン結合を介して結合した構造の両端に、前記構造ユニット(I)がメチレン結合を介して結合する樹脂構造(a4−2)が挙げられるが、本発明では熱履歴後の耐熱性変化を抑制できることから、樹脂構造(a4−2)を有するものが好ましい。なお、樹脂構造(a4−2)において、構造ユニット(I)は前記した通り、該構造の両末端に位置するが、構造ユニット(I)の2本の結合手のうちメチレン結合と結合していない結合手には水素原子が結合するものである。
また、前記重縮合体の原料成分として、α−ナフトール化合物、β−ナフトール化合物、及びホルムアルデヒドに加え、更に他のノボラック樹脂を併用する場合には、前記高分子量成分(a4)は、前記構造ユニット(I)、前記構造ユニット(II)、及び当該他のノボラック樹脂が、相互にメチレン結合を介して結節し高分子量化したものとなる。なお、前記重縮合体の原料成分として、当該他のノボラック樹脂を製造時に併用する場合、その使用量は、原料となるα−ナフトール化合物及びβ−ナフトール化合物の総質量100質量部あたり、5〜30質量部であることが、最終的に得られるエポキシ樹脂(A)の反応性に優れる点から好ましい。
以上詳述した本発明のエポキシ樹脂(A)は、その軟化点95〜140℃の範囲であることが、エポキシ樹脂(A)自体の溶剤溶解性に優れる点から好ましく、よって、前記高分子量成分(a4)の分子量もエポキシ樹脂の軟化点が前記範囲に入るように適宜調整すればよい。また、前記軟化点は、熱履歴後の耐熱性変化の低減及び溶剤溶解性を高度に兼備できる点から、特に100〜135℃の範囲であることが好ましい。
また、本発明のエポキシ樹脂(A)は、そのエポキシ当量が210〜300g/eqの範囲であることが、硬化物の熱履歴後の耐熱性変化を抑制できることから好ましく、特に220〜260g/eqの範囲であることが好ましい。
以上詳述した本発明のエポキシ樹脂(A)は、例えば、下記方法1又は方法2によって製造することができる。
方法1:有機溶剤及びアルカリ触媒の存在下、β−ナフトール化合物とホルムアルデヒドとを反応させ、次いで、ホルムアルデヒドの存在下、α−ナフトール化合物を加え反応させて、ナフトール樹脂を得(工程1)、次いで、得られたナフトール樹脂にエピハロヒドリンを反応させて(工程2)、目的とするエポキシ樹脂(A)を得る方法。
方法2:有機溶剤及びアルカリ触媒の存在下、α−ナフトール化合物、β−ナフトール化合物、及びホルムアルデヒドを反応させてナフトール樹脂を得(工程1)、次いで、得られたナフトール樹脂脂にエピハロヒドリンを反応させて(工程2)、目的とするエポキシ樹脂(A)を得る方法。
本発明では、上記方法1又は2の工程1において、反応触媒として、アルカリ触媒を用いること、及び、有機溶剤を原料成分に対して少なく使用することにより、前記3量体(a1)、前記2量体(a2)、及び前記カリックスアレーン化合物(a3)のエポキシ樹脂中の存在割合を所定範囲に調整することができ、かつ、前記高分子量成分の存在比率も適性範囲となる。
ここで用いるアルカリ触媒としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、金属ナトリウム、金属リチウム、水素化ナトリウム、炭酸ナトリウム、炭酸カリウム等の無機アルカリ類などが挙げられる。その使用量は、原料成分であるα−ナフトール化合物、β−ナフトール化合物、及び必要により前記他のノボラック樹脂のフェノール性水酸基の総数に対して、モル基準で0.01〜2.0倍量となる範囲であることが好ましい。
また、有機溶剤としては、メチルセロソルブ、イソプロピルアルコール、エチルセロソルブ、トルエン、キシレン、メチルイソブチルケトンなどが挙げられる。これらのなかでもとりわけ比較的重縮合体が高分子量化する点からイソプロピルアルコールが好ましい。
本発明における有機溶剤の使用量は、原料成分であるα−ナフトール化合物及びβ−ナフトール化合物、更に、他のノボラック樹脂を併用する場合には、原料となるα−ナフトール化合物及びβ−ナフトール化合物の総質量100質量部あたり、5〜70質量部の範囲であることが、前記3量体(a1)、前記2量体(a2)、及び前記カリックスアレーン化合物(a3)のエポキシ樹脂中の存在割合を所定範囲に調整し易い点から好ましい。
原料成分であるα−ナフトール化合物は、具体的には、α−ナフトール及びこれらにメチル基、エチル基、プロピル基、t−ブチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基が核置換した化合物等が挙げられ、また、β−ナフトール化合物は、β−ナフトール及びこれらにメチル基、エチル基、プロピル基、t−ブチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基が核置換した化合物等が挙げられる。これらのなかでも置換基を有しないα−ナフトール、及びβ−ナフトールが、最終的に得られるエポキシ樹脂(A)の硬化物における熱履歴後の耐熱性変化が少なくなる点から好ましい。
一方、ここで用いるホルムアルデヒドは、水溶液の状態であるホルマリン溶液でも、固形状態であるパラホルムアルデヒドでもよい。
前記方法1又は方法2の工程1におけるα−ナフトール化合物と、β−ナフトール化合物との使用割合は、モル比(α−ナフトール化合物/β−ナフトール化合物)が[1/0.4]〜[1/1.2]となる範囲であることが最終的に得られるエポキシ樹脂(A)中の各成分比率の調整が容易であることが好ましい。
ホルムアルデヒドの反応仕込み比率は、α−ナフトール化合物及びβ−ナフトール化合物の総モル数に対して、ホルムアルデヒドが、モル基準で0.6〜2.0倍量となる割合であること、特に、耐熱性に優れ、熱履歴後の耐熱性変化を低減できることから、0.6〜1.5倍量となる割合であることが好ましい。
また、本発明では、前記した通り、原料成分としてα−ナフトール化合物、β−ナフトール化合物、及びホルムアルデヒドに加え、更に、他のノボラック樹脂を一部併用することができる。ここで、用いる他のノボラック樹脂としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂が挙げられ、これらを一部併用することにより最終的に得られるエポキシ樹脂の溶剤溶解性を飛躍的に向上させることができる。これらフェノールノボラック樹脂及びクレゾールノボラック樹脂は、硬化物の耐熱性などの性能を低下させることなく、溶剤溶解性を高めることができる点から軟化点60〜120℃のものであることが好ましい。
当該他のノボラック樹脂を原料の一部として使用する場合、前記方法1又は方法2の工程1における各原料成分の反応仕込み比率は、モル比(α−ナフトール化合物とβ−ナフトール化合物/他のノボラック樹脂中の芳香核数)が[1/0.06]〜[1/0.36]となる範囲であることが最終的に得られるエポキシ樹脂中の各成分比率の調整が容易であることが好ましく、また、ホルムアルデヒドの使用量は、他のノボラック樹脂中の芳香核数、α−ナフトール化合物、β−ナフトール化合物の総モル数に対して、当該ホルムアルデヒドが、モル基準で0.6〜2.0倍量となる割合であること、特に、耐熱性と溶剤溶解性とのバランスに優れる点から、0.6〜1.5倍量となる割合となる範囲であることが好ましい。
前記方法1の工程1では、反応容器に、所定量のβ−ナフトール化合物、ホルムアルデヒド、有機溶剤、及びアルカリ触媒と仕込み、40〜100℃にて反応させ、反応終了後、α−ナフトール化合物(必要に応じて、更にホルムアルデヒド)を加え、40〜100℃の温度条件下に反応させて目的とする重縮合体を得ることができる。この場合他のノボラック樹脂を併用する場合には、α−ナフトール化合物と共に反応容器に加えることが好ましい。
工程1の反応終了後は、反応終了後、反応混合物のpH値が4〜7になるまで中和あるいは水洗処理を行う。中和処理や水洗処理は常法にしたがって行えばよく、例えば酢酸、燐酸、燐酸ナトリウム等の酸性物質を中和剤として用いることができる。中和あるいは水洗処理を行った後、減圧加熱下で有機溶剤を留去し目的とする重縮合体を得ることができる。
前記方法2の工程1では、反応容器に、所定量のβ−ナフトール化合物、α−ナフトール化合物、ホルムアルデヒド、有機溶剤、アルカリ触媒、及び、他のノボラック樹脂を併用する場合には該ノボラック樹脂を仕込み、40〜100℃にて反応させて目的とする重縮合体を得ることができる。この場合他のノボラック樹脂を併用する場合には、α−ナフトール化合物と共に反応容器に加えることが好ましい。
工程1の反応終了後は、反応終了後、反応混合物のpH値が4〜7になるまで中和あるいは水洗処理を行う。中和処理や水洗処理は常法にしたがって行えばよく、例えば酢酸、燐酸、燐酸ナトリウム等の酸性物質を中和剤として用いることができる。中和あるいは水洗処理を行った後、減圧加熱下で有機溶剤を留去し目的とする重縮合体を得ることができる。
次いで、前記方法1又は方法2の工程2は、工程1で得られた重縮合体と、エピハロヒドリンとを反応させることによって目的とするエポキシ樹脂(A)を製造する工程である。斯かる工程2は、具体的には、重縮合体中のフェノール性水酸基のモル数に対し、エピハロヒドリンを2〜10倍量(モル基準)となる割合で添加し、更に、フェノール性水酸基のモル数に対し0.9〜2.0倍量(モル基準)の塩基性触媒を一括添加または徐々に添加しながら20〜120℃の温度で0.5〜10時間反応させる方法が挙げられる。この塩基性触媒は固形でもその水溶液を使用してもよく、水溶液を使用する場合は、連続的に添加すると共に、反応混合物中から減圧下、または常圧下、連続的に水及びエピハロヒドリン類を留出せしめ、更に分液して水は除去しエピハロヒドリンは反応混合物中に連続的に戻す方法でもよい。
なお、工業生産を行う際、エポキシ樹脂生産の初バッチでは仕込みに用いるエピハロヒドリン類の全てが新しいものであるが、次バッチ以降は、粗反応生成物から回収されたエピハロヒドリン類と、反応で消費される分で消失する分に相当する新しいエピハロヒドリン類とを併用することが好ましい。この時、使用するエピハロヒドリンは特に限定されないが、例えばエピクロルヒドリン、エピブロモヒドリン、β−メチルエピクロルヒドリン等が挙げられる。なかでも工業的入手が容易なことからエピクロルヒドリンが好ましい。
また、前記塩基性触媒は、具体的には、アルカリ土類金属水酸化物、アルカリ金属炭酸塩及びアルカリ金属水酸化物等が挙げられる。特にエポキシ樹脂合成反応の触媒活性に優れる点からアルカリ金属水酸化物が好ましく、例えば水酸化ナトリウム、水酸化カリウム等が挙げられる。使用に際しては、これらの塩基性触媒を10〜55質量%程度の水溶液の形態で使用してもよいし、固形の形態で使用しても構わない。また、有機溶媒を併用することにより、エポキシ樹脂(A)の合成における反応速度を高めることができる。このような有機溶媒としては特に限定されないが、例えば、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール、1−プロピルアルコール、イソプロピルアルコール、1−ブタノール、セカンダリーブタノール、ターシャリーブタノール等のアルコール化合物、メチルセロソルブ、エチルセロソルブ等のセロソルブ類、テトラヒドロフラン、1、4−ジオキサン、1、3−ジオキサン、ジエトキシエタン等のエーテル化合物、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド等の非プロトン性極性溶媒等が挙げられる。これらの有機溶媒は、それぞれ単独で使用してもよいし、また、極性を調整するために適宜2種以上を併用してもよい。
前述のエポキシ化反応の反応物を水洗後、加熱減圧下、蒸留によって未反応のエピハロヒドリンや併用する有機溶媒を留去する。また更に加水分解性ハロゲンの少ないエポキシ樹脂とするために、得られたエポキシ樹脂を再びトルエン、メチルイソブチルケトン、メチルエチルケトンなどの有機溶媒に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えてさらに反応を行うこともできる。この際、反応速度の向上を目的として、4級アンモニウム塩やクラウンエーテル等の相関移動触媒を存在させてもよい。相関移動触媒を使用する場合のその使用量としては、用いるエポキシ樹脂100質量部に対して0.1〜3.0質量部となる割合であることが好ましい。反応終了後、生成した塩を濾過、水洗などにより除去し、更に、加熱減圧下トルエン、メチルイソブチルケトンなどの溶剤を留去することにより目的とする本発明のエポキシ樹脂(A)を得ることができる。
次に、本発明で用いるフェノール樹脂(B)について説明する。本発明のフェノール樹脂(B)は、ナフトール骨格(n)とナフトキノン骨格(q)とがメチレン結合を介して結合した樹脂構造を有することを特徴としている。つまり、その樹脂構造中にナフトキノン骨格(q)を有することから、所謂ナフトールノボラック樹脂に比べ硬化性が飛躍的に向上して耐熱性が向上する上、熱履歴後の耐熱性変化も低いものとなる。
一般に、分子構造中にカルボニル基の様な極性の高い官能基を有する化合物は吸湿率が高くなることから、本発明で用いるフェノール樹脂(B)のようにナフトキノン骨格(q)を有する化合物を用いた場合には、前述の通り硬化物の耐熱性の向上や耐熱性変化の低減に効果がある反面、耐湿耐半田性等の性能が低下する傾向にある。しかしながら、本願発明では、前記3量体(a1)や前記2量体(a2)の様に分子構造中にナフタレン骨格を有し、それ自体の配向性が高い比較的低分子量の化合物を含む前記エポキシ樹脂(A)と組み合わせて用いることにより、ナフタレン環の密なπスタッキングが形成され、水分子の接近を阻害し耐湿性が高まることから、耐湿耐半田性に優れる硬化物を得ることが出来る。更に、前述の通り、前記エポキシ樹脂(A)が含有する前記3量体(a1)は分子レベルでの配向性が高いことから、このような耐湿性に対する効果を相乗的に向上させることが出来る。
ここで、ナフトール骨格(n)は、具体的には、α−ナフトール、β−ナフトール、これらにメチル基、エチル基、メトキシ基等のアルキル基が核置換した構造を有する各種ナフトール化合物が挙げられる。
他方、ナフトキノン骨格(q)は、具体的には、下記構造式q1又はq2
Figure 2014037473

で表されるものが挙げられる。ここで、上記構造式q1又はq2中、R及びRはそれぞれ独立的に水素原子、メチル基、エチル基、又はメトキシ基が挙げられる。これらのなかでも、特に低熱膨張性、耐熱性に優れる点からR及びRが共に水素原子であることが好ましい。また、本発明では、特に、硬化物の低熱膨張性、耐熱性に優れる点から構造式q1で表されるものであることが好ましい。なお、上記構造式中q1又はq2中の2本の線分は、他の構造部位との結合手を表し、当該構造を構成する2つの環構造の同一環に位置してもよく、また、異なる環に位置していてもよい。
本発明のフェノール樹脂(B)は、上記したナフトール骨格(n)と、上記したナフトキノン骨格(q)とがメチレン結合を介して結合した構造を有するものであり、とりわけメチレン結合を結節基として、前記ナフトール骨格(n)又は前記ナフトキノン骨格(q)の芳香核が結節し、ノボラック状の重合体を形成しているものであることが硬化物の耐熱性に優れる点から好ましい。斯かるノボラック状の重合体の樹脂構造は、具体的には、下記構造式I
Figure 2014037473
(式中、Xの少なくとも一つは前記ナフトキノン骨格(q)であり、その他はナフトール骨格(n)である。また、nは繰り返し単位であり、零以上の整数である。)
で表されるものが挙げられる。
ここで、前記フェノール樹脂(B)は、該樹脂におけるナフトール骨格(n)及びナフトキノン骨格(q)の合計の核体数(但し、これらの骨格中の縮合環を1核体とする。)の平均が3〜10の範囲であることが、硬化物における耐熱性に優れる点から好ましく、特に、3〜6の範囲であることが、耐熱性の改善効果がより顕著なものとなる点から好ましい。なお、前記フェノール樹脂(B)が前記構造式Iで表される場合、ナフトール骨格(n)及びナフトキノン骨格(q)の合計の核体数とは、該構造式I中のXの総数に等しく、n+2に相当する値となる。
ここで、核体数の平均は、フェノール樹脂(B)を下記のGPC測定条件で測定した数平均分子量(Mn)から下記の計算式で算出することができる。下記式中、「Y」はナフトール骨格(n)の質量数、「Z」はナフトキノン骨格(q)の質量数、「p」はナフトール骨格(n)のナフトキノン骨格(q)に対する存在割合(モル比)、「q」はナフトキノン骨格(q)のナフトール骨格(n)に対する存在割合(モル比)を表わす。
核体数の平均=(Mn−x)/(x+12)+1
x=p/100×Y+q/100×Z
なお、上記「p」及び「q」は、更に具体的には、後述する13C−NMR測定によるモル比[ナフトキノン骨格(q)/フェノール性水酸基(p)が結合する炭素原子]の算出方法によって導かれる値である。
<GPC:測定条件>
測定装置 :東ソー株式会社製「HLC−8220 GPC」、
カラム:東ソー株式会社製ガードカラム「HXL−L」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G3000HXL」
+東ソー株式会社製「TSK−GEL G4000HXL」
検出器: RI(示差屈折計)
データ処理:東ソー株式会社製「GPC−8020モデルIIバージョン4.10」
測定条件: カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 : 前記「GPC−8020モデルIIバージョン4.10」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料 : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
3)13C−NMR:測定条件は以下の通りである。
装置:日本電子(株)製 AL−400
測定モード:SGNNE(NOE消去の1H完全デカップリング法)
溶媒 :ジメチルスルホキシド
パルス角度:45℃パルス
試料濃度 :30wt%
積算回数 :10000回
上記したフェノール樹脂(B)は、ナフトール化合物とホルムアルデヒドとの重縮合体(x)を酸化処理し、該重縮合体中の一部のナフトール骨格をキノン化させた樹脂構造を有するものであることが、製造が容易である点から好ましい。
ここで、ナフトール化合物とホルムアルデヒドとの重縮合体(x)は、具体的には、α−ナフトールノボラック樹脂、β−ナフトールノボラック樹脂、これらにメチル基、エチル基、メトキシ基等のアルキル基が核置換した分子構造を有する各種のノボラック樹脂、1,6−ジヒドロキシナフタレンのノボラック化物、2,7−ジヒドロキシナフタレンのジヒドロキシ化物などが挙げられる。これらのなかでもキノン体生成による耐熱性の改善効果、及び、熱履歴後の耐熱性変化の低減効果に優れる点からα−ナフトールノボラック樹脂であることが好ましい。
また、重縮合体(x)の製造に用いられるナフトール化合物は、α−ナフトール、β−ナフトール、及びこれらにメチル基、エチル基、メトキシ基等のアルキル基が核置換した化合物等が挙げられ、特に反応性に優れる点から、α−ナフトールであることが好ましい。
また、ナフトール化合物とホルムアルデヒドとの重縮合体(x)は、前記ナフトール系化合物と共に、その他のフェノール化合物、又は、フェノールノボラック樹脂若しくはクレゾールノボラック樹脂を併用してホルムアルデヒドと重縮合させたものであることが、硬化物の耐熱性が一層する点から好ましい。
ここで用いられるその他のフェノール化合物は、具体的には、フェノール、クレゾール、ジメチルフェノール等が挙げられる。これらのなかでも、最終的に得られるフェノール樹脂(B)の反応性が向上する点で、フェノール又はクレゾールが好ましい。
また、当該他のフェノール化合物の使用量は原料成分中、0.5〜10質量%となる割合であることが、当該その他のフェノール系化合物を併用する効果が顕著に現れる点から好ましい。ここで述べる原料成分とは、ナフトール化合物、ホルムアルデヒド、及びフェノールノボラック又はアルキルフェノールノボラックの総量の事を示す。
他方、フェノールノボラック樹脂若しくはクレゾールノボラック樹脂は、軟化点が60〜120℃の範囲にあるもの、更に、前記条件でのGPC測定による平均核体数が3〜10の範囲にあるものが最終的に得られるフェノール樹脂(B)の流動性が良好なものとなり硬化物の耐熱性をより高めることができる点から好ましい。
ここで、フェノールノボラック又はアルキルフェノールノボラックの使用量は、原料成分中、0.5〜10質量%となる割合であることが、フェノールノボラック又はアルキルフェノールノボラックを併用する効果が顕著に現れる点から好ましい。ここで述べる原料成分とは、ナフトール系化合物、ホルムアルデヒド、及びフェノールノボラック又はアルキルフェノールノボラックの総量の事を示す。
一方、前記ホルムアルデヒドのホルムアルデヒド源としては、例えば、ホルマリン、パラホルムアルデヒド、トリオキサン等が挙げられる。ここで、ホルマリンは水希釈性や製造時の作業性の点から30〜60質量%のホルマリンであることが好ましい。
前記重縮合体(x)は、前記ナフトール化合物と前記ホルムアルデヒドとを酸触媒下に反応させて製造することができ、ここで用いる酸触媒は、塩酸、硫酸、リン酸などの無機酸、メタンスルホン酸、p−トルエンスルホン酸、シュウ酸などの有機酸、三弗化ホウ素、無水塩化アルミニウム、塩化亜鉛などのルイス酸などが挙げられる。その使用量は仕込み原料の総重量に対して、0.1〜5重量%の範囲が好ましい。
また、ナフトール化合物と、前記ホルムアルデヒドと、必要により、その他のフェノール化合物又はフェノールノボラック樹脂若しくはクレゾールノボラック樹脂との反応における反応温度は80〜150℃の範囲であることが反応性に優れる点から好ましい。
このようにして得られるナフトール化合物とホルムアルデヒドとの重縮合体(x)は、その軟化点が110〜150℃の範囲であることが硬化物における耐熱性に優れる点から好ましい。
本発明のフェノール樹脂(B)は、前記した通り、斯かるナフトール化合物とホルムアルデヒドとの重縮合体(x)を酸化処理することによって該重縮合体の樹脂構造中にナフトキノン骨格(q)を生成させることによって得ることができる。
次に、本発明のフェノール樹脂(B)におけるナフトキノン骨格(q)とナフトール骨格(n)との存在割合は、フェノール樹脂(B)中のフェノール性水酸基(p)と、ナフトキノン骨格(q)との存在比率が、13C−NMR測定によるモル比[ナフトキノン骨格(q)/フェノール性水酸基(p)が結合する炭素原子]において0.1/99.9〜20/80となる割合となる範囲であることが、硬化物の耐熱性、及び、熱履歴後の耐熱性変化を低減する効果に優れる点から好ましく、特に0.5/99.5〜15/85となる割合となる範囲であることが斯かる効果が一層顕著なものとなる点から好ましい。
ここで、モル比[ナフトキノン骨格(q)/フェノール性水酸基(p)が結合する炭素原子]は、13C−NMR測定によって計算され、具体的には下記の方法にて測定及び算出される値である。
13C−NMR測定条件>
13C−NMR:測定条件は以下の通り。
装置:日本電子(株)製 AL−400
測定モード:SGNNE(NOE消去の1H完全デカップリング法)
溶媒 :ジメチルスルホキシド
パルス角度:45℃パルス
試料濃度 :30wt%
積算回数 :10000回
<モル比[ナフトキノン骨格(q)/フェノール性水酸基(p)が結合する炭素原子]の算出方法>
本発明のフェノール樹脂(B)を上記の13C−NMR測定条件で測定した場合、145ppmから160ppmの間に検出されるフェノール性水酸基(p)が結合する炭素原子のピークの積算値(α)と170ppmから190ppmの間に検出されるナフトキノン骨格(q)の酸素が結合する炭素原子のピークの積算値(β)の関係は、下記式(1)及び下記式(2)を充足する。ここで(X)はフェノール性水酸基(p)のモル数、(Y)はナフトキノン骨格(q)のモル数を示す。
X = α 式(1)
Y = β/2 式(2)
よって、上記式(1)及び式(2)から、前記モル比は、下記式(3)における[Y/X]の値として算出することができる。
Y/X = β/2α 式(3)
ナフトール系化合物とホルムアルデヒドとの重縮合体(x)を酸化処理する方法は、例えば、ナフトール系化合物とホルムアルデヒドとの重縮合体(x)を非密閉型の容器内に入れ空気存在下に放置乃至は攪拌する方法、或いは、非密閉型又は密閉型容器に酸素を吹き込みながら放置乃至攪拌する方法が挙げられる。この際、酸化処理の温度条件は、前記重縮合体(x)の軟化点以下であればよいが、例えば、25〜120℃の範囲であることが生産性に優れる点から好ましい。また、酸化処理時間は、例えば1時間〜72時間の範囲が挙げられるが、前記モル比[ナフトキノン骨格(q)/フェノール性水酸基(p)が結合する炭素原子]の値は酸化処理時間が長くなるにつれ高くなる為、この酸化処理時間により当該モル比をコントロールすることができる。
このようにして得られる本発明のフェノール樹脂(B)は、その軟化点が110〜180℃の範囲であることが硬化物における耐熱性に優れる点から好ましい。
また、本発明のフェノール樹脂(B)は、下記の条件にてFT−IRを測定した場合に、1560cm−1から1600cm−1の間に検出されるキノン骨格由来のピーク吸収値(γ)と1630cm−1から1670cm−1の間に検出される芳香族骨格由来のピーク吸収値(ω)から算出されるキノン吸光度比(γ/ω)が、0.1〜1.0の範囲であることが硬化物の低熱膨張性、耐熱性に優れる点から好ましい。
<FT−IR測定条件>
装置:日本分光(株)製 FT/IR−4200typeA
測定方法:KBr錠剤法
測定モード:吸光度(Abs)
分解:4cm−1
積算回数:32回
横軸:Wavenumber(cm−1
縦軸:Abs
<ピーク吸収値(γ及びω)の算出方法>
ピーク吸収値(γ)とピーク吸収値(ω)は、1500cm−1から1560cm−1の吸収の最小値(a)、1660cm−1から1800cm−1の吸収の最小値(b)を結んだベースラインからの高さから算出される値である。
本発明の硬化性組成物における前記エポキシ樹脂(A)と前記フェノール樹脂(B)との配合割合は、特に制限されるものではないが、得られる硬化物が耐熱性により優れるものとなることから、前記エポキシ樹脂(A)が有するエポキシ基の合計1当量に対して、前記フェノール樹脂(B)が含有するフェノール性水酸基の合計が0.7〜1.5当量の範囲となる割合であることが好ましい。
本発明の硬化性組成物は、前記したフェノール樹脂(B)をエポキシ樹脂用硬化剤として用いるものであるが、必要に応じて、適宜、その他のエポキシ樹脂用硬化剤(B’)を併用してもよい。ここで使用し得るその他のエポキシ樹脂用硬化剤としては、アミン系化合物、アミド系化合物、酸無水物系化合物、フェノ−ル系化合物などの各種の公知の硬化剤が挙げられる。具体的には、アミン系化合物としてはジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ−ル、BF−アミン錯体、グアニジン誘導体等が挙げられ、アミド系化合物としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられ、酸無水物系化合物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられ、フェノール系化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミン、ベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)やアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。
前記したその他のエポキシ樹脂用硬化剤(B’)を用いる場合、その使用量は、エポキシ樹脂用硬化剤(B’)中の活性水素と、フェノール樹脂(B)中のフェノール性水酸基との当量比(活性水素/水酸基)が1/10〜5/1となる範囲であることが好ましい。
また、本発明では、前記エポキシ樹脂(A)以外のエポキシ化合物(A’)を併用しても良い。その他のエポキシ化合物(A’)の使用量は、例えば、全エポキシ成分中、5〜50質量%となる範囲であることが好ましい。
ここで使用され得るエポキシ化合物(A’)としては、種々のエポキシ樹脂を用いることができるが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂等のビフェニル型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、フェノール系化合物とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物、ビフェニルノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェニルメタン型エポキシ樹脂;テトラフェニルエタン型エポキシ樹脂;ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂;フェノールアラルキル型エポキシ樹脂;リン原子含有エポキシ樹脂等が挙げられる。また、これらのエポキシ樹脂は単独で用いてもよく、2種以上を混合してもよい。
ここで、リン原子含有エポキシ樹脂としては、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド(以下、「HCA」と略記する。)のエポキシ化物、HCAとキノン類とを反応させて得られるフェノール樹脂のエポキシ化物、フェノールノボラック型エポキシ樹脂をHCAで変性したエポキシ樹脂、クレゾールノボック型エポキシ樹脂をHCAで変性したエポキシ樹脂、また、ビスフェノールA型エポキシ樹脂を及びHCAとキノン類とを反応させて得られるフェノール樹脂で変成して得られるエポキシ樹脂等が挙げられる。
本発明では、必要に応じて硬化促進剤を適宜併用することもできる。前記硬化促進剤としては種々のものが使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、イミダゾール化合物では2−エチル−4−メチルイミダゾール、リン系化合物ではトリフェニルフォスフィン、第3級アミンでは1,8−ジアザビシクロ−[5.4.0]−ウンデセン(DBU)が好ましい。
以上詳述した本発明の硬化性組成物をプリント配線基板用ワニス等に調整する場合、上記各成分の他に有機溶剤(C)を配合することが好ましい。ここで使用し得る前記有機溶剤としては、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられ、その選択や適正な使用量は用途によって適宜選択し得るが、例えば、プリント配線基板用途では、メチルエチルケトン、アセトン、ジメチルホルムアミド等の沸点が160℃以下の極性溶剤であることが好ましく、また、不揮発分40〜80質量%となる割合で使用することが好ましい。一方、ビルドアップ用接着フィルム用途では、有機溶剤として、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン溶剤、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等のエステル溶剤、セロソルブ、ブチルカルビトール等のカルビトール溶剤、トルエン、キシレン等の芳香族炭化水素溶剤、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等を用いることが好ましく、また、不揮発分が30〜60質量%となる割合で使用することが好ましい。
また、本発明の硬化性組成物は、難燃性をさらに高めるために、例えばプリント配線基板用途においては、実質的にハロゲン原子を含有しない非ハロゲン系難燃剤を配合してもよい。
前記非ハロゲン系難燃剤としては、例えば、リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、それらの使用に際しても何等制限されるものではなく、単独で使用しても、同一系の難燃剤を複数用いても良く、また、異なる系の難燃剤を組み合わせて用いることも可能である。
前記リン系難燃剤としては、無機系、有機系のいずれも使用することができる。無機系化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。
また、前記赤リンは、加水分解等の防止を目的として表面処理が施されていることが好ましく、表面処理方法としては、例えば、(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。
前記有機リン系化合物としては、例えば、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10−ジヒドロ−9−オキサー10−ホスファフェナントレン=10−オキシド、10−(2,5―ジヒドロオキシフェニル)―10H−9−オキサ−10−ホスファフェナントレン=10−オキシド、10―(2,7−ジヒドロオキシナフチル)−10H−9−オキサ−10−ホスファフェナントレン=10−オキシド等の環状有機リン化合物、及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等が挙げられる。
それらの配合量としては、リン系難燃剤の種類、硬化性組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ成分、硬化剤、非及びその他の充填材や添加剤等全てを配合した硬化性組成物100質量部中、赤リンを非ハロゲン系難燃剤として使用する場合は0.1〜2.0質量部の範囲で配合することが好ましく、有機リン化合物を使用する場合は同様に0.1〜10.0質量部の範囲で配合することが好ましく、特に0.5〜6.0質量部の範囲で配合することが好ましい。
また前記リン系難燃剤を使用する場合、該リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用してもよい。
前記窒素系難燃剤としては、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等が挙げられ、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が好ましい。
前記トリアジン化合物としては、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、例えば、(i)硫酸グアニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリアジン化合物、(ii)フェノール、クレゾール、キシレノール、ブチルフェノール、ノニルフェノール等のフェノール系化合物と、メラミン、ベンゾグアナミン、アセトグアナミン、ホルムグアナミン等のメラミン類およびホルムアルデヒドとの共縮合物、(iii)前記(ii)の共縮合物とフェノールホルムアルデヒド縮合物等のフェノール樹脂類との混合物、(iv)前記(ii)、(iii)を更に桐油、異性化アマニ油等で変性したもの等が挙げられる。
前記シアヌル酸化合物の具体例としては、例えば、シアヌル酸、シアヌル酸メラミン等を挙げることができる。
前記窒素系難燃剤の配合量としては、窒素系難燃剤の種類、硬化性組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ成分、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性組成物100質量部中、0.05〜10質量部の範囲で配合することが好ましく、特に0.1〜5質量部の範囲で配合することが好ましい。
また前記窒素系難燃剤を使用する際、金属水酸化物、モリブデン化合物等を併用してもよい。
前記シリコーン系難燃剤としては、ケイ素原子を含有する有機化合物であれば特に制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。
前記シリコーン系難燃剤の配合量としては、シリコーン系難燃剤の種類、硬化性樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ成分、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性組成物100質量部中、0.05〜20質量部の範囲で配合することが好ましい。また前記シリコーン系難燃剤を使用する際、モリブデン化合物、アルミナ等を併用してもよい。
前記無機系難燃剤としては、例えば、金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。
前記金属水酸化物の具体例としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム等を挙げることができる。
前記金属酸化物の具体例としては、例えば、モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等を挙げることができる。
前記金属炭酸塩化合物の具体例としては、例えば、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等を挙げることができる。
前記金属粉の具体例としては、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等を挙げることができる。
前記ホウ素化合物の具体例としては、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等を挙げることができる。
前記低融点ガラスの具体例としては、例えば、シープリー(ボクスイ・ブラウン社)、水和ガラスSiO2−MgO−H2O、PbO−B2O3系、ZnO−P2O5−MgO系、P2O5−B2O3−PbO−MgO系、P−Sn−O−F系、PbO−V2O5−TeO2系、Al2O3−H2O系、ホウ珪酸鉛系等のガラス状化合物を挙げることができる。
前記無機系難燃剤の配合量としては、無機系難燃剤の種類、硬化性組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ成分、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性組成物100質量部中、0.5〜50質量部の範囲で配合することが好ましく、特に5〜30質量部の範囲で配合することが好ましい。
前記有機金属塩系難燃剤としては、例えば、フェロセン、アセチルアセトナート金属錯体、有機金属カルボニル化合物、有機コバルト塩化合物、有機スルホン酸金属塩、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合物等が挙げられる。
前記有機金属塩系難燃剤の配合量としては、有機金属塩系難燃剤の種類、硬化性組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ成分、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合した硬化性組成物100質量部中、0.005〜10質量部の範囲で配合することが好ましい。
本発明の硬化性組成物には、必要に応じて無機質充填材を配合することができる。前記無機質充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。前記無機充填材の配合量を特に大きくする場合は溶融シリカを用いることが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め且つ成形材料の溶融粘度の上昇を抑制するためには、球状のものを主に用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は硬化性組成物100質量部中、0.5〜100質量部の範囲で配合することが好ましい。また導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。
本発明の硬化性組成物は、必要に応じて、シランカップリング剤、離型剤、顔料、乳化剤等の種々の配合剤を添加することができる。
本発明の硬化性組成物は、上記した各成分を均一に混合することにより得られる。エポキシ成分、硬化剤、更に必要により硬化促進剤の配合された本発明の硬化性組成物は従来知られている方法と同様の方法で容易に硬化物とすることができる。該硬化物としては積層物、注型物、接着層、塗膜、フィルム等の成形硬化物が挙げられる。
本発明の硬化性組成物が用いられる用途としては、プリント配線板材料、樹脂注型材料、接着剤、ビルドアップ基板用層間絶縁材料、ビルドアップ用接着フィルム等が挙げられる。また、これら各種用途のうち、プリント配線板や電子回路基板用絶縁材料、ビルドアップ用接着フィルム用途では、コンデンサ等の受動部品やICチップ等の能動部品を基板内に埋め込んだ所謂電子部品内蔵用基板用の絶縁材料として用いることができる。これらの中でも、高耐熱性及び難燃性といった特性からプリント配線板材料やビルドアップ用接着フィルムに用いることが好ましい。
ここで、本発明の硬化性組成物からプリント回路基板を製造するには、前記有機溶剤(C)を配合してワニス化した樹脂組成物を、補強基材に含浸し銅箔を重ねて加熱圧着させる方法が挙げられる。ここで使用し得る補強基材は、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などが挙げられる。かかる方法を更に詳述すれば、先ず、前記したワニス状の硬化性組成物を、用いた溶剤種に応じた加熱温度、好ましくは50〜170℃で加熱することによって、硬化物であるプリプレグを得る。この時用いる硬化性組成物と補強基材の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20〜60質量%となるように調製することが好ましい。次いで、上記のようにして得られたプリプレグを、常法により積層し、適宜銅箔を重ねて、1〜10MPaの加圧下に170〜250℃で10分〜3時間、加熱圧着させることにより、目的とするプリント回路基板を得ることができる。
本発明の硬化性組成物をレジストインキとして使用する場合には、例えば該硬化性組成物の触媒としてカチオン重合触媒を用い、更に、顔料、タルク、及びフィラーを加えてレジストインキ用組成物とした後、スクリーン印刷方式にてプリント基板上に塗布した後、レジストインキ硬化物とする方法が挙げられる。
本発明の硬化性組成物を導電ペーストとして使用する場合には、例えば、微細導電性粒子を該硬化性組成物中に分散させ異方性導電膜用組成物とする方法、室温で液状である回路接続用ペースト樹脂組成物や異方性導電接着剤とする方法が挙げられる。
本発明の硬化性組成物からビルドアップ基板用層間絶縁材料を得る方法としては、例えば、ゴム、フィラーなどを適宜配合した当該硬化性組成物を、回路を形成した配線基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる。その後、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、凹凸を形成させ、銅などの金属をめっき処理する。前記めっき方法としては、無電解めっき、電解めっき処理が好ましく、また前記粗化剤としては酸化剤、アルカリ、有機溶剤等が挙げられる。このような操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップして形成することにより、ビルドアップ基盤を得ることができる。但し、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行う。また、銅箔上で当該硬化性組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170〜250℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。
本発明の硬化性組成物からビルドアップ用接着フィルムを製造する方法は、例えば、本発明の硬化性組成物を、支持フィルム上に塗布し樹脂組成物層を形成させて多層プリント配線板用の接着フィルムとする方法が挙げられる。
本発明の硬化性組成物をビルドアップ用接着フィルムに用いる場合、該接着フィルムは、真空ラミネート法におけるラミネートの温度条件(通常70℃〜140℃)で軟化し、回路基板のラミネートと同時に、回路基板に存在するビアホール或いはスルーホール内の樹脂充填が可能な流動性(樹脂流れ)を示すことが肝要であり、このような特性を発現するよう上記各成分を配合することが好ましい。
ここで、多層プリント配線板のスルーホールの直径は通常0.1〜0.5mm、深さは通常0.1〜1.2mmであり、通常この範囲で樹脂充填を可能とするのが好ましい。なお回路基板の両面をラミネートする場合はスルーホールの1/2程度充填されることが望ましい。
上記した接着フィルムを製造する方法は、具体的には、ワニス状の本発明の硬化性組成物を調製した後、支持フィルム(y)の表面に、このワニス状の組成物を塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥させて硬化性樹脂組成物の層(x)を形成させることにより製造することができる。
形成される層(x)の厚さは、通常、導体層の厚さ以上とする。回路基板が有する導体層の厚さは通常5〜70μmの範囲であるので、樹脂組成物層の厚さは10〜100μmの厚みを有するのが好ましい。
なお、本発明における層(x)は、後述する保護フィルムで保護されていてもよい。保護フィルムで保護することにより、硬化性組成物層表面へのゴミ等の付着やキズを防止することができる。
前記した支持フィルム及び保護フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び保護フィルムはマッド処理、コロナ処理の他、離型処理を施してあってもよい。
支持フィルムの厚さは特に限定されないが、通常10〜150μmであり、好ましくは25〜50μmの範囲で用いられる。また保護フィルムの厚さは1〜40μmとするのが好ましい。
上記した支持フィルム(y)は、回路基板にラミネートした後に、或いは加熱硬化することにより絶縁層を形成した後に、剥離される。接着フィルムを加熱硬化した後に支持フィルム(y)を剥離すれば、硬化工程でのゴミ等の付着を防ぐことができる。硬化後に剥離する場合、通常、支持フィルムには予め離型処理が施される。
次に、上記のようして得られた接着フィルムを用いて多層プリント配線板を製造する方法は、例えば、層(x)が保護フィルムで保護されている場合はこれらを剥離した後、層(x)を回路基板に直接接するように、回路基板の片面又は両面に、例えば真空ラミネート法によりラミネートする。ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。またラミネートを行う前に接着フィルム及び回路基板を必要により加熱(プレヒート)しておいてもよい。
ラミネートの条件は、圧着温度(ラミネート温度)を好ましくは70〜140℃、圧着圧力を好ましくは1〜11kgf/cm2(9.8×104〜107.9×104N/m2)とし、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートすることが好ましい。
本発明の硬化物を得る方法としては、上記方法によって得られた組成物を、20〜250℃程度の温度範囲で加熱すればよい。
次に本発明を実施例、比較例により具体的に説明するが、以下において「部」及び「%
」は特に断わりのない限り質量基準である。尚、軟化点、13C−NMR、GPC及びMSは以下の条件にて測定した。
1)軟化点測定法:JIS K7234
2)GPC:測定条件は以下の通り。
測定装置 :東ソー株式会社製「HLC−8220 GPC」、
カラム:東ソー株式会社製ガードカラム「HXL−L」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G2000HXL」
+東ソー株式会社製「TSK−GEL G3000HXL」
+東ソー株式会社製「TSK−GEL G4000HXL」
検出器: RI(示差屈折計)
データ処理:東ソー株式会社製「GPC−8020モデルIIバージョン4.10」
測定条件: カラム温度 40℃
展開溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 : 前記「GPC−8020モデルIIバージョン4.10」の測定マニュアル
に準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
(使用ポリスチレン)
東ソー株式会社製「A−500」
東ソー株式会社製「A−1000」
東ソー株式会社製「A−2500」
東ソー株式会社製「A−5000」
東ソー株式会社製「F−1」
東ソー株式会社製「F−2」
東ソー株式会社製「F−4」
東ソー株式会社製「F−10」
東ソー株式会社製「F−20」
東ソー株式会社製「F−40」
東ソー株式会社製「F−80」
東ソー株式会社製「F−128」
試料 : 樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィ
ルターでろ過したもの(50μl)。
3)13C−NMR:測定条件は以下の通り。
装置:日本電子(株)製 AL−400
測定モード:SGNNE(NOE消去の1H完全デカップリング法)
溶媒 :ジメチルスルホキシド
パルス角度:45℃パルス
試料濃度 :30wt%
積算回数 :10000回
4)エポキシ樹脂(A)のMS :日本電子株式会社製 JMS−T100GC
5)フェノール樹脂(B)のMS :島津バイオテック社製質量分析装置 「MALDI−MASS AXIMA−TOF2」
6)<モル比[ナフトキノン骨格(q)/フェノール性水酸基(p)が結合する炭素原子]>の算出方法
本発明のフェノール樹脂(B)を上記の13C−NMR測定条件で測定した場合、145ppmから160ppmの間に検出されるフェノール性水酸基(p)が結合する炭素原子のピークの積算値(α)と170ppmから190ppmの間に検出されるナフトキノン骨格(q)の酸素が結合する炭素原子のピークの積算値(β)の関係は、下記式(1)及び下記式(2)を充足する。ここで(X)はフェノール性水酸基(p)のモル数、(Y)はナフトキノン骨格(q)のモル数を示す。
X = α 式(1)
Y = β/2 式(2)
よって、上記式(1)及び式(2)から、前記モル比は、下記式(3)における[Y/X]の値として算出することができる。
Y/X = β/2α 式(3)
7)核体数の平均の算出方法
核体数の平均は、フェノール樹脂(B)を上記のGPC測定条件で測定した数平均分子量(Mn)から下記の計算式で算出することができる。下記式中、「Y」はナフトール骨格(n)の質量数、「Z」はナフトキノン骨格(q)の質量数、「p」はナフトール骨格(n)のナフトキノン骨格(q)に対する存在割合(モル比)、「q」はナフトキノン骨格(q)のナフトール骨格(n)に対する存在割合(モル比)を表わす。
核体数の平均=(Mn−x)/(x+12)+1
x=p/100×Y+q/100×Z
なお、上記「p」及び「q」は、更に具体的には、上記13C−NMR測定によるモル比[ナフトキノン骨格(q)/フェノール性水酸基(p)が結合する炭素原子]の算出方法によって導かれる値である。
8)FT−IR測定条件
装置:日本分光(株)製 FT/IR−4200typeA
測定方法:KBr錠剤法
測定モード:吸光度(Abs)
分解:4cm-1
積算回数:32回
横軸:Wavenumber(cm-1)
縦軸:Abs
9)<キノン吸光度比の算出方法>
本発明のフェノール樹脂(B)を上記のFT−IR測定条件で測定した場合、1560cm-1から1600cm-1の間に検出されるキノン骨格由来のピーク吸収値(γ)と1630cm-1から1670cm-1の間に検出される芳香族骨格由来のピーク吸収値(ω)からキノン吸光度比はγ/ωで算出される。
ピーク吸収値(γ)とピーク吸収値(ω)は、1500cm−1から1560cm−1の吸収の最小値(a)、1660cm−1から1800cm−1の吸収の最小値(b)を結んだベースラインからの高さから算出される。
製造例1 エポキシ樹脂(A−1)の製造
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、β−ナフトール144部(1.0モル)、イソプロピルアルコール150部、37%ホルマリン水溶液130部(1.6モル)、49%水酸化ナトリウム41部(0.5モル)を仕込み、室温から80℃まで攪拌しながら昇温し、80℃で1時間撹拌した。続いて、α−ナフトール144部(1.0モル)を仕込み、さらに80℃で1時間攪拌した。反応終了後、第1リン酸ソーダ60質量部を添加して中和した後、メチルイソブチルケトン600部加え、水150質量部で3回洗浄を繰り返した後に、加熱減圧下乾燥してナフトール樹脂(a−1)290質量部得た。得られたナフトール樹脂(a−1)の水酸基当量は153グラム/当量であった。
次いで、温度計、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながら上記反応で得られたナフトール樹脂(a−1)153質量部(水酸基1.0当量)、エピクロルヒドリン463質量部(5.0モル)、n−ブタノール53質量部を仕込み攪拌しながら溶解させた。50℃に昇温した後に、20%水酸化ナトリウム水溶液220質量部(1.10モル)を3時間要して添加し、その後更に50℃で1時間反応させた。反応終了後、攪拌を停止し、下層に溜まった水層を除去し、攪拌を再開し150℃減圧下で未反応エピクロルヒドリンを留去した。それで得られた粗エポキシ樹脂にメチルイソブチルケトン300質量部とn−ブタノール50質量部とを加え溶解した。更にこの溶液に10質量%水酸化ナトリウム水溶液15質量部を添加して80℃で2時間反応させた後に洗浄液のpHが中性となるまで水100質量部で水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去して目的のエポキシ樹脂(A−1)200質量部を得た。得られたエポキシ樹脂(A−1)のエポキシ当量は234グラム/当量、軟化点113℃であり、GPCチャートを図1、13C−NMRチャートを図2、MASSチャートを図3に示す。GPCチャートから3量体(a1)の含有率は25.3%、2量体(a2)の含有率は5.3%、カリックスアレーン化合物(a3)の含有率は7.4%、高分子量体(a4)の含有率は62.0%であった。
製造例2 エポキシ樹脂(A−2)の製造
β−ナフトール72部(0.5モル)、イソプロピルアルコール130部、37%ホルマリン水溶液142部(1.75モル)、49%水酸化ナトリウム24部(0.3モル)に変更した以外は、実施例1と同様にしてエポキシ樹脂(A−2)200質量部を得た。得られたエポキシ樹脂(A−2)のエポキシ当量は242グラム/当量、軟化点134℃であり、GPCチャートを図4に示す。GPCチャートから3量体(a1)の含有率は15.8%、2量体(a2)の含有率は3.0%、カリックスアレーン化合物(a3)の含有率は33.0%、高分子量体(a4)の含有率は48.2%であった。
製造例3 エポキシ樹脂(A−3)の製造
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、β−ナフトール115部(0.80モル)、α−ナフトール173部(1.20モル)、軟化点75℃(B&R法)のクレゾールノボラック樹脂54質量部(クレゾール骨格のモル数:0.45モル)、イソプロピルアルコール150部、37%ホルマリン水溶液135部(1.66モル)、49%水酸化ナトリウム5部(0.06モル)を仕込み、室温から80℃まで攪拌しながら昇温し、80℃で2時間撹拌した。反応終了後、第1リン酸ソーダ10質量部を添加して中和した後、メチルイソブチルケトン727部加え、水182質量部で3回洗浄を繰り返した後に、加熱減圧下乾燥してナフトール樹脂(a−3)350質量部得た。得られたナフトール樹脂(a−3)の水酸基当量は148グラム/当量であった。
エポキシ化工程は実施例1と同様にして、目的のエポキシ樹脂(A−3)204質量部を得た。得られたエポキシ樹脂(A−3)のエポキシ当量は230グラム/当量、軟化点112℃であり、GPCチャートを図5に示す。GPCチャートから3量体(a1)の含有率は16.8%、2量体(a2)の含有率は3.7%、カリックスアレーン化合物(a3)の含有率は13.4%、高分子量体(a4)の含有率は66.1%であった。
製造例4 フェノール樹脂(B−1)の製造
温度計、滴下ロート、冷却管、分留管、撹拌器を取り付けたフラスコに、α−ナフトール505質量部(3.50モル)、水158質量部、蓚酸5質量部を仕込み、室温から100℃まで45分で昇温しながら撹拌した。続いて、42質量%ホルマリン水溶液177質量部(2.45モル)を1時間要して滴下した。滴下終了後、さらに100℃で1時間攪拌し、その後180℃まで3時間で昇温した。反応終了後、反応系内に残った水分を加熱減圧下に除去しフェノール樹脂(b−1)498質量部を得た。続いて、得られた(b−1)150部を粉砕し80℃空気雰囲気下で、9時間処理してキノン骨格含有フェノール樹脂(B−1)150部得た。キノン骨格含有フェノール樹脂(A−2)の軟化点は140℃(B&R法)、水酸基当量は153グラム/当量であった。得られたキノン骨格含有フェノール樹脂(B−1)のGPCチャートを図6に示す。GPCチャートから核体数の平均は4.3であった。モル比[ナフトキノン骨格(q)中/フェノール性水酸基(p)が結合する炭素原子]は2.3/97.7、キノン吸光度比は0.16であった。
製造例5 フェノール樹脂(B−2)の製造
原料成分として、α−ナフトール505質量部(3.50モル)、軟化点75℃(B&R法)のクレゾールノボラック樹脂21部(クレゾール骨格のモル数:0.18モル)、42質量%ホルマリン水溶液186質量部(2.57モル)に変更した以外は製造例4と同様にしてフェノール樹脂(b−2)521質量部を得た。続いて、得られた(b−2)150部を粉砕し80℃空気雰囲気下で、18時間処理してキノン骨格含有フェノール樹脂(B−2)151質量部得た。キノン骨格含有フェノール樹脂(B−2)の軟化点は147℃(B&R法)、水酸基当量は150グラム/当量であった。得られたキノン骨格含有フェノール樹脂(B−2)のGPCチャートを図7に、C13NMRチャートを図8に、MSスペクトルを図9に、FT−IRチャートを図10に示す。GPCチャートから核体数の平均は4.6であった。C13NMRチャートから184ppm付近にキノン骨格が生成していることを示すピークが検出され、モル比[ナフトキノン骨格(q)中/フェノール性水酸基(p)が結合する炭素原子]は5.9/94.1、キノン吸光度比は0.36であった。
製造例6 フェノール樹脂(B−3)の製造
80℃空気雰囲気下の処理時間を18時間に変更した以外は製造例4と同様にしてキノン骨格含有フェノール樹脂(B−3)151質量部得た。キノン骨格含有フェノール樹脂(B−3)の軟化点は149℃(B&R法)、水酸基当量は152グラム/当量であった。得られたキノン骨格含有フェノール樹脂(B−3)のGPCチャートを図11に示す。GPCチャートから核体数の平均は4.3であった。モル比[ナフトキノン骨格(q)中/フェノール性水酸基(p)が結合する炭素原子]は5.0/95.0、キノン吸光度比は0.40であった。
製造例7 フェノール樹脂(B−4)の製造
80℃空気雰囲気下の処理時間を27時間に変更した以外は製造例4と同様にしてキノン骨格含有フェノール樹脂(B−4)151部得た。キノン骨格含有フェノール樹脂(B−4)の軟化点は158℃(B&R法)、水酸基当量は152グラム/当量であった。得られたキノン骨格含有フェノール樹脂(B−4)のGPCチャートを図12に示す。GPCチャートから核体数の平均は4.1であった。モル比[ナフトキノン骨格(q)中/フェノール性水酸基(p)が結合する炭素原子]は7.8/92.2、キノン吸光度比は0.69であった。
実施例8 フェノール樹脂(B−5)の製造
80℃空気雰囲気下の処理時間を36時間に変更した以外は製造例4と同様にしてキノン骨格含有フェノール樹脂(B−5)151部得た。キノン骨格含有フェノール樹脂(B−5)の軟化点は167℃(B&R法)、水酸基当量は151グラム/当量であった。得られたキノン骨格含有フェノール樹脂(B−5)のGPCチャートを図13に示す。GPCチャートから核体数の平均は4.0であった。モル比[ナフトキノン骨格(q)中/フェノール性水酸基(p)が結合する炭素原子]は10.9/89.1、キノン吸光度比は0.85であった。
実施例1〜15、及び比較例1、2
下記表1〜3記載の配合に従い、エポキシ樹脂として前記(A−1)〜(A−3)又はDIC社製「N−770」(フェノールノボラック型エポキシ樹脂、エポキシ当量183グラム/当量)を、硬化剤として前記フェノール樹脂(B−1)〜(B〜5)を、硬化促進剤として2−エチル−4−メチルイミダゾール(2E4MZ)を配合し、最終的に各組成物の不揮発分(N.V.)が58質量%となるようにメチルエチルケトンを配合して調整した。次いで、下記の如き条件で硬化させて試験片を試作し、下記の方法で各種性能を評価した。結果を表1〜3に示す。
<試験片作製条件>
基材:日東紡績株式会社製 ガラスクロス「#2116」(210×280mm)
プライ数:6 プリプレグ化条件:160℃
硬化条件:200℃、40kg/cmで1.5時間、成型後板厚:0.8mm
<耐熱性試験>
試験片のガラス転移温度をDMA法にて測定。粘弾性測定装置(DMA:レオメトリック社製固体粘弾性測定装置RSAII、レクタンギュラーテンション法;周波数1Hz、昇温速度3℃/min)を用いて、弾性率変化が最大となる(tanδ変化率が最も大きい)温度をガラス転移温度として評価した。昇温スピード3℃/分
<熱履歴後の耐熱性変化(ΔTg):DMA(1st run、2nd runのTg差)>
試験片のガラス転移温度を、粘弾性測定装置(DMA:レオメトリック社製固体粘弾性測定装置RSAII、レクタンギュラーテンション法;周波数1Hz、昇温速度3℃/min)を用いて、以下の温度条件で2回、弾性率変化が最大となる(tanδ変化率が最も大きい)温度(Tg)を測定した。
温度条件
1st run:35℃から275℃まで3℃/minで昇温
2nd run:35℃から330℃まで3℃/minで昇温
それぞれ得られた温度差をΔTgとして評価した。
<耐湿耐半田性>
試験片(25mm×50mm)を100℃の煮沸蒸留水中に2時間浸せき後、その試験片を260℃のハンダ浴に30秒間浸せきさせて、その前後の状態変化を観察した。
○: 外観変化なし
△: 直径5mm以下の膨れが5個以下
×: 直径5mmより大きい膨れ発生、又は直径5mm以下の膨れが6個以上




Figure 2014037473
Figure 2014037473





Figure 2014037473

Claims (9)

  1. エポキシ樹脂(A)とフェノール樹脂(B)とを含有する硬化性樹脂組成物であって、前記エポキシ樹脂(A)が、
    下記構造式(1)
    Figure 2014037473
    (式中、R及びRは、それぞれ独立して水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基を示し、Gはグリシジル基を表す。)
    で表される3量体(a1)と、
    下記構造式(2)
    Figure 2014037473
    (式中、R及びRは、それぞれ独立して水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基を示し、Gはグリシジル基を表す。)
    で表される2量体(a2)とを必須の成分として含有するものであり、かつ、前記フェノール樹脂(B)が、ナフトール骨格(n)とナフトキノン骨格(q)とがメチレン結合を介して結合した樹脂構造を有するものであることを特徴とする硬化性樹脂組成物。
  2. 前記エポキシ樹脂(A)が、α−ナフトール化合物、β−ナフトール化合物、及びホルムアルデヒドの重縮合体をポリグリシジルエーテル化したエポキシ樹脂であり、前記3量体(a1)をGPC測定における面積比率で15〜35%となる割合で含有し、かつ、前記2量体(a2)をGPC測定における面積比率で1〜25%となる割合で含有するものである請求項1記載の硬化性樹脂組成物。
  3. 前記エポキシ樹脂(A)が、前記3量体(a1)、前記2量体(a2)に加え、更に下記構造式(3)
    Figure 2014037473
    (式中、R及びRは、それぞれ独立して水素原子、炭素原子数1〜4のアルキル基、炭素原子数1〜4のアルコキシ基を示し、Gはグリシジル基を表し、nは繰り返し単位であって2〜10の整数である。)
    で表されるカリックスアレーン化合物(a3)を含有するものである請求項1記載の硬化性樹脂組成物。
  4. 前記エポキシ樹脂(A)が、前記カリックスアレーン型化合物(a3)をGPC測定における面積比率で1〜40%となる割合で含有するものである請求項3記載の硬化性樹脂組成物。
  5. 前記フェノール樹脂(B)中のフェノール性水酸基(p)と、ナフトキノン骨格(q)との存在比率が、13C−NMR測定によるモル比[ナフトキノン骨格(q)/フェノール性水酸基(p)が結合する炭素原子]において0.1/99.9〜20/80となる割合である請求項1記載の硬化性樹脂組成物。
  6. 前記フェノール樹脂(B)が有する前記ナフトール骨格(n)及びナフトキノン骨格(q)前記ナフトールノボラック樹脂(b1)の合計の核体数(但、これらの骨格中の縮合環を1核体とする。)の平均が3〜10の範囲である請求項1記載の硬化性樹脂組成物。
  7. 前記フェノール樹脂(B)が有するナフトキノン骨格(q)が、下記構造式q1又はq2
    Figure 2014037473
    (式中、R及びRはそれぞれ独立的に水素原子、メチル基、エチル基、又はメトキシ基である。なお、構造式中q1及びq2中の2本の線分は、他の構造部位との結合手を表し、当該構造を構成する2つの環構造の同一環に位置してもよく、また、異なる環に位置していてもよい。)
    で表されるものである請求項1記載の硬化性樹脂組成物。
  8. 請求項1〜7の何れか一つに記載の硬化性樹脂組成物を硬化させてなる硬化物。
  9. 請求項1〜7の何れか一つに記載の硬化性樹脂組成物に、更に有機溶剤を配合したワニス組成物を、補強基材に含浸し銅箔を重ねて加熱圧着させることにより得られるプリント配線基板。
JP2012179834A 2012-08-14 2012-08-14 硬化性樹脂組成物、硬化物、及びプリント配線基板 Active JP5994474B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012179834A JP5994474B2 (ja) 2012-08-14 2012-08-14 硬化性樹脂組成物、硬化物、及びプリント配線基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012179834A JP5994474B2 (ja) 2012-08-14 2012-08-14 硬化性樹脂組成物、硬化物、及びプリント配線基板

Publications (2)

Publication Number Publication Date
JP2014037473A true JP2014037473A (ja) 2014-02-27
JP5994474B2 JP5994474B2 (ja) 2016-09-21

Family

ID=50285863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012179834A Active JP5994474B2 (ja) 2012-08-14 2012-08-14 硬化性樹脂組成物、硬化物、及びプリント配線基板

Country Status (1)

Country Link
JP (1) JP5994474B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017531059A (ja) * 2014-08-29 2017-10-19 ブルー キューブ アイピー エルエルシー 高密度プリント配線板用の低熱膨張性ハロゲンフリー難燃性組成物
CN112513131A (zh) * 2018-07-24 2021-03-16 日本化药株式会社 环氧树脂、环氧树脂组合物、碳纤维强化复合材料用环氧树脂组合物、预浸料、碳纤维强化复合材料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000038430A (ja) * 1998-07-23 2000-02-08 Nippon Kayaku Co Ltd ナフトール樹脂、エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
WO2012017816A1 (ja) * 2010-08-06 2012-02-09 Dic株式会社 新規フェノール樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
WO2012023435A1 (ja) * 2010-08-19 2012-02-23 Dic株式会社 エポキシ化合物、硬化性組成物、及びその硬化物
WO2013042438A1 (ja) * 2011-09-21 2013-03-28 Dic株式会社 エポキシ樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP2014024977A (ja) * 2012-07-27 2014-02-06 Dic Corp 硬化性樹脂組成物、硬化物、及びプリント配線基板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000038430A (ja) * 1998-07-23 2000-02-08 Nippon Kayaku Co Ltd ナフトール樹脂、エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
WO2012017816A1 (ja) * 2010-08-06 2012-02-09 Dic株式会社 新規フェノール樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
WO2012023435A1 (ja) * 2010-08-19 2012-02-23 Dic株式会社 エポキシ化合物、硬化性組成物、及びその硬化物
WO2013042438A1 (ja) * 2011-09-21 2013-03-28 Dic株式会社 エポキシ樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP2014024977A (ja) * 2012-07-27 2014-02-06 Dic Corp 硬化性樹脂組成物、硬化物、及びプリント配線基板

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017531059A (ja) * 2014-08-29 2017-10-19 ブルー キューブ アイピー エルエルシー 高密度プリント配線板用の低熱膨張性ハロゲンフリー難燃性組成物
CN112513131A (zh) * 2018-07-24 2021-03-16 日本化药株式会社 环氧树脂、环氧树脂组合物、碳纤维强化复合材料用环氧树脂组合物、预浸料、碳纤维强化复合材料
CN112513131B (zh) * 2018-07-24 2024-02-06 日本化药株式会社 环氧树脂及其组合物、树脂片、预浸料及复合材料

Also Published As

Publication number Publication date
JP5994474B2 (ja) 2016-09-21

Similar Documents

Publication Publication Date Title
JP4591801B2 (ja) 硬化性樹脂組成物、その硬化物、プリント配線基板、エポキシ樹脂、及びその製造方法
JP5071602B2 (ja) エポキシ化合物、硬化性組成物、及びその硬化物
JP5293911B1 (ja) エポキシ樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5561571B1 (ja) エポキシ樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP2014024977A (ja) 硬化性樹脂組成物、硬化物、及びプリント配線基板
JP5614519B1 (ja) 変性フェノール樹脂、変性フェノール樹脂の製造方法、変性エポキシ樹脂、変性エポキシ樹脂の製造方法、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5954571B2 (ja) 硬化性組成物、硬化物、及びプリント配線基板
JP5732774B2 (ja) エポキシ樹脂組成物、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5515878B2 (ja) 硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5263039B2 (ja) エポキシ樹脂、その製造方法、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5532368B1 (ja) エポキシ樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP6083169B2 (ja) エポキシ樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5858277B2 (ja) エポキシ樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5994474B2 (ja) 硬化性樹脂組成物、硬化物、及びプリント配線基板
JP2014005338A (ja) 硬化性組成物、硬化物、及びプリント配線基板
JP2012201732A (ja) エポキシ樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP5958104B2 (ja) 硬化性組成物、硬化物、及びプリント配線基板
JP5995052B2 (ja) 硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP6155587B2 (ja) エポキシ樹脂、硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP6002991B2 (ja) 変性ナフトールノボラック樹脂の製造方法、エポキシ樹脂の製造方法
JP5987262B2 (ja) 硬化性樹脂組成物、硬化物、及びプリント配線基板
JP6277595B2 (ja) 硬化性組成物、硬化物、及びプリント配線基板
JP6002987B2 (ja) 硬化性樹脂組成物、その硬化物、及びプリント配線基板
JP6094091B2 (ja) 硬化性樹脂組成物、硬化物、及びプリント配線基板
JP5505703B2 (ja) 硬化性樹脂組成物、その硬化物、プリント配線基板、ノボラック型エポキシ樹脂、及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160808

R151 Written notification of patent or utility model registration

Ref document number: 5994474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250