JP2013545221A - 電解質配合物 - Google Patents

電解質配合物 Download PDF

Info

Publication number
JP2013545221A
JP2013545221A JP2013530600A JP2013530600A JP2013545221A JP 2013545221 A JP2013545221 A JP 2013545221A JP 2013530600 A JP2013530600 A JP 2013530600A JP 2013530600 A JP2013530600 A JP 2013530600A JP 2013545221 A JP2013545221 A JP 2013545221A
Authority
JP
Japan
Prior art keywords
electrolyte formulation
atoms
electrolyte
dye
fluorotricyanoborate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013530600A
Other languages
English (en)
Other versions
JP6038796B2 (ja
JP2013545221A5 (ja
Inventor
健太郎 川田
イグナティエフ,ニコライ(ミコラ)
シュルテ,ミヒャエル
浩樹 吉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of JP2013545221A publication Critical patent/JP2013545221A/ja
Publication of JP2013545221A5 publication Critical patent/JP2013545221A5/ja
Application granted granted Critical
Publication of JP6038796B2 publication Critical patent/JP6038796B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/62Quaternary ammonium compounds
    • C07C211/63Quaternary ammonium compounds having quaternised nitrogen atoms bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2013Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte the electrolyte comprising ionic liquids, e.g. alkyl imidazolium iodide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は、少なくとも1種のイミダゾリウムフルオロトリシアノボレートまたはピロリジニウムフルオロトリシアノボレートを含む電解質配合物ならびに電気化学的および/または光電子デバイス、例えば光電池、発光デバイス、エレクトロクロミックまたはフォトエレクトロクロミックデバイス、電気化学的センサーおよび/またはバイオセンサーにおけるそれらの使用、好ましくは色素または量子ドット増感太陽電池におけるそれらの使用に関する。

Description

本発明は、少なくとも1種のイミダゾリウムフルオロトリシアノボレートまたはピロリジニウムフルオロトリシアノボレートを含む電解質配合物ならびに電気化学的および/または光電子デバイス、例えば光電池、発光デバイス、エレクトロクロミックまたはフォトエレクトロクロミック(photo-electrochromic)デバイス、電気化学的センサーおよび/またはバイオセンサーにおけるそれらの使用、好ましくは色素または量子ドット増感太陽電池におけるそれらの使用に関する。
電解質配合物は、電気化学的デバイスおよび/または光電子デバイスの極めて重要な部分を形成し、デバイスの性能は、これらの電解質の様々な構成成分の物理的および化学的特性に大いに依存する。
電解質の用語を、本明細書中で以下に定義する電解質配合物の意味において使用し、同等に本開示内での電解質配合物に対して使用する。
多くの電気化学的デバイスおよび/または光電子デバイスならびに特に色素または量子ドット増感太陽電池の技術的な適用を未だ妨げている要因は、有機溶媒に基づく電解質の揮発性によって引き起こされた信頼性の問題である。電解質の例えばDSCパネル中での漏出しない密封を維持することは、極めて困難であり、それは毎日の昼夜サイクルの温度差および付随する電解質の熱膨張に耐えなければならない。DSCの略号は、色素増感太陽電池を意味する。この問題を、原理的にはイオン性液体に基づく電解質の使用によって解決することができる。総括“Ionic liquid electrolytes for dye-sensitized solar cells”については:M. Gorlov and L. Kloo, Dalton Trans., 2008, p. 2655-2666を参照。
イオン性液体または液体塩は、典型的には、有機カチオンおよび一般的には無機アニオンからなり、通常373Kより低い融点を有するイオン種である。様々な二成分系のイオン性液体電解質が、最近色素増感太陽電池に適用されている。WO 2007/093961およびWO 2009/083901には、テトラシアノボレート(TCB)アニオンを有する相当な量の有機塩を含むDSCのためのイオン性液体に基づく電解質における、現在のところ最良の電力変換効率が記載されている。
しかし、特に室温より低く、液体凍結および沈殿が起こり得る温度(すなわち0℃〜20℃の範囲内)を十分上回る温度で改善されたDSC効率を有するイオン性液体に基づく、新規であり改善された電解質についての需要が継続している。
したがって、本発明の目的は、増大した電力変換効率を有する電気化学的デバイスおよび/または光電子デバイス、例えば光電池、発光デバイス、エレクトロクロミックまたはフォトエレクトロクロミックデバイス、電気化学的センサーおよび/またはバイオセンサーのための、特に色素または量子ドット増感太陽電池のための、特に好ましくは広い温度範囲にわたる、特にさらに低温における色素増感太陽電池のための、電解質配合物を提供することにある。低温を、0℃〜20℃の温度範囲として定義する。
驚くべきことに、フルオロトリシアノボレートアニオンを含む電解質配合物がそのような要求を満たすことが見出された。
フルオロトリシアノボレートアニオンを含む配合物は、対電極におけるレドックス対種(例えばIおよびI3−)のネルンスト拡散抵抗ならびに電荷移動抵抗を、上記で定義した低温で低減すると考えられている。
したがって、本発明は第1に、式(I)
Kt[BF(CN) (I)
式中、Ktは、
の群から選択された有機カチオンであり、
ここで、置換基
1’〜R10’は、各々、互いに独立して
1’およびR4’は同時にはHではないことおよび同時にパーフルオロ化されていないことを前提として、H、
1〜20個のC原子を有し、任意にフッ素化もしくはパーフルオロ化されていてもよい、直鎖状もしくは分枝状アルキル、
2〜20個のC原子および1つもしくは2つ以上の二重結合を有し、任意にフッ素化もしくはパーフルオロ化されていてもよい、直鎖状もしくは分枝状アルケニル、
2〜20個のC原子および1つもしくは2つ以上の三重結合を有し、任意にフッ素化もしくはパーフルオロ化されていてもよい、直鎖状もしくは分枝状アルキニル、または
2〜8個のC原子を有する直鎖状もしくは分枝状アルコキシアルキル
を示す、
で表される少なくとも1種の化合物を含む電解質配合物に関する。
イミダゾリウムカチオンを有する式(I)で表される化合物は、WO 2004/072089から知られている。しかし、WO 2004/072089には、上記で記載した式(I)で表される化合物を含む電解質配合物が記載されておらず、それには、所与の電気化学的デバイスおよび/または光電子デバイスのための、特にDSCのための電解質配合物の構成成分としてのこれらの化合物の特定の実用性が開示されていない。
同様の有機塩は、さらにJP2004-175666に記載されており、それは、式[(CN)4−aB]で表され、式中Xがハロゲン原子であり、aが1〜3の整数であるアニオンを有するオニウム塩を意味する。トリフルオロシアノボレートは、当該文献中に好ましいアニオンとして開示されている。さらに、この文献には、1−エチル−3−メチルイミダゾリウムトリフルオロシアノボレート、テトラエチルアンモニウムトリフルオロシアノボレートまたはトリメチル−プロピルアンモニウムトリフルオロシアノボレートを含む電解質配合物が開示されているに過ぎない。上記で記載した式(I)で表される化合物が以下に示す顕著な特性を示すという暗示はない。
したがって、本発明は、従来技術の知識からの選択発明である。
電解質配合物は、前記の必要な、または任意の構成成分を含有し(include)、もしくは含み(comprise)、本質的にそれからなるか、またはそれからなってもよい。
1〜20個のC原子を有する直鎖状または分枝状アルキルは、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19または20個のC原子を有するアルキル基、例えばメチル、エチル、イソプロピル、n−プロピル、イソブチル、n−ブチル、tert−ブチル、n−ペンチル、1−、2−または3−メチルブチル、1,1、1,2−または2,2−ジメチルプロピル、1−エチルプロピル、n−ヘキシル、n−ヘプチル、n−オクチル、エチルヘキシル、n−ノニル、n−デシル、n−ウンデシル、n−ドデシル、n−トリデシル、n−テトラデシル、n−ペンタデシル、n−ヘキサデシル、n−ヘプタデシル、n−オクタデシル、n−ノナデシルまたはエイコシルを示し、それは任意にフッ素化またはパーフルオロ化されていてもよい。用語「パーフルオロ化」は、所与のアルキル基において、すべてのH原子がF原子によって置換されていることを意味する。用語「フッ素化されている」は、所与のアルキル基の少なくとも1個のH原子がF原子によって置換されていることを意味する。
2〜20個のC原子を有し、ここで複数の二重結合がまた存在してもよい、直鎖状または分枝状アルケニルは、例えばアリル、2−または3−ブテニル、イソブテニル、sec−ブテニル、さらに4−ペンテニル、イソペンテニル、ヘキセニル、ヘプテニル、オクテニル、−C17、−C1019〜−C2039、好ましくはアリル、2−または3−ブテニル、イソブテニル、sec−ブテニル、さらに好ましくは4−ペンテニル、イソペンテニルまたはヘキセニルであり、それは任意にフッ素化またはパーフルオロ化されていてもよい。
2〜20個のC原子を有し、ここで複数の三重結合がまた存在してもよい、直鎖状または分枝状アルキニルは、例えばエチニル、1−または2−プロピニル、2−または3−ブチニル、さらに4−ペンチニル、3−ペンチニル、ヘキシニル、ヘプチニル、オクチニル、−C15、−C1017〜−C2037、好ましくはエチニル、1−もしくは2−プロピニル、2−もしくは3−ブチニル、4−ペンチニル、3−ペンチニルまたはヘキシニルであり、それは任意にフッ素化またはパーフルオロ化されていてもよい。
2〜12個のC原子を有する直鎖状または分枝状アルコキシアルキルは、例えばメトキシメチル、1−メトキシエチル、1−メトキシプロピル、1−メトキシ−2−メチル−エチル、2−メトキシ−プロピル、2−メトキシ−2−メチル−プロピル、1−メトキシブチル、1−メトキシ−2,2−ジメチル−エチル、1−メトキシ−ペンチル、1−メトキシヘキシル、1−メトキシ−ヘプチル、エトキシメチル、1−エトキシエチル、1−エトキシプロピル、1−エトキシ−2−メチル−エチル、1−エトキシブチル、1−エトキシ−2,2−ジメチル−エチル、1−エトキシペンチル、1−エトキシヘキシル、1−エトキシヘプチル、プロポキシメチル、1−プロポキシエチル、1−プロポキシプロピル、1−プロポキシ−2−メチル−エチル、1−プロポキシブチル、1−プロポキシ−2,2−ジメチル−エチル、1−プロポキシペンチル、ブトキシメチル、1−ブトキシエチル、1−ブトキシプロピルまたは1−ブトキシブチルである。特に好ましいのは、メトキシメチル、1−メトキシエチル、2−メトキシ−プロピル、1−メトキシプロピル、2−メトキシ−2−メチル−プロピルまたは1−メトキシブチルである。
置換基R’およびR’は、各々、互いに独立して、同時にパーフルオロ化されていないことを前提として、好ましくは1〜20個のC原子を有し、任意にフッ素化もしくはパーフルオロ化されていてもよい、直鎖状もしくは分枝状アルキルまたは2〜8個のC原子を有する直鎖状もしくは分枝状アルコキシアルキル、特に好ましくはメチル、エチル、イソプロピル、プロピル、ブチル、sec−ブチル、tert−ブチル、n−ペンチルまたはn−ヘキシルである。それらは、極めて特に好ましくはメチル、エチル、n−ブチルまたはn−ヘキシルである。ピロリジニウムまたはイミダゾリウムにおいて、2つの置換基R1’およびR4’は、好ましくは異なっている。
本発明において、式(I)で表される化合物の好適な置換基R’、R’およびR’〜R10’は、H以外には、好ましくは:C〜C20アルキル基、特にC〜Cアルキル基である。
置換基R’、R’、R’〜R10’は、各場合において互いに独立して、特にH、メチル、エチル、イソプロピル、プロピル、ブチル、sec−ブチルまたはtert−ブチルである。イミダゾリウム環のR5’は、特に好ましくはH、メチル、エチル、イソプロピル、プロピルまたはn−ブチル、特に好ましくはHまたはメチルである。イミダゾリウム環のR’およびR’は、好ましくはHである。ピロリジニウム環の置換基R’、R’、R’〜R10’は、好ましくはHである。
好ましい1,1−ジアルキルピロリジニウムカチオンは、例えば1,1−ジメチルピロリジニウム、1−メチル−1−エチルピロリジニウム、1−メチル−1−プロピルピロリジニウム、1−メチル−1−ブチルピロリジニウム、1−メチル−1−ペンチルピロリジニウム、1−メチル−1−ヘキシルピロリジニウム、1−メチル−1−ヘプチルピロリジニウム、1−メチル−1−オクチルピロリジニウム、1−メチル−1−ノニルピロリジニウム、1−メチル−1−デシルピロリジニウム、1,1−ジエチルピロリジニウム、1−エチル−1−プロピルピロリジニウム、1−エチル−1−ブチルピロリジニウム、1−エチル−1−ペンチルピロリジニウム、1−エチル−1−ヘキシルピロリジニウム、1−エチル−1−ヘプチルピロリジニウム、1−エチル−1−オクチルピロリジニウム、1−エチル−1−ノニルピロリジニウム、1−エチル−1−デシルピロリジニウム、
1,1−ジプロピルピロリジニウム、1−プロピル−1−メチルピロリジニウム、1−プロピル−1−ブチルピロリジニウム、1−プロピル−1−ペンチルピロリジニウム、1−プロピル−1−ヘキシルピロリジニウム、1−プロピル−1−ヘプチルピロリジニウム、1−プロピル−1−オクチルピロリジニウム、1−プロピル−1−ノニルピロリジニウム、1−プロピル−1−デシルピロリジニウム、1,1−ジブチルピロリジニウム、1−ブチル−1−メチルピロリジニウム、1−ブチル−1−ペンチルピロリジニウム、1−ブチル−1−ヘキシルピロリジニウム、1−ブチル−1−ヘプチルピロリジニウム、1−ブチル−1−オクチルピロリジニウム、1−ブチル−1−ノニルピロリジニウム、1−ブチル−1−デシルピロリジニウム、1,1−ジペンチルピロリジニウム、1−ペンチル−1−ヘキシルピロリジニウム、1−ペンチル−1−ヘプチルピロリジニウム、1−ペンチル−1−オクチルピロリジニウム、1−ペンチル−1−ノニルピロリジニウム、1−ペンチル−1−デシルピロリジニウム、
1,1−ジヘキシルピロリジニウム、1−ヘキシル−1−ヘプチルピロリジニウム、1−ヘキシル−1−オクチルピロリジニウム、1−ヘキシル−1−ノニルピロリジニウム、1−ヘキシル−1−デシルピロリジニウム、1,1−ジヘキシルピロリジニウム、1−ヘキシル−1−ヘプチルピロリジニウム、1−ヘキシル−1−オクチルピロリジニウム、1−ヘキシル−1−ノニルピロリジニウム、1−ヘキシル−1−デシルピロリジニウム、1,1−ジヘプチルピロリジニウム、1−ヘプチル−1−オクチルピロリジニウム、1−ヘプチル−1−ノニルピロリジニウム、1−ヘプチル−1−デシルピロリジニウム、1,1−ジオクチルピロリジニウム、1−オクチル−1−ノニルピロリジニウム、1−オクチル−1−デシルピロリジニウム、1,1−ジノニルピロリジニウム、1−ノニル−1−デシルピロリジニウムまたは1,1−ジデシルピロリジニウムである。極めて特に好ましいのは、1−ブチル‐1−メチルピロリジニウムまたは1−プロピル−1−メチルピロリジニウムである。
好ましい1−アルキル−1−アルコキシアルキルピロリジニウムカチオンは、例えば1−(2−メトキシエチル)−1−メチルピロリジニウム、1−(2−メトキシエチル)−1−エチルピロリジニウム、1−(2−メトキシエチル)−1−プロピルピロリジニウム、1−(2−メトキシエチル)−1−ブチルピロリジニウム、1−(2−エトキシエチル)−1−メチルピロリジニウム、1−エトキシメチル−1−メチルピロリジニウムである。極めて特に好ましいのは、1−(2−メトキシエチル)−1−メチルピロリジニウムである。
好ましい1,3−ジアルキルイミダゾリウムカチオンは、例えば1−エチル−3−メチルイミダゾリウム、1−メチル−3−プロピルイミダゾリウム、1−メチル−2,3−ジメチルイミダゾリウム、1−エチル−2,3−ジメチルイミダゾリウム、1−プロピル−2,3−ジメチルイミダゾリウム、1−ブチル−2,3−ジメチルイミダゾリウム、1−ブチル−3−メチルイミダゾリウム、1−メチル−3−ペンチルイミダゾリウム、1−エチル−3−プロピルイミダゾリウム、1−ブチル−3−エチルイミダゾリウム、1−エチル−3−ペンチルイミダゾリウム、1−ブチル−3−プロピルイミダゾリウム、1,3−ジメチルイミダゾリウム、1,3−ジエチルイミダゾリウム、1,3−ジプロピルイミダゾリウム、1,3−ジブチルイミダゾリウム、1,3−ジペンチルイミダゾリウム、1,3−ジヘキシルイミダゾリウム、1,3−ジヘプチルイミダゾリウム、1,3−ジオクチルイミダゾリウム、1,3−ジノニルイミダゾリウム、1,3−ジデシルイミダゾリウム、1−ヘキシル−3−メチルイミダゾリウム、1−ヘプチル−3−メチルイミダゾリウム、1−メチル−3−オクチルイミダゾリウム、1−メチル−3−ノニルイミダゾリウム、1−デシル−3−メチルイミダゾリウム、1−エチル−3−ヘキシルイミダゾリウム、1−エチル−3−ヘプチルイミダゾリウム、1−エチル−3−オクチルイミダゾリウム、1−エチル−3−ノニルイミダゾリウムまたは1−デシル−3−エチルイミダゾリウムである。特に好ましいカチオンは、1−エチル−3−メチルイミダゾリウム、1−ブチル−3−メチルイミダゾリウムまたは1−メチル−3−プロピルイミダゾリウムである。
好ましい1−アルコキシアルキル−3−アルキルイミダゾリウムカチオンは、例えば1−(2−メトキシエチル)−3−メチルイミダゾリウム、1−(2−メトキシエチル)−3−エチルイミダゾリウム、1−(2−メトキシエチル)−3−プロピルイミダゾリウム、1−(2−メトキシエチル)−3−ブチルイミダゾリウム、1−(2−エトキシエチル)−3−メチルイミダゾリウム、1−エトキシメチル−3−メチルイミダゾリウムである。
好ましい1−アルケニル−3−アルキルイミダゾリウムカチオンは、例えば1−アリル−3−メチル−イミダゾリウムまたは1−アリル−2,3−ジメチルイミダゾリウムである。
化学において、電解質は、物質を電気的に伝導性にする遊離のイオンを含むあらゆる物質である。最も典型的な電解質は、イオン性溶液であるが、溶融した電解質および固体の電解質もまた、可能である。
したがって、本発明の電解質配合物は、基本的に、溶解したかまたは溶融した状態で存在する、すなわちイオン種の運動によって電気伝導性を支持する少なくとも1種の物質の存在により電気的に伝導性の媒体である。
用語、電解質は、電解質配合物に対して開示されているとおりの全ての成分を含む用語、電解質配合物に対して用いてもよい。
特に好ましくは、本発明の電解質配合物は、上記で記載したか、または好ましく記載したイミダゾリウムについての所与の式を有する式(I)で表される少なくとも1種の化合物を含む。
本発明はさらに、上記で記載した式(I)で表され、式中式(I)で表される化合物のKtが、
であり、式中置換基R2’およびR3’がHであり、R5’がHまたは1〜4個のC原子を有する直鎖状もしくは分枝状アルキルであり、R1’およびR4’が各々互いに独立して1〜20個のC原子を有する直鎖状もしくは分枝状アルキルまたは3個のC原子を有する直鎖状もしくは分枝状アルケニルである、少なくとも1種の化合物を含む電解質配合物に関する。
本発明はまた、式(I)で表され、式中式(I)で表される化合物のKtが、
であり、式中置換基R2’、R3’、R5’〜R10 ’がHであり、R1’およびR4’が各々互いに独立して1〜20個のC原子を有する直鎖状または分枝状アルキルである、少なくとも1種の化合物を含む電解質配合物に関する。
特に好ましくは、本発明の電解質配合物は、イミダゾリウムについての所与の式および置換基R1’〜R5 ’の定義または上記で記載したジアルキルイミダゾリウムまたは1−アルコキシアルキル−3−アルキルイミダゾリウムの特に好ましい意味を有する、式(I)で表される少なくとも1種の化合物を含む。
電解質配合物におけるフルオロトリシアノボレートアニオンの典型的なモル濃度は、0.1〜5.5M、好ましくは0.8〜3.5Mの範囲内である。電解質中のこのモル濃度を、式(I)で表される1種もしくは2種以上の化合物または式(I)で表される少なくとも1種の化合物およびフルオロトリシアノボレートアニオンを有する少なくとも1種の無機塩を含む混合物を使用して達成してもよい。
フルオロトリシアノボレートアニオンを有する無機塩は、例えばリチウムフルオロトリシアノボレート、ナトリウムフルオロトリシアノボレート、カリウムフルオロトリシアノボレート、銀フルオロトリシアノボレート、マグネシウムジ(フルオロトリシアノボレート)、カルシウムジ(フルオロトリシアノボレート)または亜鉛ジ(フルオロトリシアノボレート)である。
好ましくは、当該モル濃度を、上記で記載したかまたは好ましく記載した式(I)で表される少なくとも1種の化合物を使用して達成する。
本発明の目的のために、モル濃度は、25℃における濃度を指す。
電解質配合物の他の構成成分は、以下にさらに示すように1種または数種の他の塩、溶媒、ヨウ素および他のものである。
電解質配合物が二成分系である場合には、それは、2種の塩、1種のさらなる塩および上記で記載した式(I)で表される化合物を含む。電解質配合物が三成分系である場合には、それは、2種のさらなる塩および上記で記載した式(I)で表される化合物を含む。
二成分系は、90〜20重量%、好ましくは80〜55重量%、より好ましくは70〜60重量%のさらなる塩および10〜80重量%、好ましくは20〜45重量%またはより好ましくは30〜40重量%の上記で記載した式(I)で表される化合物を含む。このパラグラフ中でのパーセンテージを、本発明の電解質配合物中に存在する塩の合計(=100重量%)に関して表現する。以下に示す他の一般的には任意の構成成分(添加剤)、例えば非共有電子対を有するN含有化合物、ヨウ素、溶媒、ポリマーおよびナノ粒子の量は、ここでは考慮しない。同一のパーセンテージが三成分系または四成分系に該当し、それは、他の塩の合計を所与の範囲内で使用しなければならず、例えば2種の他のイオン性液体が、本発明の電解質配合物中で、例えば90〜20重量%において含まれることを意味する。
本発明の他の態様において、電解質配合物は、四級窒素を含む有機カチオンおよびハロゲン化物イオン、例えばF、Cl、I、ポリハロゲン化物イオン、フルオロアルカンスルホネート、フルオロアルカンカルボキシレート、トリ(フルオロアルキルスルホニル)メチド、ビス(フルオロアルキルスルホニル)イミド、硝酸、ヘキサフルオロホスフェート、トリス−、ビス−およびモノ−(フルオロアルキル)フルオロホスフェート、テトラフルオロボレート、ジシアナミド、トリシアノメチド、テトラシアノボレート、チオシアン酸、1〜20個のC原子を有し、好ましくはパーフルオロ化されているフルオロアルカン、1〜20個のC原子を有するフルオロアルキルおよび1〜20個のC原子を有するアルキルを有するアルキルスルホネートまたはアルキルスルフェートから選択されたアニオンを有する少なくとも1種の他の塩を含む。フルオロアルカンまたはフルオロアルキルは、好ましくはパーフルオロ化されている。
好ましくは、他の塩は、アニオン、例えばヨウ化物、チオシアン酸またはテトラシアノボレートを含む塩から選択され、特に好ましい他の塩は、ヨウ化物である。
当該少なくとも1種の他の塩または好ましい他の塩のカチオンを、四級窒素原子を含む有機化合物、好ましくは環状有機カチオン、例えばピリジニウム、イミダゾリウム、トリアゾリウム、ピロリジニウムまたはモルホリニウムの中から選択してもよい。
しかし、特にDSCのための、電解質配合物における種々のカチオンの量を限定するために、有機カチオンを、式(I)で表される化合物のカチオンについての定義から選択してもよい。したがって、本発明の他の好ましい態様において、電解質配合物は、上記で記載した式(I)で表される少なくとも1種の化合物および有機カチオンが独立して
式中、置換基R1’〜R10 ’は、上記で記載したかまたは好ましく記載した意味を有する、
の群から選択される少なくとも1種の他のヨウ化物を含む。
少なくとも1種の他の塩の特に好ましい例は、1−エチル−3−メチルイミダゾリウムヨージド、1−プロピル−3−メチルイミダゾリウムヨージド、1−ブチル−3−メチル−イミダゾリウムヨージド、1−ヘキシル−3−メチルイミダゾリウムヨージド、1,3−ジメチル−イミダゾリウムヨージド、1−アリル−3−メチルイミダゾリウムヨージド、N−ブチル−N−メチル−ピロリジニウムヨージドまたはN,N−ジメチル−ピロリジニウムヨージドである。
本発明の他の態様において、グアニジニウムチオシアネートを、本発明の電解質配合物に加えてもよい。
本発明の電解質配合物は、好ましくはヨウ素(I)を含む。好ましくは、それは、0.0005〜7mol/dm、より好ましくは0.01〜5mol/dmおよび最も好ましくは0.05〜1mol/dmのIを含む。
好ましい態様において、本発明の電解質配合物はさらに、非共有電子対を有する窒素原子を含む少なくとも1種の化合物を含む。かかる化合物の例は、EP 0 986 079 A2中に見出され、2頁から開始して40〜55行、および再び3頁14行から7頁54行にわたり、それは参照によって明確に本明細書中に組込まれる。非共有電子対を有する化合物の好ましい例は、イミダゾールおよびその誘導体、特にベンズイミダゾールおよびその誘導体を含む。
本発明の電解質配合物は、50vol%未満の有機溶媒を含む。好ましくは、電解質配合物は、40%未満、より好ましくは30%未満、尚より好ましくは20%未満およびさらに10%未満を含む。最も好ましくは、電解質配合物は、5%未満の有機溶媒を含む。例えば、それは、有機溶媒を実質的に含まない。パーセンテージを、重量%を基準として示す。
有機溶媒は、上記に示した量において存在する場合には、文献中に開示したものから選択され得る。好ましくは、溶媒は、存在する場合には摂氏160度より高い、より好ましくは190度より高い沸点を有し、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ガンマ−ブチロラクトン、ガンマ−バレロラクトン、グルタロニトリル、アジポニトリル、N−メチルオキサゾリジノン、N−メチルピロリジノン、N、N’−ジメチルイミダゾリジノン、N、N−ジメチルアセトアミド、環状尿素類、好ましくは1,3−ジメチル−2−イミダゾリジノンもしくは1,3−ジメチル−3,4,5,6−テトラヒドロ−2(1H)−ピリミジノン、グリム類、好ましくはテトラグリム、スルホラン、好ましくは不斉置換されたスルホン類、例えば2−エタンスルホニル−プロパン、1−エタンスルホニル−2−メチル−プロパン、2−(プロパン−2−スルホニル)−ブタン、3−メチルスルホラン、ジメチルスルホキシド、トリメチルフォスフェートおよびメトキシ−置換ニトリル類などである。他の有用な溶媒は、アセトニトリル、ベンゾニトリルおよび/またはバレロニトリルである。
溶媒が電解質配合物中に存在する場合には、さらにゲル化剤としてのポリマーが含まれていてもよく、ここでポリマーは、ポリビニリデンフルオリド、ポリビニリデン−ヘキサフルオロプロピレン、ポリビニリデン−ヘキサフルオロプロピレン−クロロトリフルオロエチレンコポリマー、ナフィオン(nafion)、ポリエチレンオキシド、ポリメチルメタクリレート、ポリアクリロニトリル、ポリプロピレン、ポリスチレン、ポリブタジエン、ポリエチレングリコール、ポリビニルピロリドン、ポリアニリン、ポリピロール、ポリチオフェンである。これらのポリマーを電解質配合物に加える目的は、液体電解質を疑似固体または固体電解質にし、それにより、特に経年劣化の間の溶剤残留を改善することである。
本発明の電解質配合物はさらに、例えば、また固体性およびしたがって溶剤残留を増大させることができる金属酸化物ナノ粒子、例えばSiO、TiO、Al、MgOまたはZnOを含んでもよい。
本発明の電解質配合物は、多くの用途を有する。例えば、それを、光電子デバイスおよび/または電気化学的デバイス、例えば光電池、発光デバイス、エレクトロクロミックまたはフォトエレクトロクロミックデバイス、電気化学的センサーおよび/またはバイオセンサーにおいて使用してもよい。また、電気化学的バッテリ、例えばリチウムイオンバッテリまたは二重層コンデンサにおける使用が、可能である。
したがって、本発明はさらに、上記で詳細に記載した電解質配合物の、光電池、発光デバイス、エレクトロクロミックまたはフォトエレクトロクロミックデバイス、電気化学的センサーおよび/またはバイオセンサーである電気化学的デバイスおよび/または光電子デバイスにおける使用に関する。好ましくは、電解質配合物を、色素増感太陽電池において使用してもよい。
したがって、本発明はさらに、電解質配合物を含む、光電池、発光デバイス、エレクトロクロミックまたはフォトエレクトロクロミックデバイス、電気化学的センサーおよび/またはバイオセンサーである電気化学的および/または光電子デバイスであって、式(I)
Kt[BF(CN) (I)
式中、Ktは、
の群から選択された有機カチオンであり、
ここで、置換基
1’〜R10 ’は、各々、互いに独立して
1’およびR4’が同時にはHではなく、同時にパーフルオロ化されていないことを前提として、H、
1〜20個のC原子を有し、任意にフッ素化もしくはパーフルオロ化されていてもよい、直鎖状もしくは分枝状アルキル、
2〜20個のC原子および1つもしくは2つ以上の二重結合を有し、任意にフッ素化もしくはパーフルオロ化されていてもよい、直鎖状もしくは分枝状アルケニル、
2〜20個のC原子および1つもしくは2つ以上の三重結合を有し、任意にフッ素化もしくはパーフルオロ化されていてもよい、直鎖状もしくは分枝状アルキニル、または
2〜8個のC原子を有する直鎖状もしくは分枝状アルコキシアルキル
を示す、
で表される少なくとも1種の化合物を含む、前記デバイスに関する。
好ましい態様において、本発明のデバイスは、色素または量子ドット増感太陽電池、特に好ましくは色素増感太陽電池である。
量子ドット増感太陽電池は、例えばUS 6,861,722に開示されている。色素増感太陽電池において、色素を使用して、太陽光を吸収して、電気的エネルギーに変換する。色素の例は、EP 0 986 079 A2、EP 1 180 774 A2またはEP 1 507 307 A1に開示されている。
好ましい色素は、有機色素、例えばMK-1、MK-2またはMK-3(その構造はN. Koumura et al, J.Am.Chem.Soc. Vol 128, no.44, 2006, 14256-14257の図1に記載されている)、D102(CAS no. 652145-28-3)、D-149(CAS no. 786643-20-7)、D205(CAS no. 936336-21-9)、T. Bessho et al, Angew. Chem. Int. Ed. Vol 49, 37、6646-6649, 2010に記載されているYD-2、Y123 (CAS no. 1312465-92-1)など、ビピリジン−ルテニウム色素、例えばN3 (CAS no. 141460-19-7)、N719 (CAS no. 207347-46-4)、Z907 (CAS no. 502693-09-6)、C101 (CAS no. 1048964-93-7)、C106 (CAS no. 1152310-69-4)、K19 (CAS no. 847665-45-6)など、またはテルピリジン-ルテニウム色素、例えばN749 (CAS no. 359415-47-7)などである。
特に好ましい色素は、共に両親媒性ルテニウム感光剤であるZ907またはZ907Naである。
好ましい態様において、色素をホスフィン酸で共吸着する。ホスフィン酸の好ましい例は、M. Wang et al, Dalton Trans., 2009, 10015-10020に開示されているビス(3,3−ジメチル−ブチル)−ホスフィン酸(DINHOP)である。
色素Z907Naは、NaRu(2,2’−ビピリジン−4−カルボン酸−4’−カルボキシレート)(4,4’−ジノニル−2,2’−ビピリジン)(NCS)を意味する。
例えば、色素増感太陽電池は、光電極、対電極および、光電極と対電極との間に電解質配合物または電荷輸送材料を含み、またここで増感色素は、対電極に面する側において光電極の表面上に吸収される。
本発明のデバイスの好ましい態様において、それは、半導体、上記で記載した電解質配合物および対電極を含む。
本発明の好ましい態様において、半導体は、Si、TiO、SnO、Fe、WO、ZnO、Nb、CdS、ZnS、PbS、Bi、CdSe、GaP、InP、GaAs、CdTe、CuInSおよび/またはCuInSeの群から選択された材料に基づく。好ましくは、半導体は、メソ多孔性表面を含み、したがって任意に色素によって覆われ、電解質に接触している表面を増大させる。好ましくは、半導体は、ガラス支持体またはプラスチックもしくは金属箔上に存在する。好ましくは、支持体は伝導性である。
本発明のデバイスは、好ましくは対電極を含む。例えば、Ptで被覆したガラス上のフッ素をドープした酸化スズまたはスズをドープした酸化インジウム(それぞれFTOまたはITOガラス)、好ましくは伝導性の同素体の炭素、ポリアニリンまたはポリ(3,4−エチレンジオキシチオフェン)(PEDOT)である。金属基板、例えばステンレス鋼またはチタンシートは、ガラス以外の可能な基板であり得る。
本発明のデバイスを、単に電解質を本発明の電解質配合物によって交換することにより、従来技術の対応するデバイスとして製造してもよい。例えば、色素増感太陽電池の場合において、デバイスアセンブリは、多数の特許文献、例えばWO 91/16719(例34および35)、しかしまた科学文献、例えばBarbe, C.J., Arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V., Graetzel, M. J. Am. Ceram. Soc. 1997, 80, 3157;およびWang, P., Zakeeruddin, S. M., Comte, P., Charvet, R., Humphry-Baker, R., Graetzel, M. J. Phys. Chem. B 2003, 107, 14336中に開示されている。
はるかにより多くの電力密度を必要とする電気化学的デバイス、例えばコンデンサとは異なり、DSCは、液体電解質の高い伝導性を必要としない。例えば、DSCにおいて、10℃における電解質の電極抵抗は、電解質伝導性で除した半導体電極厚さによって、典型的には10μm/10mScm−1=0.01Ωcmと見積もられる。
好ましくは、増感された半導体材料は、フォトアノード(photoanode)としての役割を果たす。好ましくは、対電極はカソードである。
本発明は、光電池を製造する方法であって、本発明の電解質配合物を半導体の表面と接触させ、前記表面が任意に増感剤で覆われているステップを含む、前記方法を提供する。好ましくは、半導体を、上記に示した材料から選択し、増感剤を、好ましくは上記で開示した量子ドットおよび/または色素から選択し、特に好ましくは色素から選択する。
好ましくは、電解質配合物を、半導体上に単純に注いでもよい。好ましくは、それを、Wang et al., J. Phys. Chem. B 2003, 107, 14336の参照において開示されているように、既に対電極を含む他の方法で完成したデバイスに、対電極中の穴部を貫通してセルの内腔中に真空を作成し、電解質配合物を加えることにより適用する。
本発明を、ここでその範囲を限定せずに、以下の例によって例示する:
例1:1−エチル−3−メチルイミゾリウムテトラシアノボレート(emim TCB)および1−エチル−3−メチルイミゾリウムフルオロトリシアノボラートの合成、特徴づけおよび粘度/伝導性測定
エチル−3−メチルイミゾリウムテトラシアノボラートおよび1−エチル−3−メチルイミダゾリウムフルオロトリシアノボラートは、WO 2004/072089、実施例9,および12、ならびにE. Bernhardt et al., Z. Anorg. Allg. Chem., 2003, 629, 677-685に従って合成する。
表1は、使用したイオン性液体の特定のパラメータを示す:
*本発明によるものではない
例2:配合物およびデバイス
以下の電解質配合物を合成して、本発明の電解質配合物の、emim TCBを含有する従来技術の電解質配合物と相対しての予期されない利点を例証する。
電解質配合物を、1,3−ジメチルイミダゾリウムヨージド(mmimI)、1−エチル−3−メチルイミダゾリウムヨージド(emimI)および1−メチル−3−プロピルイミダゾリウムヨージド(pmimI)、1−アリル−3−メチルイミダゾリウムヨージド(amim I)、1−ヒドロキシメチル−3−メチルイミダゾリウムヨージド(mohmim I)、1,1−ジメチルピロリジニウムヨージド(mmplI)、トリメチルスルホニウムヨージド(SM3 I)、ヨウ素、N−ブチルベンゾイミダゾール(NBB)およびグアニジニウムチオシアネート(guaSCN)および例えばemim TCBまたはemimフルオロトリシアノボレートなどで表示されるような対応するイオン性液体の1種または2種以上を、以下に列挙したモル比における混合によって調製する。120℃までの加熱を適用して、電解質配合物を均質にすることが、必要であり得る。
モル比:36 mmim I、36 pmim I、72 emim TCBにおいて得た電解質配合物1
モル比:36 mmim I、36 emim I、72 emim TCBにおいて得た電解質配合物2
モル比:36 mmim I、36 amim I、72emimTCBにおいて得た電解質配合物3
モル比:72 emim I、72 emim TCBにおいて得た電解質配合物4
モル比:36 mmim I、36 mohmim I、72 emim TCBにおいて得た電解質配合物5
モル比:36 mmim I、36 mmpl I、72 emim TCBにおいて得た電解質配合物6
モル比:36 mmim I、36 sm3 I、72 emim TCBにおいて得た電解質配合物7
モル比:36 mmim I、8 pmim I、12 amim I、8 hmim I、8 mmpl I、72 emim TCBにおいて得た電解質配合物8
モル比:36 mmim I、36 pmim I、72 emimフルオロトリシアノボレートにおいて得た電解質配合物9
モル比:36 mmim I、36 emim I、72 emimフルオロトリシアノボレートにおいて得た電解質配合物10
モル比:36 mmim I、36 amim I、72 emimフルオロトリシアノボレートにおいて得た電解質配合物11
モル比:72 emim I、72 emimフルオロトリシアノボレートにおいて得た電解質配合物12
モル比:36 mmim I、36 mohmmim I、72 emimフルオロトリシアノボレートにおいて得た電解質配合物13
モル比:36 mmim I、36 mmpl I、72 emimフルオロトリシアノボレートにおいて得た電解質配合物14
モル比:36 mmim I、36 mmpl I、72 emimフルオロトリシアノボレートにおいて得た電解質配合物15
モル比:36 mmim I、36 sm3 I、72 emimフルオロトリシアノボレートにおいて得た電解質配合物16
モル比:36 mmim I、8 pmim I、12 amim I、8 hmim I、8 mmpl I、72 emimフルオロトリシアノボレートにおいて得た電解質配合物17
上記化合物は市販であるかまたは既知文献の方法に従って合成する。
色素増感太陽電池を、US 5,728,487またはWO 2007/093961に開示されているように製作する:
二重層のメソ多孔性TiO電極を、Wang P et al., J. Phys. Chem. B 2003, 107, 14336、特に14337頁に開示されているように製造して、二重層構造からなるフォトアノードを得た。透明なナノ多孔性TiO電極を製造するために、テルピネオール溶媒を含むスクリーン印刷ペーストおよび20nmの直径を有するアナターゼ相のナノ粒子TiOを、透明な伝導性基板上に5mm×5mmの正方形形状に、ハンドプリンター(hand printer)を使用することにより堆積させた。ペーストを、摂氏120度で10分間乾燥した。次に、400nmの直径を有するTiOを含む他のスクリーン印刷ペーストを、ナノ多孔性層の最上部上に堆積させて、不透明な層を製造した。
次に、二重層フィルムを、摂氏500度で1時間焼結し、その結果下層の透明な層(厚さ7ミクロン)および最上部の不透明な層(厚さ4ミクロン)が得られた。焼結後に、電極を、TiClの40mM水溶液(Merck)に摂氏70度で30分間浸漬し、次に純水で十分洗浄した。このようにして、TiClで処理した電極を、色素増感の直前に摂氏500度で30分間乾燥した。電極を、アセトニトリル(Merck HPLC等級)およびtert−ブチルアルコール(Merck)、v:v=1:1の0.3mMのZ907色素溶液中に、摂氏19度で60時間浸漬した。対電極を、上記の参考文献中に開示されている熱的な熱分解方法で製造した。白金酸の5mM溶液(Merck)の小滴を、8μl/cmで流し込み、伝導性基板上で乾燥した。色素増感太陽電池を、厚さ30ミクロンのBynel(DuPont, USA)ホットメルトフィルムを使用することにより組み立てて、加熱により密封した。内部空間を、上記で記載した電解質配合物の各々で満たして、対応するデバイスを製造した。
色素Z907は、両親媒性ルテニウム増感剤Ru(2,2’−ビピリジン4,4’−ジカルボン酸)(4,4’−ジノニル−2,2’−ビピリジン)(NCS)または[Ru(H2dcbpy)(dnbpy)(NCS)]である。
光電流−電圧曲線の測定を、温度制御を伴ったAir Mass 1.5模擬太陽光(AM 1.5)の下で行う。4mm×4mmのフォトマスクを、例3に従って製作したデバイスの最上部上に配置して、光投影域を規定する。セルギャップは、25〜30ミクロンの範囲内である。
エネルギー変換効率は、一般的に、エネルギー用語において、電気出力を最適化するために調整可能な抵抗性負荷を使用して決定した、エネルギー変換機の有効出力と光放射の入力との間の比率である。
表2は、上記電解質配合物の測定結果をまとめたものである。
*本発明によるものではない
表2は、アニオンとしてフルオロトリシアノボレートを含む電解質が、同じカチオンを使用した場合に、アニオンとしてTCBを含む電極と同等もしくはそれ以上に機能することを実証している。電解質2、3、7および8ならびに10、11、15および16はこの記述を確認するために再度繰り返した。
例3:例2において記載した電気化学デバイスにおける、および例2において記載した電気化学デバイスであるが色素、ZZ907(0.3mM)を0.075mM DINHOPと一緒に使用するデバイスにおける、上述したいくつかの電解質の反復
モル比:36 mmim I、36 emim I、72 emim TCBにおいて得た電解質配合物2
モル比:36 mmim I、36 amim I、72 emim TCB、において得た電解質配合物3
36 mmim I、36 mohmim I、72 emim TCB
モル比:36 mmim I、36 sm3 I、72 emim TCBにおいて得た電解質配合物7
モル比:36 mmim I、8 pmim I、12 amim I、8 hmim I、8 mmpl I、72 emim TCBにおいて得た電解質配合物8
モル比:36 mmim I、36 emim I、72 emimフルオロトリシアノボレートにおいて得た電解質配合物10
モル比:36 mmim I、36 amim I、72 emimフルオロトリシアノボレートにおいて得た電解質配合物11
モル比:36 mmim I、36 mmpl I、72 emimフルオロトリシアノボレートにおいて得た電解質配合物15
モル比:36 mmim I、36 sm3 I、72 emimフルオロトリシアノボレートにおいて得た電解質配合物16
測定は例2に記載のとおりに行う。
表3は、色素として0.3mM Z907を用い、例2に従う上記電解質配合物の測定の結果をまとめたものである。
*本発明によるものではない
表4は、色素として0.3mM Z907、および0.075mM DINHOPを用い、例2に従う上記電解質配合物の測定の結果をまとめたものである。
*本発明によるものではない

Claims (10)

  1. 式(I)
    Kt[BF(CN) (I)
    式中、Ktは、
    の群から選択された有機カチオンであり、
    ここで、置換基
    1’〜R10’は、各々、互いに独立して
    1’およびR4’が同時にはHではないこと、および同時にパーフルオロ化されていないことを前提として、H、
    1〜20個のC原子を有し、任意にフッ素化もしくはパーフルオロ化されていてもよい、直鎖状もしくは分枝状アルキル、
    2〜20個のC原子および1つもしくは2つ以上の二重結合を有し、任意にフッ素化もしくはパーフルオロ化されていてもよい、直鎖状もしくは分枝状アルケニル、
    2〜20個のC原子および1つもしくは2つ以上の三重結合を有し、任意にフッ素化もしくはパーフルオロ化されていてもよい、直鎖状もしくは分枝状アルキニル、または
    2〜8個のC原子を有する直鎖状もしくは分枝状アルコキシアルキル
    を示す、
    で表される少なくとも1種の化合物を含む、電解質配合物。
  2. 式(I)で表される化合物のKtが、
    であり、式中置換基R2’およびR3’がHであり、R5’がHまたは1〜4個のC原子を有する直鎖状もしくは分枝状アルキルであり、R1’およびR4’が各々互いに独立して1〜20個のC原子を有する直鎖状もしくは分枝状アルキルまたは3個のC原子を有する直鎖状もしくは分枝状アルケニルである、請求項1に記載の電解質配合物。
  3. 式(I)で表される化合物のKtが、
    であり、式中置換基R2’、R3’、R5’〜R10’がHであり、R1’およびR4’が各々互いに独立して1〜20個のC原子を有する直鎖状または分枝状アルキルである、請求項1に記載の電解質配合物。
  4. アニオンフルオロトリシアノボレートを0.1〜5.5Mのモル濃度において含む、請求項1〜3のいずれか一項に記載の電解質配合物。
  5. 請求項1〜4のいずれか一項に記載の電解質配合物を含む電気化学的および/または光電子デバイスであって、光電池、発光デバイス、エレクトロクロミックまたはフォトエレクトロクロミックデバイス、電気化学的センサーおよび/またはバイオセンサーである、前記デバイス。
  6. 色素または量子ドット増感太陽電池である、請求項5に記載のデバイス。
  7. 色素増感太陽電池である、請求項5に記載のデバイス。
  8. 半導体、請求項1〜4のいずれか一項に記載の電解質配合物および対電極を含む、請求項7に記載のデバイス。
  9. 請求項1〜4のいずれか一項に記載の電解質配合物の、光電池、発光デバイス、エレクトロクロミックまたはフォトエレクトロクロミックデバイス、電気化学的センサーおよび/またはバイオセンサーである電気化学的および/または光電子デバイスにおける使用。
  10. デバイスが色素増感太陽電池である、請求項9に記載の使用。
JP2013530600A 2010-09-30 2011-09-01 電解質配合物 Expired - Fee Related JP6038796B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10011965.0 2010-09-30
EP10011965 2010-09-30
PCT/EP2011/004419 WO2012041437A2 (en) 2010-09-30 2011-09-01 Electrolyte formulations

Publications (3)

Publication Number Publication Date
JP2013545221A true JP2013545221A (ja) 2013-12-19
JP2013545221A5 JP2013545221A5 (ja) 2016-09-29
JP6038796B2 JP6038796B2 (ja) 2016-12-07

Family

ID=44801990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013530600A Expired - Fee Related JP6038796B2 (ja) 2010-09-30 2011-09-01 電解質配合物

Country Status (9)

Country Link
US (1) US8921589B2 (ja)
EP (1) EP2622617A2 (ja)
JP (1) JP6038796B2 (ja)
KR (1) KR101779243B1 (ja)
CN (1) CN103140905B (ja)
AU (1) AU2011307222B2 (ja)
IL (1) IL225415A0 (ja)
TW (1) TW201223961A (ja)
WO (1) WO2012041437A2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190110001A (ko) * 2018-03-19 2019-09-27 옥토폴리머 엘엘씨 전기변색 디바이스 및 전기변색 디바이스의 제작 방법
JP2020024404A (ja) * 2018-07-31 2020-02-13 キヤノン株式会社 電子写真用部材、プロセスカートリッジおよび電子写真画像形成装置
US10732477B2 (en) 2018-03-19 2020-08-04 Oktopolymer Llc Electrochromic device and method of its manufacturing
WO2021176920A1 (ja) * 2020-03-02 2021-09-10 日清紡ホールディングス株式会社 蓄電デバイス用電解液およびイオン液体

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9558894B2 (en) 2011-07-08 2017-01-31 Fastcap Systems Corporation Advanced electrolyte systems and their use in energy storage devices
IL287733B2 (en) 2011-07-08 2023-04-01 Fastcap Systems Corp A device for storing energy at high temperatures
EA038017B1 (ru) 2011-11-03 2021-06-23 Фасткэп Системз Корпорейшн Эксплуатационно-каротажный зонд
TWI489672B (zh) * 2012-07-05 2015-06-21 Univ Vanung 一種膠態高分子電解質
DE102013202250A1 (de) 2013-02-12 2014-08-14 Siemens Aktiengesellschaft Emitterschichten mit einem Matrixmaterial enthaltend asymmetrisch substituierte Guanidinium-Kationen
US20190218894A9 (en) 2013-03-15 2019-07-18 Fastcap Systems Corporation Power system for downhole toolstring
CA2942818A1 (en) * 2013-03-15 2014-09-18 Fastcap Systems Corporation Modular signal interface devices and related downhole power and data systems
US10872737B2 (en) 2013-10-09 2020-12-22 Fastcap Systems Corporation Advanced electrolytes for high temperature energy storage device
EP4325025A3 (en) 2013-12-20 2024-04-24 Fastcap Systems Corporation Electromagnetic telemetry device
US11270850B2 (en) * 2013-12-20 2022-03-08 Fastcap Systems Corporation Ultracapacitors with high frequency response
US20170162337A1 (en) * 2014-04-16 2017-06-08 Eni S.P.A Electrode For Photovoltaic Cells And Associated Preparation Process
DE102014014967A1 (de) 2014-10-14 2016-04-14 Julius-Maximilians-Universität Würzburg Verfahren zur Herstellung von Verbindungen mit Monofluorotricyanoborat-Anionen
EP3251133A4 (en) 2015-01-27 2018-12-05 FastCAP Systems Corporation Wide temperature range ultracapacitor
CN104952633B (zh) * 2015-06-26 2018-12-25 厦门大学 基于金属织物的固态柔性超级电容器及其制备方法和应用
DE102016001344A1 (de) 2015-09-10 2017-03-16 Julius-Maximilians-Universität Würzburg Verfahren zur Herstellung von Kaliummonofluorotricyanoborat
CN106571486A (zh) * 2015-10-11 2017-04-19 深圳市沃特玛电池有限公司 一种高温循环型动力电池电解液
DE102015016401A1 (de) 2015-12-18 2017-06-22 Julius-Maximilians-Universität Würzburg Verfahren zur Herstellung von Salzen mit Monofluorotricyanoboratanionen
WO2018027139A1 (en) * 2016-08-05 2018-02-08 Massachusetts Institute Of Technology High-temperature supercapacitors containing surface active ionic liquids
CN112216871B (zh) * 2019-07-10 2022-04-15 比亚迪股份有限公司 一种锂离子电池电解液及其制备方法、锂离子电池和电池模组

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031270A (ja) * 2001-07-12 2003-01-31 Fuji Photo Film Co Ltd 電解液組成物、光電変換素子及び光電池
JP2004175666A (ja) * 2002-11-22 2004-06-24 Tokuyama Corp オニウム塩
JP2006244919A (ja) * 2005-03-04 2006-09-14 Nippon Oil Corp 光電変換素子
EP1819005A1 (en) * 2006-02-13 2007-08-15 Ecole Polytechnique Fédérale de Lausanne (EPFL) Ionic liquid electrolyte
JP2007250473A (ja) * 2006-03-17 2007-09-27 Sanyo Chem Ind Ltd ゲル状組成物
JP2008016442A (ja) * 2006-06-09 2008-01-24 Dai Ichi Kogyo Seiyaku Co Ltd 光電変換素子
WO2009083901A1 (en) * 2007-12-29 2009-07-09 Ecole Polytechnique Federale De Lausanne (Epfl) Eutectic melts
JP2009185286A (ja) * 2008-02-05 2009-08-20 Evonik Goldschmidt Gmbh イオン液体の消泡

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU650878B2 (en) 1990-04-17 1994-07-07 Ecole Polytechnique Federale De Lausanne Photovoltaic cells
US5728487A (en) 1993-12-29 1998-03-17 Ecole Polytechnique Federale De Lausanne Photoelectrochemical cell and electrolyte for this cell
JP2000090991A (ja) 1998-09-09 2000-03-31 Fuji Photo Film Co Ltd 光電気化学電池
EP1176646A1 (en) 2000-07-28 2002-01-30 Ecole Polytechnique Féderale de Lausanne (EPFL) Solid state heterojunction and solid state sensitized photovoltaic cell
DE60123714T2 (de) 2000-08-15 2007-10-04 FUJI PHOTO FILM CO., LTD., Minamiashigara Photoelektrische Zelle und Herstellungsmethode
AU2003231536B2 (en) 2002-05-20 2006-01-12 Ecole Polytechnique Federale De Lausanne (Epfl) Photoelectric conversion device
DE10306617A1 (de) * 2003-02-14 2004-08-26 Merck Patent Gmbh Salze mit Cyanoborat-Anionen
AU2004256669C1 (en) 2003-07-14 2009-09-24 Fujikura Ltd. Electrolyte composition, and photoelectric converter and dye-sensitized solar cell using same
JP4802107B2 (ja) * 2005-01-12 2011-10-26 大塚化学株式会社 第4級アンモニウム塩、電解質、電解液並びに電気化学デバイス

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031270A (ja) * 2001-07-12 2003-01-31 Fuji Photo Film Co Ltd 電解液組成物、光電変換素子及び光電池
JP2004175666A (ja) * 2002-11-22 2004-06-24 Tokuyama Corp オニウム塩
JP2006244919A (ja) * 2005-03-04 2006-09-14 Nippon Oil Corp 光電変換素子
EP1819005A1 (en) * 2006-02-13 2007-08-15 Ecole Polytechnique Fédérale de Lausanne (EPFL) Ionic liquid electrolyte
JP2009527074A (ja) * 2006-02-13 2009-07-23 エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) イオン性液体電解質
JP2007250473A (ja) * 2006-03-17 2007-09-27 Sanyo Chem Ind Ltd ゲル状組成物
JP2008016442A (ja) * 2006-06-09 2008-01-24 Dai Ichi Kogyo Seiyaku Co Ltd 光電変換素子
WO2009083901A1 (en) * 2007-12-29 2009-07-09 Ecole Polytechnique Federale De Lausanne (Epfl) Eutectic melts
JP2011509503A (ja) * 2007-12-29 2011-03-24 エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) 共晶融液
JP2009185286A (ja) * 2008-02-05 2009-08-20 Evonik Goldschmidt Gmbh イオン液体の消泡
US20100084597A1 (en) * 2008-02-05 2010-04-08 Peter Schwab Defoaming of ionic liquids

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190110001A (ko) * 2018-03-19 2019-09-27 옥토폴리머 엘엘씨 전기변색 디바이스 및 전기변색 디바이스의 제작 방법
KR102050159B1 (ko) * 2018-03-19 2019-11-28 옥토폴리머 엘엘씨 전기변색 디바이스 및 전기변색 디바이스의 제작 방법
US10732477B2 (en) 2018-03-19 2020-08-04 Oktopolymer Llc Electrochromic device and method of its manufacturing
JP2020024404A (ja) * 2018-07-31 2020-02-13 キヤノン株式会社 電子写真用部材、プロセスカートリッジおよび電子写真画像形成装置
JP7277301B2 (ja) 2018-07-31 2023-05-18 キヤノン株式会社 電子写真用部材、プロセスカートリッジおよび電子写真画像形成装置
WO2021176920A1 (ja) * 2020-03-02 2021-09-10 日清紡ホールディングス株式会社 蓄電デバイス用電解液およびイオン液体

Also Published As

Publication number Publication date
KR101779243B1 (ko) 2017-09-18
CN103140905B (zh) 2016-09-28
US8921589B2 (en) 2014-12-30
WO2012041437A3 (en) 2012-05-31
EP2622617A2 (en) 2013-08-07
IL225415A0 (en) 2013-07-31
JP6038796B2 (ja) 2016-12-07
TW201223961A (en) 2012-06-16
KR20130115265A (ko) 2013-10-21
CN103140905A (zh) 2013-06-05
WO2012041437A2 (en) 2012-04-05
AU2011307222B2 (en) 2015-04-02
AU2011307222A1 (en) 2013-05-02
US20130180591A1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
JP6038796B2 (ja) 電解質配合物
JP5898629B2 (ja) 電解質配合物
JP5763677B2 (ja) 電解質配合物
JP5950916B2 (ja) シアノ−アルコキシ−ボレートアニオンを含む電解質配合物
JP6040243B2 (ja) 色素増感太陽電池のための添加剤
WO2014082704A1 (en) Cobaltcomplex salts
US20140182680A1 (en) Electrolyte formulations
US20150310998A1 (en) Cobalt complexes with tricyanoborate or dicyanoborate counter-anions for electrochemical or optoelectronic devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150702

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20151002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160309

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160809

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20160809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161102

R150 Certificate of patent or registration of utility model

Ref document number: 6038796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees