JP2013542523A - タイルを利用してセンシングするための装置、一連のプレートを有するセンサ、マルチタッチ表面のためのオブジェクト識別及び方法 - Google Patents

タイルを利用してセンシングするための装置、一連のプレートを有するセンサ、マルチタッチ表面のためのオブジェクト識別及び方法 Download PDF

Info

Publication number
JP2013542523A
JP2013542523A JP2013533841A JP2013533841A JP2013542523A JP 2013542523 A JP2013542523 A JP 2013542523A JP 2013533841 A JP2013533841 A JP 2013533841A JP 2013533841 A JP2013533841 A JP 2013533841A JP 2013542523 A JP2013542523 A JP 2013542523A
Authority
JP
Japan
Prior art keywords
grid
sensor
layer
stress
tile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013533841A
Other languages
English (en)
Other versions
JP6021812B2 (ja
Inventor
ケネス・パーリン
チャールズ・ヘンディー
アレックス・グラウ
ジェラルド・サイドマン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tactonic Technologies LLC
Original Assignee
Tactonic Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tactonic Technologies LLC filed Critical Tactonic Technologies LLC
Publication of JP2013542523A publication Critical patent/JP2013542523A/ja
Application granted granted Critical
Publication of JP6021812B2 publication Critical patent/JP6021812B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/002Specific input/output arrangements not covered by G06F3/01 - G06F3/16
    • G06F3/005Input arrangements through a video camera
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • G06F3/04144Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position using an array of force sensing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/047Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using sets of wires, e.g. crossed wires
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/041012.5D-digitiser, i.e. digitiser detecting the X/Y position of the input means, finger or stylus, also when it does not touch, but is proximate to the digitiser's interaction surface and also measures the distance of the input means within a short range in the Z direction, possibly with a separate measurement setup
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04105Pressure sensors for measuring the pressure or force exerted on the touch surface without providing the touch position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04106Multi-sensing digitiser, i.e. digitiser using at least two different sensing technologies simultaneously or alternatively, e.g. for detecting pen and finger, for saving power or for improving position detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04113Peripheral electrode pattern in resistive digitisers, i.e. electrodes at the periphery of the resistive sheet are shaped in patterns enhancing linearity of induced field

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Position Input By Displaying (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

それぞれがセンシング素子を有し、ベース上に配置されたグリッドの配線の複数の交点と上方から接触する一連の突起部と角においてそれらの底面から接触する一連のプレートと、一連のプレート上に配置されたトップ表面層とを有するセンサであって、トップ表面層上へと上方から与えられた応力はプレートに伝達され、そこから突起部に伝達され、そこからそれによってベースと突起部との間が圧縮されるグリッドの配線の交点に伝達され、それによって上方の突起部は交点上に直接的に与えられる応力を集中させる。センサは、プロンプト信号をグリッドに送信させてグリッドから受信されたデータ信号に基づく補間から表面上の応力の連続的な位置を再構築する、グリッドと通信するコンピュータを含む。

Description

本発明は、グリッドの配線から受信されたデータ信号に基づく補間から、表面上の力の連続的な位置を再構築するセンサに関する。(ここで使用されるように、「本発明」もしくは「発明」に対する参考文献は例示的な実施形態に関し、必ずしも添付された特許請求の範囲によって包含されたすべての実施形態に関するものではない。)より特に、本発明は、センサが複数のプレート及び一連の突起部を含むグリッドの配線から受信されたデータ信号に基づく補間から、表面上の応力の連続的な位置を再構築するセンサに関する。
2次元センサ及び3次元センサからのコンピュータ2次元及び3次元出力において受信することと、そのコンピュータを用いて2次元及び3次元出力の関数である合成された出力を発生することとに関する。より特に、本発明は、2次元センサ及び3次元センサからコンピュータ2次元及び3次元出力において受信することと、そのコンピュータを用いて2次元及び3次元出力の関数である合成された出力を発生することとに関し、ここで、2次元センサはその表面上に印加された応力をセンシングし、3次元センサはカメラである。
関連出願の相互参照
本出願は、2010年10月12日付けで出願された米国仮出願第61/404,897号、2011年2月8日付けで出願された米国仮出願第61/462,789号、2011年7月19日付けで出願された米国仮出願第61/572,642号及び2011年7月25日付けで出願された米国仮出願第61/572,938号からの優先権の利益を主張し、それらのすべてが参照によりここに組み込まれる。
このセクションは、読者に本発明の種々の態様に関連するかもしれない技術の種々の態様を紹介することを目的とする。以下の説明は、本発明のより良い理解を容易化するための情報を提供することを目的とする。従って、以下の説明内の記述は、この観点から読まれるべきであって、従来技術の入門として読まれるべきでないということを理解すべきである。
従来技術において、ローゼンバーグらは個々のセンシング素子間のポイントでセンシングされた圧力を正確に補間するという方法で表面上の時間的に変動する2次元のアレイの圧力を捕獲する方法を教える。これはセンシング素子間を補間せずそれ故に非常に細かく間隔が空けられた2次元センシング素子アレイを用いて連続的な圧力画像を近似的に捕獲する必要がある、例えばテックスキャンの方法などの従来の方法の改良である。
さらに、レンジ画像カメラだけに基づくジェスチャセンシングは、それは全体の手もしくうは足の動きをトラッキングし、各ユーザの各手の時間にわたって一貫性のある同一性(アイデンティティ)を保持し、いくつかの場合では(表面及び手もしくは足の位置に対するカメラの距離に基づいて、)曖昧でない指及びつま先の同一性を提供することができるので、非常にパワフルであるはずである。これは、表面上方の空間内での指及び手の位置もしくはつま先及び足の位置についての情報をほとんどもしくは全く提供しない、例えば可変抵抗もしくは可変容量に基づくタッチデバイスなどの純粋に表面ベースのタッチデバイスとは著しく対照的である。しかし、レンジ画像カメラはいくつかの欠点を被る。
(1)(キネクトに対しては30fpsである)フレームレートは非常に遅いので指を印加する動き及びキーをリリースする動きを正確にサンプリングすることができない。比較のために、USBキーボードの標準的なサンプリングレートは、(ビデオレートの4倍よりも大きい)125Hzである。このより高いサンプリングレートは曖昧でない検出及び複数の重複タイプされたキーストロークの曖昧性の除去のために必要とされる。
(2)表面にどれくらいの圧力が印加されているのかをレンジ画像単独から決定することは不可能であって、それによってディスプレイ上の仮想オブジェクトの微妙な動き、3次元コンピュータゲームキャラクターの迅速かつ正確な制御、楽器エミュレーション、疑似手術、疑似ペインティング/彫刻、歩行モニタリング、ダンス、理学療法のためのモニタリングスタンス、及びアイソメトリックコントロールの重要な測定から利益を得る他のアプリケーションに対してレンジ画像カメラを不十分な状態とさせる。
従って、指もしくは手又は足もしくはつま先の裏側に対する動き及び圧力における変動に基づく3次元画像ジェスチャから決定することもまた不可能である。例えば、もしユーザが異なる指間、又は指及び異なる手のひらの部分間で、又は足のかかと、中足骨もしくはつま先間で加重をシフトすれば、これらの変化がレンジ画像カメラに対して検出不可能となるであろう。
2001年から2011年の10年間は、(シャープ、東芝及び松下によってさまざまに開発された)各画素内に光学的な感知力を有する素子を含むLCDディスプレイの段階的な発展が見られた。このアプローチは、タッチとホバリングとの両方のセンシングを可能とさせる。
米国特許出願公開第2008/0,122,796号明細書 米国特許第7,782,307号明細書
V. Savov. Kinect Finally Fufills Its Minority Report Destiny. Engadget.2010. A. Wu and M. Shah and N. Lobo. A Virtual 3D Blackboard: 3D Finger Tracking using a Single Camera, 2000, 536−543. S. Malik, Real−time Hand Tracking and Finger Tracking for Interaction, 2003. C. Jennings. Robust Finger Tracking with Multiple Camera. In Proc. of the International Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real−Time Systems, 1999, 152−160. http://youtu.be/jerl Ms5dUJR Kinect Finger Tracking Video http://touchco.com/ Touchco http://www.wacom.com/en/Products/Intuos.aspx Wacom Intuos 4 http://www.microsoft.com surface/en us/default.aspx Microsoft Surface http://www.merl.com/projects/DiamondTouch/ Diamond Touch http://smarttech.com/ SMART Technologies J. Y. Han. Low−cost multi−touch sensing through frustrated total internal reflection. Proceedings of the 18th Annual ACM Symposium on User Interface Software and Technology, pages 1 15−1 18, 2005. I. Rosenberg and K. Perlin. The unmousepad: an interpolating multi−touch force−sensing input pad. In SIGGRAPH 09: ACM SIGGRAPH 2009 papers, pages 1−9, New York, NY, USA, 2009. ACM. http://www.futuresource−consulting.com/ Future Consulting Ming−Ching Chang and Benjamin B. Kimia, Regularizing 3D Medial Axis Using Medial Scaffold Transforms, Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference. Xia H. and Tucker P.G. (2009), Distance solutions for medial axis transform, Proceedings of 18th International Meshing Roundtable, Salt Lake City, Utah, October 25−28, 2009, pp. 247−260. http://www.umiacs.umd.edu/〜ramani/cmsc828d/lecture9.pdf, Ramani Duraiswami, Lecture Notes on Camera Calibration, cmsc828d. Multiple View Geometry in Computer Vision, R. Hartley and A.Zisserman, Cambridge University Press, 2000, pp. 138−183. Three−Dimensional Computer Vision: A Geometric Approach, O.Faugeras, MIT Press, 1996, pp. 33−68. "A Versatile Camera Calibration Technique for 3D Machine Vision", R. Y.Tsai, IEEE J. Robotics & Automation, RA−3, No. 4, August 1987, pp. 323−344. Jean− Yves Bouguet, Camera Calibration Toolbox for Matlab, http://www.vision.caltech.edu/bougueti/calib doc. Arther R. Pope, Model−Based Object Recognition − A Survey of Recent Research, Technical Report 94−04 January 1994. Farshid Arman, Model−based object recognition in dense−range images− a review, Journal ACM Computing Surveys (CSUR) Surveys Volume 25 Issue 1, March 1993. G. Qian, J. Zhang, and A. Kidane, "People Identification Using Gait via Floor Pressure Analysis", IEEE Sensors Journal, Vol. 10, No. 9, pp. 1447−1460,September 2010, doi: 10.1 109/JSEN.2010.2045158. Augsten, T., Kaefer, K., Meusel, R., Fetzer, C, Kanitz, D., Stoff, T.,Becker, T., Holz, C. and Baudisch, P. Multitoe: High−Precision Interaction with Back−Projected Floors Based on High−Resolution Multi−Touch Input. Proceedings of UIST 2010, New York, NY, October 3−6, 2010, pp. 209−218. Cullen Jennings, Robust Finger Tracking with Multiple Cameras, Proceedings of the International Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real−Time Systems, 1999. Jacob O. Wobbrock, Meredith Ringel Morris, Andrew D. Wilson, User− Defined Gestures for Surface Computing, Proceeding CHI ’09 Proceedings of the 27th international conference on Human factors in computing systems.
しかしながら、光学的な感知力を有する画素アプローチは、本発明のタッチレンジフュージョン装置アプローチと比較すると多数の欠点を被る。すなわち、(1)単位領域当たりのコストは、ここでのアプローチの単位領域当たりのコストよりも本質的にずっと高い。(2)そのようなセンサは任意に大きいフォームファクタに対してシームレスなタイル張りとすることができない。(3)検出されたタッチ111の圧力における変動が(指先コンタクト形状における変化を介して、)非常に低い忠実性だけを有して決定される。(4)手の形状だけが、ディスプレイ上方の比較的小さい距離内で検出される。このことが、手及び指の同一性の一貫性のあるモデルを保持すること、又は多くの手のジェスチャを認識することを不可能とさせる。さらに、足のセンシングに対してそのような技術を使用することは実用的でない。なぜなら、それらが人体の重量に耐えるために十分に物理的なロバスト性を有するようにそのようなセンサを製造するために追加されたコストをそれらのコストに追加することは極めて困難であろうからである。
本発明の1つのキーとなるイノベーションは、ローゼンバーグらとは異なり、この方法は、任意の大きなサイズの表面上での時間的に変動する2次元アレイの圧力を捕獲することができるということである。従って、ローゼンバーグらの方法とは異なり、本発明は、例えば壁、床、テーブル、デスクもしくは道路などの全体に広げられた表面にわたってシームレスに時間的に変動する圧力捕獲のために使用される。
この能力を可能とさせる本発明のキーとなる革新的な技術は、(1)センシング素子アレイの物理的に異なるタイル内への編成化と、(2)タイル境界を横切って動作することができるセンシング素子間の補間の方法とである。
また、本発明は、シームレスタイリングの戦略に基づいているので、最適化を使用することができ、それによって各物理的なタイルによって形成されたサブアレイの解像度がそのタイルからのデータ捕獲を制御するマイクロコントローラを最適に使用するように選択される。このことが他に類を見ないほど経済的な実装をもたらすことを可能とする。それによって、タイルの制御は、追加のトランジスタもしくは他の切替可能な電子部品の使用をまったく必要とすることなしに単一の商業的に利用可能なマイクロコントローラだけを必要とする。
さらに、1人もしくはそれ以上のユーザに対する手及び指の動作のみならず、1人もしくはそれ以上のユーザの足もしくはつま先の動作の高品質な表現を創造するのみならず、タッチデバイス上もしくは当該タッチデバイス上方でペンもしくは他のオブジェクトを識別してトラッキングするために、圧力画像装置もしくは他のタッチデバイスデータを1つもしくはそれ以上のレンジ画像カメラからのデータと確実に合成するタッチレンジフュージョン装置及びソフトウェアアブストラクション層が説明される。大型表面にわたる指識別、圧力、及び手ジェスチャもしくは足ジェスチャの高品質な入力に識別可能な複数のユーザの同時のサポートを提供する商品レベルで利用可能な技術は現在存在しないと考えられる。本発明は、その隙間を埋めるであろう製品へと導くであろう。
本発明はセンシングするための装置に関する。その装置は、コンピュータを備える。その装置は、表面に印加された応力を検出し、信号から表面に印加された応力の時間的に変動する連続的な画像を発生するコンピュータに対する応力に対応する信号を提供するセンサ表面を形成するコンピュータと通信する2つもしくはそれ以上の個々のセンシングタイルを備え、ここで、その表面は隣接しており、検出された応力は表面上で幾何学的に連続的かつシームレスであるような方法でセンシングされる。
本発明は、センサに関する。そのセンサは、交点及び配線間の空間領域を決定するグリッドの配線を備える。そのセンサは、機械的な層の最上に与えられた応力は突起部を介して伝達され、そこから突起部に伝達されるように、グリッドの配線の複数の交点と一連の突起部上に配置された機械的な層と接触する一連の突起部を備える。そのセンサは、プロンプト信号をグリッドに送信させてグリッドから受信されたデータ信号に基づく補間から表面上の応力の連続的な位置を再構築するグリッドと通信するコンピュータを備える。
本発明は、センサに関する。そのセンサは、データのための、N個のデュアルアナログ/デジタルI/OピンとM個のデジタルI/Oピンとを有するコンピュータを備え、ここで、M及びNは3よりも大きい正の整数である。そのセンサは、コンピュータの外部の任意のトランジスタもしくは他の切替可能な電子部品を使用することなしにM個のI/Oピンと通信するN行及びM列までと通信するN個のI/Oピンを有する、N行及びM列を有する圧力センシングアレイを備える。
本発明は、センサのタイルの位置を決定するための方法に関する。その方法は、コンピュータからの質問信号を、複数のタイルのそれぞれにそのタイルが電気通信する少なくとも1つの隣接するタイルを識別するように要求するコンピュータと通信する少なくとも複数のタイルに送信するステップを備える。複数のタイルからの質問に対する応答をコンピュータによって受信するステップが存在する。その応答からコンピュータによって相互に相対的なタイルの位置の幾何学的なマップを形成するステップが存在する。
本発明は、センシングするための方法に関する。その方法は、表面にわたって移動するオブジェクトから2つもしくはそれ以上の個々のセンシングタイルから形成されたセンサ表面に印加された応力を検出するステップを含み、ここで、表面は隣接し、検出された応力は表面上で幾何学的に連続かつシームレスであるような方法でセンシングされる。その応力に対応する信号を、コンピュータと通信するタイルから当該コンピュータに対して提供するステップが存在する。その信号から、表面に対して印加された応力の時間的に変動する連続的な画像をコンピュータによって発生するステップが存在する。
本発明は、センシングするための方法に関する。その方法は、配線間の空間の領域を有するグリッドの配線によって定義された交点に対して伝達される機械的な層の最上に対して応力を与えるステップを含む。そのグリッドと通信するコンピュータによってプロンプト信号をグリッドに送信させるステップが存在する。グリッドから受信されたデータ信号に基づく補間から表面上の応力の連続的な位置をコンピュータによって再構築するステップが存在する。
本発明は、センサに関する。そのセンサは、交点及び配線間の空間の領域を定義するグリッドの配線を備える。そのセンサは、外面層の外面に対して与えられた応力が外面層の内面を介して突起部と複数の交点とに伝達されるように、グリッドの配線の複数の交点と嵌合する一連の突起部と、一連の突起部及び外面と並置する内面を有する外面層とを備える。そのセンサは、プロンプト信号をグリッドに送信させてグリッドから受信されたデータ信号に基づく補間から外面層の外面上の応力のアンチエイリアジングされた画像を再構築する、グリッドと通信するコンピュータを備える。
本発明は、センシングするための方法に関する。その方法は、外面層の内面を介して、一連の突起部及び配線間の空間の領域を有するグリッドの配線によって定義される複数の交点に伝達される外面層の外面に対して応力を与えるステップを含む。グリッドと通信するコンピュータによって、プロンプト信号をグリッドに送信させるステップが存在する。グリッドから受信されたデータ信号に基づく補間から、外面層の外面上の応力のアンチエイリアジングされた画像を再構築するステップが存在する。
本発明は、センサに関する。そのセンサは、交点及び配線間の空間の領域を定義するグリッドの配線を備える。そのセンサは、グリッドの配線の複数の交点と接触する一連の突起部と、グリッドの配線と接触して配置された内面と外面とを有する外面層とを備える。その結果、外面層の外面上へと与えられた応力は外面層の内面を介して突起部に伝達され、そこからそれによって外面層と突起部との間を圧縮するグリッド配線の交点に伝達され、突起部はそれによって与えられた応力を交点上へと直接的に集中させる。そのセンサは、プロンプト信号をグリッドに送信させ、グリッドから受信されたデータ信号に基づく補間から外面層の外面上の応力のアンチエイリアジングされた画像を再構築する、グリッドと通信するコンピュータを備える。
本発明は、センサに関する。そのセンサは、交点及び配線間の空間の領域を定義するグリッドの配線を備える。そのセンサは、グリッドの配線の複数の交点と接触する一連の突起部と、グリッドの配線上に配置された複数のプレートを有する機械的な層とを備える。その結果、機械的な層の最上に与えられた応力は交点を介して伝達され、そこから突起部に伝達される。そのセンサは、プロンプト信号をグリッドに送信させ、グリッドから受信されたデータ信号に基づく補間から、表面上の応力の連続的な位置を再構築する、グリッドと通信するコンピュータを備える。
本発明は、センサに関する。そのセンサは、交点及び配線間の空間の領域を定義するグリッドの配線を備える。そのセンサは、グリッドの配線の複数の交点と接触する一連の突起部を備える。そのセンサは、グリッドの配線上に配置された複数のプレートを有するプレート層を備える。そのセンサは、プレート層に配置されたフレキシブルタッチ層を備え、ここで、そのタッチ層に与えられた応力はプレート層及び少なくとも1つの突起部を介して交点に伝達される。そのセンサは、プロンプト信号をグリッドに送信させ、そのグリッドから受信されたデータ信号に基づく補間から、表面上の応力の連続的な位置を再構築する、グリッドと通信するコンピュータを備える。
本発明は、センサに関する。そのセンサは、交点及び配線間の空間の領域を定義するグリッドの配線を備える。そのセンサは、グリッドの配線の複数の交点と接触する一連の突起部を備える。そのセンサは、グリッドの配線上に配置された複数のプレートを有するプレート層を備える。そのセンサは、そのプレート層上に配置されたフレキシブルタッチ層を備え、ここで、タッチ層に対して与えられた応力はプレート層を介して交点層に伝達され、そこから突起部に伝達される。そのセンサは、プロンプト信号をグリッドに送信させ、グリッドから受信されたデータ信号に基づく補間から、表面上の応力の連続的な位置を再構築する、グリッドと通信するコンピュータを備える。
本発明は、センサに関する。そのセンサは、それぞれにセンシング素子を有する、グリッドの配線の複数の交点と上方から接触する一連の突起部とそれらの角において底面から接触する一連のプレートと、プレートのグリッド上に配置された薄いトップ表面層とを備える。その結果、トップ表面層上へと上方から与えられた応力は、プレートに伝達され、そこから突起部に伝達され、そこからそれによってベースと突起部との間が圧縮されるグリッド配線の交点へと伝達され、それによって上側の突起部は、センサ交点上に直接的に与えられた応力を集中させる。そのセンサは、プロンプト信号をグリッドに送信させ、グリッドから受信されたデータ信号に基づく補間から、表面上の応力の連続的な位置を再構築する、センサと通信するコンピュータを備える。
本発明は、センシングするための方法に関する。その方法は、一連のプレートに伝達され、そこから一連の突起部に伝達され、そこからそれによってベースと突起部との間が圧縮されるグリッドの配線の複数の交点に伝達される、トップ表面層上へと上方から応力を与えるステップを含み、ここで、一連のプレートは、ベース上に配置されたグリッドの配線の複数の交点と上方から接触する一連の突起部とそれらの角においてそれらの底面から接触し、それによって上側の突起部は交点上へと直接的に与えられた応力を集中させる。グリッドと通信するコンピュータによって、プロンプト信号をグリッドに送信させるステップが存在する。グリッドから受信されたデータ信号に基づく補間から、表面上の応力の連続的な位置をコンピュータによって再構築するステップが存在する。
本発明は、センサに関する。そのセンサは、グリッドの配線の複数の交点と底面から接触する一連の突起部と、グリッドの配線の複数の交点とトップから接触する一連のプレートと、一連のプレート上に配置された薄いトップ表面層とを備える。その結果、トップ表面層上へと上方から与えられた応力は、プレートに伝達され、そこからグリッド配線の交点に伝達され、そこからそれによってプレートと突起部との間が圧縮される突起部に伝達され、それによって底面の突起部はセンサ交点上へと直接的に与えられた応力を集中させる。そのセンサは、プロンプト信号をグリッドに送信させ、グリッドから受信されたデータ信号に基づく補間から表面上の応力の連続的な位置を再構築する、センサグリッドと通信するコンピュータを備える。
本発明は、コンピュータ内に情報を入力するための装置に関する。その装置は、3次元情報をセンシングして、3次元出力を発生する3次元センサを備える。その装置は、2次元情報をセンシングして、2次元出力を発生する2次元センサを備える。その装置は、2次元出力及び3次元出力を受信し、2次元出力及び3次元出力の関数である合成された出力を発生する処理ユニットを備える。
本発明は、コンピュータ内に情報を入力するための方法に関する。その方法は、3次元情報をセンシングする3次元センサによって3次元出力を発生するステップを含む。2次元情報をセンシングする2次元センサによって2次元出力を発生するステップが存在する。2次元及び3次元出力の関数である処理ユニットによって合成された出力を発生するステップが存在する。
添付された図面では、本発明の好ましい実施形態及び本発明を実用化するための好ましい方法が例示される。
アクティブセンシングアレイを図示する。 2つのセンサ表面の位置合わせを図示する。 センサ表面の概略図を図示する。 センサ表面の層を図示する。 導体トレース線の概略図を図示する。 FSR配置の概略的なパターンを図示する。 導体トレース線テストパターンの概略図を図示する。 FSR配置テストパターンの概略的なパターンを図示する。 導体及びFSRテストパターンを有するセンサ表面を図示する。 導体及びFSRテストパターンを有するアクティブセンシングアレイを図示する。 単一のセンシング素子の概略的な分解図を図示する。 センシング素子のアクティブ領域を図示する。 単一のセンシング素子において、突起部がアクティブセンシングアレイの外面上に一体化された実施形態における素子の層を図示する。 突起部がアクティブセンシングアレイの外面上に一体化された実施形態におけるタッチ層上に与えられた応力を図示する。 突起部がアクティブセンシングアレイの外面上に一体化された実施形態における2つの隣接するタイル間のタッチ層上に与えられた応力を図示する。 単一のセンスにおいて、突起部が半剛体タッチ層の内面上に一体化された実施形態における素子の層を図示する。 突起部が半剛体タッチ層内部に一体化された半剛体タッチ層の実施形態の側面図を図示する。 単一のセンシング素子において、突起部が半剛体タッチ層の内面上に一体化された実施形態における素子の層を図示する。 異なる物理的なタイルに属するセンシング素子間の圧力の再分配の側面図を図示し、タイルの下に巻き付けられたアクティブセンシングアレイもまた図示する。 タイルの分解図と一体化された突起部及びベース層に対する突起部とセンシング素子との適切な位置合わせを図示する。 一体化された突起部及びベース層を有する実施形態における素子の層を図示する。 提案された半剛体タッチ層が容認できないほど硬すぎる実施形態を図示する。 半剛体タッチ層は容認できる程度の半剛体である実施形態を図示する。 提案された半剛体タッチ層が容認できないほど十分でない剛体である実施形態を図示する。 一体化された突起部及びベース層の実施形態における半剛体タッチ層上に与えられた応力の再分配を図示する。 応力が同一の圧力タイル上の4つの突起部に対して再分配されるであろう領域を図示する。 応力が2つの隣接した圧力タイルのそれぞれの上の2つの突起部に対して再分配されるであろう領域を図示する。 4つの隣接した圧力タイルのそれぞれの上の1つの突起部に対して再分配されるであろう領域を図示する。 高い/狭い突起部を図示する。 半球状の突起部を図示する。 高さよりもベースでの直径が広い湾曲した突起部を図示する。 その高さと比較して非常に大きいベースを有する湾曲した突起部を図示する。 一体化された突起部及びベース層の実施形態の下に折り畳まれたアクティブセンシングアレイを図示する側面図を図示する。 一体化された突起部及びベース層の実施形態の下に折り畳まれたアクティブセンシングアレイを図示する側面図を図示する。 PCB実施形態のための空洞を有する、一体化された突起部及びベース層の実施形態の下に折り畳まれたアクティブセンシングアレイを図示する底面図を図示する。 単一のタイルセンシング装置の使用を図示する。 タイルセンシング装置のグリッドの使用を図示する。 I2Cを用いるグリッドのタイルのデータバスの概略図を図示する。 グリッドのタイル及びそれらの電気接続部を図示する。 グリッドのタイルのゾーンの多様性を図示する。 N/S/E/Wの検出線を有するタイルの概略図を図示する。 分解されたタイル間の位置合わせ接続部を図示する。 タイル間の位置合わせ接続部の位置合わせの側面図を図示する。 適切な位置にあるタイル間の位置合わせ接続部の側面図を図示する。 タイルの分離されたグリッドを図示する。 マイクロプロセッサに対する/マイクロプロセッサからのケーブル/配線を図示する。 センシング素子間の距離を保つ隣接するタイルを図示する。 ホスト通信タイルとマスタータイルとの両方として機能するタイルのための電子機器のブロック図を図示する。 スレーブタイルのためのブロック図を図示する。 補償機能における使用のためにラベリングされた位置を図示する。 補償機能のグラフを図示する。 共通のタッチ層を有する複数のタイルを図示する。 一体化された突起部及びベース層の実施形態における異なるタイル上のセンシング素子に対して印加された、印加された応力を図示する。 一体化されたプレート及び突起部行列構成要素の実施形態に対するタイルの分解図を図示する。 一体化されたプレート及び突起部行列構成要素の実施形態に対するタイルの側面図を図示する。 別個のプレート及び突起部行列構成要素の実施形態に対するタイルの展開図を図示する。 別個のプレート及び突起部行列構成要素の実施形態に対するタイルの側面図を図示する。 突起部がアクティブセンシングアレイに取り付けられた実施形態を図示する。 突起部がアクティブセンシングアレイに取り付けられた実施形態の展開図を図示する。 別個のプレート行列及び突起部行列層の技術のプロトタイプ実施形態で使用された寸法の上面図を図示する。 別個のプレート行列及び突起部行列層の技術のプロトタイプ実施形態で使用された寸法の側面図を図示する。 アクティブセンシングアレイ上方のプレート位置合わせを図示する。 アクティブセンシングアレイ上の対応するセンシング素子の内側で適切に位置合わせされた剛体プレートの上面図を図示する。 プレート行列の上面図を図示する。 プレート行列の側面図を図示する。 突起部行列の上面図を図示する。 突起部行列の側面図を図示する。 アクティブセンシングアレイによって位置合わせされたプレート行列を図示する。 アクティブセンシングアレイ上の対応するセンシング素子上で適切に位置合わせされた突起部の上面図を図示する。 突起部の種々の有効な配置と有効でない配置とを図示する。 突起部の種々の有効な配置と有効でない配置とを図示する。 突起部の種々の有効な配置と有効でない配置とを図示する。 突起部の種々の有効な配置と有効でない配置とを図示する。 突起部の種々の有効な配置と有効でない配置とを図示する。 突起部の種々の有効な配置と有効でない配置とを図示する。 適切に位置合わせされたプレート行列及び突起部行列の重ね合わせの底面図を図示する。 適切に位置合わせされたプレート行列及び突起部行列の重ね合わせの側面図を図示する。 適切に位置合わせされたプレート行列及び突起部行列の重ね合わせの上面図を図示する。 適切に位置合わせされたプレート行列及び突起部行列の重ね合わせの切り抜かれた図を図示する。 テーブル上のような水平センサを図示する。 壁上のような垂直センサを図示する。 一体化されたプレート及び突起層の実施形態を図示する。 スリット及び長方形の突起部を有する、一体化されたプレート及び突起層の側面図を図示する。 突起部が接合部を介してプレートと同一平面となり続くようにスリット及び長方形の突起部を有する一体化されたプレート及び突起層の側面図を図示する。 スリット及び台形状の突起部を有する一体化されたプレート及び突起層の側面図を図示する。 スリット及び長方形の突起部を有する一体化されたプレート及び突起層の側面図を図示する。 接合部においてプレートの外面と同一表面でないスリットを有する一体化されたプレート及び突起層の上面図を図示する。 突起部が接合部を介してプレートと同一平面となり続くようにスリット及び長方形の突起部を有する一体化されたプレート及び突起層の上面図を図示する。 接合部においてプレートの外面と同一表面でないより広いスリットを有する一体化されたプレート及び突起層の上面図を図示する。 センシング素子上方の突起部を構成する一連の角突起部の例を図示する。 センシング素子上方の突起部を構成する一連の角突起部の例を図示する。 センシング素子上方の突起部を構成する一連の角突起部の例を図示する。 フラットトップの一体化されたプレート及び突起層の実施形態の側面図を図示する。 フラットトップの一体化されたプレート及び突起層の実施形態の外面を図示する。 フラットトップの一体化されたプレート及び突起層の実施形態の内面を図示する。 フラットトップのプレート行列層を図示する。 一体化された突起層及びベース支持層を図示する。 容認できる程度の剛体プレートを図示する。 容認できる程度の半剛体プレートを図示する。 容認できない程度の非剛体プレートを図示する。 プレートでの応力の再分配の断面を図示する。 分離したプレートと、隣接するセンシング素子に対して排他的にその機械的に補間された応力の再分配の概略図を図示する。 一体化されたプレート及び突起層のプロトタイプ実施形態において使用されたプレート及び突起部の寸法を図示する。 プレートに対する光抵抗インクパターンを図示する。 突起部に対する光抵抗インクパターンを図示する。 圧縮プレート製造の実施形態のプロファイル図を図示する。 圧縮プレート製造の実施形態の上面図を図示する。 不連続な角突起部及び隣接する角を有するプレートを有するプレート及び突起層の実施形態を図示する。 不連続な角突起部及び隣接する角を有する単一のパーツのフラットトッププレート及び突起層の実施形態を図示する。 アクティブセンシングアレイと同一平面上にある回路基板を有する実施形態を図示する。 ブリッジングプレートを有する内部のグリッドタイルの分解図を図示する。 ブリッジングプレートを有する内部のグリッドタイルの上面図を図示する。 ブリッジングプレートを有する内部のグリッドタイルの側面図を図示する。 隣接するタイルのブリッジングプレートの位置合わせを図示する。 隣接するタイルのブリッジングプレートの正確な位置決めを図示する。 ブリッジングプレートを有するタイルのベース層に組み込まれた回路基板の側面図を図示する。 ブリッジングプレートを有するタイルのベース層に組み込まれた回路基板の底面斜視図を図示する。 適切な位置にある支持層の下のブリッジングプレート及び回路のアセンブリを有するタイルの隣接するタイルの位置合わせの概略図を図示する。 支持層の下のブリッジングプレート及び回路のアセンブリを有する隣接するタイルの位置合わせを図示する。 適切に位置合わせされたブリッジングプレートを有するグリッドのタイルの概略図を図示する。 適切な位置にあるブリッジングプレートを有するグリッドのタイルを図示する。 突起部上のブリッジプレートの位置合わせを見えるように透明なブリッジタイルを有する、適切な位置にあるブリッジングプレートを有するグリッドのタイルを図示する。 内部、ノース、イースト及びノースイーストタイルの実施形態のグリッドを図示する。 内部、ノース、イースト及びノースイーストタイルの実施形態の3×3のグリッドの概略的な位置合わせを図示する。 それらの適切な位置での内部、ノース、イースト及びノースイーストタイルの実施形態の3×3のグリッドを図示する。 円筒表面上の変形可能なパッチを図示する。 円錐表面上の変形可能なパッチを図示する。 円筒部分の湾曲したセンサのアセンブリを内側から見た図を図示する。 円筒部分の湾曲したセンサのアセンブリを外側から見た図を図示する。 円筒部分の一体化されたプレート及び突起層の高さ縁面図(height edge view)を図示する。 円筒部分の一体化されたプレート及び突起層の外側から見た図を図示する。 円筒部分の一体化されたプレート及び突起層の内側から見た図を図示する。 円筒表面上に搭載されたセンサを図示する。 六角形のプレートのプレート行列を図示する。 六角形のプレート行列に対応する突起部行列を図示する。 六角形のプレートを有する一体化されたプレート及び突起層を図示する。 六角形のプレート行列に対応する間隔を有するアクティブセンシングアレイを図示する。 アクティブセンシングアレイ上方に位置決めされた六角形の一体化されたプレート及び突起層を図示する。 角に記号が付された六角形のプレートを図示する。 タイルの底面上の回路に対する支持層の周りに巻き付けられたアクティブセンシングアレイに取り付けられた突起部を有する実施形態を図示する。 16個のトレース線のバンクに分割されたコネクタテールを図示する。 一体化された突起部及びベース層の実施形態上の層及び印加された応力を図示する。 タッチデバイス及び2個のレンジ画像カメラを有する実施形態を図示する。 1人の個々のユーザの左手及び右手を図示し、個々のユーザの最大のリーチを超えると、もう1人の個々のユーザが識別される。 レンジ画像カメラを図示する。 タッチ画像デバイスを図示する。 圧力画像装置を図示する。 テーブルトップの実施形態を図示する。 床の実施形態を図示する。 コンピュータを有するタッチレンジフュージョン装置の実施形態を図示する。 エッジ検出、エッジハンドに整合された骨格、及び識別された指タッチを用いて手の輪郭を図示する。 立方体が4つの角に設置されたことを図示する。 タッチレンジフュージョン装置の実施形態を図示する。 タッチデバイス、レンジ画像カメラ及びレンジ画像カメラのための支持スタンドを有する実施形態を図示する。 一連のコンタクトポイントPkと一緒にタッチデバイス101を図示する。 コンピュータによって処理され、コンピュータメモリに格納される、レンジ画像カメラ及びタッチデバイスからのデータのブロック図である。
いま、いくつかの図面を通して同様の参照番号が同様のもしくは同一の部分に言及する図面を参照し、より特にその図面のうちの図35及び図36を参照すると、センシングのための装置1が図示される。装置1は、コンピュータ3を備える。装置は、表面に対して印加された応力を検出し、応力に対応する信号を、信号から表面に印加された応力の時間的に変動する連続的な画像を発生するコンピュータ3に提供する、センサ表面を形成するコンピュータ3と通信する2つもしくはそれ以上の個々のセンシングタイル2を備え、ここで、その表面は隣接し、検出された応力は表面上で幾何学的に連続かつシームレスであるような方法でセンシングされる。
図50から図52において図示されるように、本発明は、センサ200に関する。センサ200は、交点とワイヤ23間の空間領域とを定義するグリッド126のワイヤ23を備える。センサは、グリッド126のワイヤ23の複数の交点と接触する一連の突起部30と、一連の突起部30の最上に配置された機械的な層とを備え、その結果、機械的な層の最上に対して与えられた応力が突起部30を介して伝達され、そこから交点に伝達される。センサは、プロンプト信号をグリッド126に対して送信させ、グリッド126から受信されたデータ信号に基づく補間から表面上の応力の連続的な位置を再構築する、グリッド126と通信するコンピュータ3を備える。
センサ200は、グリッド126のワイヤ23の複数の交点に近接した応力抵抗材料を含んでもよい。応力抵抗材料は、グリッド126のワイヤ23の複数の交点の近接のみに配置され、一定の間隔で配置される。
本発明は、センサに関する。センサは、データのための、N個のデュアルアナログ/デジタルのI/OピンとM個のデジタルI/Oピンとを有するコンピュータ3を備え、ここで、MはNよりも小さく、M及びNは3よりも大きい正の整数である。センサは、コンピュータ3の外側の任意のトランジスタもしくは他の切替可能な電子部品をまったく使用することなしに、M個のI/Oピンと通信するN行及びM列までと通信するN個のI/Oピンを有する、N行及びM列を有する圧力センシングアレイを備える。
本発明は、センサのタイル2の位置を決定するための方法に関する。当該方法は、複数のタイル2のそれぞれに対して、そのタイル2が電気通信状態にある少なくとも1つの隣接するタイル2を識別するように要求して、コンピュータ3からの質問信号を当該コンピュータ3と通信する少なくとも複数のタイル2に送信するステップを含む。複数のタイル2から質問に対する応答をコンピュータ3によって受信するステップが存在する。その応答から、相互に関連したタイルの位置の幾何学的なマップをコンピュータ3によって形成するステップが存在する。
本発明は、センシングするための方法に関する。当該方法は、表面にわたって移動するオブジェクトから2つもしくはそれ以上の個々のセンシングタイル2から形成されたセンサ表面に印加された応力を検出するステップを含み、ここで、当該表面は隣接し、検出された応力は表面上で幾何学的に連続的かつシームレスであるという方法においてセンシングされる。応力に対応する信号をコンピュータ3と通信するタイル2からコンピュータ3に提供するステップが存在する。その信号から、表面に印加された応力の時間的に変動する連続的な画像をコンピュータ3によって発生するステップが存在する。付加的なタイル2を2個のタイル2のうちの少なくとも1つに接続してセンサ表面のサイズを拡大するステップが存在してもよく、ここで、表面は付加的なタイル2を含んで隣接し、検出された応力は表面上で幾何学的に連続的かつシームレスであるという方法においてセンシングされる。
本発明は、センシングするための方法に関する。当該方法は、ワイヤ23間の空間領域を有するワイヤ23のグリッド126によって定義された交点まで伝達される機械的な層の最上に応力を与えるステップを含む。グリッド126と通信するコンピュータ3によってプロンプト信号をグリッド126に送信させるステップが存在する。グリッド126から受信されたデータ信号に基づく補間から表面上の応力の連続的な位置をコンピュータ3によって再構築するステップが存在する。
本発明は、センサ200に関する。当該センサ200は、交点及びワイヤ23間の空間領域を定義するグリッド126のワイヤ23を備える。センサは、グリッド126のワイヤ23の複数の交点と嵌合する一連の突起部30と、一連の突起部30と並置する内面と外面とを有する外面層とを備え、その結果、外面層の外面に与えられた応力が外面層の内面及び複数の交点を介して突起部30へと伝達される。センサは、プロンプト信号をグリッド126に送信させ、グリッド126から受信されたデータ信号に基づく補間から外面層の外面上の応力のアンチエイリアジングされた画像を再構築する、グリッド126と通信するコンピュータ3を備える。
外面層は、機械的な層であってもよく、一連の突起部30は、グリッド126のワイヤ23と機械的な層との間に配置される。グリッド126のワイヤ23は、一連の突起部30と外面層との間に配置されてもよい。
本発明は、センシングするための方法に関する。当該方法は、外面層の内面を介して一連の突起部30と、ワイヤ23間の空間領域を有するグリッド126のワイヤ23によって定義された複数の交点とに対して伝達される外面層の外面に対して応力を与えるステップを含む。グリッド126と通信するコンピュータ3によってプロンプト信号をグリッド126に送信させるステップが存在する。グリッド126から受信されたデータ信号に基づく補間から外面層の外面上の応力のアンチエイリアジングされた画像をコンピュータ3によって再構築するステップが存在する。
本発明は、センサ200に関する。センサは交点及びワイヤ23間の空間領域を定義するグリッド126のワイヤ23を備える。センサは、グリッド126のワイヤ23の複数の交点と接触する一連の突起部30と、グリッド126のワイヤ23と接触して配置された内面と外面とを有する外面層とを備え、その結果、外面層の外面上に与えられた応力は、外面層の内面を介して突起部30へと伝達され、そこからグリッド126のワイヤ23の交点へと伝達され、それによって外面層と突起部30との間が圧縮され、それによって突起部30は与えられた応力を交点上へと直接的に集中させる。センサは、プロンプト信号をグリッド126に送信させ、グリッド126から受信されたデータ信号に基づく補間から外面層の外面上の応力のアンチエイリアジングされた画像を再構築する、グリッド126と通信するコンピュータ3を備える。
本発明は、センサ200に関する。センサは、交点及びワイヤ23間の空間領域を定義するグリッド126のワイヤ23を備える。センサは、グリッド126のワイヤ23の複数の交点と接触する一連の突起部30と、グリッド126のワイヤ23上に配置された複数のプレート35を有する機械的な層とを備え、その結果、機械的な層の最上に与えられた応力は、交点を介してそこから突起部へと伝達される。センサは、プロンプト信号をグリッド126に送信させ、グリッド126から受信されたデータ信号に基づく補間から表面上の応力の連続的な位置を再構築する、グリッド126と通信するコンピュータ3を備える。
機械的な層は、複数のプレート35上に配置されたフレキシブルタッチ層を含んでもよい。各プレート35は、対応する突起部30の外面によって位置合わせされた角125を有してもよい。
本発明は、センサ200に関する。センサは、交点及びワイヤ23間の空間領域を定義するグリッド126のワイヤ23を備える。センサは、グリッド126のワイヤ23の複数の交点と接触する一連の突起部30を備える。センサは、グリッド126のワイヤ23上に配置された複数のプレート35を有するプレート層を備える。センサは、プレート層上に配置されたフレキシブルタッチ層を備え、ここで、タッチ層に対して与えられた応力は、プレート層と少なくとも1つの突起部とを介して交点に伝達される。センサは、プロンプト信号をグリッド126に送信させ、グリッド126から受信されたデータ信号に基づく補間から表面上の応力の連続的な位置を再構築する、グリッド126と通信するコンピュータ3を備える。
本発明は、センサ200に関する。センサは、交点及びワイヤ23間の空間領域を定義するグリッド126のワイヤ23を備える。センサは、グリッド126のワイヤ23の複数の交点と接触する一連の突起部30を備える。センサは、グリッド126のワイヤ23上に配置された複数のプレート35を有するプレート層を備え、ここで、タッチ層に与えられた応力は、プレート層を介して交点層へと伝達され、そこから突起部30へと伝達される。センサは、プロンプト信号をグリッド126に送信させ、グリッド126から受信されたデータ信号に基づく補間から表面上の応力の連続的な位置を再構築する、グリッド126と通信するコンピュータ3を備える。
本発明は、センサ200に関する。センサは、それぞれがセンシング素子を有する、グリッド126のワイヤ23の複数の交点と上方から接触する一連の突起部30とそれらの角125において底面から接触する一連のプレート35と、プレート35のグリッド126上に配置された薄いトップ表面層127とを備え、その結果、トップ表面層127上に上から与えられた応力は、プレート35へと伝達され、そこから突起部30に伝達され、そこからグリッド126のワイヤ23の交点に伝達され、それによってベース47と突起部30との間が圧縮されて、それによって図52に図示されるように、上側の突起部30は与えられた応力を直接的にセンサ交点上に集中させる。センサは、プロンプト信号をグリッド126に送信させ、グリッド126から受信されたデータ信号に基づく補間から表面上の応力の連続的な位置を再構築する、センサグリッド126と通信するコンピュータ3を備える。
各センシング素子は、FSR24を含んでもよい。応力が表面層に与えられたとき、各突起部は、対応するセンシング素子26と接触するように位置合わせされてもよい。センサは、表面層と一連のプレート35との間、突起部30とグリッド126との間、及びグリッド126とベース47との間に配置された接着剤40を含んでもよい。
各プレート35は、その角125が隣接したセンシング素子26の内側に位置合わせされるように位置決めされてもよい。特に、プレート35は、プレート35間に隙間が存在するように、プレート35の角125間の隙間の中心がセンシング素子26に対応するように位置合わせされるように位置合わせされてもよい。各突起部は、樹脂、金属、木、もしくはガラスの剛体の突起であってもよく、応力を対応するセンシング素子26に集中させ、対応するセンシング素子26と接触する形状を有する各突起部は、対応するセンシング素子26上もしくは当該センシング素子26の内側に正確に位置する。突起部30は、プレート35間の隙間を介して当該プレート35とぴったり重なって途切れなく続いていてもよい。突起部30は、プレート35と一体となって当該プレート35の頂点から出ていてもよい。
一連のプレート35と接触する表面層、グリッド126と接触する突起部30、及びベース47と接触するグリッド126に関し、接触するとはまた、接着剤40が表面層と一連のプレートとの間に存在する状況、接着剤40が突起部30とグリッド126との間に存在する状況、及び接着剤40がグリッド126とベース47との間に存在する状況を含むことが理解される。
本発明は、センシングするための方法に関する。当該方法は、一連のプレート35へと伝達され、そこから一連の突起部30へと伝達され、そこからグリッド126のワイヤ23の複数の交点へと伝達され、それによってベース47と突起部30との間を圧縮させるトップ表面層127上へと上から応力を与えるステップを含み、ここで、一連のプレート35は、ベース47上に配置されたグリッド126のワイヤ23の複数の交点と上方から接触する一連の突起部30とそれらの角125においてそれらの底辺から接触し、それによって上側の突起部30は、交点上へと直接的に与えられた応力を集中させる。グリッド126と通信するコンピュータ3によってプロンプト信号をグリッド126へと送信させるステップが存在する。グリッド126から受信されたデータ信号に基づく補間から表面上の応力の連続的な位置をコンピュータ3によって再構築するステップが存在する。
本発明は、センサ200に関する。センサはグリッド126のワイヤ23の複数の交点と底辺から接触する一連の突起部30と、グリッド126のワイヤ23の複数の交点とトップから接触する一連のプレート35と、一連のプレート上に配置された薄いトップ表面層127とを備える。その結果、トップ表面層127上へと上から与えられた応力は、プレート35へと伝達され、そこからグリッド126のワイヤ23の交点へと伝達され、そこから突起部30へと伝達され、それによってプレート35と突起部30との間が圧縮され、それによって底面からの突起部30はセンサ交点上へと直接的に与えられた応力を集中させる。センサは、プロンプト信号をグリッド126に送信させるセンサグリッド126と通信するコンピュータ3を備え、グリッド126から受信されたデータ信号に基づく補間から表面上の応力の連続的な位置を再構築する。
複数の交点の少なくとも1つの交点を介して伝達される機械的な層の最上に対して応力を与え、そこから交点の少なくとも1つと接触する一連の突起部30の少なくとも1つの突起部に伝達されるステップが存在してもよく、ここで、交点はグリッド126のワイヤ23及びワイヤ23間の空間の領域によって定義され、機械的な層は、グリッド126のワイヤ23の最上に配置された複数のプレート35を有する。
一連の突起部30の少なくとも1つの突起部を介して複数の交点の少なくとも1つの交点に伝達される機械的な層の最上に対して応力を与えるステップが存在してもよく、ここで、交点はグリッド126のワイヤ23及びワイヤ23間の空間領域によって定義され、機械的な層は、グリッド126のワイヤ23上に配置された複数のプレート35を有する。
本発明は、図122から図129において図示されたように、情報をコンピュータ3内に入力するための装置104に関する。当該装置は、3次元情報をセンシングし3次元出力を発生する3次元センサを備える。当該装置は、2次元情報をセンシングし2次元出力を発生する2次元センサを備える。当該装置は、2次元出力と3次元出力とを受信し、2次元出力と3次元出力との関数である合成された出力を発生する処理ユニットを備える。
オブジェクトは、3次元センサ及び2次元センサによって3次元及び2次元において識別されてトラッキングされてもよい。指、手、足、人間、ペンもしくは他のオブジェクトは、3次元及び2次元において識別されてトラッキングされてもよい。当該装置は、メモリを含んでもよく、ここで、各オブジェクトの同一性が時間にわたって保持される。3次元センサからのオブジェクトの同一性は、処理ユニットによって2次元センサからのオブジェクトとペアを構成してもよい。2次元センサは表面を有し、2次元センサはその表面に対する接触をセンシングしてもよい。2次元センサは、表面上に与えられた応力をセンシングしてもよい。2次元センサは、圧力画像センサを含んでもよい。3次元センサは、レンジ画像カメラを含んでもよい。3次元センサは、IR深度センサを含んでもよい。3次元センサは、RGBカメラを含んでもよい。装置は、合成された出力が表示されるディスプレイを含んでもよい。
本発明は、情報をコンピュータ3内に入力するための方法に関する。当該方法は、3次元情報をセンシングする3次元センサを用いて3次元出力を発生するステップを含む。2次元情報をセンシングする2次元センサを用いて2次元出力を発生するステップが存在する。処理ユニットにおいて2次元出力及び3次元出力を受信するステップが存在する。処理ユニットによって、2次元出力及び3次元出力の関数である合成された出力を発生するステップが存在する。
3次元センサ及び2次元センサによって、3次元及び2次元においてオブジェクトを識別してトラッキングするステップが存在してもよい。3次元及び2次元において、指、手、足、人間、ペンもしくは他のオブジェクトを識別してトラッキングするステップが存在してもよい。各オブジェクトの同一性を時間にわたってメモリ内に保持するステップが存在してもよい。処理ユニットによって、3次元からのオブジェクトの同一性を2次元センサからのオブジェクトとペアを構成するステップが存在してもよい。2次元センサはその表面に対する接触をセンシングするステップが存在してもよい。2次元センサがその表面上に与えられた応力をセンシングするステップが存在してもよい。2次元センサは、圧力画像センサを含んでもよい。3次元センサは、レンジ画像カメラを含んでもよい。合成された出力をディスプレイ上に表示するステップが存在してもよい。
導電性ワイヤのグリッド126は、外側及び内面シート21上の導電性トレース線23から構成される。ワイヤ128のグリッドの交点は、2つの導電性トレース線23が接触する位置である。その交点はまた、FSR材料24が位置された場所でもある。プレート35及び突起部30を利用する実施形態では、フレキシブルタッチ層38は、圧力画像装置1に対するトップ表面層127を構成する。
本発明の動作に関して以下に説明する。
ハードウェア部品のリスト:
アクティブセンシングアレイ:図1に図示されたアクティブセンシングアレイ20は、図2に図示されるように、他方に対して一方を90度回転して互いに面する2つのセンサ表面シート21を備える。図3及び図4の分解図で図示されるように、2つのセンサ表面シート21のそれぞれは、それらの上に印刷された少量の応力感知力を有する抵抗(FSR)材料24を有する印刷された導電性トレース線23を有する非導電性表面基板22から構成され、2つの表面シート21を互いに面するインクされた側で相互に接触して設置する場合には、FSR24材料はセンサ表面の他の位置では必要とされないが図1に図示されるように、導電性トレース線23のグリッドの交点に近接し、一定の間隔で設置される。
複数のタイル2をどのように連結するかを説明する記述:
センサタイル2は、図38に概略的に図示されたように、複数の隣接するタイルを含む装置1において配線してデバイスを物理的に接続することによってくっつけて接続される。
タイル間ワイヤリング(配線すること)は、システムプロトコル通信に対して使用され、局所的なタイル隣接物を識別するために使用される。プロトコルワイヤリングは、システムにおいて使用されたプロトコルのトポロジーに依存する。一実施例では、タイルは、ICハブによってくっつけて接続され、ワイヤリングはマスターで開始し、グリッドにおける各センサに到達する。各センサの局所的な隣接物を検出するために、ワイヤ23は、1つのセンサタイルからその隣接物へと通過する。
ワイヤリングに加えて、物理的な接続部は、隣接するタイルを接続するために使用される。この接続部の外観は、システムの所望の使用に依存する。一実施例では、図41、図42A及び図42Bに図示されるように、キーとなる位置において位置された穴を有する樹脂接続部71は、隣接するタイル2間に設置される。接続部71上の穴は、各タイル2のベース支持層32上のタブ72とぴったりと合う。次に、その接続部は、2つの隣接したデバイス上へとスライドすることができ、付加的な支持をグリッドに提供する。
図41は、タブ72と接続部71とを有するベース層32の分解図を図示し、図42Aは、接続部72内へのタブ72の適切な位置合わせを図示し、図42Bは、2つの隣接するタイルに対するタブ72と接続部71との適切な位置決めを図示する。
プロファイル図における各層はどのように形成され、全体のプロファイルがどのように形成されたか、及び各層の目的:
どのように各層が作られたか:
図15において図示された半剛体タッチセンサ31及び突起部30は、樹脂、ガラス、木、金属もしくは任意の他の半剛体材料から作られた単一の機械的な部品とできる。この部品は、射出成形、刻印及び冷却鋳造を含む種々の標準的な方法によって製造される。
代替の実施形態では、図12に図示されるように、突起部30は、対応するセンシング素子の位置において外側のセンサ表面シート21の表面基板22に強固に取り付けられる。これを実行するための1つの方法はコールドキャスティングによる方法である。1つの製造の方法では、規則的に間隔が空けられた穴を含む、シリコンラバーを備えるモールド(鋳型)は、表面基板22の外側の側面上に設置され、樹脂をこれらの穴の中に注ぐ。樹脂が硬化すると、モールドを除去し、樹脂は表面基板22のトップ表面上に規則的に間隔が空けられたバンプを形成する。この実施形態では、タッチ層31は、樹脂、ガラス、木もしくは金属または任意の他の半剛体金属から作られるシンプルな半剛体シートである。この代替の実施形態の1つの利点は、それが突起部30がセンサの動作の間に各センシング素子27のアクティブ領域に対応するFSR材料24によって正確に位置合わせされる状態を維持されることを確実とするということである。そのような構成は、取り付けられた突起部55を有するアクティブセンシングアレイを構成する。
どのように全体のプロファイルが形成されたか:
全体のプロファイルは、製造プロセスの間に部品層をアセンブリングすることによって作られる。
明確とするために、部品の「外側」もしくは「外面」は、例えば表面をタッチするユーザなどの外部から応力が印加されるデバイスの側面/方向を示す。「内側」もしくは「内面」は、「外側」と反対方向を示す。
図12のセンサ断面に図示されたように、外側から内側に対する各層の目的。このケースでは、外側から内側に対するとは、ページの上から下方向である:
図12及び図13に図示されるように、半剛体タッチ層31及び突起部30の目的は、図11に図示されるように、すべての印加された応力がアクティブセンシング素子領域27に対してだけに、すなわちアクティブセンシングアレイ20における導体トレース23の接合部における外面もしくは内面において分配されるように、半剛体タッチ層31の外面に印加された連続的な応力34を再分配することである。
次の内側の層は、アクティブセンシングアレイ20の外側のセンサ表面シート21の非導電性のセンサ基板22であって、それは一実施例では厚さを5ミルとできる薄いアセテートから作られ、基板22の内側の側面上に印刷された金属注入されたインク伝導トレース線23のパターンの次の内側の層へと続く。
次の内側の層は、FSR材料24に対向したFSR材料24を図示する。すなわち、図3及び図4に図示されるように、アクティブセンシングアレイ20の外側のセンサ表面シート21の導電性線23の上方にオーバープリントされた(重ねて印刷された)外側のFSR24のパターンである。内側のFSR24は、アクティブセンシングアレイ20の内側のセンサ表面シート21の、次の内側の層である導電性線23の上方にオーバープリントされる。動作において、これらの2つのFSR24部品は、相互に接触するが相互に機械的に取り付けられない。
次の内側の層は、アクティブセンシングアレイ20の内側のセンサ表面シート21の非導電性のセンサ基板22であって、それは一実施例ではこの基板22の外側の側面上に印刷された、前の層の金属注入されたインク伝導トレース線23のパターンとともに、厚さを5ミルとできる薄いアセテートから作られる。
次の内側の層は、例えばガラス、アクリル、木もしくは金属などの任意の固体材料から作られた支持層32である。一実施例では、それは1/4インチの厚さのアクリルで作られた。
明確とするために、センシング素子26は、図10に図示されるように、その領域において電気的に応力を測定することを可能とする導体トレース23の接合部におけるすべてのアクティブセンシングアレイ20上にすべての材料を備える。センシング素子27のアクティブ領域は、図11に図示されるように、特に力が集中されるそのセンシング素子のその位置に対応するアクティブセンシングアレイ20の表面上の内側もしくは外側の領域に対応する。そのようなものとして、「センシング素子と接触する」は、そのセンシング素子に対応するアクティブ領域との接触を意味する。
続いて、初めから終わりまで本発明の各特徴を通して信号について詳細に説明する。特に、どのように信号がタッチ層の外面と接触するオブジェクトから発生し、その時からそれに対して発生したものがどのように導電性線を介してネットワークに沿って最終的にはそれが画像化されるコンピュータ3へと送信され、途中で特定のステップごとにどのように変換されるかについて説明する。この説明には、信号に続くこの詳細な説明の一部としてどのように補間がその信号に適用されたかを含む。
図13は、すぐ近くの支持突起部30に対して機械的に伝達され、そこから導電性線23がタイルのアクティブセンシングアレイ20上で交差するセンシング素子27の圧力センシングアクティブ領域に対して伝達された、半剛体の上部のプレートに印加された応力もしくは圧力34の印加を図示する。この実施形態では、突起部は、半剛体タッチ層31に対するよりむしろアクティブセンシングアレイ20の外面に取り付けられる。
すぐ近くの突起部30及び対応するセンシング素子26は、同一のタイル上に存在する必要はないがむしろ、図14におけるように、隣接した、機械的に分離したタイル上に存在することができる。
図14は、2つの隣接するが機械的に異なるタイル上のすぐ近くの支持突起部30に対して機械的に伝達され、そこから導電性線23が異なるセンサタイルのそれぞれのアクティブセンシングアレイ20上で交差するセンシング素子27の圧力センシングアクティブ領域に対して伝達された、半剛体の上部のプレートに印加された応力もしくは圧力34の印加を図示する。この実施形態では、突起部30は、アクティブセンシングアレイ20の外側の側面に対するよりむしろ半剛体のタッチ層31に取り付けられる。
補間.
各センサ装置に対して、ここで説明された種々の実施形態を例示するように、表面上に与えられた応力は、すべての応力がセンシング素子26を含むアクティブセンシングアレイ20を含む1つもしくは複数のタイル2上のその表面下の圧力測定センシングアレイ20のグリッド上へと集中されるように機械的に再分配される。補間はこの機械的な再分配によって得られる。装置の外面上かつセンシング素子26の上方で接触が行われると、その位置に対して印加された応力がセンシング素子26において登録される。その接触がセンシング素子26上方の位置の間に移動されると、応力は複数のセンシング素子26に印加される。センシング素子26のそれぞれにおける接触の応力の再分配は、その接触の重心(centroid)を計算するように使用される。
特に、それぞれの位置が(i,j)、(i+1,j)、(i,j+1)、(i+1,j+1)において隣接するセンシング素子26の2×2のアレイを考慮する。これらの交点は図48に図示されるようにA、B、C及びDと付されてもよく、ここで、交点はアクティブセンシングアレイ20上のセンシング素子26の位置を示す。これらのセンシング素子26のそれぞれにおいてセンシングされた応力はそれぞれ、fA、fB、fC及びfDによって説明されてもよい。
ここで説明された応力の機械的な再分配は、位置の関数として近似的に線形的であるので、タッチの重心位置[x,y]は、4つの位置における応力の関数として、以下の位置の線形補間によって十分に近似化される。最初に線形補間によって2つの隣接する列間の重心のフラクショナルイースト/ウエストの位置を近似化し、任意の非線形性に対する補償が続いてもよい。
Figure 2013542523
Figure 2013542523
また、線形補間によって2つの隣接する行間の分割されたノース/サウスを近似化し、任意の非線形性に対する補償が続いてもよい。
Figure 2013542523
Figure 2013542523
行と列との間のタッチの位置の補間は、図48に図示されて上述されたように、もっとも近い行/列の交点A,B,C及びDにおける相対力に基づく。この情報から、センサアレイ内の任意の単一のタッチの重心位置が計算される。
関数COMP()によって上述した式で表された補償関数を使用することができる。この関数は、ドメイン0…1からレンジ0…1までの単調マッピングである。この関数は、連続的なセンサ素子間のセンサの機械的な補間における非線形性を補償する。例えば、センシング素子26に対して左に隣接する導体線23から隣接するセンシング素子26の右に隣接する導体線23の方向に向かって0.25である位置に印加された圧力は、0.0よりも大きくかつ0.5よりも小さいが必ずしも0.25ではない右側の突起部30上に対して下方向に全体圧力に比例した値の圧力を結果として生じるであろう。補償関数の使用が任意のディスパリティ(不均衡)を補正する。
図49は、補償関数のための典型的な一連の値を図示する。91は、0から1までの範囲において、左から右へとセンシングされた圧力の分割割合u’である。92は、所望の割合の幾何学的位置である。93は、92に対する91をマッピングする関数である。
もう1つの実施形態では、さらに正確な補償がCOMP_u(u’,v’)及びCOMP_v(u’,v’)の2つの補償関数を定義することによって達成される。すべての実施例では、補償値は圧力がセンサ上の既知の位置で印加された標準のキャリブレーション法によって構成され、その結果が表に格納された。次に、例えば区分的に線形関数(一次関数)もしくは区分的に三次関数などの連続的な曲線は、この表から測定された値の間にフィットさせて連続的な関数を作り出す。COMP_u及びCOMP_vのケースでは、表は2次元であって、表の値間の補間は、例えば区分的に双線形もしくは区分的に双三次などの連続的な2次元関数によって達成される。
u及びvの値から、重心の座標が得られてもよい。すなわち、
Figure 2013542523
ここで、Sはセンサアレイにおける連続した行と列の間隔である。一実施形態では、Sは3/8インチである。
スキャニング.
1つのマイクロコントローラは各センサタイルに関連する。各センサタイルに対して、そのタイルのマイクロコントローラは、サブ領域内の連続した行/列のペアをスキャニングする。マイクロコントローラは、圧力情報のためにセンサをスキャニングするために、マイクロコントローラ上のデジタル及びアナログのI/Oピンを使用する。接続されると、一連の行と列とのワイヤ23は入力ワイヤ23もしくは出力ワイヤ23のいずれかに割り当てられる。出力ワイヤ23は、正の電圧を提供することができるかもしくはグランドに設定される。入力ワイヤ23は、グランドに設定されるかもしくはワイヤから電圧を読み込むことができる。各フレームの最初には、1つの出力ワイヤが正の電圧に設定される一方で、残りの出力ワイヤ23はグランドに設定される。入力ワイヤ23はまた、出力ワイヤ23と入力ワイヤ23との交点から来る電圧をスキャニングする1つのワイヤを除き、グランドに設定される。次に、ファームウェアは次の入力ワイヤをスキャニングする一方で、他のものをグランドに設定する。すべての入力ワイヤ23がスキャニングされた後に、次の出力ワイヤは正の電圧に設定される一方で、最初のものはグランドに設定され、入力ワイヤ23は再びスキャニングされる。このことがすべての交点がスキャニングされてしまうまで、すべての電圧ワイヤ23に対して繰り返される。
デバイスをスキャニングすることは、応力をMFRL上に印加された指もしくは他のオブジェクトを登録する圧力情報のフレームを与える。各センサタイルに対して、タイルのマイクロコントローラは、選択されたカットオフしきい値より下のすべてのデータを無視することによって集められたセンサ画像データを選択的に圧縮する(すなわち、このデータは同様にゼロとなるように再定義される。)。ゼロでないデータは、例えばランレングス符号化などの圧縮技術を用いて、パケットで形成される。
タイルからコンピュータ3への通信.
それが発生したタイルの同一性を用いてそれぞれがタグ付けされたデータパケットは、センサアレイにおけるすべてのタイルのマイクロコントローラによって共有された共通のデータ通信プロトコルを介して送信される。1つのセンサタイルは、マスタータイル7として示される。このマスタータイル7は、図38に図示されるように、ホストコンピュータ3に対してUSBもしくは同様の通信接続部9を所有する。マスタータイル7は、すべての圧縮されたパケットをホストコンピュータ3に送信する。
ホストコンピュータに対して、パケットは圧力の単一のシームレス画像の中にアセンブリングされる。
本発明に対する可能なアプリケーション:
電子ホワイトボード。
圧力感知力を有する床(フロア)。例えば空港などのこのエリアにおける1つの使用はセキュリティである。このアプリケーションでは、センサアレイは、それらのフットステップの異なる圧力パターンによって異なる個人を識別することができる画像認識ソフトウェアと一緒に使用されるであろう。
圧力感知力を有するタッチ壁。
圧力感知力を有するテーブルもしくは机。
工場のための圧力感知力を有する表面。
例えばハイウェイもしくは橋などの圧力感知力を有する道路。これに対する使用には、乗物スピード及び重量の両方を含むトラフィックモニタリングのみならず、乗物タイプの正確な評価及び分類化のために使用される車輪の数及び車輪分配の正確な画像も含む。
圧力感知力を有するシート。この使用には、列車のシート、自動車のシート、飛行機のシート及び例えば車椅子などの補助器具に対するシートを含む。
圧力感知力を有するディスプレイ。OLEDは、タッチ層の一部として表示する。
コンピュータに対する線の数のマッチングを処理する必要がある第3の発明についての情報を有効にすること:
所定のマイクロコントローラチップは、特定の数N個のデュアル/デジタルIOピンを有する一方で、マイクロコントローラチップ上にM個の全デジタルIOピン82を有する。N個のデュアルアナログ/デジタルIOピン81をN行のアクティブセンシングアレイ20に接続し、N列のアクティブセンシングアレイ20に対してM個までの全デジタルIOピン82までと接続することによって、単一のマイクロコントローラから駆動されるアクティブセンシングアレイ20は、補助的な電子部品を必要とすることなしに、(N×M)までの圧力センシング素子26を得ることができる。このアーキテクチャーは、結果として電子部品の簡単な配置を生じさせる。
1つの実施形態は、全部で84個のデータピンと32個のデュアルアナログ/デジタルIOピン81とが含まれるマイクロチップ製PIC24HJ256GP610マイクロコントローラを使用し、これらはセンサアレイの各行に対して1つである、アナログ電圧入力ピンとして使用される。グリッドのタイルにおける他のマイクロコントローラとの外部通信のために使用されるピンを別に設定すれば、少なくとも32個のデジタルIOピン82が32列のセンシングアレイを駆動させるための電力/グランド切替可能なピンとして利用可能である。従って、この特定のマイクロコントローラは、電流をスムージングして電流におけるスパイクを回避するためのわずかな数の抵抗及びキャパシタ以外にタイル上に他のエレクトロニクス(電子部品)を搭載する必要なしに、(32×32)のアレイの圧力センシングタイル2を駆動させることができる。
この実施形態におけるマスタータイル7は、ホストコンピュータのUSBポートからの5ボルトをマイクロコントローラによって必要とされる3.3ボルトに駆動させるために、例えばフェアチャイルド製のREG1117Aなどの単一の3.3ボルトのレギュレータを必要とする。
本発明の実用性.
現在、容易に大量生産されて任意の大きな表面領域のシームレスの表面を形成するように経済的に拡大可能な低コストの圧力センシングに対するソリューションは存在しない。実際、応力感知力を有する抵抗(FSR)材料24を使用するセンシンググリッドに基づいた[Rosenberg]及びTeKScan社によるUnMousePadデバイスなどの専門化された技術が存在するが[Eventoff]、これらのいずれのものもユニットセンシング領域あたり低コストで大きな表面領域まで確実に拡大させるようにデザインもしくは設計されていない。
本発明は、フロア、壁、テーブルもしくは任意の他の表面の任意の領域を「圧力のためのビデオカメラ」もしくは圧力画像装置へと変換させるための安価なフレキシブルな方法である。一旦装置1は、例えばシリアルプロトコルなどのデジタル信号をUSBケーブルを介してホストコンピュータ3に転送するための標準的な方法によって接続されると、その場合は表面上の任意の及びすべてのタッチの時間的に変動する圧力画像が多くの異なるアプリケーションをサポートするように読み込まれて処理される。
システムは、一連の1つもしくはそれ以上のモジュールの圧力タイル2から構成される。これらのタイル2は、三角形の、六角形のもしくは他の不規則なタイル形状を含む任意の形状のものとすることができる。一実施形態では、各タイル2は、(32×32)のセンシング素子を含む正方形であるので、センシングアレイの全体の分解能はタイル数倍である(32×32)倍となるであろう。
ネットワークタイルアセンブリ18は、タイルの物理的な配列が仮想的に再構築されるように、相互に通信するタイルの集合から構成される。一実施形態では、(アセンブリにおけるタイルのサイズは必ずしも等しくする必要はないが、)各タイルのサイズは12インチ×12インチの正方形の圧力タイル2である。この実施形態では、もしすべてのタイルが(32×32)のセンシング素子26を有するならば、その場合は連続したセンシング素子間の間隔は3/8インチである。
任意の大きなシームレス圧力画像装置1を創造するために、複数のタイルは一緒にアセンブリングされる。装置1は、全体表面間にわたる圧力変動の単一の時間的に変動する合成画像をホストコンピュータ3に送信する。
電力は、必要に応じて1つもしくはそれ以上の補助的な電力モジュールによって選択的に増強されるか、もしくは供給される。
センサは、その上面に対して、センシングされた圧力がタイルにおけるセンシング素子に十分に分配されるように予想通りに圧力を分配する機械的な応力の再分配層を組み込むことができる。
ユーザ経験の段階的な説明:
ユーザの観点から、動作が以下に説明され、図35において図示される。
最初のステップでは、ユーザは圧力センシング装置1の最上に指もしくは他の物理的なオブジェクト34を印加する。この印加された圧力の連続的な画像が圧力センシング装置1によってホストコンピュータ3に送信される。
ホストコンピュータ3に対して、空間的に変動する圧力のこの画像は、コンピュータメモリ領域内に格納される。そこから、ホストコンピュータ1上のコンピュータソフトウェアは、例えばディスクファイルなどの第2の記憶装置(ストレージ)に画像を格納してコンピュータディスプレイ6上にビジュアル画像として画像を表示し、例えば指トラッキング、領域検索(finding)、形状分析もしくは従来技術においてもしくは画像が使用される任意の他の目的のために標準的である任意の他の画像分析処理などの分析を実行するように使用される。
次のステップに対して、上述した処理が各連続した時間ステップなどに対して繰り返される。
内部動作の段階的説明:
図13に図示されるように、内部動作は、指もしくはオブジェクト34が半剛体タッチ層31の外面上に下方向の応力を印加するときに始まる。
次に、図22に図示されるように、この応力は、半剛体タッチ層31から各センサタイル2のアクティブセンシングアレイ30上のセンシング素子26に伝達され適切に再分配される。図32に図示されるように、1つのマイクロコントローラ5は、各センサタイル2に対するタイル回路ボード4と関連付けされる。図36に図示されるように、グリッドのタイル2は、物理的にのみならず電子ケーブリング10を用いてコヒーレントなセンシング装置1を形成するように接続される。
次に、各センサタイル2に対して、そのタイルのマイクロコントローラ5は、ここで説明されたサブ領域内の各連続した行/列のペアにおけるセンシング素子での圧力値をスキャニングして圧力の画像を形成する。
各センサタイル2に対して、タイルのマイクロコントローラは、選択されたカットオフしきい値よりも下のすべてのデータ値を無視することによって、集められたセンサ画像データを選択的に圧縮する(すなわち、このデータは同様にゼロとなるように再定義される。)。ゼロでないデータは、例えばランレングス符号化などの圧縮技術を用いて、パケットで形成される。
図37に図示されるように、それが発生したタイルの同一性を用いてそれぞれがタグ付けされたパケットは、センシング装置1のグリッドにおけるすべてのタイル2のマイクロコントローラによって共有された共通のデータバスを介して送信される。1つのセンサタイルは、ホスト通信タイル7として示される。このタイルは、ホストコンピュータ3に対するUSBもしくは同様の通信接続部9を所有する。図36に図示されるように、ホスト接続タイル7は、すべての圧縮されたパケットをホストコンピュータ3に送信する。
ホストコンピュータ3に対して、パケットは圧力の単一の画像の中にアセンブリングされる。(以下の)対応するサンプルタイルトポロジーテーブルにおいて図38に図示されたタイルの1つの編成で図示されるように、各タイルの相対位置についての事前に格納された情報とともに、各パケットとともに格納された各タイルの識別は、各サブ画像を圧力の完全なマルチタイル画像内のその適切な位置に設置するために、ホストコンピュータ3によって使用される。
Figure 2013542523
選択的に、各タイルと関連するマイクロコントローラ間のプロトコルは、タイルグリッド自身内の隣接物情報を識別することができる。このオプションでは、タイルグリッドとホストコンピュータとの間の接続を初期化するとき、図40に図示されるように、各マイクロコントローラは、それが接続されるすべての隣接物を識別する共通バスを介してデータパケットのみならず、(ノース、イースト、ウエストもしくはサウスの)その隣接物の方向及びタイルIDもまた送信するように指示される。図40と、サンプルタイルトポロジーテーブルと、(以下の)サンプルタイルの隣接テーブルとにおいて、複数のタイルIDはT−0,T−1などと示される。ホストコンピュータは、(以下の)タイルトポロジーテーブルに図示され、タイルIDによってインデックス化された表におけるこの情報を格納する。各テーブルエントリーは、それぞれのノース、サウス、イースト及び/又はウエストの列におけるそのタイルに対する1個の隣接物IDと4個の隣接物IDとの間のリストを含む。タイル隣接テーブルが手動で構成された上述した実施形態と同様に、ホストコンピュータ3は、この接続性(コネクティビティ)情報を使用して、以下の方法ですべてのタイル上のすべてのセンシング素子からのセンシング素子データを用いてコヒーレントに再構築された測定された圧力データ画像の中にすべての受信されたデータパケットをアセンブリングする。すなわち、すべてのタイルに対するデータがタイルトポロジーテーブル上のそれらのそれぞれの位置に設置されてしまうまで、完全なコネクティビティグラフの幅最初トラバーサルにおいて、各時間ステップにおいて、先ずホストタイルの位置をはじめとして、そのタイルのセンシング素子から測定されたデータに対応するメモリの特定のブロック内にホストタイルに対する圧力データを設置し、次にホストタイルに対するそれらの適切な相対位置においてホストタイルの隣接物に対するデータを設置し、次にそれらのそれぞれの相対位置においてそれらの隣接物のためのデータを設置する、など。このアプローチの利点は、それによって任意の配列のタイルが収容されることを可能とする、ということである。
上記方法は、そのすぐ隣接物の同一性を識別する(知る)各プロセッサに依存する。一実施形態では、プロセッサは、以下のように、初期化時間ではこれらの同一性を決定する。すなわち、(1)隣接物決定信号がホストコンピュータから共通バスに沿って各タイルのマイクロコントローラに順々に送信される。その信号がそれ自身の固有の同一性に対してアドレスが指定されると、マイクロコントローラだけが隣接物決定信号に対して作用する。(2)この信号を受信すると、プロセッサは、順々に、そのすぐノース、サウス、イースト及びウエスト側の隣接物のそれぞれに対する同一性質問を送信する。(3)プロセッサは、隣接したプロセッサからそのような同一性質問を受信すると、それはそれ自身の同一性を共通バスを介して例えば以下のタイル隣接テーブルなどのソフトウェア表にこの隣接物情報を格納するホストコンピュータに出力する。この方法において、ホストコンピュータは、すべてのタイルのすべてのすぐそばの隣接物の同一性を確立することができる。
Figure 2013542523
シームレスな圧力センシングデバイスを創造するようにシームレスに隣接するタイル.
シームレスなタイリングセンサアレイの困難性がLCDアレイとの類推によって説明される。LCDモニタの集合物がより大きな画像を創造するように配列される場合、一般的には連続したモニタ間には目に見える隙間が存在する。この隙間は、ゼロでない領域で占められた各モニタの画像領域の外側に、エッジ接続部とエレクトロニクス(電子部品)が存在するという事実によって生る。例えばテックスキャンセンサアレイなどの既存のFSRベースの圧力センサアレイは、同じ問題を被る。すなわち、接続部と電子部品とによって占められたアクティブセンシング領域周りのゼロでない領域は幾何学的な隙間を創造する。この隙間のために、複数のテックスキャン(TecScan)センサアレイはシームレスなより大きなセンシング表面を創造するようにタイリングすることはできない。
複数のTouchCoセンサは異なる理由のためにシームレスにタイリングすることはできない。その理由は、TouchCoセンサの方法は連続したアクティブ導電性線間のFSR材料の連続領域上に空間的な補間を必要とし、センサは単一のセンサアレイ上の連続した導電性線間に存在しない任意の領域内にシームレスに挿入することができないからである。従って、センサは異なる物理的なセンサにわたってシームレスに補間することができない。
我々の方法は、物理的に異なるタイルにわたることができる機械的な補間層を使用する。従って、ここでの技術の新規の特徴の1つは、物理的に異なったセンシングアレイタイル間でさえも検出された応力をシームレスに補間する能力である。
連続的な上部のタッチ層から離れたセンサ層に対する均等な応力の再分配のための機構.
機械的な層がアクティブセンシングアレイ20の最上に配置される。この層の目的は、この応力のすべてをアクティブセンシングアレイ20の表面のアクティブ領域に対して排他的に伝達されるように、機械的な層上に対して下方向に印加された応力を再分配するということである。図10及び図11に図示されるように、ここで、「アクティブ領域」27は、それらが交差するそれらの間に挟まれたFSR材料24を有する、上部の導電性ワイヤ23と下部の導電性ワイヤ23とが交差する任意の領域として定義される。特に、そのようなすべての交点は、圧力データを測定するためのセンシング素子26に対応する。
明確にするために、センシング素子26は、その領域において電子的に測定する応力を可能とする導体トレース23の接合部におけるすべてのアクティブセンシングアレイ20上にすべての材料を備える。センシング素子27のアクティブ領域は、特に応力が集中されるそのセンシング素子のその位置に対応するアクティブセンシングアレイ20の表面上の内側もしくは外側の領域に対応する。そのようなものとして、「センシング素子と接触する」とは、そのセンシング素子に対応するアクティブ領域との接触を意味する。
一実施例では、図16に図示されるように、半剛体タッチ層31及び突起部30は、単一の部分として構成され、その裏面上に小さな隆起したバンプと一体となった薄い半剛体樹脂シートとして実装される。図17に図示されるように、突起部30は、この部分がアクティブセンシングアレイ20上方に位置している場合は、これらの突起部30のそれぞれが対応するセンシングアレイ20のアクティブ領域、すなわち導電性トレース線23が交差するタイルの小さな領域のうちの1つの領域の上方にそれらの間に挟まれたFSR層24と一緒に位置するように間隔が空けられる。図16は、突起部33を有する半剛体タッチ表面を図示する。
この構造は、タッチ表面の外側上のタッチの位置における連続的な変化がそのタッチに対して最も近くに存在するセンサ接合部に対して印加された相対力における対応する連続的な変化をもたらす機構を形成する。それらの相対力は、データ画像の一部としてホストコンピュータに対して送信されると、ホストコンピュータが簡単な演算補間を介してタッチの位置を再構築することを可能とする。
図15及び図17は、アクティブセンシングアレイ20上に位置する突起部33を有する半剛体タッチ表面の概略的なプロファイル図を図示する。この実施例では、バンプ30は、コヒーレント部分33としての半剛体フラットタッチ層31に対して強固に取り付けられる。この部分33は、それぞれがそれぞれのFSR層24を含む、上面21と底面21とから構成されたアクティブセンシングアレイ20の非伝導基板21上に位置する。この図面では、アクティブセンシングアレイ20の導電性トレース線23は図示されない。内側の最も大きい層は、表面力を跳ね返すための装置に対する剛体ベースを提供する固体支持層32である。一実施形態では、支持層32は、2分の1インチのアクリル製のプレートとできる。
図17では、突起部30がアクティブセンシングアレイ20のアクティブ領域27内だけにおいてセンサタイルの上面と接触することが図示される。
また、図18に図示されるように、隣接したセンサ素子が物理的にバラバラとなった隣接するタイル上に存在する場合に、圧力を再分配することのこの方法が役に立つ。図18では、それぞれのタイルの構成層は、図15及び図17に対して上述されたものと同一である。図18は、複数のタイルにわたる連続的なシートとして半剛体タッチ及び突起層33を図示し、異なる物理的なセンサアレイタイルに属するセンサ素子間の物理的な再分配圧力34を図示する。
図18はまた、アクティブセンシングアレイ20がタイルの1つの端部に巻き付けてそのタイルのコネクタテール25線を、支持層32の裏面上に位置されたタイルのプリント回路基板4に接続する実施形態を図示する。
図18は、隣接した物理的なタイルにわたるシームレスなセンシングを例示し、この実施形態における半剛体及び突起部33におけるように、機械的な応力の再分配を使用することによって、下部のタイルそれら自身の間の機械的な接続を必要としない方法において異なるタイル上の隣接したセンシング素子間で応力を分配する。タイルアレイが動作状態であるときは、以下の2つの場合の間の信号応答において差が存在しない。すなわち、(a)同一の物理的なタイル上に存在する隣接したセンシング素子と、(b)異なるが隣接している物理的なタイル上に存在する隣接したセンシング素子とである。
任意の所定の時間ステップの間、応力が2つの隣接しているタイルの間の継ぎ目に印加された場合、いくらかの応力は、1つの実施形態の図18におけるプロファイル図に図示されるように、タイルの左側をタッチする半剛体タッチ及び突起層33の最も右側のバンプに分配され、残りの応力は、タイルの右側をタッチする最も左側のバンプに分配される。
これらの2つのそれぞれの応力信号は、左側のタイル及び右側のタイルのそれぞれのマイクロコントローラによって検出され、この時間ステップに対するそのタイルのそれぞれの応力の一部としてそれらのタイルのそれぞれによってホストコンピュータに送信されるであろう。
次に、ホストコンピュータは、単一のタイル内の2つの導電性線間に印加された応力の位置を計算するように使用された同一の線形補間を正確に使用して、左側のタイルからの応力画像の最も右端に沿ってと右側のタイルからの応力画像の左端に沿ってとのそれぞれの値から、2つの隣接するタイル間の領域に印加された応力の位置を再構築することができるであろう。
最終使用者とソフトウェアアプリケーション開発者の視点からは、グリッドのセンサアレイタイル上のタッチが、単一のタイル内に入ろうがもしくは2つの隣接するグリッドのタイル間内に入ろうが大した差がないことということが結果である。
アクティブセンサアレイの物理的な実装.
一実施形態では、導電性トレース線23は、図3に図示されるように、例えばプラスチィク(樹脂)などの非導電性基板22にわたって金属注入されたインクによって印刷される。すべてのトレーシング23は、同一の線幅とすることができ、トレース23のルーティングは、異なる/より薄い線幅の可能性のあるタイルを用いて、タイルの回路ボード4に対する接続のためのコネクタテール25を形成し続ける。タイルの一実施形態では、タイルのプリント回路基板4に対するコネクタテール25は、図33及び図34に図示されるように、アクティブセンシングアレイ20直下に設置された回路ボード4を用いて、突起部31及び支持層32の周りをタイルの裏面に対して折られる。図18に図示されるように、この配列によって、隣接するタイルが隣接するタイル間のセンシング領域での隙間がない状態でスムーズに隣接することを可能とする。
図5上の図面におけるように、本発明のアクティブセンシングアレイ20の表面シート21に対して印刷された電気導体トレーシング線23の一実施形態では、すべての導電性線23は、幅が0.5ミリで、3/8インチの間隔が空けられ、コネクタテール25の線幅は0.25ミリである。
FSRインク24は、図6に図示された配列での導電性線23にわたって1ミリ四方のグリッドとして印刷され、結果として図3に図示されたセンサ表面シート21が得られる。
留意すべきことは、FSRインク24は、図3、図10及び図11に図示されるように、導電性線が最上層と底面層との間を交差するセンサのそれらの部分のすぐ近傍においてだけに印刷される必要がある、ということである。結果として、この配列は単位領域あたりFSRの非常に少ない使用をもたらす。
図6は、本発明のアクティブセンシングアレイ20のセンサ表面21上の導電性線23にわたって印刷されたFSR層24の一実施形態を図示する。この実施形態では、すべての導電性線23は、幅が0.5ミリで、3/8インチの間隔が空けられている。従って、それぞれが1ミリ四方の、印刷されたFSR24は、図10での分解図において図示されるように導電性線23の0.5ミリ×0.5ミリ四方の交点よりもわずかに大きいパッチであって、その結果、図11に図示されたように、導電性線が交差する領域は、ハッチングで示されたそのグリッド位置でのセンシング素子27のアクティブ領域を用いてFSR材料によって完全にカバーされる。
図2は、それらの最後の動作位置において、1つのアクティブセンシングアレイ20における最上のセンサ表面シート21及び底面のセンサ表面シート21に対する導電性線23の重ね合わせの分解図を図示する。一実施形態では、すべての導電性線は、幅が0.5ミリで、3/8インチの間隔が空けられている。図1には、タイル回路ボードに接続するためのコネクタテール25がタイルの下にまだ折られていないことが図示される。従って、これらのコネクタテール25は、垂直端及び水平端で突き出ているように見える。
最適な導体線23の幅をテストするために、ここでの技術はテスト方法を含む。図9Aに図示されるように、導電性線23の厚さを行(それ故にセンサの表側に対しては、列の)間で変更したテストセンサ表面21が印刷されたテストアクティブセンシングアレイ20が製造される。図9Bに図示されるように、アクティブセンシングアレイ20のこのテスト版は、最後の製造されたタイルにおける任意の所定のアプリケーションに対して最適な線幅の選択を選択することを可能とする。図9Bは、(並置された、最上のセンサ表面21及び底面のセンサ表面21と一緒に)線導電性トレース線23を図示する。
図8は、図9Aに図示されるように、最適な導電性トレース線23をテストするために使用された段階的な導電性トレース線幅を有するアクティブセンシングアレイ20のテスティング実施形態のために、センサ表面シート21上に印刷された抵抗インク24パターンのテストパターンを図示する。図9Bは、単一のタイルに対して、テストアクティブセンシングアレイ20の底面21に対するアクティブセンシングアレイ20及び導電性線23の上面21に対する導電性線23のそれらの最後の動作位置における、センサシート21の重ね合わせを図示する。
どのようにして最上のインクパターンを単に90度だけ回転させてひっくり返したパターンと底面のインクパターンとを同一とすることができるか:
アクティブセンシングアレイ20の領域は正方形である、トレース線23に対する本発明のパターンの一実施形態では、タイル2に対するアクティブセンシングアレイ20の上半分のセンサシート21と底面のセンサシート21とは正確には同一である。センサシート21に関し、底面のセンサシート21は90度回転させて次にひっくり返される。これが実行されると、図2に図示されるように、接合部と印刷されたFSR24とはお互いにぴったりと合う。
センサアレイ上に直接的に印刷され及び/又はアセンブリングされた電子部品:
分離したプリント回路基板(PCB)を必要とするよりむしろ、すべての電子部品は、一実施形態では、アクティブセンシングアレイ20上に直接的に印刷され及び/又はアセンブリングされ、それによって製造のコスト及び複雑性を大幅に減少させる。
応力感知力を有する抵抗(FSR):
応力センシング抵抗は、表面に対して応力を加えるに従って抵抗を変化させる半導電性材料からなる。一般的に、FSRは、材料に半導電性をもたらす電気的に導電性及び非導電性粒子からなる。通常、FSRは、スクリーン印刷処理を用いて塗布された(applied)シートとしてもしくはインクとして供給される。FSRは低コストであって耐久性がある。
ファームウェア:
タイルの各グループに対して、3つのタイプのファームウェアが存在する。すなわち、スレーブ通信とマスター通信とホスト通信である。スレーブファームウェアは、各センサタイルに対するマイクロコントローラ上に設置され、そのセンサに対する圧力情報を集めるように使用される。マスターファームウェアは、少なくとも1つのマイクロコントローラ上に設置され、タイルのグループ間の通信を管理し、ホスト通信ファームウェアは、圧力データをコンピュータに送信する。
スレーブファームウェア:
スレーブファームウェアは、マイクロコントローラ上のデジタル及びアナログI/Oピンを用いて圧力情報のためにセンサをスキャンする。接続されると、一連の行及び列の配線は、出力もしくは入力の配線のいずれかに割り当てられる。出力配線は、正電圧を提供するかもしくはグランドに設定される。入力配線は、グランドに設定されるかもしくは配線からの電圧を読み込むかのいずれかとすることができる。入力配線はまた、出力配線と入力配線との交点からくる電圧をスキャンする1つの配線を除き、グランドに設定される。次に、ファームウェアは次の入力配線をスキャンする一方で、他はグランドに設定される。すべての入力配線がスキャニングされた後、次の出力配線は正の電圧に設定される一方で、最初のものはグランドに設定され、入力配線はふたたびスキャニングされる。これがすべての電圧配線に対してすべての交点がスキャニングされてしまうまで繰り返される。
一実施形態では、32列の配線は、デジタルI/Oピンに接続され、32行の配線は異なる電圧レベルを読み込むことができる付加的なデジタルI/Oピンに接続される。スレーブファームウェアアルゴリズムを用いることによって、各交点において圧力の4096個のレベルを有するセンシング素子データの(32×32)のアレイが得られる。
マスターファームウェア:
マスターファームウェアは、個々のタイルから他のマスタータイルもしくはコンピュータに対して情報のフローを処理する。各タイルからの圧力フレーム情報を得るために、通信プロトコルはマスターマイクロチップとスレーブマイクロチップとの間で確立される。プロトコルトポロジーは、タイルのグルーピングの大きさ、形状及び所望の挙動によって変動する。通信プロトコルでは、データはマスターマイクロコントローラによってポーリングされるかもしくはマスターマイクロコントローラにストリーミングされるかのいずれかとすることができる。ポーリングシステムでは、マスターは、個々のタイルからフレームを要求し、マスタータイルに対するデータのフローを管理する。ストリーミングシステムでは、センサは、データが受信されてしまうまで、そのデータをマスターにストリーミングしようと試みる。マスターコントローラに送信されたデータは、完全なフレームのデータを表すことができるし、もしくは圧縮することができる。一つのケースでは、ランレングス符号化は、反復されたゼロを除去することによってフレームのサイズを減少させる。もう1つの圧縮の形態は、2つのフレーム間の差だけを送信することを含む。フレーム間の差だけを送信することによって、圧力シグネチャにおける変化を有さないセンサ上の静的なオブジェクトは、それらの領域の周りのマスターに任意の連続的なデータを送信することを必要としない。
一実施例では、ICハブプロトコルは複数のタイル間で確立される。情報がスレーブタイル11上びスレーブマイクロコントローラのそれぞれからマスタータイル7上のマスターマイクロコントローラに送信される。図37では、スレーブとマスターとの間でデータを送信するシリアルデータ線(SDA)96と、時間を維持するシリアルクロック(SCL)97と、電力すなわちVdd98とを用いたICハブに対する概略図が図示される。
もう1つの実施例では、タイルはRS−485通信プロトコルを使用することができ、デイジーチェーンマルチポイントセットアップにおいて接続される。図38は、長方形のグリッドのスレーブタイル11はデイジーチェーンのS−パターンにおいてターミナルマスタータイル7に接続される。ホストコミュニケータータイル12として動作するマスタータイル7は、USB9を介して外部コンピュータ3に接続される。
次に、累積された圧力データは、付加的な通信プロトコルを介して要求デバイスに送信される。一実施例では、UARTポイントツーポイント通信がシリアルUSBケーブルを用いてマイクロコントローラとコンピュータとの間で確立される。圧力データは、マイクロコントローラからホストコンピュータ上に位置されたソフトウェアドライバに送信される。
他の実施形態では、図39に図示されるように、グリッド内に1つのマスタータイル7以外が存在することができる。より大きな領域及び/又はより長い距離に対して、タイルのグループはゾーン内に減少され、データ負担を複数のマスター7に対して分割する。これらのマルチゾーンからのデータは複数の通信プロトコルを介してコンピュータに対して集められるかもしくはツリー構造が使用されるので、データはデータが所望の位置に到着するまでツリーのマスターまで送信される。他の実施形態では、複数のマスタープロトコルが、スレーブが同一のバスで複数のマスター間を送信されたデータを分割することを可能とするように使用され、データを集めるための単一のマスター7に対する負荷を減少させる。これらのマスターは必ずしもデータをコンピュータに送信するホストコミュニケータータイル12とする必要はない。
一実施形態のそれぞれの部品の観点から全体処理を通してのステッピング:
ハードウェア部品のリスト
・ホストコンピュータ3
・USBコネクタ9
・プリント回路基板8
・マイクロコントローラ5
・半剛体タッチ層31
・アクティブセンシングアレイ20
・物理的な基板支持表面32
・タイル間の通信ケーブル10
・隣接する質問/センス配線13
・タイル間の物理的な接続コネクタ71
・装置ハウジング/フレーム14
図36に図示されるように、コンピュータ3は、USBコネクタ9を用いてグリッドのタイル7及び11に接続され、グリッドのタイルにおけるホスト通信タイル12に接続される。
タイル間の物理的な接続コネクタ71は、図41、図42A及び図42Bに図示されるように、タイルを相互に物理的に接続する。
図45には、センシング素子26間の距離を保っている2つの隣接するタイルはタイル2にわたって保たれることが図示されている。
タイル間通信ケーブル10は、一実施例では、図38に図示されるようなデイジーチェーンの方法でタイルを接続する。
図38には、マスター7/ホスト通信タイル12に対するスレーブタイル2のチェーン回路と、次にUSB9を介してコンピュータ3に接続されることが図示される。
タイルは、任意の特定の幾何学的な配置である必要はない。実際、それらが形成する表面は隣接していなくてもよい。図43は、隣接しないタイル2の配列の間のデイジーチェーン接続を図示する。タイル2は、タイル間接続10のデイジーチェーンによって接続される。タイルの1つは、マスター7及びホストコネクティビティタイル12として動作し、ホストコンピュータ3に対する接続9を有する。
質問/センス配線(QSW)84−87はまた、隣接するタイル間で接続される。
・ノースQSW84は、(もしそれが存在すれば、)その上のタイルのサウスQSW85に接続されるであろう。
・サウスQSW85は、(もしそれが存在すれば、)その下のタイルのノースQSW84に接続されるであろう。
・イーストQSW86は、(もしそれが存在すれば、)その左のタイルのウエストQSW87に接続されるであろう。
・ウエストQSW87は、(もしそれが存在すれば、)その右のタイルのイーストQSW86に接続されるであろう。
図40は、N/S/E/Wの隣接する質問/センス接続を用いたサンプルのグリッドのタイルを図示する。
図119に図示された一実施形態では、各タイル2は以下のように構成される。
・支持層32。
・マイクロプロセッサ4を有するプリント回路基板(PCB)。
○プリント回路基板4は、支持層32の底面に搭載されてもよい。
○タイル間通信ケーブル10は、隣接するタイル2に対する接続のためにプリント回路基板4に取り付けられる。
〇4つの質問/センス接続配線84−87は、プリント回路基板4に取り付けられる。
〇ホスト通信タイル12のためのホスト通信タイルプリント回路基板95はまた、ホストコンピュータ3と接続するためのUSB接続配線9を有するであろう。単一のタイルの実施形態のケースでは、その単一のタイルのプリント回路基板4はまた、ホスト通信タイルの機能性を提供することができる。
・(N×M)個のグリッドのセンシング素子と制御配線23とから構成するアクティブセンシングアレイ20。
〇アクティブセンシングアレイ20は、支持層32の上方に設置される。
〇アクティブセンシングアレイ20は、支持層32の端部の周りに巻き付けられる。
〇アクティブセンシングアレイ20は、アクティブセンシングアレイ20上のコネクタテール25を用いてタイルPCB4に接続される。
・取り付けられた突起部55を有するアクティブセンシングアレイの実施形態が図119において図示されるように、突起部30は、対応するセンシング素子26の位置におけるアクティブセンシングアレイ20の外面上に取り付けられる。
・半剛体タッチ層31。
〇半剛体タッチ層31は、アクティブセンシングアレイ20の最上に設置される。
一実施形態では、図1−図6に図示されるように、(N×M)個のグリッドのセンシング素子に対するアクティブ表面アレイ20は以下から構成される。
・N行に対する導体線23を有する1つの層。
・M列に対する導体線23を有する1つの層。
・行/列の交点における応力感知力を有する抵抗(FSR)材料24。
・行と列との導体線それぞれに対応するN本の配線とM本の配線とを有するコネクタテール25。コネクタテールは16個のバンクに分割される。
図119は、16個のバンクに分割されたコネクタテール25を図示する。
図46は、ホスト通信タイル12及びマスタータイル7の両方として機能するタイルに対する電子部品のブロック図である。ホストコンピュータ3は、R×78及びT×79線を介して前後にデータを転送する例えばUSBなどの標準的なプロトコルを介してホスト通信タイル12に接続される。電力がマイクロコントローラ5によって必要とされる電圧レギュレータ76を通して、コンピュータ3からUSBケーブルを介して供給される。アクティブセンシングアレイ20は、アクティブセンサアレイ20のコネクタテール25をプリント回路基板4上のテールコネクタクリップ16に接続することによって、プリント回路基板に接続される。マスタータイル7は、例えばタイル間ケーブル10によって接続されたICなどの通信プロトコルを介してスレーブタイル11と通信する。電力すなわちVdd98は、必要に応じてマスタータイル7からもしくは外部の電力供給17を介してのいずれかですべてのスレーブデバイスに対して供給される。すべてのアクティブ電子部品に対して共通のグランドVss99を追加すれば、回路は完成する。
図47は、スレーブタイル11のブロック図を図示する。マイクロコントローラ5は、マスタータイル7を含む他のタイルと同様の電力(Vdd98)/グランド(Vss99)の回路上に存在する。アクティブセンシングアレイ20は、アクティブセンシングアレイ20のコネクタテール25をプリント回路基板4上のコネクタテールクリップ16に接続することによってPCB4に接続される。スレーブタイル11は、例えばタイル間通信ケーブル10によって接続されたICなどの通信プロトコルを介して他のタイルと通信する。
タイルハウジング/フレーム:
全体のタイル2のアセンブリは、樹脂もしくは他の材料から作られたフレームでハウジングされてもよい。
図45に図示されるように、任意のハウジングフレーム周囲の幅は、十分に薄いのでタイルにわたるセンシング素子間の距離を保持する必要がある。
複数のタイルにわたって圧力画像データを捕捉し、フルに時間的に変動するマルチタイル圧力画像を創造するためにホストコンピュータに送信することの1つの実施形態を通してのステッピング。
各タイルは、(上述されたような支持電子部品と一緒に、)以下を含む。
・プログラマブルマイクロコントローラ5。
・(以下に説明される)センサデータ収集及び通信に対するマイクロコード。
・N列M行を有するアクティブセンシングアレイ20。
・図38に図示されたように、例えばICなどのマスター/スレーブバスをサポートするためのタイル間通信配線10。
(例えば図38におけるT−0などの)ホスト通信タイル12は以下を含む。
・ホストコンピュータ3に対するUSB接続9。
注記:市販のマイクロプロセッサは、例えばIC能力などの回路間通信プロトコルを提供することは標準的である。
・例えばマイクロチップ製のPIC24HJ256GP610マイクロコントローラなどはICサポートを提供する。
・ICは、工業標準マスター/スレーブバスプロトコルである。
・ICは、固有IDをバス上のスレーブに動的にアサインするためのプロトコルを提供する。
注記:市販のマイクロプロセッサは、USB能力を提供することが標準的である。
・例えばマイクロチップ製のPIC24HJ256GP610マイクロコントローラなどはUSBサポートを提供する。
注記:市販のマイクロプロセッサは、IC及びUSB通信の両方を同時にサポートすることができることは標準的である。
・例えばマイクロチップ製のPIC24HJ256GP610マイクロコントローラなどはこの能力を有する。
上述したように、上記方法は、以下のことが仮定されるであろう。
・ホスト通信タイル12は、ホスト通信タイルファームウェアを含むであろう。
・図38に図示された例では、タイルT−0は、グリッドに対しては、ホスト通信タイル12として及びマスタータイル7として動作している。
・すべての他のタイルは、考慮されたスレーブタイル11であろう。
・スレーブタイル11は、スレーブタイルファームウェアを含むであろう。
・スレーブタイル11は、IC標準プロトコルのような固有IDを取得したであろう。
タイルに対するマイクロコントローラ上のファームウェアは、いくつかの異なるタスクを実行する。
1.ローカルタイルセンサグリッド圧力画像キャプチャリング(補足すること)。
2.スレーブ11からマスタータイル7及び/又はホスト通信タイル12に対してデータを得ること。
3.ローカルタイルセンサグリッド圧力画像をホストコンピュータ3に通信すること。
4.ホストコンピュータ3上にマルチタイル圧力画像の再構築のために、タイルトポロジー及び/又はアジャセンシーデータをホストコンピュータ3に通信すること。
5.隣接するタイルのトポロジーアジャセンシーデータの初期のダイナミックディスカバリー。
〇留意すべきことは、もし事前にアサインされたIDがタイルトポロジーの手動格納と一緒にタイルに適用されたならば、このステップは必要とされないであろう、ということである。
単一のタイル装置実施形態では、その単一のタイルはまた、ホスト通信タイル12として動作できる。単一のゾーン装置実施形態、すなわち単一のマスタータイル7と一緒にグリッドのタイルを含む装置であって図38に図示されたような装置では、その単一のマスタータイル7はまた、ホスト通信タイル12として動作できる。マルチゾーン装置の実施形態、すなわち相互に通信する複数のマスタータイル7を有するグリッドのタイルを含む装置であって図39に図示されたような装置では、これらのマスタータイル7の1つはまた、ホスト通信タイル12として動作できる。
いくつかの実施形態では、マスタータイル機能性に対する回路及びマイクロコードは、マスタータイル7と物理的に接続されてもされなくてもよい分離したプリント回路基板上に存在してもよい。同様に、いずれの場合でも、いくつかの実施形態では、ホスト通信タイル機能性に対する回路及びマイクロコードは、ホスト通信タイル7に対して物理的に接続されてもされなくともよい分離したプリント回路基板上に存在してもよい。
2つのタイルの間を接続する例えばタイル間通信ケーブル10などの各接続ケーブルもしくはマスターとマスターとのマルチゾーンコネクターケーブル94は、タイルの1つに対しては「入力ケーブル」であると同時に他のタイルに対しては「出力ケーブル」である。特定のタイルと比較するのだが、「入力ケーブル」は、センシングデータパケットが「入力ケーブル」に対するのとは逆にホストコンピュータに向かって送信されるチェーン回路におけるタイルからの1つである。例えば図38と比較すると、T−1及びT−2間のケーブルは、T−2に対する入力ケーブル及びT−1に対する出力ケーブルである。
図44は、タイルの1つの実施形態のためのそれぞれのタイルプリント回路基板4に対する/からのケーブル/配線を図示する。その結果、
・すべてのタイルは質問センシング配線84−87を有する。
・すべてのタイルはそれらのコネクタテールクリップ16に接続するコネクタテール25を有する。
・ゾーンに対するマスタータイル7及び非ターミナルスレーブタイル11は、出力のタイル間通信ケーブル89を有する。
・スレーブタイル11は、入力のタイル間通信ケーブル88を有する。
・ホスト通信タイル12は、(一実施形態では、)USBケーブルを有するであろう。
・マルチゾーン装置では、ゾーンに対するホスト通信タイル12及び非ターミナルマスタータイル7は、出力のマスターとマスターとのマルチゾーン通信ケーブル74を有する。
・マルチゾーン装置では、ゾーンに対する非ホスト通信マスタータイル7は、入力のマスターとマスターとのマルチゾーン通信ケーブル73を有する。
(1)ローカルタイルセンサグリッド画像キャプチャリング(マスターとスレーブとの両方)
画像キャプチャリングマイクロコードは、そのタイルに対する圧力データのフレームに対応する測定されたセンシング素子の値の(N×M)個の数値の圧力画像バッファを保持するであろう。このバッファにおける値は以下の方法で測定される。
・圧力画像バッファの(i,j)成分は、行と列との交点に対する圧力値に対応するであろう。
・上述された方法のように、画像バッファアレイの(i,j)成分は以下によって測定されてもよい。
〇i番目の出力配線を除くすべての出力配線をグランドに設定する。
〇i番目の出力配線を正に設定する。
〇j番目の入力配線を除くすべての入力配線をグランドに設定する。
〇ファームウェアは、それをデジタル値として読み込んでj番目の入力配線をスキャンするであろう。
〇この値は、圧力画像バッファの(i,j)成分において格納されるであろう。
・すべてのN本及びM本の配線を通してループすることによって、完全な(N×M)個の圧力画像バッファデータが測定される。
(2)スレーブタイル11からマスター7に対してデータを得ること
マスタータイル7上のマイクロコードは、圧力画像データに対してそれぞれのスレーブタイル11をポーリングするであろう。
・各スレーブからの報告されたデータパケットは、タイルID及び圧力画像バッファデータを含むであろう。
・簡単にするために、圧力画像バッファデータはタイルの画像バッファの完全なコピーであると仮定する。
〇代わりに、それはランレングス符号化される。
〇代わりに、それは(前に報告されたバッファからの変化だけの)デルタを提供することができる。
〇いずれか一方、両方または他の技術が、データ転送サブシステムに対するパフォーマンスを改善するように適用される。
スレーブタイル11上のマイクロコードは、上述したように、ポーリング要求を受信し、すなわちタイルIDと圧力画像バッファデータであるデータのパケットを送信することによって応答するであろう。
(3)マスタータイル7がまたホスト通信タイル12として動作している実施形態に対して説明された、マスタータイル7からのローカルタイルセンサグリッド圧力画像をホストコンピュータ3に通信すること。
上記(2)を展開すると、マスターホスト通信タイル7は以下を実行するであろう。
・各スレーブタイル11に対して、
〇ICバスを介して圧力画像データに対して各スレーブタイル11をポーリングする。
〇ICバスを介してスレーブタイル11の圧力画像データを受信する。
〇USBを介してスレーブタイル11の圧力画像データをホストコンピュータ3に送信する。
・USBを介してそれ自身の圧力画像データを、(もしタイルに接続されれば、)ホストコンピュータ3に送信する。
上記ステップを連続的に反復することによって、タイル2の集合体のためのストリーミング、時間的に変動する圧力画像データがホストコンピュータ3によって受信されるであろう。
(4)ホストコンピュータ上のマルチタイル圧力画像の再構築。
一実施形態では、それぞれにそれらのそれぞれのアクティブセンシングアレイ20において(N行×M列)のグリッドのセンシング素子26を含む(A行×B列)のグリッドの圧力タイル2は、再構築可能な圧力画像のアドレス可能な圧力データの(A×N)行及び(B×M)列のグリッドの有効圧力表面を生成する。
ホストコンピュータ上のタイルトポロジーデータ表は、全体のグリッドのタイルトポロジーと比較して、タイルの位置によって保持される。
・一実施形態では、これはホストコンピュータ上で手動で格納される。
・もう1つの実施形態では、それはタイル隣接テーブルから動的に構築される。
図38に図示された装置構成に対応するサンプルタイルトポロジー及びタイル隣接テーブルがこの明細書の最初に記載されている。
提供されたタイルIDを有する各タイルに対する圧力画像バッファデータが受信されると、
・タイル行rとタイル列cとの値がタイルトポロジーテーブルで調べられてもよい。
・タイル圧力画像データが(i,j)に対するタイルのセンシング素子データを(r×N+i,c×M+j)にマッピングすることによって、コヒーレントな((N×A)×(M×B))個の全体の圧力画像にマッピングされる。
(5)初期のダイナミックディスカバリーの隣接するタイルトポロジー。
初期段階の間に、すべてのタイルの相対位置が(特に指定のない限り)ICバスを介して、以下の一連のデータ交換によって取得される。
マスタータイル7上のマイクロコードは以下のように実行する。
・各スレーブタイル11に対してとマスタータイル7に対して、
〇各ノース、サウス、イースト及びウエストに対して、
・質問タイルIDに対するその方向(ノース84、サウス85、イースト86、又はウエスト87)に対して、対応する質問/センシング配線をタイルがオンすることを要求するデータパケットを送信する。
・パケットコンテンツ:オンするための質問タイルID及び方向配線。
・適切なタイルから質問/センス応答パケットを受信する。
・「パケットコンテンツ:検出された」、方向(ノース/サウス/イースト/ウエスト)、検出されたタイルID、(検出するタイルからの)質問タイルID。
・パケットコンテンツ;「接続されていない」、方向、質問タイルID。
・USBを介して応答パケットをコンピュータ3に送信する。
質問/センシング配線をオンするための「配線を動作状態とする」要求を受信するように指定されたスレーブ上のマイクロコード。
・もしそのタイルが(もしかしたら終端レジスタによって)タイルが指定された方向で接続されないことを検出すれば、
〇「接続されていない」応答パケットをマスターに送信する。
〇パケットコンテンツ;「接続されていない」、方向、質問タイルID。
・そうでなければ、指定された方向の質問センシング配線(ノース84、サウス85、イースト86、ウエスト87)を「オン」にする。
その対応する質問ステート配線から「オン」の質問配線ステートを検出するスレーブ上のマイクロコード(ノース84、サウス85、イースト86、又はウエスト87)。
〇「検出された」及びそのIDデータパケットをマスターに送信する。
〇「パケットコンテンツ:検出された」、方向(ノース/サウス/イースト/ウエスト)、検出されたタイルID、(検出するタイルからの)質問タイルID。
〇留意すべきことは、検出する配線方向は、検出されたタイル方向とは反対方向である:すなわち、ノース配線84のオン状態を検出することは、サウス側のタイルを指示する;サウス配線85は、ノース側のタイルを指示する;イースト配線86は、ウエスト側のタイルを指示する;ウエスト配線87は、イースト側のタイルを指示する。
(N×M)個の長方形のグリッドのタイルの実施形態では、「タイルトポロジーテーブル」は、以下のように、「タイル隣接テーブル」から構築される。
・以下によって、ノース/サウスコネクティビティに対応するタイルIDの一連のM個の正しく並べられた列を創造する。
〇そのノースの隣接物として「なし」を有するM個のタイルIDのそれぞれに対して、
・そのサウスの隣接物に対してこれを有するタイルIDをサーチする。
・そのサウスの隣接物として「なし」を有するタイルIDまで反復する。
・以下のように、一連の左から右へのM個の正しく並べられた列のリストを配列する。
〇ウエスト方向において、「なし」を有する1つのために、一連の列のリストの第1の成分をサーチする。これは最も左の列である(すなわち、列0である。)。
〇第1の成分がまさに探し出された1つのイーストである列リストをサーチする。
〇第1の成分がイーストの隣接物を有さない列リストにおけるまで反復する。
・それぞれの行/列の数のタイルIDを得ることによってアジャセンシーテーブルを追加することができる。
〇列の数は、配列された列リスト位置からである。
〇行の数は、それぞれの列リストにおける位置である。
構築された実際の試作品の説明.
構築された試作品の一例としての説明:(a)各層に対して使用された実際の材料、(b)寸法、(c)各タイルのサイズ、(d)何枚のタイルが使用されたか、(e)製品番号及び所定の部品を製造した会社。
試作品についての基本的なすべての詳細事項。情報をアプリケーションの中に提供することがもっとも簡単であろうとも、それは例えば表もしくはリストなどの任意の形態で存在することができる。
(a)各層に対して使用された実際の材料
各センシングタイルに対して使用された個々のセンシング材料は、5ミルの厚さの樹脂基板、(3/8インチの間隔で設置された)プリント銀電極及びグリッド交点に近接した小さな長方形のFSR材料から構成される。
(b)寸法
各センシングタイルのアクティブセンシング領域は12インチ×12インチである。
(c)各タイルのサイズ
各タイルは配線間の間隔が3/8インチであって12インチ×12インチである。
(d)製品番号及び所定の部品を製造した会社
Figure 2013542523
(e)圧力感度
試作品の圧力感度をテストするために4つの点がある5グラムのベースは、配線交点上の点の1つによって設置された。5グラムと10グラムの重量は、5グラムから300グラムまでの重量を作るためにベース上に設置された。交点はこの重量の4分の1を受信したので、その交点では重量範囲は1.25グラムから75グラムまでの範囲で変化した。2.5グラムより重い重量に対してだけその値がコンピュータによって登録された。コンピュータからの値は、46.87から1320.71まで線形的にスケーリングされた。
交点での重量 ビジュアライザ上の値
0グラム 0
2.5グラム 46.87
5グラム 101.65
7.5グラム 167.97
10グラム 218.75
12.5グラム 265.62
25グラム 468.75
50グラム 871.34
75グラム 1320.71
アウトライン
・すべての部品のリスト
〇一体化された突起部及びベース層42
〇アクティブセンシングアレイ20
〇半剛体タッチ層33
〇USBケーブル9及びUSB送受信機80
〇コンピュータ3
〇マスタータイル7
・動作:外側の観点
〇1つもしくはそれ以上のオブジェクトが圧力センシング装置1と接触して設置される。圧力センシング装置1は、表面上のオブジェクトの空間変動する圧力に対応する圧力の二次元アレイをコンピュータに送信する。
〇ユーザは複数の位置で圧力センシング装置1をタッチし、デバイスは位置及び各位置における圧力の両方を指示する。
以下の実施形態は、上述された、突起部33を有する半剛体タッチ層及び取り付けられた突起部55を有するアクティブセンシングアレイの実施形態と、アクティブセンシングアレイ20上のセンシング素子26に応力が伝達される方法以外のすべての点において類似する。一体化された突起部及びベース層42のアセンブリでは、図19に図示されるように、これがアクティブセンシングアレイ20が半剛体タッチ層31と一体化された突起部及びベース層42との間に位置するアセンブリによって達成される。すべてのアプローチがアクティブセンシングアレイ20上の各センシング素子26で測定された応力34の印加の値を結果として生じさせる。結果として、補間、マイクロコントローラ5によってセンシング素子26からのデータのスキャニング、スレーブタイル11とマスタータイル7とをネットワークで結ぶこと、及びセンシング素子26圧力の測定を超えるすべての他の技術も説明がすべて同様の方法で得られる。
一体化された突起部及びベース層42の実施形態は、突起部33を有する半剛体タッチ層よりも潜在的に容易かつ高価でない。この実施形態では、半剛体タッチ層31は、任意の個々の圧力タイル2から独立することができ、任意の数の圧力タイル2をシームレスに及んでもよい。これが圧力センシング装置1のアセンブリ及び位置合わせを著しくより容易にさせる。当然ながら、隣接した圧力タイル2に沿ってシームレスな半剛体タッチ層31を有することは、センシング素子26が同一の圧力タイル2上もしくは隣接した圧力タイル2上に存在するかどうかに関わらず、センシング素子26に応力の同一のかつシームレスな分配を結果として生じさせる。
さらに、一体化された突起部及びベース42の層の実施形態は、プリント回路基板4のためのハウジング及び例えばタイル間通信接続ケーブル10及びマルチゾーンケーブル94などのタイル接続ケーブルのための溝を含んでもよい。従って、圧力タイル2アセンブリにおける部品の数を減少させる。
圧力センシング装置1は、センシングされた圧力がタイル内のセンシング素子に十分に分配されるように圧力を適切に分配する機械的な力再分配機構を組み込むことができる。
突起部30を有する半剛体タッチ層は、圧力タイル2自身の支持ベースに対して機械的に不可欠である部品によって置き換えることができる。これが製造をより容易とさせ、より高価でなく、より強固とし、センシング素子26と突起部30との間の不整合を回避することがより容易となる。
シームレスかつ連続的な補間タッチ応答を創造する複数の圧力タイル2の圧力センシング装置1を創造するために、複数の圧力タイル2間で共有化される必要がある機械的な部品だけが例えば樹脂などの材料の特徴のないシートであって、その位置は、グリッドのセンサタイルにおけるセンサの位置に正確に登録される必要がない。
内部動作の段階的説明.
指もしくは他のオブジェクトが半剛体タッチ層31上に下方向の応力が印加されると、内部動作が始まる。
次に、この応力は半剛体タッチ層31からアクティブセンシングアレイ20におけるセンシング素子26を介して伝達され、正確に再分配される。次に、各センシング素子26に対して作用する応力は、一体化された突起部及びベース層42における対応する突起部30上に与えられる。これが各センシング素子26が対応する突起部30と接触するアクティブセンシングアレイ20の部分に対する応力の集中を創造し、それによってセンシング素子26を含むアクティブセンシングアレイ20の領域で相互に接触するFSR材料24の2つの領域を一緒に圧縮する応力を創造する。(ここで、アクティブセンシングアレイ20の外側の導電性線上の1つのFSR領域は、アクティブセンシングアレイ20の導電性トレース線23上のFSR材料24の対応する領域と接触する。)
圧縮は相互接触におけるそれらの2つの領域のFSR材料24間の電気伝導度の増加を引き起こす。センサのマイクロコントローラ5はセンシング素子26のアクティブセンシングアレイ20の行列を介してスキャニングするので、伝導度における各変化は、マイクロコントローラがマイクロコントローラ5が次にデジタル信号として符号化するアナログからデジタルへの変換器(ADC)83を介して検出する電圧における変化として測定される。
図15に図示されるように、突起部30の内面がアクティブセンシングアレイ20の外面と接触する突起部33を有する半剛体タッチ層の技術とは異なり、一体化された突起部及びベース層42を用いたこの技術は、図121に図示されるように、アクティブセンシングアレイ20の内面と接触する突起部30の外面を有する。この機械的な配列が、アクティブセンシングアレイ20のセンシング素子26における応力の集中を可能とさせ、それによって、アクティブセンシングアレイ20上方の突起部30の必要性なしに、隣接するセンシング素子26間の空間補間を可能とさせる。
1つのマイクロコントローラ5は各圧力タイル2と関連付けられる。
各層の一般的な目的.
図19は、以下の部品を有する圧力タイル2の分解図を図示する。すなわち、一体化された突起部及びベース層42、2つのアクティブセンシングアレイ20、半剛体タッチ層31。アクティブセンシングアレイ20上の導電性トレース線23の交点は、FSR材料24のセンシング素子26の位置である。層が接触して設置される場合は、アクティブセンシングアレイ20における各交点は、一体化された突起部及びベース層42における対応する突起部30の中心で位置合わせされる。
図20は、アクティブセンシングアレイ20の2つが接触する半剛体タッチ層31と、一体化された突起部及びベース層42の突起部30と接触するアクティブセンシングアレイ20とを有する圧力タイル2のプロファイル図を図示する。
アクティブセンシングアレイ20:
図1に図示されたように、アクティブセンシングアレイ20は、お互いに向かい合った2つのセンサ表面シート21からなり、ここで、図2に図示されるように、一方のセンサ表面シート21は他方のセンサ表面シート21に対して90度回転される。図4は、図3において完成したセンサ表面シート21の層を図示する。2つのセンサ表面シート21のそれぞれの上には導電性トレース線23が印刷される。少ない量の応力感知力を有する抵抗(FSR)材料24が2つの基板がお互いに面するFSR材料24側でお互い接触して設置されるときに、各センサ表面シート21上に印刷されたFSR材料24が導電性トレース線23のグリッドの交点近傍に設置されるような間隔で印刷される。重なるFSR材料24のグリッドの交点は、圧力が測定されてもよいセンシング素子26を備える。
一体化された突起部及びベース層42は、アクティブセンシングアレイ20がこの層上方に取り付けられたときに、これらの突起部30の1つが、FSR材料24層が圧力が各交点で測定されてもよいように挟まれた多数の行及び列の電極の接合部においてアクティブセンシングアレイ20のセンシング素子26の直下に位置するような間隔を有するグリッドのn突起部30から構成される。
半剛体タッチ層31は、それぞれがそのそれぞれの一体化された突起部及びベース層42における突起部30と接触して位置している1つもしくはそれ以上のアクティブセンシングアレイ20と接触して設置される。半剛体タッチ層31に印加された圧力は、一体化された突起部及びベース層42上の突起部30の真上のセンシング素子26に対して応力を集中させるであろう。一実施例では、半剛体タッチ層31は、厚さを0.5ミリから1.0ミリまで範囲とすることができるビニルのシートとして実装される。単一のタイル構成のもう1つの実施例では、アクティブセンシングアレイ20の非導電性表面基板22は、それ自身が半剛体タッチ層31として動作してもよい。他の実施例では、半剛体タッチ層31は、ガラス、金属、もしくは半剛体タッチ層31の剛性が実用的な剛性の範囲内に入るようにその厚さが選択された任意の他の材料から作られてもよい。
図21、図22及び図23には、3つのケースの半剛体タッチ層31が図示され、図21には堅すぎるものが、図22には実用的な剛性の範囲内のものが、図23は不十分に堅いものがそれぞれ図示される。各ケースでは、手が応力34の印加を表し、矢印56は圧力タイル2のベース32の異なる部分に対して、ベース32に対して伝達された与えられた応力を表す。
「実用的な範囲の剛性」を有する半剛体タッチ層31は、それぞれ、最大剛性及び最小剛性の以下の制限を介して定義される。すなわち、半剛体タッチ層31は、もし長方形の角での一体化された突起部及びベース層42の4つの最も接近した突起部30によって境界をつけられた長方形領域内に位置する半剛体タッチ層31の外面の半径1ミリの円領域内に外部から印加された応力が、図21に図示されるように、それらの4つの最も接近した突起部30以外の一体化された突起部及びベース層42の突起部30に対して印加された圧力を結果として生じさせるのであれば、半剛体タッチ層31は堅すぎるであろう。例えば、1センチメータの厚みのガラスのプレートは、非常に堅いので半剛体タッチ層31として役に立たないであろう。もし応力34の印加によって応力がそれらの最も接近した突起部30に対して与えられ、一体化された突起部及びベース層42の他の突起部30に対して与えられず、まして図22に図示されたような突起部30間の支持層32の下層表面に対して与えられなければ、半剛体タッチ層31は実用的な剛性の範囲内にある。もし同様の応力34の印加によって、半剛体タッチ層31がそれらの4つの突起部30間の一体化された突起部及びベース層42の領域と物理的に接触し、それによって、図23に図示されるように、アクティブセンシング層20の非アクティブ領域上に応力を散逸させる十分な程度まで半剛体タッチ層31が変形されるならば、半剛体タッチ層31は十分に堅くないであろう。例えば、0.5ミリの厚さのラバーのシートは、半剛体タッチ層31としての役目を果たすには不十分な堅さであろう。
一実施例では、近似的に0.33GPaのもしくは49000psiのヤングの弾性係数を持つ1.0ミリの厚さのビニルのシートからなる半剛体タッチ層31は、高さが1ミリで3/8インチの間隔である突起部を有する試作品実装に対しては、正当な範囲の剛性に入るであろう。他の材料でも十分であろうが、ヤング係数が増加するにつれて、材料の厚さは、材料の曲げもしくは弾性をわずか(2×2)四方であるセンシング素子30の領域に局在化させるようにそれに応じて減少させるべきである。
半剛体タッチ層31の全体のサイズ及び形状は、装置1においてネットワークで結ばれたグリッドの圧力タイル2の全体サイズ及び形状を整合させるように形成される。
図20に図示されるように、一体化された突起部及びベース層42は、アクティブセンシングアレイ20がこの層の外面上に設置されるとき、これらの突起部30のそれぞれが、アクティブセンシングアレイ20のセンシング素子26の1つのアクティブセンシング領域27で位置合わせされるように間隔が空けられたグリッドの上方向に面する突起部30を含む。
半剛体タッチ層31は、アクティブセンシングアレイ20の外面と接触して設置される。図20に図示されるように、上からこのタッチ層に対して印加された応力34の印加は、一体化された突起部及びベース層42の対応する突起部と接触する幾何学的配列のセンシング素子26によって集中されるであろう。その結果、半剛体タッチ層31に対して与えられたすべての印加された圧力34は、アクティブセンシングアレイ20のセンシング素子26が、一体化された突起部及びベース層42の対応する突起部30と接触する領域内において集中されるようになる。
図24に図示されるように、部品のこの構成は、半剛体タッチ層31の外面に対するタッチの位置における連続的な変化がそのタッチに最も接近するそれらのセンシング素子26のアクティブ領域27に印加された相対力での対応する連続的な変化を結果としてもたらす機構を形成する。データ画像の一部としてホストコンピュータ3に対して送信されると、それらの相対力によって、ホストコンピュータ3が算術補間を介してタッチの重心位置を正確に再構築することを可能とする。
図24は、補間の三次元図を図示する。すなわち、所定の位置での半剛体タッチ層31に対して作用する応力34の印加は、一体化された突起部及びベース層42の(2×2)個の最も接近した突起部30上に集中されるであろう。従って、アクティブセンシングアレイ20層では、すべての応力34の印加は、これらの4つの突起部30と直接的かつ機械的に接触するセンシング素子の(2×2)個のアクティブセンシング領域27上に集中されるであろう。
機能的な層.
半剛体タッチ層31とアクティブセンシングアレイ20と一体化された突起部及びベース層42との3つの部品はそれぞれ、図121に図示されるように、単一のセンシング素子における動作の内部機構を説明するために、5つの機能的な層から構成されるように図示される。
これらの機能的な層はそれぞれ以下の通りである。
(1)半剛体タッチ層31;
(2)外側の非導電性表面基板22、(この図121には図示されない)外側の導電性トレース線23、内側及び外側のFSR材料24層、(この図121には図示されない)内側の導電性トレース線23並びに内側の非導電性表面基板22から構成されるアクティブセンシングアレイ20;
(3)突起部30を含む一体化された突起部及びベース層42。
半剛体タッチ層31は、すべての応力34がアクティブセンシングアレイ20内のセンシング素子26に対してだけに分配されるように印加された応力34を再分配する。図20に図示されるように、集中させることは、一体化された突起部及びベース層42上の突起部30と、アクティブセンシングアレイ20上のセンシング素子26に対応する一体化されたアクティブセンシング領域27とにおける接触点で達成される。
一実施形態では、一実施例では非導電性表面基板22の内面上にプリントされた導電性トレース線23と一緒に、厚さを5ミルとできる薄いアセテートから作られるアクティブセンシングアレイ20のセンサ表面21の外側の非導電性表面基板22。FSR材料24は、アクティブセンシングアレイ20の外面シート21の内面の導電性線と、アクティブセンシングアレイ20の内側センサ表面シート21の外面の導電性線とにわたって印刷される。動作では、これらの2つのFSR材料24部品は、相互に接触しているが、相互に機械的に取り付けられていない。一実施例ではそれらの非導電性表面基板22の外面上に印刷された導電性トレース線23と一緒に、厚さを5ミルとできる薄いアセテートから作られる、アクティブセンシングアレイ20の内側のセンサ表面シート21の内側の非導電性表面基板22。
一体化された突起部及びベース層42は、突起部30を含む。圧力タイル2のベースとしてのその目的は、半剛体タッチ層31に対して印加された応力がアクティブセンシングアレイ20上の対応するセンシング素子27のアクティブ領域に対してだけに分配されるように突起部30を提供することである。
複数の圧力タイル2を含む補間.
隣接した圧力タイル2のネットワークで結ばれたタイルアセンブリ18を用いて、半剛体タッチ層31は、グリッドの圧力タイル2における圧力タイル2のすべてをカバーする(例えば薄い半剛体樹脂などの)単一の途切れのない半剛体材料のシートから構成される。これが異なる隣接した圧力タイル2のアクティブセンシングアレイ20における隣接するセンシング素子30の機械的な補間処理は各個々の圧力タイル2内の隣接するセンシング素子30の機械的な補間処理と同一であるという利点を有する。ユーザの観点からの効果は、タッチ応答を補間することは単一の極端に大きな圧力タイル2のタッチ応答を補間することに正確には等しいいうことである。
留意すべきことは、この配列においては、半剛体タッチ層31自身は特徴がない一様な材料のシートとできるので、半剛体タッチ層31と個々の圧力タイル2との間の正確な登録に対する必要性が存在しない、ということである。
近くの突起部30及び対応するセンシング素子26は、同一の圧力タイル2上に存在する必要はないがむしろ、図122に図示されるように、隣接した機械的に分離したタイル上に存在できる。
一実施例では、図122に図示されるように、半剛体タッチ層31は圧力タイル2の全体にわたる。2つの圧力タイル2間の領域において印加された圧力は、応力を2つの隣接するが機械的には異なる圧力タイル上の近くの支持突起部30に対して伝達され、そこから2つの異なる圧力タイル内のアクティブセンシングアレイ20のセンシング素子30に対して伝達される。
例えばネットワークタイルアセンブリ18などにおいて、圧力タイルが隣接する場合には、半剛体タッチ層31は下層の圧力タイル2間の空間すべてを覆って表面の全体に及ぶであろう。隣接した圧力タイル2が各圧力タイル2上の突起部30間の距離が隣接した圧力タイル2にわたって保持されるように正確に登録される限り、その場合は、隣接したセンサタイルにわたって応力分配を補間することは、単一の圧力タイル2内のそれと同一であろう。一実施形態では、図41、図41A及び図42Bで図示されるように、圧力タイル2の登録は、各個々のセンサタイル上にアライメントブラケットを持つことによって達成される。
補間の3つのケース:
1)図25は、応力が同一の圧力タイル2上の4つの突起部30に分配されるであろう領域69を図示する。
2)図26は、応力が2つの隣接した圧力タイル2のそれぞれに対する2つの突起部30に分配されるであろう領域69を図示する。2つの圧力タイル2が接触する端上の領域において印加された圧力は2つの隣接するが物理的に異なる圧力タイル2上の近くの支持突起部30に対して応力を伝達し、そこから2つの圧力タイル2のアクティブセンシングアレイ20の圧力センスに伝達する。途切れのない半剛体タッチ層31は、2つの圧力タイル2に及ぶ。隣接した圧力タイル2の端に沿って印加された圧力は、あたかもそれらのセンシング素子26が同一のタイル上に存在したかのような方法で応力を(各それぞれの圧力タイル2上2つの)4つのセンシング素子26に分配するであろう。次に、補間方法は、あたかもそれがコヒーレントなより大きな「画像」であるかのように隣接した圧力タイル2にわたって圧力値を処理することができる。
3)図27は、応力が4つの隣接した圧力タイル2のそれぞれに対する1つの突起部30に分配されるであろう領域69を図示する。図27に図示するように、4つの圧力タイル2が接触する角125での領域において印加された圧力は4つの隣接するが物理的に異なる圧力タイル2上の近くの支持突起部30に対して応力を伝達し、そこから導電性トレース線23が4つの異なる圧力タイル2のアクティブセンシングアレイ20上で交差する圧力感知力を有するセンシング素子30に伝達する。途切れのない半剛体タッチ層31は、4つの圧力タイル2に及ぶ。これらの隣接した圧力タイル2の角125において印加された圧力は、あたかもセンシング素子26が同一の圧力タイル2上に存在したかのような方法で応力を(各それぞれのセンサタイル上1つの)それらの4つのセンシング素子26に分配するであろう。次に、補間方法は、あたかもそれが圧力の単一のコヒーレントなより大きな「画像」の一部であるかのように隣接した圧力タイル2にわたって圧力値を処理することができる。
「圧力の画像」という用語は、ここでは二次元アレイの圧力値を示すために使用される。本発明によって発生した画像はアンチエイリアジングされる。ここで、複数の圧力タイルによって、半剛体タッチ層31の外面に任意の領域可変パターンで与えられた圧力を各タイルのアクティブセンシングアレイ20のグリッド分解能によって決定された上限周波数よりも低いすべての空間周波数に対する元のパターンに忠実である元の領域可変圧力パターンの帯域制限された表現に変換されるという点において、「アンチエイリアジングされた」という用語は一般的に受け入れられた定義のとおりである。
一体化された突起部及びベース層42は、樹脂、ガラス、木、金属もしくは任意の他の半剛体材料から作られた単一の機械的な部品とできる。この部品は、射出成形、スタンピング、及びコールドキャスティングを含む種々の標準的な方法によって製造される。
代替の実施形態では、一体化された突起部及びベース層42に対するラピッドプロトタイプ(高速試作品)は、SLA方法を介して製造されてもよい。製造の1つの方法では、シリコンラバーから構成される金型が、このプロトタイプから作られてもよい。樹脂がその金型に注入されてもよい。樹脂が硬化し金型が除去されると、その樹脂は機能的な一体化された突起部及びベース層42を形成する。
下側にある突起部30の利点:
圧力タイル2を有する突起部30を単一の機械的なパーツの中に一体化することが、複数の圧力タイル2の位置を登録することをより容易とさせる。圧力タイル2にわたって位置を登録することは、それが単一の圧力タイル2内で振る舞うのと同じように複数の圧力タイル2にわたって振る舞うという補間スキーム(方法)をもたらす際に重要となる。センサタイルの一体部分である突起部30を含む支持層32を作ることによって、センサタイルにわたって突起部30を登録することは、各圧力タイル2をその隣接物に対してまさに機械的に取り付けることによって達成される。
一実施例では、一体化された突起部及びベース層42は、シリコンラバー金型から射出成形された樹脂もしくはキャスト樹脂から作られ、(アクティブセンシングアレイ20のセンシング素子間の間隔に対応する、)突起部の中心間の間隔の3/8インチを有する(32×32)個のグリッドの上向きの突起部30を有する12インチ×12インチの長方形のベースから構成され、その突起部の高さは2ミリであろう。
図33及び図34に図示されるように、一体化された突起部及びベース層42の一実施例では、図33及び図34に図示されるように、ベースは、圧力タイル2のプリント回路基板4を収容するためのその内面上の空洞と一緒に成型されるであろう。また、チャンネル(溝)がタイル接続ケーブル17を支持するために一体化された突起部及びベース層42の中に成型されるであろう。
もう1つの実施例では、突起部30と対向する一体化された突起部及びベース層42の面は平坦であってもよい。この平坦な側は、センサタイルのプリント回路基板4を収容するための内面上に空洞カット(切り取り)を有する、例えば1/4インチの厚みのアクリルのシートなどの分離した支持層32上に装着されてもよい。チャンネルはまた、タイル接続ケーブル10を支持するためにベース層32の中に切り込まれるであろう。この実施例では、一体化された突起部及びベース層42部分の形状は、図32に図示されるように、平坦な底面を有するであろうが、その中に空洞を有するベース層32上に位置する。
もし圧力タイル2のプリント回路基板4がデバイス直下に位置されれば、その場合は、アクティブセンシングアレイ20は、一体化された突起部及びベース層42の周りに巻き付けられる必要がある。アクティブセンシングアレイ20が一体化された突起部及びベース層42の周りへの巻き付けが非常にきつすぎるのであれば、その場合は無用の力が突起部30に対して印加され、そこから一体化された突起部及びベース層42の端近くのセンシング素子26に対して印加されるであろう。もしアクティブセンシングアレイ20の巻き付けがゆるすぎるのであれば、その場合はそれは上に湾曲してそれらのセンシング素子26での感度の損失が生じるはずである。これらの状況を回避するために、接着剤40がアクティブセンシングアレイ20の突起部30側と半剛体タッチ層31側との両方に設置される。
標準の高速試作技術を用いて作られた一体化された突起部及びベース層42の一実施例では、突起部30は、3/8インチの隣接した突起部中心間の間隔を有してABS樹脂から作られ、高さとそれらのベースでの幅はそれぞれ2ミリと4ミリである。
高さ、形状及び突起部30のピークでの曲率は、圧力タイル2のアプリケーションに基づいて変化させてもよい。突起部30の形状は、センシング素子27のアクティブ領域上への応力の広がりに影響を及ぼすかもしれない。
一実施例では、高い/狭い突起部を図示する図28に図示されるように、各突起部30は、例えばそのベースでの直径が4ミリでかつ高さが4ミリを有する放物面形状などの丸みを帯びた先端を有し、横幅があってもよい。この構成は、突起部30が接触するセンシング素子26の小さな領域の中に応力を集中させ、それによって最も高い感度を与える。そのような構成は、非常に軽い圧力に対して感知力を有する圧力タイル2を創造するためには好ましいが、高い圧力はアクティブセンシングアレイ20に対するダメージ(損傷)を結果として生じさせるかもしれないので、鋭いもしくは重いタッチのためにはあまり好ましくはない。
もう1つの実施例では、図29に図示されるように、突起部30は、例えばベースでの直径が4ミリであって高さが2ミリを有するなどの半球形状であってもよい。この形状は、より強い機械的な強度を提供することの利点を有する一方でまた、突起部30の最上部での曲線を緩やかに維持しそれによって非常に高い圧力負荷がかかる間はアクティブセンシングアレイ20に対する機械的なダメージを減少させる。
もう1つの実施例では、図30に図示されるように、突起部30は、例えばそのベースでの直径が4ミリであって高さが1ミリを有する放物面などの、放物面もしくは正弦曲線の形状を有して、ずっとより幅広であってもよい。これが半球面形状の利点のほとんどを保持する一方で、放物面もしくは同様の形状はそのベースでは垂直に交差する壁を持たないので、あまり高価でないキャスティング方法を用いて組み立てるには、半球形状の突起部よりもより容易であるという利点を提供する。
もう1つの実施例では、図31に図示されるように、突起部30は、例えばそのベースでの直径が8ミリであって高さが2ミリを有する放物面などの、放物面もしくは正弦曲線の形状を有して、非常に幅広であってもよい。この構成は、突起部30の最上部において非常に緩やかな曲線を結果として生じさせ、それによって鋭いもしくは重い圧力が印加されたときのセンサアレイに対するダメージの機会を最小限とする。
単一のタイルアセンブリ48.
単一のタイルアセンブリ48の一実施形態では、単一の圧力タイル2は、コンピュータに直接的に接続されてもよく、別個のもしくは一体化されたホスト通信プリント回路38は必要とするがマスタープリント回路基板19を必要としない。図32及び図33に図示されるように、そのような実施形態がタイルの端部の周りに巻き付けられ、一体化された突起部及びベース層42の下側に取り付けられたタイルプリント回路基板4に接続されたフレキシブルアクティブセンシングアレイ20と用いてアセンブリングされる。半剛体タッチ層31は、アクティブセンシングアレイ20の最上に位置する。単一のタイル実施形態では、図35に図示されるように、タイルプリント回路基板4上のマイクロコントローラ5は、例えばUSBなどのコンピュータ3に接続されるUSBケーブル9を介してスキャニング及びホスト通信の両方を実行することができる。
複数の圧力タイル2のネットワークで結ばれたタイルアセンブリ18.
複数のタイルの一実施形態では、スレーブタイル12は、コンピュータ3に接続された一体化されたもしくは分離したホスト通信回路95を有してもよいマスタータイル7もしくはマスタープリント回路基板19に対してデイジーチェーン接続されてもよい。そのような実施形態が図50において図示されるようにマスタープリント回路基板19に接続された直列のスレーブタイル12を用いてアセンブリングされ、直列のスレーブタイルから圧力データを得るためのマスター/スレーブバスプロトコルを可能とする。半剛体タッチ層31はそれらのそれぞれの個々のアクティブセンシングアレイ20の最上のスレーブタイル11に及ぶ。マスタープリント回路基板19上のマイクロコントローラ5は、スレーブタイル11からデータを収集し、そのデータをUSB送受信機80及びUSBケーブル9を介してデータをコンピュータ3に送信するホスト通信回路95に送信する。
圧力感度.
2つのプロトタイプの圧力感度をテストするために、4つの点上に位置する5グラムのベースが、センシング素子26上方の各点を用いて半剛体タッチ層31の最上に設置された。5グラム重量が5グラムから100グラムまでの重量を作り出すためにベース上に設置された。各センシング素子26はこの重量の4分の1を受けるので、質量は各センスでは1.25グラムから25グラムまで変化した。
テスト1:
タッチ層−0.5ミリのビニル。
センサ−108キロオーム抵抗のインクセンサ。
突起層−4ミリの直径の半球状。
交点での重量 ビジュアライザ上の平均値
5グラム 0
10グラム 7.5
15グラム 14.5
20グラム 23
25グラム 32
この実施例では、10グラムより下の質量は、圧力タイル2によって登録されない。10グラムの後は、圧力タイル2によって登録された平均値は、圧力にともない線形的にスケーリングされた。
テスト2:
タッチ層−1ミリのビニル。
センサ−108キロオーム抵抗のインクセンサ。
突起層−2ミリの直径の頂部が平面で切断された円錐状。
交点での重量 ビジュアライザ上の平均値
5グラム 0
10グラム 0
15グラム 2
20グラム 17.5
25グラム 25
このテストは、最上層をより硬くさせるが感度を減少させるより薄い半剛体タッチ層31を使用した。結果として、値は15グラムまで登録されなかった。
上述した実施形態の考えに対するこの拡張においては、応力をアクティブセンシングアレイ20上の適切なセンシング素子26に対して集中させるための改良された技術を含む。この実施形態では、タッチ表面はプレート角が突起部30によって位置合わせされるようにセンシング素子26に及ぶプレート35上方に位置する。これが上記実施形態における半剛体タッチ層31の剛性の必要要件の範囲を取り除き、代わりにこのタッチ層が順々に応力を適切なセンシング素子26上に集中させるプレート35上の平らな部分に位置するようにフレキシブルタッチ層38を利用する。結果として、フレキシブルタッチ層28は薄くて柔軟性を有し、例えば(例えば5ミルシートのPETフィルムなどの)従来の発明と比較すると1/10の厚さ及び剛性を有する。プレートの最上のそのような薄い/フレキシブルタッチ層は、その印加された応力のすぐ近傍のセンシング素子を超えた、印加された応力のタッチ層に沿った所望されない広がりを除去する。
さらに、フレキシブルタッチ層38は、突起部30上よりもむしろプレート35上の平らな部分に位置するので、この実施形態によって、ユーザがタッチ層を介して突起部/バンプ30を感じることなしにデバイスとインタラクトすることを可能とする。また、従来の発明におけるような突起部30をブリッジするよりもむしろタッチ層はプレート35の平坦域上に位置するので、フレキシブルタッチ層38は、プレート35に対してより強固に接着され、そうしなければ生じる圧縮問題を減少させる。このことがより低い最初の検出可能なタッチしきい値を結果として生じさせ、軽いタッチの検出を改善する。
応力のすべての散逸は巨視的なレベルよりもむしろ微視的なレベルで行われるので、この技術は、従来の発明よりもタッチ層からの応力をセンシング素子に伝達するためのより効率的な機構を提供する。タッチ層はタッチ層の巨視的な変形を介して応力をセンシング素子に分散させるように使用されたので、上述した実施形態では、タッチ層に対して(「実用的な剛性の範囲」において説明された)いくらかの剛性を必要とした。この発明では、巨視的な動きもしくは変形は存在せず、プレートの変形、突起部の圧縮、並びに/又はプレートが相互に及び/もしくは突起部と接触するところのヒンジングによる微視的な変形だけが存在する。このことが変形による圧力信号の損失を結果として減少させる。すなわち、より高いパーセンテージの応力がさらに隣接するセンシング素子に伝達されるよりもむしろ局所的なセンシング素子に伝達される。
ユーザ経験の段階的説明はこの実施形態のために上述されたのと同様である。
すべての部品のリスト.
すべてのハードウェア部品のリスト.
・すべての部品のリスト
〇センサタイル2の集合物。
・センタタイルは以下を備える。
・フレキシブルタッチ層38。
・1つもしくは複数の接着層40。
・技術:一体化されたプレート及び突起部行列部品。
〇一体化されたプレート及び突起部層36。
〇ベース層47。
・技術:別個のプレート及び突起部行列部品。
〇プレート層53。
〇一体化された突起部及びベース層42。
・すべての他の部品は上述された通りである。
〇すべての他の部品は上述された通りである。
各層の一般的な目的:一体化されたプレート及び突起部層の実施形態.
図52は、一体化されたプレート及び突起部行列部品の実施形態の分解図を図示する。すなわち、フレキシブルタッチ層38、一体化されたプレート及び突起部層(IPPL)36、アクティブセンシングアレイ20、ベース層47。複数の層が接触して設置される場合、IPPL36における各突起部はアクティブセンシングアレイ20の外面上のセンシング素子27のアクティブ領域と接触するように位置合わせされる。接着層40はまた、フレキシブルタッチ層38とIPPL36との間で使用されてもよいので、これらの層は機械的に接続される。同様に、接着層40はまた、IPPL36とアクティブセンシングアレイ20との間で使用されてもよい。同様に、接着層40はまた、アクティブセンシングアレイ20とベース層47との間で使用されてもよい。
本発明のこの一体化されたプレート及び突起部行列部品の実施形態は、この明細書の最初で説明した機構とは異なるアクティブセンシングアレイ20におけるセンシング素子に応力を集中させるための機構を利用する圧力センサに関連する。図53に側面図が、図52に分解図が図示されたこの実施形態では、ベース層47と接触するアクティブセンシングアレイ20と接触する一体化されたプレート及び突起部層36と接触するフレキシブルタッチ層38が図示される。IPPL36における各突起部30は、図52及び図53に図示されるように、アクティブセンシングアレイ20の外面上のセンシング素子27の対応するアクティブ領域と接触するように位置合わせされる。
この発明の別個のプレート行列及び突起部行列層の実施形態は、フレキシブルタッチ層38、プレート行列層53のアクティブセンシングアレイ20、一体化された突起部及びベース層42が存在する、図54の分解図及び図55の側面図において図示されたもう1つの技術に関連する。複数の層が接触して設置される場合、突起層53における各突起部30は、アクティブセンシングアレイ20の内面上のセンシング素子27の対応するアクティブ領域に接触するように位置合わせされる。さらに、プレート行列層53における各プレート35の角は、アクティブセンシングアレイ20の外面上の突起層53からの対応する突起部30によって位置合わせされ、ここで任意の突起部はその上方の隣接したプレート角を4つまで有してもよい。
接着層40はまた、フレキシブルタッチ層38とプレート行列層53との間に使用されてもよいので、これらの層は機械的に接続される。同様に、接着層40はまた、プレート行列層53とアクティブセンシングアレイ20との間に使用されてもよい。同様に、接着層40はまた、アクティブセンシングアレイ20と一体化された突起部及びベース層42との間に使用されてもよい。
代替の実施形態では、図56に図示されるように、突起部がアクティブセンシングアレイ20の外面上のセンシング素子27のアクティブ領域に取り付けられる。この実施形態では、突起部30及びアクティブセンシングアレイ20とは一緒にデバイスの単一部品を形成し、ここでは取り付けられた突起層を有するアクティブセンシングアレイ55である。動作では、図57における分解図で図示されるように、フレキシブルタッチ層38は、ベース層47上に位置する、取り付けられた突起層を有するアクティブセンシングアレイ55上に位置するプレート行列層53上に位置する。外部からの応力がフレキシブルタッチ層38に印加されると、次にその応力はそれがプレート35の角に集中されるように応力を再分配するプレート行列層53に与えられ、そこから次に突起部30に与えられ、それによって取り付けられた突起部30と、その上にアクティブセンシングアレイ20が位置するベース層47との間の各アクティブセンサ26を圧縮する。
この実施形態に対する用語の説明及び部品の説明.
アクティブセンシングアレイ(ASA):上述された。
センシング素子26:図10及び図11に図示されるように、センシング素子26は、導電性トレース線23が交差するアクティブセンシングアレイ20の2つの表面シート21の間の位置において存在し、そこで2つの領域のFSR24はともにサンドイッチ構造を形成し、その圧力は電気的に測定されてもよい。図9及び図10に図示されるように、センシング素子26は、交差するトレース線23の接合部におけるそれらの2つの層上のFSRの重なる領域において存在する。
センシング素子との接触する:図10及び図11に図示されるように、センシング素子27のアクティブ領域は、そのセンシング素子に対するFSR材料の重なりに対応するアクティブセンシングアレイ20のいずれか一方の側の領域である。特に、もしアクティブセンシングアレイ20と接触する突起部の表面がそのセンシング素子のアクティブ領域27の上もしくは内側に完全に位置すれば、突起部30はセンシング素子26と接触すると言われる。もし(まさに定義されたように)それがセンシング素子と接触すれば、突起部30はセンシング素子26によって適切に位置合わせされる。
プレート35:樹脂、金属、木、ガラス、又は(両方が以下に定義されるが、突起部の高さと比較すると、)正当な量のプレート剛性を有する他の材料の長方形の断片。プレート35は、それが位置決めされると、角がアクティブセンシングアレイ20上の4つの隣接したセンシング素子26の内側で位置合わせされるようなサイズ及び形状からなる。プレート35は一体化されたプレート及び突起層(IPPL)36もしくはプレート行列層53の部分から構成されてもよいプレート行列39において配列される。図59は、アクティブセンシングアレイ20上に適切に位置合わせされたプレート35を図示する。図60は、アクティブセンシングアレイ20上の対応するセンシング素子26の内側で適切に位置合わせされた剛体プレート35の上面図を図示する。
プレート行列39:剛体プレート35間に隙間が存在するようにかつ角間の隙間の中心がアクティブセンシングアレイ20上のセンシング素子26に対応するように位置合わせされるように空間的に位置合わせされた複数の剛体プレート35。プレート行列39は、一体化されたプレート及び突起層36(IPPL)36もしくはプレート行列層53から構成される。図61Aは、プレート行列39の上面図を図示し、図61Bはプレート行列39の側面図を図示する。図63は、アクティブセンシングアレイ20上方に重ね合わされたプレート行列39の適切な位置合わせを図示する。
突起部30:樹脂、金属、木、ガラス、又はそのセンシング素子のアクティブセンシングアレイ20上のセンシング素子26上方もしくは下方に位置決めされ、その単一のセンシング素子26のアクティブ領域27上に応力を集中させることが目的である他の材料の剛体バンプ。アクティブセンシングアレイ20に面する突起部の側は、その対応するセンシング素子のアクティブ領域との接触がそのセンシング素子27のアクティブ領域上もしくは内側で正確に位置するであろう形状である必要がある。突起部は、一体化されたプレート及び突起層(IPPL)36もしくは一体化された突起部及びベース層42の部分から構成されてもよい突起部行列43において配列される。
図64は、アクティブセンシングアレイ20上の対応するセンシング素子26上で正確に位置合わせされた突起部30の上面図を図示する。
図65A−図65Fは、突起部30とアクティブ領域のセンシング素子27との間の接触の6つの例の側面図を図示する。図65A、図65B、図65C、及び図65Dでは、その対応するセンシング素子27のアクティブ領域との接触がそのアクティブ領域27上もしくは内側で正確に位置する突起部30の実施例が図示される。図65E及び図65Fでは、突起部30は、対応するセンシング素子26のアクティブ領域27を超えて拡張する接触を有し、それ故にこの発明に対する適切な突起部構成でない。図65Dにおけるケースでは、そのセンシング素子上方の突起部30は、これらの面のそれぞれはそのセンシング素子26において接触する異なるプレートに取り付けられてもよいように不連続面を有する。
突起部行列43:アクティブセンシングアレイ20上のセンシング素子26に対応するように空間的に位置合わせされた複数の突起部30は。突起部行列43は、一体化されたプレート及び突起層(IPPL)36又は一体化された突起部及びベース層42の部分から構成されてもよい。図62Aは突起部行列43の上面図を図示し、図62Bは突起部行列43の側面図を図示する。
図61A、図61B、図62A及び図62Bは、プレート行列39及び突起部行列43が相互にそれぞれが位置合わせされるであろうように並置されたプレート行列39及び突起部行列43が図示される。
図66Aは、適切に位置合わせされたプレート行列39及び突起部行列43の重ね合わせの底面図を図示し、図66Bはその側面図を図示し、図66Cはその上面図を図示する。
図67は、適切に位置合わせされたプレート行列53及び突起部行列43の重ね合わせの切り抜きを図示する。
外側の及び内側の方向/側面/正面:センサは、テーブル、壁、天井もしくは移動するオブジェクト上に設置されてもよい。結果として、トップ(最上)/ボトム(底面)又はアップ(上)/ダウン(下)に言及することは曖昧となる。明確にするために、応力が印加された側面/方向/正面を示すために「外側の」を使用し、(装置のベースに向かって)対向する側面/方向を示すために「内側の」を使用する。例えば、それが平坦面に対して方向付けされたであろうようなデバイスを図示する図68A及びそれが壁に対して方向付けされたであろうようなデバイスを図示する図68Bにおいて、印加された応力34は、フレキシブルタッチ層38の外面に対して印加される。同様に、突起部30の内面がアクティブセンシングアレイ20上のセンシング素子26によって位置合わせされるように、IPPL36における突起部の内面は、アクティブセンシングアレイ20の外面上にある。アクティブセンシングアレイの内面は、ベース層47の外面上に位置する。図68A及び図68Bにおいて、外側方向28及び内側方向29は矢印で示される。曖昧さの任意のケースでは、基準の方向付けは、図68Aにおけるように、例えばテーブルトップ上に上からくる応力によるなどの、床に対して平行な平坦面上に設置されたセンサによるものである。
一体化されたプレート及び突起層(IPPL)36:突起部が内面上の隣接したプレートに物理的に接続されるように、プレート行列53及び突起部行列43の両方を含む部分。突起部30は内面を超えて延在し、アクティブセンシングアレイ20上のセンシング素子26に対応するように空間的に位置合わせされる。この部分は、樹脂、金属、木、ガラス又は剛体もしくは半剛体である他の材料から作られてもよい。この製造のための方法が以下に説明される。図69は、一体化されたプレート及び突起層36の実施形態を図示する。
種々の実施形態では、一体化されたプレート及び突起層36は図70−図73で図示された形状のいくつかを有してもよい。これらの実施形態のすべてにおいて、突起部30の形状は変化するがプレート間にスリットが存在する。すなわち、スリットの幅は図70と図73とを比較して見られるように変化してもよく、突起部は図70と図71とを比較して見られるように接合部を介してプレートと同一平面であり続けてもよく、又は図70と図72とを比較して見られるように、突起部の内面に向かって次第に細くなってもよい/台形であってもよい。図74は、スリットを有する図70もしくは図72に対応する上面図を図示する。図75は、プレートと同一平面である続ける突起部を有する図71の実施形態に対応する上面図を図示する。図76は、図70及び図74で図示される実施形態よりも広いスリットを有する図73の実施形態に対応する上面図を図示する。図74−図76で図示された実施形態のそれぞれにおいて、突起部においてではなくプレートの端部に沿ったスリットは、材料を完全に通過する。
角突起部54:一実施形態では、アクティブセンシングアレイ20上のセンシング素子26にわたる突起部30は、センシング素子26において及びそのセンシング素子26上方で接触するいくつかのプレート35のうちの1つの角において取り付けられた各不連続な面を有するいくつかの不連続な面が含まれてもよい。角突起部54は、これらの不連続な面の1つとして定義される。センシング素子で接触する長方形のプレートを用いて、図77A−図77C、図79及び図80に図示されるように、4つまでの突起部54は集合的に突起部30として動作してそのセンシング素子26上に応力を与えてもよい。
図77A−図77Cは、マーキングされたセンシング素子26のアクティブ領域27上方に1個の角突起部54を位置する例と、2個の角突起部54を位置する例と、3個の角突起部54を位置する例とをそれぞれ図示する。これらの例のそれぞれにおいて、一連の角突起部54は一緒にそのセンシング素子26の上の「突起部」30と考えられるであろう。
圧縮成形を用いて以下に説明されたIPPLなどのIPPL36のもう1つの実施形態では、突起部30はそれぞれ一連の角突起部54から構成されてもよい。この実施形態では、IPPLの外面は、フラットトップの一体化されたプレート及び突起層41として示されたフラットであって、単一のタイルセンサのケースでは、フラットトップのIPPL41がまたフレキシブルタッチ層38としても機能することを可能とさせるであろう。
図78は、角突起部54及び平坦である外面を有するプレート35を有するフラットトップIPPL41の側面図を図示する。プレートの角が接触する突起部30は、異なるプレート35からの一連の角突起部54を備えるであろう。この実施形態では、図78における側面図、図79における外側図及び図80における内側図で図示されるように、表面は分離したプレートを接続する付加的な薄膜の材料を用いて平坦である。図70−図76において図示されるような実施形態とは異なり、スリットはプレート間を通して続かないが、代わりに図78−図80において図示されるように、内面からの溝を形成する。そのような実施形態では、(溝の外面と内側端との間の)そのような接続材料の厚さは、フレキシブルタッチ層38に対する要件を配慮する必要がある。例えば、ABS樹脂の1ミリの厚いプレートに対しては、接続材料に対する厚さは0.1ミリである。
フラットトップの一体化されたプレート及び突起層41の実施形態では、(各センシング素子に対応する、図78−図80で図示されたように、)共有のコヒーレントな突起部もしくは一連の角突起部のいずれかが使用されてもよい。
プレート行列層53:プレートが薄いフレキシブルな最上のもしくは底面の材料又は剛体プレート間の溝における材料とのいずれかと接続されるような複数の剛体プレート35を含む部分。IPPL36とは異なり、突起部30はこの部品の部分ではない。この部分は樹脂、金属、木、ガラスもしくは以下に説明された、これの製造のための方法を含む他のそのような材料から作られてもよい。図81は、フラットトップIPPLでは見られるであろう突起部はないが、フラットトップIPPL41に類似した構造を有する薄いフレキシブルトップ材料を有するプレート行列層53のフラットトッププレート行列層116実施形態を図示する。
一体化された突起部及びベース層42:図82に図示されるように、突起部が内面上のベース47に物理的に接続されるような、突起部行列43を含む部分。この部分は、樹脂、金属、木、ガラス、または剛体もしくは半剛体である他の材料から作られてもよい。この製造のための方法を以下に説明する。例えば図19において図示され説明された実施形態などの上述した実施形態では、一体化された突起部及びベース層を含む例である。
3つのプレートがそれぞれ図示され、図83には十分に剛体であるプレートが図示され、図84には十分に半剛体であるプレートが図示され、図85には応力が突起部よりもむしろベースに伝達されることを可能とする不十分に剛体であるプレートが図示される。各ケースにおいて、プレート35上に外部から印加された応力34は、図示された伝達された応力56のようにベース層47上の異なる位置に伝達される。図83及び図84は、突起部30を介してベース層47に伝達された排他的に集中された応力56を用いて、「突起部高さに対して正当な量のプレート剛性」を表す。図85では、プレート35は突起部高さに対して正当な量のプレート剛性を持たない。その理由は、そのいくらかの応力56が突起部30を介さない領域における下層のベース表面上に与えられるようにそれは変形するからである。図83と図21とを比較すると、プレート35を含む実施形態の利点が示される。半剛体タッチ層31を有する図21に図示された実施形態とは異なり、プレート35は、応力がそれが真上に存在する突起部に伝達されない剛体とすることができる。
突起部高さに対して正当な量のプレート剛性:もしプレートの外面の外部から印加された応力がその角において対応する突起部に対して排他的に印加される圧力を結果として生じ、特に応力が突起部間の表面に与えられなければ、プレートは「突起部高さに対して正当な量のプレート剛性」を有する。もし同様の外部から印加された応力がプレート35が4つの突起部30間のベース層の領域と物理的に接触し、それによってアクティブセンシングアレイ20の非アクティブ領域上に応力を散逸するであろう十分な程度まで変形されるならば、プレート35は、正当な量のプレート剛性を有さないであろう。この受け入れられないケースがプレート35が弧の中心で変形する図85において図示され、ここで、突起部30の十分な高さによりプレートがベースをタッチすることを可能とさせる。例えば、突起部が12ミリ間隔で空けられたケースでは、0.5ミリの厚い長方形の断片のラバーは、プレートとして役目を果たすための正当な量のプレート剛性を有さないであろう。プレート材料の変形の距離は、E(曲げ)=LF/(4whd)であって、ここで、Lは長さであって、w及びhは幅及び高さであって、Fは印加された応力であって、dは表面に対する荷重に対する偏位である。
フレキシブルタッチ層38:これは直接的な接触/タッチのために、ユーザに見える最も外側の層である。それは(例えば、ラバー、テフロン(登録商標)、もしくは低密度ポリエチレンなどの)材料の薄いフレキシブルシートから構成される。それは十分にフレキシブルでなければならない。(すなわち、剛性がプレートの剛性未満の大きさのオーダであるようなヤング係数及び厚さを有する。ほとんどの材料の剛性は、次式におけるように、(材料に対して一定である)材料のヤングの係数と、材料の厚さの3乗との積によって大部分は決定され、その結果、表面に印加された応力はその応力の下のプレートに最初に伝達される。)一実施形態では、それは0.005インチのポリエステルフィルムから作られる。
材料の剛性は、次式のように計算されてもよい。
Figure 2013542523
ここで、E=ヤングの係数であって、h=材料の厚さであって、v=材料のポアソン定数である。
フレキシブルタッチ層38の全体サイズ及び形状はネットワークで結ばれたグリッドのセンサタイルの全体サイズ及び形状と整合するように形成される。
ベース層47:この最も内側の層は、アセンブリの台より下に位置するフラットな特徴のないシートである。装置1は、例えば3インチの厚いガラステーブルなどの平坦な固体表面にぴったりと位置するであろう実施形態では、これが例えばテーブルなどによって提供されるであろうので、ベース層は必ずしも剛体支持を提供する必要はない。表面上にもしくは例えばマットレスなどの固体でない表面上に平坦に置けないであろう装置1の実施形態では、それは例えば1/4インチの厚いアクリルシートなどの剛体である必要はないであろう。
接着層40:接着層は、それぞれに隣接する機能層を取り付けるために使用されてもよい。一実施形態では、接着層は例えばグラフィックスダブルタックマウンティングフィルムなどの両面接着フィルムシートとできる。他の実施形態では、スプレー接着がこられの層を接着させるために使用された接着層としての役目を果たしてもよい。
内部動作の段階的説明:
図86は、応力分配の断面を図示する。すなわち、フレキシブルタッチ層38、一体化されたプレート及び突起層36、アクティブセンシングアレイ20、ベース層47、外部から印加されたタッチ力34である。IPPL36は、プレート35及び突起部30を含む。突起部30は、アクティブセンシングアレイ20上のセンシング素子26によって位置合わせされる。
図86で図示されるように、指もしくは他のオブジェクトがフレキシブルタッチ層38の外面上に下向きの応力34を印加したときに内部動作が始まる。
次に、この応力はフレキシブルタッチ層38を介して一体化されたプレート及び突起層36における応力34の下のプレート35に伝達される。
IPPL36の各プレート35上のそれぞれの下向きの応力34は、プレート35のそれぞれの4つの角の下にある、IPPL36における突起部30に対して再分配される。プレート35の任意の角での突起部は、3つまでの他の隣接したプレート35によって共有される。応力が隣接したプレート35に対して同時に印加された場合には、それらの隣接したプレート35から合成された応力は、それぞれの共有の突起部30上に集中され、この共有の突起部30が接触するセンシング素子26で測定される。
剛体プレート35の4つの角における各突起部30は、アクティブセンシングアレイ20上のそれぞれのセンシング素子26上方で位置合わせされ、各剛体プレート35に印加された応力をプレートの対応する4つの角でのセンシング素子27のアクティブ領域に集中させる。
これが各突起部30が対応するセンシング素子26と接触するアクティブセンシングアレイ20の部分に伝達される応力の集中を創造し、それによってセンシング素子26を備えるアクティブセンシングアレイ20の領域で相互に接触するFSR材料24の2つの領域と一緒に圧縮する応力を創造する。(ここで、図10及び図11に図示されるように、アクティブセンシングアレイ20の外側の導電性線23上の一方のFSR24領域は、アクティブセンシングアレイ20の内側の導電性線23上のFSR24の対応する領域と接触する。)
上述したように、この圧縮は相互に接触するFSR材料のこれらの2つの領域間の電気伝導率の増加を生じさせる。センサのマイクロコントローラはセンシング素子のアクティブセンシングアレイのアレイを介してスキャンするので、それらの伝導率の変化のそれぞれは、マイクロコントローラが次にデジタル信号として符号化するA/D変換器を介してマイクロコントローラが検出する電圧の変化として測定される。次に、マイクロコントローラはこのデジタル信号をUSBを介してホストコンピュータに送信する。
部品のこの構成は、プレートからアクティブセンシングアレイ上のセンシング素子に対する応力の再分配のためだけの機構を形成し、それによってフレキシブルタッチ層の外面上のタッチの位置における連続的な変化がそのタッチに最も接近するそれらのセンシング素子に対して印加された相対力における対応する連続的な変化を結果として生じさせる。それらの相対力は、データ画像の一部としてホストコンピュータに送信されると、ホストコンピュータが算術補間を介してタッチの重心位置を正確に再構築することを可能とさせる。
図87は補間の概略図を図示する。フレキシブルタッチ層38上に作用するすべての外部から印加された下向きの応力34は、その応力に隣接するIPPL36におけるプレート35に伝達される。そのプレート35上の応力34は、IPPL36上の(2×2)の最も接近する突起部30上に集中されるであろう。従って、アクティブセンシングアレイ層20では、すべての応力はこれら4つの突起部30との直接的かつ機械的に接触する(2×2)の対応するアクティブ領域27上に集中され、そこからそれぞれのセンシング素子26に対して機械的に分配されるであろう。
プレート35及びフレキシブルタッチ層38を用いたこの処理と、プレートはないが半剛体タッチ層31を用いて説明された同様の処理との間の違いは、より薄いタッチ表面38とタッチ表面下の別個のプレート35を可能とすることによって、フレキシブルタッチ層38上の局所的な応力はその応力の下のプレート35にほとんど排他的に伝達され、次に対応する突起部30を介して適切なセンシング素子26上に伝達される。さらに、これにおいて、アクティブセンシングアレイ20は、平坦な表面上に取り付けられ、それ故にプレートなしの方法では起こるかもしれないような変形は起こるはずがない。
アクティブセンシングアレイ上の応力の電気的な測定及び処理は、プレートなしの方法におけるそれと同一である。
図52は、フレキシブルタッチ層38と一体化されたプレート及び突起層36とアクティブセンシングアレイ20とベース層47とを有する一体化されたプレート及び突起層(IPPL)を用いたプロトタイプの単一タイルの実施形態における複数の層及びアセンブリの分解図を図示する。複数の層が接触して設置されるとき、IPPL36における各突起部30はアクティブセンシングアレイ20の外面上のその対応するアクティブセンシング領域27と接触するように位置合わせされる。接着層40は、このプロトタイプ実施形態において上述した層のそれぞれの間に使用された。
フレキシブルタッチ層38:5ミルのポリエステルフィルム。
一体化されたプレート及び突起層36:(32×32)のグリッドの突起部を有する(31×31)のグリッドのプレート。標準的なSLA製造を用いて、IPPL36幾何学的形状を供給されたCADファイルを用いて創造された(クリアPCのような)サモス(Somos)11122を用いて製造されたカスタムSLA(ステレオリソグラフィ)ラピッドプロトタイプ部分。
図88は、一体化されたプレート及び突起層36のプロトタイプ実施形態で使用されたプレート及び突起部の寸法をプロファイル図で図示する。プレート35及び突起部30は正方形であるので、(スケーリングするように図示されていないが、)幅及び長さの両方のこれらの寸法は同一である。
留意すべきことは、単一のタイルアセンブリでは、隣接するタイル間に及ぶプレートに対する必要性は存在しないので、(N×M)のアクティブセンシングアレイに対する(N×M)のグリッドの突起部に対して((N−1)×(M−1))のプレートが存在する、ということである。例えば図52では、(4×4)のグリッドのプレートは(5×5)のグリッドの突起部によって支持され、(5×5)のグリッドのセンシング素子を有するアクティブセンシングアレイを用いて使用される。
アクティブセンシングアレイ20:上述した他の実施形態における説明のように、3/8インチの間隔を空けられた(32×32)のグリッドのセンシング素子を有するカスタムプリントセンサ。各センシング素子は、(4×4)ミリの重なり合うFSR領域を有する。100キロオームのFSRインクがASAで使用された。
ベース層47:1/32インチの厚さのCPVCシート。留意すべきことは、この実施形態は、装置が装置1が平坦な固体表面にぴったりと位置するであろうベース層の実施形態において使用される固体テーブルトップ上に設置されるであろうことが予想されるであろう実施形態の1つである、ということである。
接着層40:グラフィックスダブルタックマウンティングフィルム。3つの接着層40がこのアセンブリにおいて使用される。
このプロトタイプアセンブリでは、
a)接着層40の一方側は、フレキシブルタッチ層38の内面に取り付けられる。
b)その接着層40の反対側はIPPL36の外面に取り付けられる。
c)第2の接着層40の一方側は、アクティブセンシングアレイ20の外面に取り付けられる。
d)その接着層40の反対側は、IPPL36上の突起部30は、アクティブセンシングアレイ20上の対応するセンシング素子26によって位置合わせされるように、IPPL36の内面に取り付けられる。
e)第3の接着層40の一方側は、アクティブセンシングアレイ20の内面に取り付けられる。
f)その接着層40の反対側はベース層47の外面に取り付けられる。
このIPPLプロトタイプアセンブリに対する圧力データ.
以下のテストでは、校正された重量が配線交点上方に設置された。5グラムの重量の小さなラバーシリンダーはその交点で応力を集中するように使用された。
IPPL センサ
重量(グラム) センシング素子(*)からの値
20 30
40 95
60 150
80 200
100 260
120 320
140 340
160 380
180 410
200 425
250 480
(*)ここでのプロトタイプ実施形態では、これらはPIC24チップのA/D回路から測定された値であって、電圧に基づいた値である。その値は12ビットの非負の値として測定される。
一体化されたプレート及び突起層を製造するための方法.
一実施形態では、金型が樹脂部分のための金型を作るための工業標準的な技術を用いてIPPLのために作られる。IPPL部分は標準的な射出成形金型及び成形技術を用いてABS樹脂から射出成形金型を介して製造される。
IPPLを製造するためのもう1つの方法は、例えば0.005インチの厚さのブラスなどの薄い金属プレートを両側で接着剤を用いてコーティングされた例えば0.003インチの厚さのマイラーもしくはカプトンなどの樹脂シートの両側に対して取り付けることによって形成されたサンドイッチ構造の両側に対して選択的フォトエッチングを実行することである。金属プレートの1つはプレート層を形成し、他は突起層を形成するであろう。両方のケースでは、エッチング除去されるべきでない金属プレートの一部は(例えばレーザプリンタから転写されたトナーのパターンなどの)フォトレジストのパターンで覆われる。同じように、プレートは、標準的な処理では露光されない部分が洗い流された後に365nmの範囲内にあるUV光のパターンに対して露光されることによって最初に選択的に硬化された例えばデュポンサイレルもしくはBASFナイロフレックスなどの標準的なフォトポリマーから形成される。
2つのプレートのフォト抵抗インクパターンのための鋳型が図89A及び図89Bで図示される。図89Aはプレートの側面のフォト抵抗インクパターンを図示する。図89Bは、突起部のフォト抵抗インクパターンを図示する。プレートがフォトポリマーである実施形態では、ネガティブのこれらのパターンが使用される。
一体化されたプレート及び突起層36部分を創造するためのもう1つの方法は、それらはネガティブ除去パターンを形成するように例えばスチールプレートなどの2つの厚い平坦な金属プレートの表面をフォトエッチングすることである。その場合、熱いときは柔らかいが冷たいときは硬くなる樹脂が、好ましくは真空中で、これらの2つの金属プレート間に設置される。プレートは加熱され、それら同時に応力が加えられるように圧力が印加され、それによって樹脂における除去パターンを創造し、それによって突起部領域を満たすために柔らかい樹脂が溝領域から除去変形される。
フォトエッチングがプレート除去パターンにおけるスムーズな傾斜を創造するために実行され、それによって樹脂の中に除去パターンをプレスすることの後に続く処理を容易化する。
以下の図90Aにおいて、2つの金属プレートの配置が断面で図示される。プレート形状を定義する樹脂における溝を創造するトップの圧縮プレート57。樹脂における突起部を創造する底辺の圧縮プレート58。図90Bは、結果として生じる溝の位置59と、結果として生じる突起部の位置60を図示する。
IPPL36の製造のもう1つの方法は、図91Aにおいてプロファイル図で図示されるように、隣接した正方形間の連続的な溝を可能とさせるために各突起部を分割することによって、両方のプレート形状の除去構造だけでなく一方側上だけの突起部も有する単一の表面を創造することである。
底面側だけに除去構造を有する部分内へ剛体の正方形と突起部とを結合させる除去構造を設置することは、ユーザがこのパーツの最上をタッチすることに対してスムーズだと感じるという利点を与える。特に、この実施形態は、図78−図80で図示/説明されたフラットトップの一体化されたプレート及び突起部41の実施形態部分におけるようなフレキシブルタッチ層38をまた含む一体化されたプレート及び突起層36を創造する。
この除去構造を製造することの1つの方法に、熱硬化性樹脂の圧縮成形による方法がある。この処理の変形例では、圧縮成形されるべき樹脂は、例えばマイラーもしくはカプトンなどのフレキシブル樹脂の(例えば、0.003インチの厚さなどの)薄いシートと接触して設置される。接続された部分の圧縮及び硬化処理の後に、溝領域は本質的には、図91Bに図示されるように、プレート35及び突起部30において位置される剛体樹脂を有するフレキシブル樹脂61だけから構成されるであろう。これがフラットトップIPPL41で図示されるように、一体化されたフレキシブルタッチ層38に沿って隣接するプレート間のフレキシブルヒンジングによって、剛体プレート35及び剛体突起部30の所望の機械的な特性を創造するであろう。
図54は、別個のプレート行列層53並びに一体化された突起部及びベース層42を用いたプロトタイプの単一のタイルのプロトタイプ実施形態における層及びアセンブリの分解図を図示する。
フレキシブルタッチ層38、プレート行列層53、アクティブセンシングアレイ20及び一体化された突起部及びベース42を有する。アクティブセンシングアレイ上のグリッド線交点はFSRセンシング素子の位置である。複数の層が接触して設置されるとき、突起層42における各突起部30は、アクティブセンシングアレイ20の内面上の対応するアクティブセンシング領域27と接触するように位置合わせされる。さらに、プレート行列層における各プレートの角はそれらの対応する突起部と対向するアクティブセンシングアレイ20の外面上の外側のアクティブセンシング領域27の上方に存在するように位置合わせされる。接着層はこのプロトタイプにおける上記の複数の層のそれぞれの間で使用された。
フレキシブルタッチ層38:5ミルのポリエステルフィルム。
プレート行列層53:(31×31)のグリッドのプレート。1/32インチのアクリルシート、2つのパスを用いた最終形状へのカスタムレーザカット。第1のパスは角の接合部において初めから終わりまですべてをカットするのではなく溝をエッチングすることである。第2のパスは、図58Aの上面図及び図58Bのプロファイル図で図示された部分を結果として生じさせるようにアクリルを完全に通り抜けるスリットをカットすることである。(スケーリングするように図示されない)正方形のプレートを有する図58Aの上面図及び図58Bのプロファイル図で図示されるように、これらの寸法は幅と長さとの両方に対して同一である。
アクティブセンシングアレイ20:3/8インチの間隔が空けられた(32×32)のグリッドのセンシング素子を用いた上述した実施形態での説明におけるカスタムセンサ。各センシング素子は(4ミリ×4ミリ)の重なり合うFSR領域を有する。100キロオームのFSRインクはASAで使用された。
一体化された突起部及びベース層42:4ミリの直径の半球の突起部であって、3/8インチ間隔の(32×32)のグリッドの突起部。(クリアPCのような)サモス11122を用いて作られたカスタムSLAラピッドプロトタイプ部分。
1つもしくは複数の接着層40:グラフィックスダブルタックマウンティングフィルム。これは接着樹脂シートのいずれか一方の側に保護ペーパーを有する。
このプロトタイプアセンブリでは、
a)接着層40の一方側はプレート行列層53の外面に取り付けられ、対向する側面上の保護被覆が損傷を受けない状態とする。
b)第2の接着層40の一方側はプレート行列層53の内面に取り付けられ、対向する側面上の保護被覆が損傷を受けない状態とする。
c)各プレート接合部におけるノッチがつけられた溝において接続材料のすべてが破壊されてしまうまでプレート行列層53を優しく曲げる。これによって2つの接着層間におけるプレート行列層53と、もはや他のプレートに強固に取り付けられていない各プレートとを用いて、フレキシブルサンドイッチ構造の状態となる。
d)アクティブセンシングアレイ20は、ステップ(b)からの接着層40の対向する側を用いてプレート行列層53の内側上に(すでに配置された)接着層40に取り付けられる。アクティブセンシングアレイ20からのセンシング素子27は、プレート行列層53上のプレート接合部によって位置合わせされる必要がある。
e)第3の接着層40の一方側は、アクティブセンシングアレイ20の内面に取り付けられる。
f)一体化された突起部及びベース層42は、ステップ(e)からの接着層40の対向する側面を用いてアクティブセンシングアレイ20の内側上に(すでに設置された)接着層40に取り付けられる。アクティブセンシングアレイ20からのセンシング素子27は、突起層42上の突起部30によって位置合わせされる。
g)フレキシブルタッチ層38は、ステップ(a)からの接着層40の対向する側面を用いて、プレート行列層53の外側上の接着層40に取り付けられる。
このプロトタイプアセンブリに対する圧力データ.
以下のテストでは、校正された重量は配線交点上方に設置された。5グラムの重量の小さなラバーシリンダーが応力を交点に集中させるために使用された。
別個のプレート行列層53並びに一体化された突起部及びベース層42を用いたプロトタイプ。
重量(グラム) センシング素子(*)からの値
20 0
40 120
60 230
80 320
100 420
120 500
140 540
160 570
180 605
200 620
250 650
(*)ここでのプロトタイプ実施形態では、これらはPIC24チップのA/D回路から測定された値であって、電圧に基づいた値である。その値は12ビットの非負の値として測定される。
プレート行列層を製造するための方法.
プレート行列層の一実施形態は、上述したレーザ切断を含む。
他の実施形態は、突起部を創造するステップ/ファセットはないが、上述した一体化されたプレート及び突起層36に対して説明された技術に類似する。
一体化された突起部及びベース層42を製造するための方法.
一実施形態では、金型は樹脂部分に対する金型を形成するための工業標準的な技術を用いて突起層に対して創造される。突起層部分は、標準的な射出成形金型及び成形技術を用いてABS樹脂から射出成形を介して製造される。
薄いベース層及びコプラナーPCBを有するセンサのアセンブリ.
図92は、単一のスタンドアローンタイルの実施形態を図示する。すなわち、フレキシブルタッチ層38と、ベース層32と、アクティブセンシングアレイ20と、プリント回路基板4。
図92に図示された実施形態は、コプラナープリント回路基板4に接続されたそのコネクタテール25を有するベース層32上にフラットに位置するアクティブセンシングアレイ20を図示する。ここでのベース層47は、装置1が平坦な固体表面に対してフラットに位置するであろうという上述したものに対応する。この実施形態の利点は、全体のセンサは薄いということである。例えば、上述した実施形態では、全体のセンサは3ミリ未満である。
複数のタイルを含むアセンブリ.
一体化されたプレート及び突起層(IPPL)技術を用いた一実施形態では、グリッドのセンサの部分であるが、余分な行及び/又は余分な列のブリッジングプレート37を有してもよい個々のタイルセンサは、上述した単一のタイルとほとんど同一である。特に、図93における分解図において図示されるように、(N×M)のアクティブセンシングアレイ20及びIPPL36における対応する(N×M)行列の突起部30を有する個々のタイルは、(N×M)行列のプレート35を結果として生じるIPPL36における余分な行及び列のブリッジプレート37を有してもよい。これは上述した((N−1)×(M−1))行列のプレート35が存在するそのような(N×M)のアクティブセンシングアレイ20に対するIPPL36とは異なる。留意すべきことは、これらの余分なブリッジングプレート37の付加的な角上には突起部30は存在しない、ということである。フレキシブルタッチ層38は、グリッドのタイルにおけるすべてのタイルに及ぶ単一の連続的なシートであろう。
(4×4)行例のセンシング素子26を有するアクティブセンシングアレイ20に基づく複数のタイルにおいて使用された内部タイルの例の実施形態が図93の分解図と図94の上面図と図95の側面図で図示される。この例では、IPPL36は(4×4)行列の突起部30から構成される。各角での突起部を有する(3×3)のサブ行列プレート35と、突起部上に位置するいくつかの角だけを有する(7つの付加的なプレートを提供する)付加的な行及び列のブリッジングプレート37とが存在する。これらのブリッジングプレート37は、後述するように、隣接するタイル上の突起部30を共有するように交差してまたがるであろう。図93に図示されるように、複数の層にはフレキシブルタッチ層38と、IPPL36と、アクティブセンシングアレイ20と、ベース層47とを含む。IPPL36はその(4×4)行列の突起部がアクティブセンシング領域上の対応する(4×4)行列のセンシング素子26と接触するように位置合わせされる。接着層40はまた、上述した複数の層のぞれぞれの間で使用されてもよい。この観点において、ベース層47、IPPL36及び2つの端上のアクティブセンシングアレイ20を超えて延在する付加的な行及び列のブリッジングプレート37が図示される。
図96A及び図96Bは、隣接するタイル2がブリッジングプレートがその隣接するタイル上の対応する突起部上に位置するように位置合わせされて位置決めされる方法を図示する。図96Aは位置合わせされた2つのタイルを図示する。図96Bは適切に位置決めされた2つのタイルを図示する。
この実施異形態では、隣接するタイル2は、ブリッジングプレート37が1つのタイル2の突起部30からもう1つのタイル2の突起部30にまで及ぶように位置決めされる。これが結果としてタイル内の突起部にわたったプレートに関しては応力の適切なセンシング素子に対する同一の機械的な分配を生じさせる。
ベース層47の一実施形態では、図97Aの側面図及び図97Bの底面図で図示されるように、ベースはセンサタイルのプリント回路基板4を収容できる空洞をその底面上に有して成形される。チャンネル(溝)がまたタイル間のケーブリングをサポートするためにベース内に成形されるであろう。
図97Bでは、プリント回路基板4が安全に適合させるその底面上にカットオフ領域62を有するベース層47を用いたこの実施形態が図示される。アクティブセンシングアレイ20は、ベース層32の2つの隣接した端の周りに巻き付けてアクティブセンシングアレイ20上のコネクタテール23を介してPCB4に電気的に接続する。IPPL36は、(スケーリングするように図示されない、)ブリッジングプレートを図示する。フレキシブルタッチ層38は、複数のタイルに及ぶ。図97Aは側面図を図示する。図97Bは底面からの斜視図を図示する。
センサタイル2のプリント回路基板4がデバイスの底面に位置する実施形態では、その場合は、アクティブセンシングアレイ20は、図98A及び図98Bで図示されるように、ベース層20の周りに巻き付けられる必要がある。
図98A及び図98Bは、位置合わせされて位置決めされた隣接するタイルの側面図を図示する。図98Aは適切に位置合わせされたタイルを図示する。図98Bは適切に位置決めされた2つのタイルを図示する。ブリッジングプレート37は異なるタイル2上の突起部30をまたぐ。それぞれのベース層47は、最終端の突起部30をわずかだけ超えて延在する。これがアクティブセンシングアレイ20が周りに巻き付けることができるベース層47間の隙間を可能とさせる。
この実施形態では、ブリッジングプレートが1つのタイルの突起部からもう1つのタイルの突起部にまたぐような(N×M)の長方形グリッドのタイルは結果として、同一のタイル上の突起部をまたぐプレートのように、応力の適切なセンシング素子に対する同一の機械的な分配を生じさせる。
一実施形態では、グリッドのタイル2を有する装置1は、同一の内部タイル63と、(ノースタイル64とイーストタイル65とノースイーストの角のタイル66との)周囲のタイルとから構成される。図94及び図95はそのノース及びイーストの端上にブリッジングプレートを有する内部タイルを図示する。図99は、適切に位置合わせされたタイルの概略図を図示する。図100は、隣接するタイル2上の突起部30上に位置するブリッジングプレート37を有する、それらの適切な位置におけるタイルを図示する。図101は、透明で図示されたブリッジプレート37を有する、それらの適切な位置におけるタイルを図示し、2つの異なるタイル2上の1対の突起部30間をまたぐタイル2の端上のブリッジングプレート37と、4つの異なるタイル2上の突起部30をまたぐ角のブリッジングプレート37とが見えている。
複数のタイルをまたぐブリッジプレートに沿った補間.
この実施形態では、ブリッジプレート37は、異なるタイル上の2つの突起部30をまたぐかもしくは角のブリッジングプレート37の場合では、4つのタイル上の4つの突起部30をまたぐ。応力のそれぞれのセンシング素子26に対する伝達に関して、複数のタイル2をまたぐ突起部上のブリッジプレート37と単一のタイル2上の4つの突起部30をまたぐプレート35とに対する配列における機械的な差は存在しないので、機械的な補間の方法はブリッジプレートに対してと非ブリッジプレートに対してとは同一である。
留意すべきことは、この配列では、フレキシブルタッチ層38自身は特徴がなくかつ一様な材料のシートとできるので、複数のタイル及び個々のセンサタイルに及ぶフレキシブルタッチ層38間の正確な登録に対する必要性は存在しない。
対称な周囲を有する(N×M)のグリッドのタイルを有する装置の実施形態.
一実施形態では、図102に図示されるように、ノースとイーストとに沿ったタイルとノースイーストの角のグリッドのタイルとは異なるタイプのタイルが存在してもよい。図103は、ノースタイル64がイーストの列のブリッジプレート37を含み、イーストタイル65がノースの行のブリッジプレート37を含み、NEの角のタイル66はブリッジの行もしくはブリッジの列を含まず、内部タイル63はノースのブリッジの行及びイーストのブリッジの列の両方のブリッジプレート35を含むことを図示する。(N行×M列)のグリッドのタイルに対するこの実施形態では、図102で図示されるように、((N−1)×(M−1))の内部タイル63、N行のノースタイル64、M列のイーストタイル65、及び1つのNEタイル66が存在するであろう。
図103及び図104は、それぞれの適切な位置において、それらのそれぞれの内部タイル63、ノースタイル64、イーストタイル65、及びNEの角のタイル66を有する(3×3)のグリッドのタイルを用いた例を図示する。図103は、隣接するタイル上の対応する突起部によって位置合わせされたブリッジングプレートによって適切に位置合わせされたこれらのタイルの概略図を図示する。図104は、それらの適切な位置におけるタイルを図示する。
他の実施形態では、グリッドでのすべてのタイルは同一とできる。そのような一実施形態は、図77−図80に図示されたように、角突起部54を有するIPPL36を有するであろう。このケースでは、ブリッジングプレートは角突起部54を有するであろうし、これらの角突起部54は隣接するタイル2の対応するセンシング素子26のアクティブセンシング領域27上に位置するであろう。
複数のセンサタイルを含む補間.
これは上述したものと同じである。ネットワークで結ばれたグリッドの隣接したセンサタイル2を用いて、フレキシブルタッチ層38はグリッドのセンサタイルにおけるすべてのセンタタイル2を覆った、(例えば5ミルのポリエステルなどの)単一の途切れのない薄いシート材料から構成される。これは異なる隣接するセンサタイルのアクティブセンシング層における隣接するセンシング素子の機械的な補間処理は各個々のセンサタイル内の隣接するセンシング素子の機械的な補間処理と同一である、という利点を有する。ユーザの観点からの効果は、図10で上述されて図示されたように、タッチ応答を補間することは単一の極めて大きなセンサタイルのタッチ応答を補間することと正確に等しい、ということである。同様に、ホストコンピュータ3は、一度それがタイルトポロジーテーブルから画像を再構築すると、あたかもそれが単一の大きなセンサからくるかのようにグリッドのタイルから画像を処理することができる。
留意すべきことは、この配列では、フレキシブルタッチ層自身は特徴がなくて一様なシートの材料とできるので、フレキシブルタッチ層及び個々のセンサタイルの間の正確な登録に対する必要性は存在しない、ということである。
非平面センサ.
他の実施形態では、センシング装置1は、展開可能な表面、すなわち例えば図105に図示された円筒もしくは図106に図示された円錐のプロファイル図などの歪みなしの平面上にぴったりと付けられた表面上に適合するように作られてもよい。特に、展開可能な表面はゼロのガウスの曲率を有する。
1つのそのような実施形態では、センサは図107−図111に図示された円筒の一片の形態で作られてもよい。
図107は、層の内側から見た、「円筒の一片」の湾曲したセンサに対するアセンブリを図示する。図108では、それが外側から見たものとして図示される。図107及び図108では、複数の層は、フレキシブルタッチ層38、アクティブセンシングアレイ20、IPPL3、及びベース層である。
この実施形態では、フレキシブルタッチ層38及びアクティブセンシングアレイ20の両方はフレキシブルであって、上述した実施形態と同様に製造される。IPPL36は突起部の内面の平面に沿って内側の湾曲が徐々に円筒の外側の湾曲と一致するその内側の湾曲を有するであろうベース層32の外面と同一の湾曲を有するように上述した射出成形によって製造されてもよい。アクティブセンシングアレイ20の厚さを計上するためにこの湾曲に対する補正が行われてもよいが、アクティブセンシングアレイ20は薄くて、IPPL36はいくぶんフレキシブルであるので、この補正は必要とされない。図109−図111は、円筒の高さに沿ってIPPLを外から見た図と内側から見た図とをそれぞれ図示する。
この実施形態では、ベース層32は、フレキシブルタッチ層上に与えられた応力が変形によって吸収されないように十分に硬くなければならない。一実施形態では、ベース層は固体の金属円筒の外側の湾曲と同じ内側の湾曲を有するABS樹脂から作られる。図112に図示されるように、そのようなタイル2は、それが接している金属円筒67のそれと同一の内側の湾曲を有するであろう。
長方形でないプレート.
センサは長方形でないプレートを用いて構成されてもよい。例えば、一実施形態では、図113に図示されたような六角形のプレート行列39及び図114に図示されたような対応する六角形の突起部行列43が使用されてもよい。
長方形のIPPLを用いるのと同様の製造技術を用いた六角形のIPPL36が図115に図示されるような部分を創造するために使用されてもよい。
そのような実施形態では、図116に図示されるように、交点が六角形のIPPL36の突起部30の位置と整合するように間隔が空けられた対応する導電性線23を有するアクティブセンシングアレイ20が作られてもよい。
図117は、対応するアクティブセンシングアレイ20上に位置決めされて図示された六角形のIPPLを図示する。
この実施形態では、突起部行列からの突起部によって位置合わせするグリッド配線の交点だけに機械的な補間において使用されたセンシング素子を有する。
この実施形態では、バイリニア補間がプレートセンシング素子の6つの角の値に適用されてもよい。
図118に図示するように、任意の六角形のプレートの周りの6つのセンサに時計回りの順番でA,B,C,D,E,Fと記号が付される。
(A+B)/(A+B+D+E)、(B+C)/(B+C+E+F)及び(C+D)/(C+D+F+A)の比率によって対向する2つの端間の比例距離を測定することができ、それによって、それぞれがその関連するペアの端と平行である3本の線(AB及びDEに平行である第1の線、BC及びEFに平行である第2の線、並びにCD及びFAに平行である第3の線。)を定義する。これらの3本の線は、六角形の内部において小さな三角形を形成するように交差する。この三角形の重心は、プレートに印加された圧力の中心に対する実用的な近似値としてとられる。
フュージョン.
リアルタイムレンジ画像カメラ100を介するジェスチャセンシングは以下の所望の特性を有する。すなわち、(1)ジェスチャをトラッキングするための能力、及び(2)各ユーザの各手の各指もしくは各足の各部分または各ユーザの各足の各部分の時間にわたって一貫した同一性を保持するための能力である。しかし、レンジ画像カメラ100は高品質検出されたタッチ111を提供することができない一方で、典型的には比較的に低フレームレートで動作する。
圧力画像装置1は低コストであって、(1秒あたり100フレームよりも速い)超高速のフレームレートであって、大きな領域の圧力画像を提供する。説明されたタッチレンジフュージョン装置技術104は、一実施形態では、この圧力画像装置1を利用可能な新世代の低コストレンジ画像カメラ100と組み合わせて両方の利点を同時に可能とさせる。
特に、レンジ画像カメラ100は、それぞれが固有の識別子を有するユーザ/手/指/足/つま先/ペン/オブジェクトによってすべての検出されたタッチ111のジェスチャをトラッキングする一方で、圧力画像装置1もしくは他のタッチデバイス101を用いて位置の重心、(圧力画像装置1の場合における)圧力、並びに極めて高い幾何学的な忠実性及び高い時間的サンプリングレートを有する各検出されたタッチ111のタイミングを決定する。
ハードウェア.
タッチレンジフュージョン装置104は、例えば圧力画像装置1などのタッチデバイス101及び1つもしくはそれ以上のレンジ画像カメラ100デバイスから構成される。圧力画像装置1は、圧力タイル2にわたって連続的な圧力画像を提供するようにシームレスに隣接されたモジュールの長方形の圧力タイル2から作られる。圧力画像装置1は種々のサイズで形成される。3つの実施形態は、12.5インチ×17インチのフォームファクタを有する小さなデバイス、25インチ×34インチのフォームファクタを有する中間のデバイス、及び50インチ×68インチのフォームファクタを有する大きなデバイスを含む。
これらの3つのフォームファクタは、最も一般的に見られる指及びペン入力の非携帯デバイスを表現する。小さなフォームファクタは、両方の手を同時に使用するための十分なスペースを有するシングルユーザに十分に適している。小さなフォームファクタは、ワコムIntuous4エクストララージのようなデバイスで見られ、平均のデスクトップディスプレイとサイズにおいて匹敵する(非特許文献7)。中間のフォームファクタは、複数の参加者によってより簡単に使用され、多数の双方向性のテーブルトップ表面のサイズである。例えば、マイクロソフトサーフェス及びダイアモンドタッチは中間のフォームファクタとおよそ同じサイズと寸法である(非特許文献8、非特許文献9)。大きなフォームファクタは、ホワイトボードでの多数のユーザ間の協同的なインタラクションにおいてだけでなくユーザの足の動きによって誘導される表面にわたって時間的に変動する圧力をトラッキングすることができる床センサに対して主として見られる。スマートエレクトロニクスは匹敵するサイズを有する双方向性のホワイトボードを生産する(非特許文献10)。
レンジ画像カメラ100の一実施形態はIRレンジカメラ106を含み、選択的にRGBカメラ103を含む。オブジェクトの特徴のトラッキング(追跡)がレンジデータから最初に実行される。RGBカメラ103は3次元空間でオブジェクトを識別するときに支援するために使用される一方で、デバイスのユーザに対して実用的なビジュアルフィードバックをまた提供する。
図122、図132及び図133は、デスク/テーブル/壁のためのレンジ画像カメラ100に対する3つの異なる可能な設置を図示し、図128は、床に対して適切な可能な設置を図示する。
一実施例では、1つもしくはそれ以上の画像カメラ100は、指、足、ペン及び3次元空間におけるオブジェクトを正確に識別することの最も効率的かつコスト効果的な手段を得るために圧力画像装置1の周りのキー領域に設置される。カメラの位置及び数は、閉塞問題を制限し、特徴を正確に識別するために必要とされるピクセル/深度分解能を最大化するように選択される。
指先、手のひら、足の部分、ペン及び3次元空間におけるオブジェクトを識別すること.
レンジ画像カメラ100のデータを用いて、指先、手のひら、足の部分、ペン及びオブジェクトが例えば特許文献2及び非特許文献1,2,3,4,5,14,15,22などのイメージ分析処理アルゴリズムを用いてもしくは従来技術において標準的である任意の他のイメージ分析処理を用いて識別される。最初に、特徴抽出がレンジ画像カメラ100からのデータ上で実行される。これが可能であればライン(線)、エッジ(端)、リッジ、角、ブロブ及びポイント(点)を含む形状についての情報を抽出するためにRGBカメラ103から補足情報とともに実行される。3次元形状認識は高信頼情報を特徴認識に提供する。この情報は、機械学習アルゴリズムに対してパスされ、種々の刺激に対してトレーニングされて手の骨格の特徴、指先、足の形状、ペン及びオブジェクトを識別する。一旦オブジェクトが識別されてしまうと、オブジェクト特徴の3次元空間における位置がタグ付けされる。各特徴の同一性及びxyzの位置は、所定のオブジェクトもしくは特徴が圧力画像装置1もしくは他のタッチデバイス101上にブロブをトラッキングするときにパッドと接触するかどうかを決定するために使用される。
タッチレンジフュージョン装置104は1つ以上のレンジ画像カメラ100を有するので、この分析ソフトウェアは、識別された3次元オブジェクトを表面上の検出されたタッチ111に対してマッピングするフュージョン計算を実行するであろうソフトウェアに対して、シーン内のオブジェクトの完全なリストを得るために、すべての角度から識別された特徴を構成する。
指先、ペン及びオブジェクトを識別することに対する追加された利点は、パーム(手の平)、リスト(手首)及び所望されないアイテムがタッチデバイス101上のオブジェクトをトラッキングするときに拒絶されるということである。例えばもしあるアプリケーションがペン入力だけを必要とするならば、その場合にはすべての他の識別されたオブジェクトは拒絶される。
指先、足、ペン及びオブジェクトをテクトニクス101接触に対するマッピング.
1つのケースでは、オブジェクトが圧力画像装置1をタッチすると、圧力のアンチエイリアジングされた画像が与えられる。この圧力画像は、指先、ペンもしくはオブジェクトの重心107を見つけるために使用される。各重心107は、完全な圧力画像装置1にわたって連続的にトラッキングされる。この正確な重心107データは、上述されたレンジ画像カメラ100データから得られたオブジェクトの同一性と一緒に使用されてその指もしくはオブジェクトが表面との接触を失うときでさえも持続することができる同一性を各重心107に与える。圧力画像装置の代わりに、必ずしも圧力をトラッキングする必要はないのだが、表面上の各検出されたタッチ111の重心107をトラッキングするタッチデバイス101が使用される。
各重心107の同一性は、上述したように、識別されたオブジェクト及びレンジ画像カメラ100データによって識別された特徴のリストを介して検索することによって取得される。もしオブジェクト/特徴がタッチデバイス101平面近くでX−Y位置における重心107の位置の上方に位置されれば、その場合は重心107の同一性が取得される。
タッチデバイス101に対して行われた接触は、オブジェクト並びに手及び足がデバイスの周りを移動するように連続的に識別されてトラッキングされる。この接触データは、持続性の同一性のよりロバスト性の高いトラッキングのために使用される。特に、もし識別された接触が閉塞のためにレンジ画像カメラ100から覆い隠されるならば、その場合はその接触はオブジェクトがタッチデバイス101と接触したままの状態である限りその同一性を保持するであろう。もし最初の接触がレンジ画像カメラ100から覆い隠された領域で行われるならば、その場合は、オブジェクト/特徴がレンジ画像カメラ100に対してそれ自身が現れたときに接触同一性が行われる。
同時のマルチユーザコラボレーションのためのサポート.
個々のユーザ109間を区別することが複数の参加者が同時に空間を使用している場合により大きなフォームファクタにおいて重要となる。各個々のユーザ109は腕の入口位置、腕の角度並びにそれらの腕及び手が可視領域の周りを移動するような個々のユーザ109の連続的なトラッキングを見ることによって識別される。同様に、各個々のユーザ109は、彼らがタッチデバイス101の床面上を歩き回るように各参加者の体、脚及び足の位置及び方位を絶えずトラッキングすることによって識別される。足もしくは手及びスタイラスのそれぞれがタッチデバイス101にわたって移動するにつれて、その個々のユーザ109の識別は保持される。
例えば、図123は、左手118及び個々のユーザ最大のリーチ(届く範囲)内である候補右手−A119を図示する。従って、2つの手は同一の個々のユーザ109に属するかもしれない。候補右手−B120は、左手11の個々のユーザ最大のリーチ18を超えるので、左手118と候補右手−B119は、異なる個々のユーザ109に属するに違いない。
本発明によって可能とされるアプリケーション.
レンジ画像100とタッチデバイス101とをフュージョンすることによって利用可能な新しいユニークなジェスチャに加えて、レンジ画像カメラ100及びタッチデバイス101に対する既存のジェスチャがまたサポートされる。アプリケーションサポートソフトウェアはアクション及びキーストロークに対するデバイス上で実行されるジェスチャをコンピュータ上にマッピングする。制御パネルと一緒に、この技術がサポートするアプリケーション及びプラグインは、楽器エミュレーション、疑似手術、疑似絵画(ペインティング)/彫刻、運動競技ゲーム、及びまさに体の動きだけでなく重量及びバランスにおけるシフトにもまた依存するアクティビティを含み、アイソトニック(等張性)の制御とアイソメトリック(等尺性)の制御との組み合わせを必要とする他のアプリケーションは、十分な能力に達するように実装される。
本発明のための使用.
インタラクティブ(双方向性の)ホワイトボード:このセクタに対するフューチャーソースコンサルティング社(Futuresource Consulting, Ltd.)の市場レポートによれば、教育部門(セクター)での販売がほとんどであるが、2009年に750,000個が販売され、2010年に900,000個のインタラクティブホワイトボードが販売された。典型的なインタラクティブホワイトボードは、(例えば6インチ×4インチなどの)大きなタッチデバイス101上に表示するショートスロープロジェクタを備える。これらの大きなフォーマットタッチデバイス101に対する現在のモデルは、ユーザ検出されたタッチ111及びジェスチャをトラッキングするための視野計と一緒に光学カメラのセットを利用する。そのアプローチは制限されたマルチタッチ及びマルチユーザサポートを提供することができる一方で、それは検出されたタッチ111のユーザ、手もしくは指を識別することはできない。さらに、動作がカメラパス内の複数の手の存在によって塞がれるかもしれない。ロバストなハンドアクショントラッキング及び圧力の追加された次元から達成可能な著しくより大きなジェスチャボキャブラリを超えて、センサフュージョンアプローチがまた、ロバストなボードにおける複数の生徒のインタラクション及びコラボレーションに対する教育の必要性に注意を向けさせた。
パーソナルデスクトップ周辺機器:パーソナルデスクトップの周辺機器は、マウスもしくはキーボードのようなアプリケーションブラインドである市販のコンピュータヒューマンインターフェース(CHI)技術を示す。多くのタイプのアプリケーションがロバストジェスチャボキャブラリを利用するために創造される一方で、このデスクトップ周辺機器に対する示唆に富んだ最初のアプリケーション市場はゲームコントローラであろう。コンピュータゲームは、色鮮やかなグラフィカルな経験に人を引き付けるゲームプレイを提供することに焦点を合わされる。コンピュータゲームをする者は、それらのキャラクタのアイコンの表現を操作するユーザ入力デバイスを用いて快適かつ流れるように、(入力デバイスを見ることなしに)ビデオディスプレイを見ながら制御する。2010年11月に発表され、その最初の60日間で10Mユニット売られたマイクロソフト社のキネクトはまだ、例えばファーストパーソンシューターゲームなどの多数のゲームに対して必要とされるコントロールの正確さもしくは反応性のレベルを備えていない。キネクトは、比較的粗い位置精度及び低いカメラフレームレートを備える。例えば、キネクトは、(125Hzの)キーストローク入力スキャニングの4分の1の反応性である(30fpsの)フレームレートを有する。タッチレンジフュージョン装置104は、ゲーム制御のための広いキャンバスに、極めて正確な制御と、ユーザが彼らの手と足とを用いて表面上をタッチして押すような表面インタラクションに対するレスポンスとを提供するであろう。
部品のリスト.
レンジ画像カメラ(RIC)100:3次元におけるポイントである、特定の点からシーンにおける点までの距離を示す2次元画像を発生する。例えばステレオトライアンギュレーション、シートオブライトトライアンギュレーション、構造化光、タイムオブフライト、インターフェロメトリィ、コード化されたアパーチャなどの十分に確立された技術を用いて商業的に利用可能な多数のタイプのレンジ画像カメラ100が存在する。一実施形態では、マイクロソフトキネクト周辺機器はレンジ画像カメラ100として使用される。キネクトはプライムセンスレンジ画像カメラ100を含む。例えばオープンシーブィ(OpenCV)などのキネクトにおけるこのカメラに利用するために入手可能なオープンソースAPIだけでなくマイクロソフトキネクトAPIもまた存在する。キネクトはまた、本発明と一緒に使用されるRGBカメラ103を有する一方で、RGBカメラ103は本発明において必要とされる部品として使用されない。キネクトの実施形態では、標準的なUSBケーブル9が存在する。図124は、IRカメラ106、RGBカメラ103及びUSBケーブル9を有するレンジ画像カメラ100を図示する。
タッチデバイス(TD)101:表面上で検出されて検出されたタッチ111をトラッキングすることができるタッチデバイス101。タッチデバイス101に対する多くの十分に確立された技術のみならず例えばアップルマジックマウスなどの多数の商業的なデバイスがまた存在する。マジックマウスの実施形態は、標準的なUSBケーブル9を含む。同様に、例えばタッチデバイス101を含むアップルアイフォーンもしくはアイパッド(登録商標)などのユビキタススマートフォーン及びタブレットが存在する。タッチデバイス101の実施形態は、抵抗性の、投影容量性の、光学の、かつフラストレートされた全反射(FTIR)の動作の方法を用いたそれらを含む。
図125は、例えば(1)タッチデバイス101及び(2)USBケーブル9を有するアップルマジックマウスなどのタッチデバイス101を図示する。
圧力画像装置1:圧力画像装置1は、位置検出されたタッチ111データと一緒に表面接触における圧力データもまた提供するタッチデバイス100である。圧力画像装置1の実施形態は、標準的なUSBケーブル9を含む。(圧力画像装置1よりも圧力センシングの精度は低くなるのだが、)ある程度の圧力データを提供するタッチデバイス101の他の実施形態はFTIRを含む。
図126は、USBケーブル9を有する圧力画像装置1を図示する。
コンピュータ3:コンピュータ3又は1つもしくはそれ以上のタッチデバイス101及び1つもしくはそれ以上のレンジ画像カメラ100からデータを受信するための手段を有するマイクロプロセッサを有する他のデバイス。コンピュータ3の実施形態は、マイクロソフトウィンドウベースのコンピュータである。
ユーザ経験の段階的な説明.
図127は、タッチデバイス101、例えばユーザの左手118及び右手121などのレンジ画像カメラ100の物理的なオブジェクト102を有するテーブルトップ実施形態を図示する。
図128は、タッチデバイス101と、レンジ画像カメラ100と、例えば個々のユーザ109などの物理的なオブジェクト102とを有する床の実施形態を図示する。
ユーザの観点から、動作は以下の通りである。
最初のステップでは、1つもしくはそれ以上のユーザの手もしくは物理的なオブジェクト102は、レンジ画像カメラ100の視野内に存在する。レンジ画像カメラ100からの連続的な画像は、コンピュータ3に送信される。同時に、任意のユーザは、指、手のひら、つま先、足、膝、他の体の部分、もしくは他の物理的なオブジェクトをタッチデバイス101の最上に印加してもよい。この印加されたタッチの連続的な画像は、タッチデバイス101によってホストコンピュータ3に送信される。
コンピュータ3上で、空間的に変動する深度のレンジ画像は、コンピュータメモリの領域に格納される。そこから、コンピュータ3上のコンピュータソフトウェアは、例えばディスクファイルなどの第2の記憶装置(ストレージ)においてその画像を格納するために使用されてコンピュータディスプレイ上にビジュアル画像としてその画像を表示し例えば手のオブジェクトモデル105、ハンドトラッキング、ボディモデル、ボディトラッキング、足形状モデル、足トラッキング、領域発見、形状分析もしくは非特許文献1〜非特許文献5において標準的である任意の他の画像分析処理の構築などの分析を実行する。すなわち、画像が使用される任意の他の目的に応じた分析を実行する。
圧力画像装置1を用いた実施形態では、コンピュータ3上で、空間的に変動する圧力の画像がコンピュータメモリの領域内に格納される。そこから、ホストコンピュータ上のコンピュータソフトウェアは、例えばディスクファイルなどの第2の記憶装置(ストレージ)においてその画像を格納するために使用されてコンピュータディスプレイ上にビジュアル画像としてその画像を表示し例えば手の形状認識、指トラッキング、足ステップ形状認識、足ステップトラッキング、領域発見、形状分析もしくは従来技術において標準的である任意の他の画像分析処理などの分析を実行する。すなわち、画像が使用される任意の他の目的に応じた分析を実行する。
次のステップでは、上述した処理は例えば連続したステップそれぞれに対して反復される。
外側の動作の観点.
図129は、タッチデバイス101、レンジ画像カメラ100、タッチデバイス101からコンピュータ3までのUSBケーブル9、レンジ画像カメラ100からコンピュータ9までのUSBケーブル9及びコンピュータ3の実施形態を図示する。
1つもしくはそれ以上のタッチデバイス101及び1つもしくはそれ以上のレンジ画像カメラ100はコンピュータ3に接続される。
各タッチデバイス101は、その表面に向けられた1つもしくはそれ以上のレンジ画像カメラ100を有する。
各レンジ画像カメラ100は、それが向けられた1つもしくは複数のタッチデバイス101によって校正/登録される。これが例えば非特許文献16、非特許文献17、非特許文献18、非特許文献19、非特許文献20で説明されたアルゴリズムなどの十分に確立されたソフトウェア技術、又は従来技術において標準的である任意の他の画像分析処理を用いて実行される。この校正/登録の直接的な結果は、2次元タッチデバイス101上の点のレンジ画像カメラ100の3次元座標系での点に対する十分に定義されたマッピングにおいてである。
内部の動作の観点.
例えば特許文献2及び非特許文献1、非特許文献2、非特許文献3、非特許文献4、非特許文献5、非特許文献14、非特許文献15、非特許文献22などのレンジ画像カメラ100データに対する画像分析処理を用いて、又は従来技術において標準的である任意の他の画像分析処理を用いて、シーンにおけるオブジェクトが識別され、モデル対応を知るためにマッピングされ、3次元空間においてトラッキングされてもよい。
タッチデバイス101と接触する指、手のひら、もしくは他のオブジェクトの連続的な時間変動する検出されたタッチ111のトラッキングは、例えば特許文献1もしくは特許文献2などの検出されたタッチ111トラッキング処理を用いて、又は従来技術において標準的である任意の他のタッチトラッキング処理を用いて、タッチデバイス101からの表面データを備える。
2次元情報と3次元情報とを一緒に合成させる方法である段階的に詳細説明されたアルゴリズム.
例えば手、体、ペン、ボール、シリンダー、ハンマー、もしくは本発明を利用するアプリケーションに適切な任意の他のオブジェクトなどの複数の識別可能なオブジェクトモデルは、既知のタイプの利用可能なデータとして格納される。このデータは、オブジェクトタイプのみならずこのオブジェクトタイプに対して一連の関節112及びそのモデルに対する一連のトラッカブルコンタクト(追跡可能な接触)ポイント110を含む幾何学的な骨格モデルもまた識別するために必要である任意のデータを含む。例えばハンドオブジェクトモデル105において、関節112は、手首と個々の指の関節112を含むであろう一方で、接触ポイントは指先を含むであろう。ここでの目的のために、モデルタイプはTとして定義される。例えば、Tは手に対するモデルタイプを示してもよく、Tはペンに対するモデルタイプを示してもよい、など。3次元空間におけるこの識別、マッピング及びトラッキングは、例えば特許文献2及び非特許文献1、非特許文献2、非特許文献3、非特許文献4、非特許文献5、非特許文献14、非特許文献15、非特許文献22などの画像分析処理を利用して、もしくは従来技術において標準的である任意の他の画像分析処理を用いて得られる。
図130Aは、ユーザの手115画像からのレンジ画像カメラ100データを用いて、かつ標準的な技術であるエッジ検出アルゴリズムを適用した後に検出された結果として生じた手のハンドエッジ122を図示し、図130Bは、標準的な技術であるアルゴリズムを適用することによって得られたハンドオブジェクトモデル105の結果として生じた特徴骨格によって重ね合わされたハンドエッジ122を図示し、図130Cは、例えば、例えば手首や指関節などのモデルにおける指先及び関節112などのモデルにおけるトラッカブルコンタクトポイント110を図示する得られた多関節ハンドオブジェクトモデル105の骨格を図示する。
最初に、各オブジェクトは、既知のモデルタイプTとして検出されて識別されるので、それはシーンにおける既知の成分のリストに追加された固有の成分識別子Eが割り当てられるであろう。次に、そのシステムは、Jjn(nはTにおけるn番目の接合部112の数を示す。)における各接合部の3次元座標のみならず、成分Eのコンタクトポイント110Cjm(mはTにおけるm番目のコンタクトポイント110の数を示す。)もまた時間的に連続してトラッキングするであろう。成分のモデルに対応する接合部112及びコンタクトポイント110のトラッキングは、接合部112もしくはコンタクトポイント110のいくつかが(指が握り拳の状態で塞がれるときのようにそれ自身によって塞がれるか、もしくはシーン内のもう1つのオブジェクトによって塞がれるかのいずれかのように)塞がれるときでさえも保持される。もしそのコンタクトポイントが特定の時点においてレンジ画像カメラ100によって目に見えなければ、コンタクトポイント110が塞がれたと考えられるであろう。
図130Dは、符号化された接合部Jjn及びコンタクトポイントCjmを有するハンド成分Eに対する関節のあるモデルの例を図示する。
特に、コンピューティングシステムは、以下のデータを有するシーンにおける成分Eのリストを保持するであろう。すなわち、
・モデルタイプT
・任意の時点において:
〇グローバル座標における各接合部112Jjnに対する3次元の位置のセット(*)
〇各コンタクトポイント110Cjmに対する3次元位置のセット
〇各コンタクトポイント110Cjmに対する閉塞ブール値のセットであって、そのコンタクトポイント110はレンジ画像カメラ100から現在目に見えるかどうかを示す。
(*)−別のセクションで説明したように、すべての位置はシーンに対するグローバル座標系に対してマッピングされる。
同時に、各タッチデバイス101に対して、タッチデバイス101と接触するオブジェクトのタッチデバイス101上の連続的に時間変動する一連の検出されたタッチ111が存在するであろう。それは、例えば特許文献1もしくは特許文献2などのタッチトラッキング処理を用いて、または技術において標準的である任意のタッチトラッキング処理を用いてトラッキングされる。
各検出されたタッチ111は最初に検出されて識別されるので、それは、そのデバイスに対して既知のタッチのリストに対して追加された固有のタッチ識別子Pが割り当てられるであろう。特許文献2における標準的な実務であるように、もしタッチPjが表面から離されて新しいタッチが指定された時間しきい値及び距離しきい値の範囲内で検出されれば、そのタッチは例えばアップルアイパッド(登録商標)などの標準的なデバイス上の指タップのケースにおけるのと同一のidのPが与えられるであろう。表面から離れて時間及び距離のそのしきい値内で表面上に再び現れないタッチは、「もはやアクティブでない」と考えられる。
図134は、一連のコンタクトポイントPを有するタッチデバイス101を図示する。
特に、コンピュータ3は、以下のデータを有する各デバイスに対するタッチPのリストを保持するであろう。すなわち、
・任意の時点において:
〇3次元グローバル座標に対してマッピングされたタッチの2次元位置(*)
〇圧力画像装置1のケースでのタッチの圧力値
(*)−別のセクションで説明したように、すべての検出されたタッチ111位置はシーンに対するグローバル座標系に対してマッピングされる。
各コンタクトポイント110のオブジェクトモデルタイプTに対して、コンタクト半径はデータとして指定される。例えば、指先に対応するコンタクト半径は、指先(指の内側)のモデルにおける位置から(指のパッド上のポイントに対応する)オブジェクトそれ自身の表面までの距離に対応して近似的に1/4インチであろう。このコンタクト半径は、本発明のアプリケーションに対しては必要に応じて実際の素子の側面までスケーリングされてもよい。例えば、子供の手は大人の男の手よりもずっと小さいので、子供の指に対するコンタクト半径は近似的に1/8インチであってもよい。一実施形態では、スケーリングファクタは、2つの指定された隣接する接合部112の距離に対して計算されてもよい。
検出されたタッチ111Pは、検出されたタッチ111が表面から離れて、(例えばタップモーションなどのように)上述した時間及び距離のしきい値内に再び接触しなかったときはもはやアクティブではない。一実施形態では、時間及び距離のしきい値は、関連するコンタクトポイント110と一致させてもよい。例えば、足タップは、指タップよりもより大きな時間しきい値を有する。
検出されたタッチ111をコンタクトポイント110と関連付けてコンタクトポイント110をタッチと関連付けるためのアルゴリズムを以下に説明する。
各時間ステップtに対して、
・レンジ画像カメラ100のデータから得られた、時間tにおけるシーンにおけるオブジェクト成分{E}の新しい状態(ステート)を得る。
〇この時間ステップにおけるシーンに対して最初に導入された各新しい成分Eに対して、
・その成分の各コンタクトポイント110Cjmに対して、
・そのコンタクトポイント110と関連する検出されたタッチ111には何も設定しない。
・タッチシステムから時間tにおいて検出されたタッチ111{P}の新しい状態を得る。
〇この時間ステップにおいて最初に導入された各新しい検出されたタッチ111Pに対して、
・その検出されたタッチ111と関連するコンタクトポイント110には何も設定しない。
〇この時間ステップではもはやアクティブとならなかった各検出されたタッチ111Pに対して、
・もしこの検出されたタッチ111と関連するコンタクトポイント110Cjmが存在すれば、
・Cjmと関連する検出されたタッチ111には何も設定しない。
・一連の検出されたタッチ111からこの検出されたタッチ111Pを取り除く。
・それと関連するコンタクトポイント110Cjmを有さない各検出されたタッチ111Pに対して、
〇コンタクトポイント110と関連する検出されたタッチ111を有さず、かつ現在は塞がれていない各コンタクトポイント110Cjmに対して、
・コンタクトポイント110Cjmのグローバル座標におけるそれぞれの位置と、検出されたタッチ111Pのグローバル座標におけるそれぞれの位置との間のユークリッドの距離dを計算する。
・もしdがそのコンタクトポイント110Cjmに対するコンタクト半径よりも小さければ、
・CjmをPと関連付ける。
・PをCjmと関連付ける。
・計算された関連付け(*)と一緒にデータ{E}、{Cjm}、{Jjn}及び{P}を表示する。
・さらなる分析(*)(**)のためにすべてのより高いレベルシステムへとAPIを介して計算された関連付け(*)と一緒にこのデータ{E}、{Cjm}、{Jjn}及び{P}を提供する。
次のステップでは、上述した処理は例えば連続したステップそれぞれに対して反復される。
注記:(*)検出タッチPを関連付けたコンタクトポイント110Cjmに対して、検出されたタッチPからの位置情報は、(レンジ画像カメラ100のデータ分析からの)コンタクトポイントCjmからの位置情報よりもいつもより正確であろう。特に、塞がれたコンタクトポイント110の位置が不正確もしくは利用不可能のいずれかである一方で、任意の塞がれたコンタクトポイント110Cjmに対する正確な位置は関連する検出されたタッチ111Pの位置を介して利用可能である。
(**)計算された関連付けと一緒であるデータ{E}、{Cjm}、{Jjn}及び{P}は、例えば代わりにアプリケーションでの使用に利用可能とされる非特許文献25などにおけるより高レベルのジェスチャを抽出するであろう例えばジェスチャ統合もしくはジェスチャ分析などのさらなる分析に対してより高レベルのシステムに対して提供されてもよい。図135は、コンピュータ3に接続されたレンジ画像カメラ101及びタッチデバイス102を図示するブロック図を図示する。上述したアルゴリズムを用いて、成分データ{E}は成分データ123のためのコンピュータメモリに格納され、検出されたタッチデータは検出されたタッチデータ124のためのコンピュータメモリに格納される。
複数のレンジ画像カメラとタッチデバイスとの組み合わせ.
大きな複数のユーザ109の表面にわたって、ハンドジェスチャ及びハンド/指の識別のみならず足ジェスチャ及び足/足指の識別についての高品質の意味データを、位置、正確な時間、及び圧力画像装置1の場合には表面上の各検出されたタッチ111の圧力についての数値的に高品質な情報と合成させてこのデータをAPIにおいて利用可能とさせる能力によって、従来は達成不可能であった新しい種類のインタラクティブヒューマン/コンピュータインターフェースアプリケーションを可能とさせるであろう。
本発明のより広大な影響力/商業的ポテンシャルは、大きな複数のユーザ109の表面にわたる、ハンドジェスチャ、足ジェスチャ及びオブジェクト操作についての高品質の意味データを表面データからの高解像度の微細な詳細との合成から得られ、協力者がテーブル及び投影壁の面前に集合し及び/又は歩き回って自然なかつ表現する手を用いて高品質な共同作業を行うというシナリオにおいて、従来達成不可能であった新しい種類のインタラクティブヒューマン/コンピュータインターフェースアプリケーションを可能とさせる。このタッチレンジフュージョン装置104のアプローチは、レンジ画像カメラ100もしくはタッチデバイス101単独で使用するアプローチよりも優れている。なぜなら、それはフルの手/指の区分け及び高品質のタッチ/圧力センシングを一緒にアイソトニック(等張性)とアイソメトリック(等尺性)との両方のジェスチャを可能とさせるからである。レンジ画像カメラ100とタッチデバイス101との両方は低価格商品となったので、このタイプのタッチレンジフュージョン装置104が家庭、オフィス、学校もしくは他の位置において広く配置されるコストが十分に低くなって人々がテーブル及び投影壁の面前に集合して歩き回って高品質の共同作業を実行することと可能とさせる。これが、教育、電話会議、コンピュータサポートされた共同作業及び教育用ゲームのみならず科学的な可視化、防御、セキュリティ及び緊急時への備えに対するインタラクティブシミュレーションに対して強い意味合いを有するであろう。
さらに、複数の個々のユーザ109、ユーザハンド115、個々の指、個々の足及びつま先、ペン並びに表面領域にわたるオブジェクトの曖昧さの除去と一緒に、ロバストジェスチャ及び高品質/正確なハンド/指の入力のみならず足/つま先の入力をも可能とさせる、新しいコンピュータヒューマンインタラクション技術、ここではタッチレンジフュージョン装置104と呼ぶがこれについて説明する。レンジ画像カメラ100からのデータは手及び足の動きをトラッキングして時間にわたって一貫した手/指および足/つま先の同一性を保持するために使用され、この情報は表面タッチデバイス101と組み合わせられ高いフレームレートを有する正確な位置表面情報を決定する。このことが1つもしくはそれ以上のレンジ画像カメラ100からのデータを圧力センシング装置1もしくは表面上の1つもしくは複数の検出されたタッチ111の位置を検出することが可能である任意の他のタイプのタッチデバイス101からのデータと確実に合成させて1人もしくはそれ以上のユーザに対してもしくは大きな領域表面上方及び当該大きな領域表面上の任意の他のオブジェクトに対して、手及び指の動作のみならず足及びつま先の動作の高品質な表現を創造するソフトウェアアブストラクションと一緒に、タッチレンジフュージョン装置104の使用可能性を結果して生じさせる。この技術は、商品レンジ画像カメラ100及びタッチデバイス101だけを用いて低価格の商業的デバイスを可能とさせ、ここで、圧力画像装置1もしくは他のタイプのタッチデバイス101は、ロバストな手及び足の動作/ジェスチャ並びに個々の手/足/つま先/オブジェクトの識別及び曖昧さの除去を可能とさせるソフトウェアアブストラクションと一緒に、例えば1秒あたり100フレームから200フレームなどの商品レンジ画像カメラ100のフレームレートよりも実質的に速いデータレートで発生することができる。
レンジ画像カメラ100及び高フレームレートの圧力画像タッチデバイス101とを組み合わせて使用する場合、それぞれの技術を単独で使用したときの欠点を全く被らない。特に、1つもしくは複数のレンジ画像カメラ100及びタッチデバイス101からの合成されたデータにより、ソフトウェア層が指先もしくはペンのいずれが表面をタッチしているかを決定して圧力画像装置1もしくはタッチデバイス101をタッチしている識別された指先及びペンを連続的にトラッキングして目標物がカメラから覆い隠されるような時でさえも指先及びペンをタッチすることの同一性を保持することができる。さらに、複数の同時のユーザ間の協力がサポートされ、説明された本発明では、ソフトウェア層が同時に同一の作業空間を使用している複数の個人を識別し、複数のユーザの手が相互に交差するときに又は足元の床もしくは足元の他の表面上の複数の一対の足の存在下において、ユーザ手115/スタイラスに対する所有者IDを保持することができる。
標準的な技術である3次元変換行列技術を用いて、共通のグローバル座標系が複数のレンジ画像カメラ100及びタッチデバイス101に対して確立される。1つもしくはそれ以上のタッチデバイス101を使用する場合は、レンジ画像カメラ100とタッチデバイス101の表面との間の変換行列を取得するために校正処理が完了される必要がある。一実施例では、校正立方体113が1つのタッチデバイス101の4つの角に設置される。これらの角の座標を用いて、ポイントとレンジ画像カメラ100との間の変換行列が決定される。同時に、これらの4つのポイントがタッチデバイス101に対する表面平板を創造する。この処理は、カメラの視野内の各タッチデバイス101に対して完了される必要がある。もし複数のレンジ画像カメラ100が使用されれば、その場合は変換行列がタッチデバイス101とレンジ画像カメラ100とのそれぞれのペアに対して決定され、それによってそのタッチデバイス101とそのレンジ画像カメラ100との間の座標変換を禁止する。一実施例では、この処理はモニタリングされる各タッチデバイス101に対して反復される。もし複数のレンジ画像カメラ100がタッチデバイス101と関連付けされれば、その場合は、共通の参照座標系としてタッチデバイス101を用いて、レンジ画像カメラ100間のグローバル変換行列が決定される。重なり合う視野を有する複数のレンジ画像カメラ100を持つことによって、次のレンジ画像カメラ100のそれぞれの位置が校正の間に決定される。もしグローバル行列がもう1つのレンジ画像カメラ100によってタッチデバイス101を見ないレンジ画像カメラ100に対して望まれなければ、その場合は、その行列は、レンジ画像カメラ100もしくはタッチデバイス101と関連付けされる必要がある。
図131は、タッチデバイスの4つの角に設置された立方体を図示する。
タッチデバイス101とレンジ画像カメラ100とをフュージョンすることによって可能となるジェスチャ。
タッチデバイス101とレンジ画像カメラ100とによって可能となるジェスチャは、タッチデバイス101の精度とペアを構成する、レンジ画像カメラ100の識別能力に依存する。
単一のタッチ:単一のタッチを用いてタッチデバイス101によって可能となる任意のジェスチャは、検出されたタッチ111に基づく特定の動作状態を持つように拡張される。例えば、もし手の指が使用されているならば、その場合は、各指に別々の動作状態を付随させることができる。このことはもし1つの手が使用されれば、動作間を切り替えるためのメニューに頼ることを必要とせずに、各指に対して1つとして5つの別々の動作が実行されることを意味する。さらに、例えばペンなどの単一のタッチオブジェクトは、代わりのインタラクションを提供するかもしくは予想外(アクシデント)の入力を回避するように指とは区別される。
一実施例では、タッチレンジフュージョンされた装置104からの入力は、マウスの動きをタッチデバイス101上の人差し指の動きに対してマッピングすることによってマウスをエミュレートするために使用される。例えば親指タップに対する左クリックや中指タップに対する右クリックなど。この例は、センサフュージョン技術の実用性を例示する。もしレンジ画像カメラ100がなければ、指タッチ識別は損失するであろうし、もしタッチ画像がなければ、精度及び高フレームレートは損失するであろう。
マルチタッチ:インタラクションの範囲が複数の検出されたタッチ111に対して拡大される場合は、プレシジョンコーディングが可能となる。レンジ画像カメラ100なしにタッチデバイス101を使用することは、可能な動作状態を入力の数に制限する。例えば、もし単一の手の指はタッチデバイス101上で使用されれば、その場合は、(1から5のタッチの)5つの動作状態だけが利用可能となる。タッチを識別するためにレンジ画像カメラ100とフュージョンする場合は、コーディングが可能である。コーディングは、複数の特定の検出されたタッチ111を同時に使用してジェスチャを実行する処理である。例えば、親指と人差し指とを同時に使用することは、親指と中指とを同時に使用することとは別のジェスチャを実行することができる。検出されたタッチ111を識別することは、(2−1)個の動作状態の組み合わせが可能であることを意味し、ここでnは検出されたタッチ111の数である。例えば、レンジ画像カメラ100が追加された場合は、単一の手の指に対して可能な動作状態の組み合わせは5組から31組に及ぶ。
一実施例では、右手は、タッチデバイス101をタッチすることによって位置入力をペインティングプログラムに対して提供するペンを保持する。ユーザは描画するとき、左手はペンに対して31組の設定動作間を切り替えるために特定のコーディング組み合わせを使用することができる。
手のひら/手/足/オブジェクト:レンジ画像カメラ100とタッチデバイス101とをフュージョンすることはまた、所望されない入力を拒絶し、例えば手、足及びオブジェクトなどの標準的でないタッチ入力に対して動作状態を追加するように使用される。
タッチデバイス101単独で使用する場合は、意図されない入力が発生するはずである。例えば、手のひらがタッチデバイス101上に置かれ、検出されたタッチ111と混同される。レンジ画像カメラ100とフュージョンする場合は、タッチが手のひらとして識別され手の骨格が決定されて入力が拒絶される。同一の考えが入力を提供することから拒絶されるべき他のオブジェクトに対して適用される。例えば、タッチデバイス101上に置かれたコーヒーカップは拒絶される。
手、足及びオブジェクトはまた、タッチデバイス101が複数のタッチと考えられるであろうことに依存する代わりのインタラクションの形態を提供することができる。例えば、手のひらの異なる部分でタッチすることは、異なる動作状態に対してマッピングされる。もしレンジ画像カメラ100がなければ、タッチしている手のひらの領域は決定されない。
複数の個々のユーザ109:タッチデバイス101は単独で同一のデバイスをタッチしている個々のユーザ109を区別することはできない。レンジ画像カメラ100とペアを構成したとき、その場合は、個々のユーザ109は決定され、タッチは正確な個々のユーザ109に割り当てられる。このことが複数の個々のユーザ109からの同時のインタラクションもしくは共同のインタラクションを可能とする。
例えば、タッチレンジフュージョン装置104は、1本の手の異なる指からの複数の同時に検出されたタッチ111、同一のユーザの異なる手に属する指からの複数の同時に検出されたタッチ111及び同一のユーザの異なる手に属する指からの複数の同時に検出されたタッチ111のシナリオ間の曖昧さを除去することができる。
同様に、タッチレンジフュージョン装置104は、1人のユーザの2本の足によるセンシング床上の同時に検出されたタッチ111及び2人の異なる個々のユーザ109の足によるセンシング床上の同時に検出されたタッチ111のシナリオ間を区別するように使用される。
カメラとタッチデバイス構成の代替の実施形態.
テーブルトップハンドジェスチャトラッキングに対して適切であろう一実施形態では、タッチデバイス101から6インチ離れて埋め込まれたカメラを有する、例えば3度などの狭い角度で12インチ×18インチのタッチデバイス上に向けられたレンジ画像カメラ100から構成されるであろう。
図132は、タッチデバイス101及びレンジ画像カメラ100を用いた本発明の実施形態を図示する。
もう1つの実施形態では、レンジ画像カメラ100は支持スタンド上に設置され、例えば30度などの適度な角度でタッチデバイス101に向けて下方に向けられる。この構成は、12インチ×18インチのタッチデバイス上へのテーブルトップハンドジェスチャトラッキングに対して適切とすることができる。また、それは5インチ×6インチのタッチ圧力画像装置1を有するゲームコントローラに対して適切とすることができる。
図122は、タッチデバイス101と、レンジ画像カメラ100と、レンジ画像カメラ100がより鋭角でタッチデバイス100に面することを可能とさせる支持スタンド114とを有する本発明の実施形態を図示する。
ハンドジェスチャトラッキングに適切であろうもう1つの実施形態では、図133に図示するように、例えば2度などの狭い角度で16インチ×25インチのタッチデバイス101上に向けられた2つのレンジ画像カメラ100を備えるであろう。
実用性.
タッチレンジフュージョン装置104に対するいくつかの実用性について以下に説明する。
電子ホワイトボード:我々のセンサフュージョンは、フラットなタッチデバイス101と、1つもしくはそれ以上のレンジ画像カメラ100と、コンピュータ3と、コンピュータビデオ画像を表面上に投影する表示プロジェクタとを備える電子ホワイトボードの部品とできる。タッチレンジフュージョン装置104は、電子ホワイトボードに対する入力として役目を果たす。入力は、レンジ画像カメラ100によって識別され、電子タッチデバイス101上に線を描画するペンもしくは指によってもたらされる。コンピュータは、タッチデバイス101からのコンタクトポイントデータを使用し、それらを例えばペンのパスがトレースされている画素などの投影された表示画像上の画素に対してマッピングする。ユーザの個々の指は、表面上へと置かれて別のハンドジェスチャによってペンの色を変更することができる。
コラボラティブ表面:コンピュータ周辺機器は、タッチレンジフュージョン装置104と、情報をコンピュータ3から受信しコンピュータ3に送信するいくつかの通信プロトコルとを備えるであろう。この周辺機器を用いてマウスをエミュレートすることが可能となる。指先の識別を用いて、親指はマウスの動きに対してマッピングされ、人差し指は左マウスクリックとして使用され、中指は右クリックに対して使用される。
コンピュータ周辺機器:コンピュータ周辺機器は、タッチレンジフュージョン装置104と、情報をコンピュータ3に送信し、情報がコンピュータ3から送信されるいくつかの通信プロトコルから構成されるであろう。この周辺機器を用いて、マウスをエミュレートすることが可能となる。指先の識別を用いて、親指がマウスの動きにマッピングされ、人差し指が左マウスクリックとして使用され、中指が右クリックに対して使用される。
ゲームコントローラ:タッチレンジフュージョン装置104を使用するゲームコントローラは、タッチレンジフュージョン装置104と、ゲーム機本体に対する通信プロトコルを備える。インタラクションは、手、足、体もしくはオブジェクトによってもたらされる。一例では、ゲーム機本体からの表示がダンス運動を完全に表示するように、複数の個々のユーザ109は6フィート×6フィートのタッチデバイス101上でダンスする。
なお、上述した特許文献及び非特許文献はすべて参照によりここに組み込まれる。
本発明が例示の目的のために上述した実施形態において詳細に説明されたが、そのような詳細事項は単に例示のためだけであって、それが添付の特許請求の範囲によって説明されるかもしれない場合を除き、本発明の精神及び範囲から離れることなしに当業者によってここにその変形例がなされることが理解されるべきである。

Claims (52)

  1. コンピュータと、上記コンピュータと通信する1つもしくはそれ以上の個々のセンシングタイルとを備えたセンシングするための装置であって、
    上記1つもしくはそれ以上の個々のセンシングタイルは、表面に対して印加された応力を検出し、上記応力に対応する信号を、上記信号から上記表面に印加された応力の時間的に変動する連続的な画像を発生する上記コンピュータに提供するセンサ表面を形成し、
    上記表面は隣接し、検出された応力は表面上に幾何学的に隣接しかつシームレスであるような方法でセンシングされる装置。
  2. 交点及び配線間の空間の領域を定義するグリッドの配線と、
    上記グリッドの配線の複数の交点と接触する一連の突起部と、
    外側層の外面上への応力が突起部を介して上記突起部から上記交点に伝達されるように、上記一連の突起部上に配置された上記外側層と、
    プロンプト信号を上記グリッドに送信させ、上記グリッドからのデータ信号に基づく補間から上記表面上の応力の連続的な位置を再構築する、上記グリッドと通信するコンピュータとを備えたセンサ。
  3. 上記グリッドの配線の上記複数の交点に近接した応力抵抗材料を含む請求項2記載のセンサ。
  4. 上記応力抵抗材料は、上記グリッドの配線の上記複数の交点に近接しかつ一定間隔だけに配置される請求項3記載のセンサ。
  5. データのためのN(3より大きい正の整数)個のデュアルアナログ/デジタルI/OピンとM(3より大きい正の整数)個のデジタルI/Oピンとを有するコンピュータと、
    N行及びM列を有する圧力センシングアレイとを備えたセンサであって、
    上記I/Oピンは、上記コンピュータの外部の任意のトランジスタもしくは他の切替可能な電子部品を使用することなしに、上記M個のI/Oピンと通信する上記N行及びM列までと通信するセンサ。
  6. センサのタイルの位置を決定するための方法であって、
    上記方法は、
    コンピュータからの質問信号を、複数のタイルのそれぞれに上記タイルが電気通信する少なくとも1つの隣接するタイルを識別することを要求する上記コンピュータと通信する少なくとも上記複数のタイルに送信するステップと、
    上記コンピュータによって、上記複数のタイルから上記質問に対する応答を受信するステップと、
    上記コンピュータによって、上記応答から、相互に相対的な上記複数のタイルの位置の幾何学的なマップを形成するステップとを含む方法。
  7. センシングするための方法であって、
    上記方法は、
    表面が隣接する上記表面にわたって移動するオブジェクトから、2つもしくはそれ以上の個々のセンシングタイルから形成されたセンサ表面に印加された応力を検出するステップを含み、
    上記検出された応力は、表面上で幾何学的にかつシームレスであるような方法でセンシングされ、
    上記方法は、
    上記コンピュータと通信する上記タイルからの上記応力に対応する信号を提供するステップと、
    上記コンピュータによって、上記信号から上記表面に印加された応力の時間的に変動する連続的な画像を発生するステップとを含む方法。
  8. 上記方法は、付加的なタイルを上記2つのタイルのうちの少なくとも1つに接続して上記センサ表面のサイズを拡大させるステップを含み、
    上記表面は、上記付加的なタイルを含みかつ隣接しており、
    上記検出された応力は、表面上で幾何学的に連続的かつシームレスであるような方法でセンシングされる請求項7記載の方法。
  9. 上記配線間の空間の領域を有するグリッドの配線によって定義された交点まで伝達される機械的な層の最上に対して応力を与えるステップと、
    上記グリッドと通信するコンピュータによって、プロンプト信号を上記グリッドに送信させるステップと、
    上記コンピュータによって、上記グリッドから受信されたデータ信号に基づく補間から、上記表面上の上記応力の連続的な位置を再構築するステップとを含むセンシングするための方法。
  10. 交点と上記配線間の空間の領域を定義するグリッドの配線と、
    上記グリッドの配線の複数の交点と嵌合する一連の突起部と、
    外面層の外面に対して与えられた応力が上記外面層に内面を介して上記突起部及び上記複数の交点に伝達するように、上記一連の突起部及び上記外面と並置する上記内面を有する外面層と
    プロンプト信号を上記グリッドに送信させて、上記グリッドから受信されたデータ信号に基づく補間から、上記外面層の上記外面上の応力のアンチエイリアジングされた画像を再構築する、上記グリッドと通信するコンピュータとを備えたセンサ。
  11. 上記外面層は、機械的な層であって、
    上記一連の突起部は上記グリッドの配線間に配置され、機械的な層である請求項10記載のセンサ。
  12. 上記グリッドの配線は、上記一連の突起部と上記外面層との間に配置される請求項10記載のセンサ。
  13. 外面層の内面を介して、一連の突起部及び配線間の空間の領域を有するグリッドの配線によって定義された複数の交点に伝達される、上記外面層の外面に対して応力を与えるステップと、
    上記グリッドと通信するコンピュータによって、プロンプト信号を上記グリッドに送信させるステップと、
    上記コンピュータによって、上記グリッドから受信されたデータ信号に基づく補間から、上記外面層の上記外面上の上記応力のアンチエイリアジングされた画像を再構築するステップとを含むセンシングするための方法。
  14. 交点及び配線間の空間の領域を定義するグリッドの配線と、
    外面層の外面に対して与えられた応力が上記外面層に内面を介して
    突起部に伝達され、上記突起部からそれによって上記外面層と上記突起部との間が圧縮される上記グリッド配線の交点に伝達され、それによって上記突起部は上記交点上へと直接的に与えられた応力を集中させるように、上記グリッドの配線の複数の交点と接触する一連の突起部と上記グリッドの配線及び外面とに接触して配置される内面を有する上記外面層と、
    プロンプト信号を上記グリッドに送信させて、上記グリッドから受信されたデータ信号に基づく補間から、上記外面層の上記外面上の応力のアンチエイリアジングされた画像を再構築する、上記グリッドと通信するコンピュータとを備えたセンサ。
  15. 交点及び配線間の空間の領域を定義するグリッドの配線と、
    機械的な層の最上に与えられた応力が上記交点を介して伝達され、上記交点から突起部に伝達されるように、上記グリッドの配線の複数の交点と上記グリッドの配線上に配置された複数のプレートを有する層と接触する上記一連の突起部と、
    プロンプト信号を上記グリッドに送信させて、上記グリッドから受信されたデータ信号に基づく補間から、上記表面上の応力の連続的な位置を再構築する、上記グリッドと通信するコンピュータとを備えたセンサ。
  16. 上記プレート層は、上記複数のプレート上に配置されたフレキシブルタッチ層を含む請求項15記載のセンサ。
  17. 上記各プレートは、対応する突起部の外面上方で位置合わせされる角を有する請求項16記載のセンサ。
  18. 交点及び配線間の空間の領域を定義するグリッドの配線と、
    上記グリッドの配線の複数の交点と接触する一連の突起部と、
    上記グリッドの配線上に配置される複数のプレートを有するプレート層と、
    上記プレート層上に配置されたフレキシブルタッチ層とを備えたセンサであって、
    上記タッチ層に与えられた応力は、上記プレート層及び少なくとも1つの突起部を介して上記交点に伝達され、
    上記センサは、
    プロンプト信号を上記グリッドに送信させて、上記グリッドから受信されたデータ信号に基づく補間から、上記表面上の応力の連続的な位置を再構築する、上記グリッドと通信するコンピュータとを備えたセンサ。
  19. 交点及び配線間の空間の領域を定義するグリッドの配線と、
    上記グリッドの配線の複数の交点と接触する一連の突起部と、
    上記グリッドの配線上に配置される複数のプレートを有するプレート層と、
    上記プレート層上に配置されたフレキシブルタッチ層とを備えたセンサであって、
    上記タッチ層に与えられた応力は、上記プレート層を介して上記交点に伝達され、上記交点から上記突起部に伝達され、
    上記センサは、
    プロンプト信号を上記グリッドに送信させて、上記グリッドから受信されたデータ信号に基づく補間から、上記表面上の応力の連続的な位置を再構築する、上記グリッドと通信するコンピュータとを備えたセンサ。
  20. トップ表面層上へと上方から与えられた応力はプレートに伝達され、上記プレートからグリッド配線の交点に伝達され、上記交点からそれによって上記プレートと突起部との間が圧縮される突起部に伝達され、それによって底面の突起部はセンサ交点上へと直接的に与えられた応力を集中させるように、上記底面から上記グリッドの配線の上記複数の交点と接触する一連の突起部と、上記グリッドの配線の上記複数の交点とトップから接触する一連のプレートと、上記一連のプレート上に配置された上記トップ表面層と、
    上記プロンプト信号を上記グリッドに送信させて、上記グリッドから受信されたデータ信号に基づく補間から、上記表面上の応力の連続的な位置を再構築する、上記センサと通信するコンピュータとを備えたセンサ。
  21. 上記方法は、
    複数の交点の少なくとも1つの交点を介して伝達され、上記交点から上記交点の少なくとも1つのと接触する一連の突起部の少なくとも1つの突起部に伝達される機械的な層の最上に応力を与えるステップとを含み、
    上記交点は、グリッドの配線及び上記配線間の空間の領域によって定義され、
    上記機械的な層は、上記グリッドの配線上に配置された複数のプレートを有する請求項7記載の方法。
  22. 上記方法は、
    一連の突起部の少なくとも1つの突起部を介して複数の交点の少なくとも1つの交点に伝達される機械的な層の最上に応力を与えるステップとを含み、
    上記交点は、グリッドの配線及び上記配線間の空間の領域によって定義され、
    上記機械的な層は、上記グリッドの配線上に配置された複数のプレートを有する請求項7記載の方法。
  23. ベース上に配置されたグリッドの配線の複数の交点と上方から接触する一連の突起部と角においてそれらの底面から接触する一連のプレートと、
    上記一連のプレート上に配置されたトップ表面層とを備えたセンサであって、
    上記トップ表面層上へと上方から与えられた応力は上記プレートに伝達され、上記プレートから上記突起部に伝達され、上記突起部からそれによって上記ベースと上記突起部との間が圧縮される上記グリッドの交点に伝達され、
    上記上方の突起部は、それによって上記交点上へと直接的に与えられた応力を集中させ、
    上記センサは、
    上記プロンプト信号を上記グリッドに送信させて、上記グリッドから受信されたデータ信号に基づく補間から、上記表面上の応力の連続的な位置を再構築する、上記グリッドと通信するコンピュータとを備えたセンサ。
  24. 上記交点において配置されたFSRを含む請求項23記載のセンサ。
  25. 応力が上記表面層に与えられたときに、各突起部は対応するセンシング素子と接触するように位置合わせされる請求項24記載のセンサ。
  26. 上記突起部と上記グリッドとの間、上記表面層と上記一連のプレートとの間及び上記グリッドと上記ベースとの間に配置された接着剤を含む請求項25記載のセンサ。
  27. 上記各プレートは、上記角が上記隣接するセンシング素子の内側で位置合わせされるように位置決めされる請求項26記載のセンサ。
  28. 上記プレートは、上記プレート間に隙間が存在し、上記プレートの角間の隙間の中心がセンシング素子に対応するように位置合わせされるように特別に位置合わせされる請求項27記載のセンサ。
  29. 上記各突起部は、樹脂、金属、木もしくはガラスの剛体バンプであって、応力を上記対応するセンシング素子上に集中させ、上記対応するセンシング素子と接触する形状を有する各突起部は、上記対応するセンシング素子上もしくは内側に正確に位置する請求項28記載のセンサ。
  30. 上記突起部は、上記プレート間の隙間を介して上記プレートと同一平面で続いている請求項28記載のセンサ。
  31. 上記突起部は、上記プレートと上記プレートとの交点から生じる請求項28記載のセンサ。
  32. センシングするための方法であって、
    上記方法は、
    一連のプレートに伝達され、上記プレートからから一連の突起部に伝達され、上記突起部からそれによってベースと突起部との間が圧縮されるグリッドの配線の複数の交点に伝達されるトップ表面層上へ上方から応力を与えるステップとを含み、
    上記一連のプレートは、上記ベース上に配置された上記グリッドの配線の上記複数の交点と上方から接触する上記一連の突起部とそれらの角でそれらの底面から接触し、それによって上方の上記突起部は、上記交点上へと直接的に与えられた応力を集中させ、
    上記方法は、
    上記グリッドと通信するコンピュータによって、プロンプト信号を上記グリッドに送信させるステップと、
    上記コンピュータによって、上記グリッドから受信されたデータ信号に基づく補間から、上記表面上の応力の連続的な位置を再構築するステップとを含む方法。
  33. コンピュータ内に情報を入力するための装置であって、
    上記装置は、
    3次元情報をセンシングして3次元出力を発生する3次元センサと、
    2次元情報をセンシングして2次元出力を発生する2次元センサと、
    上記2次元出力及び上記3次元出力を受信し、上記2次元出力及び上記3次元出力の関数である合成された出力を発生する処理ユニットとを備えた装置。
  34. オブジェクトが3次元及び2次元において識別されてトラッキングされる請求項33記載の装置。
  35. 指、手、足、人々、ペン及び他のオブジェクトが3次元及び2次元において識別されてトラッキングされる請求項34記載の装置。
  36. 上記各オブジェクトの同一性は時間にわたって保持される請求項35記載の装置。
  37. 上記3次元センサからの上記オブジェクトの同一性は、上記2次元センサからのオブジェクトとペアを構成する請求項36記載の装置。
  38. 上記2次元センサは上記表面上の接触をセンシングする請求項37記載の装置。
  39. 上記2次元センサは印加された応力をセンシングする請求項38記載の装置。
  40. 上記2次元センサは、圧力画像センサを含む請求項39記載の装置。
  41. 上記3次元センサは、レンジ画像カメラを含む請求項40記載の装置。
  42. 上記3次元センサは、IR深度カメラを含む請求項41記載の装置。
  43. 上記3次元センサは、RGBカメラを含む請求項41記載の装置。
  44. コンピュータ内に情報を入力するための方法であって、
    上記方法は、
    3次元情報をセンシングする3次元センサによって3次元出力を発生するステップと、
    2次元情報をセンシングする2次元センサによって2次元出力を発生するステップと、
    上記2次元情報及び上記3次元情報の関数である処理ユニットによって合成された出力を発生するステップとを含む方法。
  45. 上記3次元センサ及び上記2次元センサによって、3次元及び2次元においてオブジェクトを識別してトラッキングするステップを含む請求項44記載の方法。
  46. 3次元及び2次元において指、手、足、人々、ペンもしくは他のオブジェクトを識別してトラッキングするステップを含む請求項45記載の方法。
  47. 上記各オブジェクトの同一性を時間にわたって保持するステップを含む請求項46記載の方法。
  48. 上記処理ユニットによって、上記3次元センサからの上記オブジェクトの同一性を上記2次元センサからのオブジェクトとペアを構成するステップを含む請求項47記載の方法。
  49. 上記2次元センサはその表面上の接触をセンシングするステップを含む請求項48記載の方法。
  50. 上記2次元センサはその表面上の印加された応力をセンシングするステップを含む請求項49記載の方法。
  51. 上記2次元センサは、圧力画像センサを含む請求項50記載の方法。
  52. 上記3次元センサは、レンジ画像カメラを含む請求項50記載の方法。
JP2013533841A 2010-10-12 2011-10-11 タイルを利用してセンシングするための装置、一連のプレートを有するセンサ、マルチタッチ表面のためのオブジェクト識別及び方法 Active JP6021812B2 (ja)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US40489710P 2010-10-12 2010-10-12
US61/404,897 2010-10-12
US201161462789P 2011-02-08 2011-02-08
US61/462,789 2011-02-08
US201161572642P 2011-07-19 2011-07-19
US61/572,642 2011-07-19
US201161572938P 2011-07-25 2011-07-25
US61/572,938 2011-07-25
PCT/US2011/001739 WO2012050606A2 (en) 2010-10-12 2011-10-11 Apparatus for sensing utilizing tiles, sensor having a set of plates, object identification for multi-touch surfaces, and method

Publications (2)

Publication Number Publication Date
JP2013542523A true JP2013542523A (ja) 2013-11-21
JP6021812B2 JP6021812B2 (ja) 2016-11-09

Family

ID=45924749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013533841A Active JP6021812B2 (ja) 2010-10-12 2011-10-11 タイルを利用してセンシングするための装置、一連のプレートを有するセンサ、マルチタッチ表面のためのオブジェクト識別及び方法

Country Status (6)

Country Link
US (10) US9317154B2 (ja)
EP (1) EP2628069B1 (ja)
JP (1) JP6021812B2 (ja)
CN (1) CN103154867B (ja)
CA (1) CA2814183C (ja)
WO (1) WO2012050606A2 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016102756A (ja) * 2014-11-28 2016-06-02 凸版印刷株式会社 感圧センサ
CN107077240A (zh) * 2014-06-25 2017-08-18 森赛尔股份有限公司 触觉触摸传感器系统和方法
JP2018009820A (ja) * 2016-07-11 2018-01-18 東京電力ホールディングス株式会社 構造物の歪センサ及び構造物歪検出方法
WO2019187653A1 (ja) * 2018-03-26 2019-10-03 住友理工株式会社 トランスデューサシート
JP2019184300A (ja) * 2018-04-04 2019-10-24 Nissha株式会社 タイル状センサ
US11068118B2 (en) 2013-09-27 2021-07-20 Sensel, Inc. Touch sensor detector system and method
US11221706B2 (en) 2013-09-27 2022-01-11 Sensel, Inc. Tactile touch sensor system and method
JP7510983B2 (ja) 2016-09-13 2024-07-04 アップル インコーポレイテッド 力感知及び触覚フィードバックを伴うキーレスキーボード
US12079043B2 (en) 2017-07-26 2024-09-03 Apple Inc. Computer with keyboard

Families Citing this family (210)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE533704C2 (sv) 2008-12-05 2010-12-07 Flatfrog Lab Ab Pekkänslig apparat och förfarande för drivning av densamma
US8487759B2 (en) 2009-09-30 2013-07-16 Apple Inc. Self adapting haptic device
TWI471790B (zh) * 2010-02-03 2015-02-01 Wintek Corp 電容式觸控感應器及其製造方法及電容式觸控面板
DE102011006344B4 (de) 2010-03-31 2020-03-12 Joyson Safety Systems Acquisition Llc Insassenmesssystem
JP5805974B2 (ja) 2010-03-31 2015-11-10 ティーケー ホールディングス,インコーポレーテッド ステアリングホイールセンサ
DE102011006649B4 (de) 2010-04-02 2018-05-03 Tk Holdings Inc. Lenkrad mit Handsensoren
US9158369B2 (en) * 2010-10-12 2015-10-13 Tactonic Technologies, Llc Sensors having a connecting frame and method for composite sensors
CN103154867B (zh) * 2010-10-12 2017-09-22 纽约大学 用于传感利用瓷片、具有一组板的传感器和多点触摸表面目标识别的装置和方法
US20120179994A1 (en) * 2011-01-12 2012-07-12 Smart Technologies Ulc Method for manipulating a toolbar on an interactive input system and interactive input system executing the method
US8711113B2 (en) 2011-02-07 2014-04-29 3M Innovative Properties Company Modular connector for touch sensitive device
US8938101B2 (en) * 2011-04-26 2015-01-20 Sony Computer Entertainment America Llc Apparatus, system, and method for real-time identification of finger impressions for multiple users
US9372588B2 (en) 2011-05-19 2016-06-21 Microsoft Technology Licensing, Llc Pressure-sensitive multi-touch device
US9628843B2 (en) * 2011-11-21 2017-04-18 Microsoft Technology Licensing, Llc Methods for controlling electronic devices using gestures
KR101535823B1 (ko) * 2011-12-15 2015-07-13 엘지디스플레이 주식회사 터치 및 입체 영상 표시 기능을 갖는 액정표시장치 및 그의 제조 방법
WO2013154720A1 (en) 2012-04-13 2013-10-17 Tk Holdings Inc. Pressure sensor including a pressure sensitive material for use with control systems and methods of using the same
US20130285919A1 (en) * 2012-04-25 2013-10-31 Sony Computer Entertainment Inc. Interactive video system
US10168835B2 (en) 2012-05-23 2019-01-01 Flatfrog Laboratories Ab Spatial resolution in touch displays
US10321873B2 (en) 2013-09-17 2019-06-18 Medibotics Llc Smart clothing for ambulatory human motion capture
US10602965B2 (en) 2013-09-17 2020-03-31 Medibotics Wearable deformable conductive sensors for human motion capture including trans-joint pitch, yaw, and roll
US9588582B2 (en) 2013-09-17 2017-03-07 Medibotics Llc Motion recognition clothing (TM) with two different sets of tubes spanning a body joint
US10716510B2 (en) 2013-09-17 2020-07-21 Medibotics Smart clothing with converging/diverging bend or stretch sensors for measuring body motion or configuration
US9582072B2 (en) 2013-09-17 2017-02-28 Medibotics Llc Motion recognition clothing [TM] with flexible electromagnetic, light, or sonic energy pathways
US9213436B2 (en) * 2012-06-20 2015-12-15 Amazon Technologies, Inc. Fingertip location for gesture input
US9400575B1 (en) 2012-06-20 2016-07-26 Amazon Technologies, Inc. Finger detection for element selection
US9487388B2 (en) 2012-06-21 2016-11-08 Nextinput, Inc. Ruggedized MEMS force die
WO2014008377A1 (en) 2012-07-05 2014-01-09 Ian Campbell Microelectromechanical load sensor and methods of manufacturing the same
JP5224203B1 (ja) 2012-07-11 2013-07-03 大日本印刷株式会社 タッチパネルセンサ、タッチパネル装置および表示装置
US10527505B2 (en) * 2012-07-27 2020-01-07 Tactonic Technologies, Llc Method for mechanical sensing utilizing controlled current
CN103576960A (zh) * 2012-08-02 2014-02-12 深圳纽迪瑞科技开发有限公司 触摸屏压力、位置感应方法及感应元件和电子触摸设备
DE112013004512T5 (de) 2012-09-17 2015-06-03 Tk Holdings Inc. Einzelschicht-Kraftsensor
US9268407B1 (en) * 2012-10-10 2016-02-23 Amazon Technologies, Inc. Interface elements for managing gesture control
US9164607B2 (en) 2012-11-30 2015-10-20 3M Innovative Properties Company Complementary touch panel electrodes
GB2508626B (en) * 2012-12-05 2014-10-29 R & D Core Ltd Contact sensor
US10817096B2 (en) 2014-02-06 2020-10-27 Apple Inc. Force sensor incorporated into display
WO2014092758A1 (en) 2012-12-14 2014-06-19 Changello Enterprise Llc Force sensing through capacitance changes
GB201223230D0 (en) * 2012-12-21 2013-02-06 R & D Core Ltd Contact sensor
WO2014117728A1 (zh) * 2013-01-30 2014-08-07 福建科创光电有限公司 单片式电容触摸屏及其制作方法
WO2014124173A1 (en) 2013-02-08 2014-08-14 Changello Enterprise Llc Force determination based on capacitive sensing
US20140237401A1 (en) * 2013-02-15 2014-08-21 Flatfrog Laboratories Ab Interpretation of a gesture on a touch sensing device
US9046946B2 (en) * 2013-03-01 2015-06-02 Blackberry Limited System and method of determining stylus location on touch-sensitive display
US20140282269A1 (en) * 2013-03-13 2014-09-18 Amazon Technologies, Inc. Non-occluded display for hover interactions
US9851828B2 (en) 2013-03-15 2017-12-26 Apple Inc. Touch force deflection sensor
ITMO20130067A1 (it) 2013-03-15 2014-09-16 Claudio Lucchese Substrato per la realizzazione di una pavimentazione sensibile e un metodo di rilevamento e visualizzazione in continuo di carichi sul substrato
US10019113B2 (en) 2013-04-11 2018-07-10 Flatfrog Laboratories Ab Tomographic processing for touch detection
CN105122196B (zh) * 2013-04-18 2018-02-06 夏普株式会社 传感片、传感片组件、触摸传感面板组件和电子设备
WO2015005847A1 (en) 2013-07-12 2015-01-15 Flatfrog Laboratories Ab Partial detect mode
US9671889B1 (en) 2013-07-25 2017-06-06 Apple Inc. Input member with capacitive sensor
WO2015022940A1 (ja) 2013-08-16 2015-02-19 株式会社ワコム 指示体検出装置及び指示体検出方法
WO2015022938A1 (ja) * 2013-08-16 2015-02-19 株式会社ワコム 指示体検出センサ及び指示体検出装置
KR101654040B1 (ko) * 2013-09-10 2016-09-05 주식회사 케이티 사용자의 스텝 패턴 입력을 이용하는 전자 기기의 자동 설정 장치, 자동 설정 시스템 및 전자 기기의 자동 설정 방법
US9465490B2 (en) 2013-09-19 2016-10-11 Atmel Corporation Curved surface sensor pattern
US10324563B2 (en) 2013-09-24 2019-06-18 Hewlett-Packard Development Company, L.P. Identifying a target touch region of a touch-sensitive surface based on an image
US10013092B2 (en) 2013-09-27 2018-07-03 Sensel, Inc. Tactile touch sensor system and method
EP3049902B1 (en) * 2013-09-27 2020-11-18 Sensel, Inc. Capacitive touch sensor system and method
CN105683865B (zh) 2013-09-30 2018-11-09 苹果公司 用于触觉响应的磁性致动器
US9317118B2 (en) 2013-10-22 2016-04-19 Apple Inc. Touch surface for simulating materials
KR101580637B1 (ko) 2013-10-28 2015-12-28 주식회사 케이티 엘리베이터 보안 시스템
KR20160048424A (ko) * 2014-10-24 2016-05-04 주식회사 하이딥 터치 입력 장치
US10276001B2 (en) 2013-12-10 2019-04-30 Apple Inc. Band attachment mechanism with haptic response
WO2015106246A1 (en) 2014-01-13 2015-07-16 Nextinput, Inc. Miniaturized and ruggedized wafer level mems force sensors
US10146376B2 (en) 2014-01-16 2018-12-04 Flatfrog Laboratories Ab Light coupling in TIR-based optical touch systems
US10126882B2 (en) 2014-01-16 2018-11-13 Flatfrog Laboratories Ab TIR-based optical touch systems of projection-type
WO2015123322A1 (en) 2014-02-12 2015-08-20 Apple Inc. Force determination employing sheet sensor and capacitive array
WO2015121875A2 (en) * 2014-02-17 2015-08-20 Dasari Vamshi Nag A system and method for improving capabilities of security system integrated with premises
US10335091B2 (en) * 2014-03-19 2019-07-02 Tactonic Technologies, Llc Method and apparatus to infer object and agent properties, activity capacities, behaviors, and intents from contact and pressure images
CN103973975B (zh) * 2014-04-10 2017-11-07 北京智谷睿拓技术服务有限公司 交互方法、装置及用户设备
DE112014006608B4 (de) * 2014-04-21 2024-01-25 Apple Inc. Verfahren, Systeme und elektronische Vorrichtungen zum Bestimmen der Kräfteaufteilung für Multi-Touch-Eingabevorrichtungen elektronischer Vorrichtungen
US9849377B2 (en) * 2014-04-21 2017-12-26 Qatar University Plug and play tangible user interface system
US10198123B2 (en) 2014-04-21 2019-02-05 Apple Inc. Mitigating noise in capacitive sensor
DE102014006690A1 (de) * 2014-05-09 2015-11-12 Otto Bock Healthcare Gmbh Verfahren zur Feststellung der Ausrichtung eines Systems und Anzeigesystem
US9171533B1 (en) * 2014-06-10 2015-10-27 Angel Cuayo Band driven electronic organ
US10490052B2 (en) 2014-06-16 2019-11-26 Seda Chemical Products Co., Ltd. Motion-sensing floor mat, motion-sensing floor mat assembly, and monitoring system with the same floor mats
TW201601122A (zh) * 2014-06-16 2016-01-01 Seda Chemical Products Co Ltd 活動感知地墊之監視系統
US11983352B2 (en) * 2014-06-24 2024-05-14 Tactonic Technologies, Llc Mechanical force redistribution sensor array embedded in a single support layer
US20150374297A1 (en) * 2014-06-27 2015-12-31 Clinical Image Retrieval Systems, Inc. Modular instrumented floor covering
EP3161594A4 (en) 2014-06-27 2018-01-17 FlatFrog Laboratories AB Detection of surface contamination
US9482780B2 (en) * 2014-06-27 2016-11-01 Douglas D. Haas Modular instrumented floor covering
EP3195088A2 (en) 2014-09-02 2017-07-26 Apple Inc. Haptic notifications
WO2016048313A1 (en) 2014-09-24 2016-03-31 Hewlett-Packard Development Company, L.P. Transforming received touch input
JP6452369B2 (ja) * 2014-09-29 2019-01-16 キヤノン株式会社 情報処理装置とその制御方法、プログラム、記憶媒体
US10282697B1 (en) * 2014-09-30 2019-05-07 Amazon Technologies, Inc. Spatially aware mounting system
US10847469B2 (en) * 2016-04-26 2020-11-24 Cubic Corporation CTE compensation for wafer-level and chip-scale packages and assemblies
US9671896B2 (en) * 2014-11-18 2017-06-06 Toshiba Tec Kabushiki Kaisha Interface system, object for operation input, operation input supporting method
US20160146448A1 (en) * 2014-11-20 2016-05-26 Ming-Hsiao Ma Interactive sensing and displaying building assembly
CN104598067B (zh) * 2014-12-24 2017-12-29 联想(北京)有限公司 信息处理方法及电子设备
CN105865599A (zh) * 2015-01-22 2016-08-17 西安乐食智能餐具有限公司 一种称重装置及称重方法
US11182023B2 (en) 2015-01-28 2021-11-23 Flatfrog Laboratories Ab Dynamic touch quarantine frames
US10318074B2 (en) 2015-01-30 2019-06-11 Flatfrog Laboratories Ab Touch-sensing OLED display with tilted emitters
US10496227B2 (en) 2015-02-09 2019-12-03 Flatfrog Laboratories Ab Optical touch system comprising means for projecting and detecting light beams above and inside a transmissive panel
US10401546B2 (en) 2015-03-02 2019-09-03 Flatfrog Laboratories Ab Optical component for light coupling
US10006937B2 (en) 2015-03-06 2018-06-26 Apple Inc. Capacitive sensors for electronic devices and methods of forming the same
US10353467B2 (en) 2015-03-06 2019-07-16 Apple Inc. Calibration of haptic devices
AU2016100399B4 (en) 2015-04-17 2017-02-02 Apple Inc. Contracting and elongating materials for providing input and output for an electronic device
US9791979B2 (en) 2015-04-21 2017-10-17 Dell Products L.P. Managing inputs at an information handling system by adaptive infrared illumination and detection
US11106314B2 (en) 2015-04-21 2021-08-31 Dell Products L.P. Continuous calibration of an information handling system projected user interface
US9921644B2 (en) 2015-04-21 2018-03-20 Dell Products L.P. Information handling system non-linear user interface
US10139854B2 (en) 2015-04-21 2018-11-27 Dell Products L.P. Dynamic display resolution management for an immersed information handling system environment
US9690400B2 (en) * 2015-04-21 2017-06-27 Dell Products L.P. Information handling system interactive totems
US9720550B2 (en) 2015-04-21 2017-08-01 Dell Products L.P. Adaptable input active zones at an information handling system projected user interface
US9753591B2 (en) 2015-04-21 2017-09-05 Dell Products L.P. Capacitive mat information handling system display and totem interactions
US9804718B2 (en) 2015-04-21 2017-10-31 Dell Products L.P. Context based peripheral management for interacting with an information handling system
US9804733B2 (en) 2015-04-21 2017-10-31 Dell Products L.P. Dynamic cursor focus in a multi-display information handling system environment
US11243640B2 (en) 2015-04-21 2022-02-08 Dell Products L.P. Information handling system modular capacitive mat with extension coupling devices
US9983717B2 (en) 2015-04-21 2018-05-29 Dell Products L.P. Disambiguation of false touch inputs at an information handling system projected user interface
US9720446B2 (en) 2015-04-21 2017-08-01 Dell Products L.P. Information handling system projected work space calibration
US10248241B2 (en) * 2015-05-07 2019-04-02 Ricoh Company, Ltd. Digital signage system
CN107848788B (zh) 2015-06-10 2023-11-24 触控解决方案股份有限公司 具有容差沟槽的加固的晶圆级mems力传感器
US9715301B2 (en) 2015-08-04 2017-07-25 Apple Inc. Proximity edge sensing
US10566888B2 (en) 2015-09-08 2020-02-18 Apple Inc. Linear actuators for use in electronic devices
WO2017061799A1 (ko) * 2015-10-06 2017-04-13 엘지이노텍 주식회사 압력 감지 의자
CN105589606A (zh) * 2015-11-17 2016-05-18 苏州久腾光电科技有限公司 带视讯交流功能的交互式电子白板
US9733062B2 (en) * 2015-11-20 2017-08-15 General Electric Company Systems and methods for monitoring component strain
EP3387516B1 (en) 2015-12-09 2022-04-20 FlatFrog Laboratories AB Improved stylus identification
US20170185169A1 (en) * 2015-12-14 2017-06-29 Shaftesbury Tech Inc. Interactive tile system, tile connectors, and related methods
KR102456154B1 (ko) 2016-01-29 2022-10-19 삼성디스플레이 주식회사 센서, 터치 센서 및 표시 장치
CN108603799B (zh) * 2016-02-06 2020-09-04 深圳纽迪瑞科技开发有限公司 压力传感器、电子设备及该压力传感器的制作方法
CN108604149B (zh) * 2016-02-06 2021-06-18 深圳纽迪瑞科技开发有限公司 压力传感器、电子设备及该压力传感器的制作方法
US10039080B2 (en) 2016-03-04 2018-07-31 Apple Inc. Situationally-aware alerts
US10268272B2 (en) 2016-03-31 2019-04-23 Apple Inc. Dampening mechanical modes of a haptic actuator using a delay
US10007343B2 (en) 2016-03-31 2018-06-26 Apple Inc. Force sensor in an input device
US11173376B2 (en) * 2016-04-11 2021-11-16 Brian Janssen Full scale practice, training and diagnostic system method and software medium including highlighted progression illuminations and field embedded pressure sensors for use by positional players in sole and team-based sports as well as other non-athletic training applications
CN105890830B (zh) * 2016-04-29 2019-03-05 宸盛光电有限公司 一种压力感测装置
US10809842B2 (en) 2016-05-26 2020-10-20 Microsoft Technology Licensing, Llc Active touch input device pairing negotiation
FR3054358B1 (fr) * 2016-07-25 2018-08-31 Commissariat Energie Atomique Procede et systeme de reconstruction de posture par suivi spatial du haut d'un corps et suivi du bas du corps au moyen d'un tapis de detection
US10239212B2 (en) * 2016-10-07 2019-03-26 Southern Taiwan University Of Science And Technology Ultrasonic tactile sensor for detecting clamping force
US10307669B2 (en) 2016-10-11 2019-06-04 Valve Corporation Electronic controller with finger sensing and an adjustable hand retainer
US10888773B2 (en) 2016-10-11 2021-01-12 Valve Corporation Force sensing resistor (FSR) with polyimide substrate, systems, and methods thereof
US10391400B1 (en) 2016-10-11 2019-08-27 Valve Corporation Electronic controller with hand retainer and finger motion sensing
US10987573B2 (en) 2016-10-11 2021-04-27 Valve Corporation Virtual reality hand gesture generation
US11185763B2 (en) 2016-10-11 2021-11-30 Valve Corporation Holding and releasing virtual objects
US10898797B2 (en) 2016-10-11 2021-01-26 Valve Corporation Electronic controller with finger sensing and an adjustable hand retainer
US11625898B2 (en) 2016-10-11 2023-04-11 Valve Corporation Holding and releasing virtual objects
US10691233B2 (en) 2016-10-11 2020-06-23 Valve Corporation Sensor fusion algorithms for a handheld controller that includes a force sensing resistor (FSR)
US10649583B1 (en) 2016-10-11 2020-05-12 Valve Corporation Sensor fusion algorithms for a handheld controller that includes a force sensing resistor (FSR)
CN107957799B (zh) * 2016-10-14 2021-08-10 群创光电股份有限公司 触控显示面板
US20180118522A1 (en) * 2016-10-28 2018-05-03 Otis Elevator Company Sensor on escalator landing plate
GB2555492B (en) * 2016-11-01 2022-03-02 Luminary Roli Ltd User interface device
US10139973B2 (en) 2016-11-09 2018-11-27 Dell Products L.P. Information handling system totem tracking management
US10146366B2 (en) 2016-11-09 2018-12-04 Dell Products L.P. Information handling system capacitive touch totem with optical communication support
US10139951B2 (en) 2016-11-09 2018-11-27 Dell Products L.P. Information handling system variable capacitance totem input management
US10139930B2 (en) 2016-11-09 2018-11-27 Dell Products L.P. Information handling system capacitive touch totem management
US10496216B2 (en) 2016-11-09 2019-12-03 Dell Products L.P. Information handling system capacitive touch totem with optical communication support
CN110100226A (zh) 2016-11-24 2019-08-06 平蛙实验室股份公司 触摸信号的自动优化
JP2020512607A (ja) * 2016-12-07 2020-04-23 フラットフロッグ ラボラトリーズ アーベーFlatFrog Laboratories AB 改良されたタッチ装置
US10389935B2 (en) * 2016-12-13 2019-08-20 Canon Kabushiki Kaisha Method, system and apparatus for configuring a virtual camera
KR102674463B1 (ko) * 2016-12-23 2024-06-13 현대자동차주식회사 차량, 및 그 제어방법
US11000193B2 (en) * 2017-01-04 2021-05-11 Livemetric (Medical) S.A. Blood pressure measurement system using force resistive sensor array
WO2018141948A1 (en) 2017-02-06 2018-08-09 Flatfrog Laboratories Ab Optical coupling in touch-sensing systems
US11243125B2 (en) 2017-02-09 2022-02-08 Nextinput, Inc. Integrated piezoresistive and piezoelectric fusion force sensor
US11255737B2 (en) 2017-02-09 2022-02-22 Nextinput, Inc. Integrated digital force sensors and related methods of manufacture
WO2018174788A1 (en) 2017-03-22 2018-09-27 Flatfrog Laboratories Object characterisation for touch displays
WO2018182476A1 (en) 2017-03-28 2018-10-04 Flatfrog Laboratories Ab Touch sensing apparatus and method for assembly
WO2018232375A1 (en) 2017-06-16 2018-12-20 Valve Corporation Electronic controller with finger motion sensing
CN107290084B (zh) * 2017-06-28 2019-08-30 京东方科技集团股份有限公司 一种压力传感器及其制作方法、电子器件
US10622538B2 (en) 2017-07-18 2020-04-14 Apple Inc. Techniques for providing a haptic output and sensing a haptic input using a piezoelectric body
EP3655740A4 (en) 2017-07-19 2021-07-14 Nextinput, Inc. STRESS TRANSFER STACKING IN MEMS FORCE SENSOR
US11423686B2 (en) 2017-07-25 2022-08-23 Qorvo Us, Inc. Integrated fingerprint and force sensor
US11243126B2 (en) 2017-07-27 2022-02-08 Nextinput, Inc. Wafer bonded piezoresistive and piezoelectric force sensor and related methods of manufacture
CN111052058B (zh) 2017-09-01 2023-10-20 平蛙实验室股份公司 改进的光学部件
CN107678589A (zh) * 2017-09-29 2018-02-09 上海与德科技有限公司 一种基于MicroLED显示屏幕的使用方法及电子设备
CN107607031A (zh) * 2017-10-17 2018-01-19 广州中国科学院工业技术研究院 网状传感器及测量方法
WO2019079420A1 (en) 2017-10-17 2019-04-25 Nextinput, Inc. SHIFT TEMPERATURE COEFFICIENT COMPENSATION FOR FORCE SENSOR AND STRAIN GAUGE
JP7010798B2 (ja) * 2017-10-27 2022-01-26 パラマウントベッド株式会社 動画像記録システム
WO2019090057A1 (en) 2017-11-02 2019-05-09 Nextinput, Inc. Sealed force sensor with etch stop layer
JP2019089166A (ja) * 2017-11-15 2019-06-13 セイコーエプソン株式会社 力検出システムおよびロボット
WO2019099821A1 (en) 2017-11-16 2019-05-23 Nextinput, Inc. Force attenuator for force sensor
US10459528B2 (en) 2018-02-28 2019-10-29 Dell Products L.P. Information handling system enhanced gesture management, control and detection
US11567610B2 (en) 2018-03-05 2023-01-31 Flatfrog Laboratories Ab Detection line broadening
CN108537220A (zh) * 2018-03-21 2018-09-14 李荣陆 一种使原平面设计在新尺寸下自动适配的装置
US20190291224A1 (en) * 2018-03-22 2019-09-26 Ford Motor Company Workpiece alignment system having pressure sensors for assessing alignment of a workpiece with a fixture
KR102521373B1 (ko) * 2018-03-29 2023-04-13 삼성디스플레이 주식회사 표시 장치
CN112261972B (zh) * 2018-05-18 2024-07-23 威尔乌集团 用于包含力感测电阻器(fsr)的手持控制器的传感器融合算法
CN108845693A (zh) * 2018-06-04 2018-11-20 业成科技(成都)有限公司 具有辅助线的触控电极
US10664101B2 (en) 2018-06-28 2020-05-26 Dell Products L.P. Information handling system touch device false touch detection and mitigation
US10761618B2 (en) 2018-06-28 2020-09-01 Dell Products L.P. Information handling system touch device with automatically orienting visual display
US10635199B2 (en) 2018-06-28 2020-04-28 Dell Products L.P. Information handling system dynamic friction touch device for touchscreen interactions
US10817077B2 (en) 2018-06-28 2020-10-27 Dell Products, L.P. Information handling system touch device context aware input tracking
US10852853B2 (en) 2018-06-28 2020-12-01 Dell Products L.P. Information handling system touch device with visually interactive region
US10795502B2 (en) 2018-06-28 2020-10-06 Dell Products L.P. Information handling system touch device with adaptive haptic response
US10866683B2 (en) 2018-08-27 2020-12-15 Apple Inc. Force or touch sensing on a mobile device using capacitive or pressure sensing
US11182603B1 (en) 2018-08-31 2021-11-23 Snap Inc. Weakly supervised semantic parsing
CN109344718B (zh) * 2018-09-03 2021-02-09 先临三维科技股份有限公司 指尖识别方法、装置、存储介质及处理器
US10691211B2 (en) 2018-09-28 2020-06-23 Apple Inc. Button providing force sensing and/or haptic output
US10599223B1 (en) 2018-09-28 2020-03-24 Apple Inc. Button providing force sensing and/or haptic output
US11022583B2 (en) * 2018-10-09 2021-06-01 Electric Power Research Institute, Inc. Apparatus and method for fabricating ultrasonic sensor probes directly on a substrate surface and using same
WO2020077482A1 (zh) * 2018-10-15 2020-04-23 王长贵 一种复合瓷砖以及具有它的步态检测系统
CN112889016A (zh) 2018-10-20 2021-06-01 平蛙实验室股份公司 用于触摸敏感装置的框架及其工具
US10962427B2 (en) 2019-01-10 2021-03-30 Nextinput, Inc. Slotted MEMS force sensor
WO2020153890A1 (en) 2019-01-25 2020-07-30 Flatfrog Laboratories Ab A videoconferencing terminal and method of operating the same
CN110232321B (zh) * 2019-05-10 2021-07-06 奥比中光科技集团股份有限公司 指尖点击位置的检测方法、装置、终端及计算机存储介质
TWI706308B (zh) * 2019-06-05 2020-10-01 大陸商北京集創北方科技股份有限公司 觸控平面的重壓處理方法、觸控裝置及資訊處理裝置
CN110440975A (zh) * 2019-08-06 2019-11-12 厦门大学 四足机器人圆形足端球面矢量力检测装置及检测方法
US11380470B2 (en) 2019-09-24 2022-07-05 Apple Inc. Methods to control force in reluctance actuators based on flux related parameters
US12056316B2 (en) 2019-11-25 2024-08-06 Flatfrog Laboratories Ab Touch-sensing apparatus
CN111024279B (zh) * 2019-12-30 2022-03-18 浙江清华柔性电子技术研究院 压力传感器单元及压力传感器
KR20220131982A (ko) 2020-02-10 2022-09-29 플라트프로그 라보라토리즈 에이비 향상된 터치-감지 장치
US20210285835A1 (en) * 2020-03-16 2021-09-16 New York University Apparatus for Determining Shear Forces in Regard to a Pressure Imaging Array, Single Point Sensor for Shear Forces, and Method
CN111464419B (zh) * 2020-04-13 2021-08-27 中国人民解放军国防科技大学 一种基于总线网络通信的数据传输控制方法
US20210318782A1 (en) * 2020-04-13 2021-10-14 Himax Technologies Limited Apparatus integrated with fingerprint recognition and touch detection
US11269440B1 (en) * 2020-08-12 2022-03-08 Universal Cement Corporation Foldable force sensing device
CN112043388B (zh) * 2020-08-14 2022-02-01 武汉大学 一种用于医疗遥操作的触觉人机交互装置
CN112035873B (zh) * 2020-08-18 2024-08-23 合肥市大数据资产运营有限公司 一种时空轨迹数据脱敏方法
EP3982096A1 (en) 2020-10-12 2022-04-13 Basf Se Sensor element for detecting pressure applied to the sensor element
EP3988906A1 (en) 2020-10-22 2022-04-27 InnovationLab GmbH Sensor element for detecting force applied to the sensor element and pallet comprising such a sensor element for detecting weight and/or weight distribution applied to it
JP7558054B2 (ja) 2020-12-24 2024-09-30 横河電機株式会社 力検出器及び力検出システム
US11977683B2 (en) 2021-03-12 2024-05-07 Apple Inc. Modular systems configured to provide localized haptic feedback using inertial actuators
US11809631B2 (en) 2021-09-21 2023-11-07 Apple Inc. Reluctance haptic engine for an electronic device
LU501704B1 (en) 2022-03-24 2023-09-25 Innovationlab Gmbh Electronic Device
CN115294508B (zh) * 2022-10-10 2023-01-06 成都唐米科技有限公司 一种基于静态空间三维重构的跟焦方法、系统及摄像系统
US11960693B1 (en) * 2023-05-23 2024-04-16 Rockwell Collins, Inc. Resistive touch sensor with improved force uniformity

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222528B1 (en) * 1997-03-07 2001-04-24 Cirque Corporation Method and apparatus for data input
JP2004318200A (ja) * 2003-04-10 2004-11-11 Vstone Kk センサシステム、検知情報収集方法、情報伝送システム及び情報伝送方法
JP2009109307A (ja) * 2007-10-30 2009-05-21 Nitta Ind Corp センサシート
US20100090299A1 (en) * 2008-10-15 2010-04-15 Industrial Technology Research Institute Flexible electronics for pressure device and fabrication method thereof
JP2010211399A (ja) * 2009-03-09 2010-09-24 Sony Corp 情報処理装置、閾値設定方法及びそのプログラム
JP2010531500A (ja) * 2007-06-25 2010-09-24 ダヴ タッチコントロール装置

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5464984A (en) * 1985-12-11 1995-11-07 General Imaging Corporation X-ray imaging system and solid state detector therefor
US5440237A (en) * 1993-06-01 1995-08-08 Incontrol Solutions, Inc. Electronic force sensing with sensor normalization
US5604314A (en) * 1994-10-26 1997-02-18 Bonneville Scientific Incorporated Triaxial normal and shear force sensor
US6216545B1 (en) * 1995-11-14 2001-04-17 Geoffrey L. Taylor Piezoresistive foot pressure measurement
DE19605218C1 (de) * 1996-02-13 1997-04-17 Dornier Gmbh Hinderniswarnsystem für tieffliegende Fluggeräte
US5986221A (en) * 1996-12-19 1999-11-16 Automotive Systems Laboratory, Inc. Membrane seat weight sensor
IL137478A (en) 1998-01-26 2005-11-20 Westerman Wayne Method and apparatus for integrating manual input
US5969440A (en) * 1998-03-18 1999-10-19 Young; Christopher L. Push bar with redundant pressure sensors and fail safe mechanical switch
JP3842006B2 (ja) 2000-03-30 2006-11-08 グローリー工業株式会社 帳票類判別装置、帳票類判別方法、およびこれらの方法をコンピュータに実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体
US6861961B2 (en) 2000-03-30 2005-03-01 Electrotextiles Company Limited Foldable alpha numeric keyboard
US6496359B2 (en) * 2000-12-08 2002-12-17 Sun Microsystems, Inc. Tile array computers
JP4424869B2 (ja) * 2001-03-16 2010-03-03 浜松ホトニクス株式会社 歩幅測定装置
US20020149571A1 (en) * 2001-04-13 2002-10-17 Roberts Jerry B. Method and apparatus for force-based touch input
US6715359B2 (en) * 2001-06-28 2004-04-06 Tactex Controls Inc. Pressure sensitive surfaces
US7381152B2 (en) * 2001-07-23 2008-06-03 Southwest Research Institute Virtual reality system locomotion interface utilizing a pressure-sensing mat
CA2353697A1 (en) * 2001-07-24 2003-01-24 Tactex Controls Inc. Touch sensitive membrane
JP4681774B2 (ja) * 2001-08-30 2011-05-11 キヤノン株式会社 撮像素子、その撮像素子を用いた撮像装置、及びその撮像装置を用いた撮像システム
US6743993B1 (en) * 2002-02-21 2004-06-01 Advanced Input Devices, Inc. Backlit full travel key assembly
US6759264B2 (en) * 2002-05-17 2004-07-06 Ligh Tuning Technology Inc. Pressure type fingerprint sensor fabrication method
US20030218537A1 (en) * 2002-05-21 2003-11-27 Lightspace Corporation Interactive modular system
GB2390949A (en) * 2002-07-17 2004-01-21 Sony Uk Ltd Anti-aliasing of a foreground image to be combined with a background image
US7629967B2 (en) * 2003-02-14 2009-12-08 Next Holdings Limited Touch screen signal processing
TWI220213B (en) * 2003-03-04 2004-08-11 Darfon Electronics Corp Keyboard structure
US20040246473A1 (en) * 2003-03-18 2004-12-09 Hermary Terrance John Coded-light dual-view profile scanning apparatus
US6909373B2 (en) * 2003-05-09 2005-06-21 Vitrak Wireless Inc. Floor monitoring system
US7256768B2 (en) * 2003-09-16 2007-08-14 Microsoft Corporation Computer keyboard with quantitatively force-sensing keys
GB0328163D0 (en) * 2003-12-04 2004-01-07 Screen Technology Ltd Display
CA2560597A1 (en) * 2004-03-19 2005-09-29 Sports Innovation As Mat for sport and games
JP4360542B2 (ja) * 2004-06-09 2009-11-11 シャープ株式会社 画像認証携帯端末装置
US7557966B2 (en) * 2004-08-11 2009-07-07 Acushnet Company Apparatus and method for scanning an object
JP4369326B2 (ja) * 2004-08-19 2009-11-18 株式会社日立製作所 施設内情報提供システム及び施設内情報提供方法
US20060044215A1 (en) * 2004-08-24 2006-03-02 Brody Thomas P Scalable tiled display assembly for forming a large-area flat-panel display by using modular display tiles
TWI256009B (en) * 2004-12-23 2006-06-01 Au Optronics Corp Illuminating keyboards
US7482731B2 (en) * 2005-02-18 2009-01-27 Iptrade, Inc. Kit and method for constructing vibration suppression and/or sensing units
US8127623B2 (en) * 2005-05-18 2012-03-06 Pressure Profile Systems Inc. Capacitive tactile tile sensor
US20070003168A1 (en) * 2005-06-29 2007-01-04 Microsoft Corporation Computer input device
US20070171058A1 (en) * 2005-08-02 2007-07-26 Latitude Broadband, Inc. Digital flooring detection system
US20080147350A1 (en) * 2005-08-29 2008-06-19 Les Atelier Numeriques Inc. Apparatus, system and methods for collecting position information over a large surface using electrical field sensing devices
US8564544B2 (en) 2006-09-06 2013-10-22 Apple Inc. Touch screen device, method, and graphical user interface for customizing display of content category icons
CN100583007C (zh) * 2006-12-21 2010-01-20 财团法人工业技术研究院 具有表面显示信息与互动功能的可动装置
US20080180399A1 (en) * 2007-01-31 2008-07-31 Tung Wan Cheng Flexible Multi-touch Screen
KR100934767B1 (ko) * 2007-09-14 2009-12-30 한국표준과학연구원 모바일 기기용 슬림형 마우스 및 그 제조 방법
EP2048642A1 (en) * 2007-10-10 2009-04-15 Barco NV Reducing visibility of display errors
DE102007049323A1 (de) * 2007-10-15 2009-04-23 Zebris Medical Gmbh Vorrichtung und Verfahren zur Ganganalyse unter Einsatz eines Laufbandes
WO2009072435A1 (ja) * 2007-12-03 2009-06-11 Shimane Prefectural Government 画像認識装置および画像認識方法
US20090237325A1 (en) * 2007-12-20 2009-09-24 Motorola, Inc. System for Clustering Displays of Display Devices
US8692777B2 (en) * 2008-02-08 2014-04-08 Apple Inc. Method for rapidly testing capacitance sensing array fault conditions using a floating conductor
EP2247998B1 (en) * 2008-02-28 2019-04-10 New York University Method and apparatus for providing input to a processor, and a sensor pad
US7948672B2 (en) * 2008-03-07 2011-05-24 Qualcomm Mems Technologies, Inc. System and methods for tiling display panels
US9018030B2 (en) * 2008-03-20 2015-04-28 Symbol Technologies, Inc. Transparent force sensor and method of fabrication
JP2009244346A (ja) * 2008-03-28 2009-10-22 Toshiba Corp 背面板、ディスプレイ、表示システム、電力供給方法および表示方法
TWI528248B (zh) * 2008-04-02 2016-04-01 Elan Microelectronics Corp Capacitive touch device, touch sensing control method and control circuit applied in capacitive touch device
JP4318056B1 (ja) * 2008-06-03 2009-08-19 島根県 画像認識装置および操作判定方法
KR20100003913A (ko) * 2008-07-02 2010-01-12 삼성전자주식회사 3차원 영상 디스플레이를 이용한 커뮤니케이션 방법 및장치
KR101602363B1 (ko) * 2008-09-11 2016-03-10 엘지전자 주식회사 3차원 사용자 인터페이스의 제어방법과 이를 이용한 이동 단말기
US20110021273A1 (en) * 2008-09-26 2011-01-27 Caroline Buckley Interactive music and game device and method
KR100879328B1 (ko) * 2008-10-21 2009-01-19 (주)컴버스테크 카메라를 이용한 핑거 뎁스 조절 장치 및 방법과 카메라를 이용한 핑거 뎁스 조절 장치를 갖는 터치 스크린
US20100097329A1 (en) * 2008-10-21 2010-04-22 Martin Simmons Touch Position Finding Method and Apparatus
KR101564332B1 (ko) * 2008-10-28 2015-10-30 삼성전자주식회사 액정 표시 장치에 일체화된 터치 스크린 패널과 그 제조 방법 및 터치 센싱 방법
US20100117988A1 (en) * 2008-11-12 2010-05-13 Adrian Marc Simon Jacobs Optical element and touch sensor
WO2010096499A2 (en) * 2009-02-17 2010-08-26 Noah Anglin Floating plane touch detection system
KR101097309B1 (ko) * 2009-05-06 2011-12-23 삼성모바일디스플레이주식회사 터치 동작 인식 방법 및 장치
US9041521B2 (en) * 2009-06-04 2015-05-26 The Royal Institution For The Advancement Of Learning/Mcgill University Floor-based haptic communication system
TW201101148A (en) * 2009-06-22 2011-01-01 Sonix Technology Co Ltd Touch screen, touch module and control method
BR112012001334A2 (pt) * 2009-07-30 2016-03-15 Sharp Kk dispositivo de exibição portátil, método de controle de dispositivo de exibição portátil, programa e meio de gravação
US8261211B2 (en) * 2009-10-01 2012-09-04 Microsoft Corporation Monitoring pointer trajectory and modifying display interface
US20110109594A1 (en) * 2009-11-06 2011-05-12 Beth Marcus Touch screen overlay for mobile devices to facilitate accuracy and speed of data entry
US20130165825A1 (en) * 2010-02-12 2013-06-27 Luis Enrique Sucar-Succar Portable handle for upper limb rehabilitation
US8599353B2 (en) * 2010-05-28 2013-12-03 3M Innovative Properties Company Display comprising a plurality of substrates and a plurality of display materials disposed between the plurality of substrates that are connected to a plurality of non-overlapping integral conductive tabs
US8602893B2 (en) * 2010-06-02 2013-12-10 Sony Computer Entertainment Inc. Input for computer device using pattern-based computer vision
JP2012027541A (ja) * 2010-07-20 2012-02-09 Sony Corp 接触圧検知装置および入力装置
US8913056B2 (en) * 2010-08-04 2014-12-16 Apple Inc. Three dimensional user interface effects on a display by using properties of motion
CN103154867B (zh) * 2010-10-12 2017-09-22 纽约大学 用于传感利用瓷片、具有一组板的传感器和多点触摸表面目标识别的装置和方法
US9524020B2 (en) * 2010-10-12 2016-12-20 New York University Sensor having a mesh layer with protrusions, and method
US8206047B1 (en) * 2011-06-24 2012-06-26 TouchFire, Inc. Keyboard overlay for optimal touch typing on a proximity-based touch screen
KR20130007738A (ko) * 2011-07-11 2013-01-21 삼성전자주식회사 키 입력장치
US9469080B2 (en) * 2012-01-06 2016-10-18 Prysm, Inc. Portable display
CN104103446B (zh) * 2013-04-15 2016-12-28 光宝电子(广州)有限公司 发光键盘、发光键盘的照明结构及其按键
US9904417B2 (en) * 2014-04-16 2018-02-27 Microchip Technology Incorporated Projected capacitive touch detection with touch force detection using self-capacitance and mutual capacitance detection
GB2542204B (en) * 2015-09-14 2019-10-23 Pavegen Systems Ltd Flooring system
WO2017216366A1 (en) * 2016-06-16 2017-12-21 Barco N.V. Front maintenance apparatus for tiled led display

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6222528B1 (en) * 1997-03-07 2001-04-24 Cirque Corporation Method and apparatus for data input
JP2004318200A (ja) * 2003-04-10 2004-11-11 Vstone Kk センサシステム、検知情報収集方法、情報伝送システム及び情報伝送方法
JP2010531500A (ja) * 2007-06-25 2010-09-24 ダヴ タッチコントロール装置
JP2009109307A (ja) * 2007-10-30 2009-05-21 Nitta Ind Corp センサシート
US20100090299A1 (en) * 2008-10-15 2010-04-15 Industrial Technology Research Institute Flexible electronics for pressure device and fabrication method thereof
JP2010211399A (ja) * 2009-03-09 2010-09-24 Sony Corp 情報処理装置、閾値設定方法及びそのプログラム

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11809672B2 (en) 2013-09-27 2023-11-07 Sensel, Inc. Touch sensor detector system and method
US11650687B2 (en) 2013-09-27 2023-05-16 Sensel, Inc. Tactile touch sensor system and method
US11520454B2 (en) 2013-09-27 2022-12-06 Sensel, Inc. Touch sensor detector system and method
US11068118B2 (en) 2013-09-27 2021-07-20 Sensel, Inc. Touch sensor detector system and method
US11221706B2 (en) 2013-09-27 2022-01-11 Sensel, Inc. Tactile touch sensor system and method
JP7005142B2 (ja) 2014-06-25 2022-01-21 センセル インコーポレイテッド 触覚タッチセンサシステム及び方法
CN107077240A (zh) * 2014-06-25 2017-08-18 森赛尔股份有限公司 触觉触摸传感器系统和方法
JP2017525030A (ja) * 2014-06-25 2017-08-31 センセル インコーポレイテッドSensel,Inc. 触覚タッチセンサシステム及び方法
JP2016102756A (ja) * 2014-11-28 2016-06-02 凸版印刷株式会社 感圧センサ
JP2018009820A (ja) * 2016-07-11 2018-01-18 東京電力ホールディングス株式会社 構造物の歪センサ及び構造物歪検出方法
JP7510983B2 (ja) 2016-09-13 2024-07-04 アップル インコーポレイテッド 力感知及び触覚フィードバックを伴うキーレスキーボード
US12079043B2 (en) 2017-07-26 2024-09-03 Apple Inc. Computer with keyboard
JP2019168413A (ja) * 2018-03-26 2019-10-03 住友理工株式会社 トランスデューサシート
WO2019187653A1 (ja) * 2018-03-26 2019-10-03 住友理工株式会社 トランスデューサシート
JP2019184300A (ja) * 2018-04-04 2019-10-24 Nissha株式会社 タイル状センサ

Also Published As

Publication number Publication date
US20120089348A1 (en) 2012-04-12
CA2814183C (en) 2018-07-10
US11301083B2 (en) 2022-04-12
US9411457B2 (en) 2016-08-09
EP2628069A4 (en) 2017-10-04
WO2012050606A2 (en) 2012-04-19
US11886660B2 (en) 2024-01-30
US20120086659A1 (en) 2012-04-12
CN103154867A (zh) 2013-06-12
US20220244830A1 (en) 2022-08-04
US20120087545A1 (en) 2012-04-12
JP6021812B2 (ja) 2016-11-09
US10345984B2 (en) 2019-07-09
US9360959B2 (en) 2016-06-07
US20160283008A1 (en) 2016-09-29
CA2814183A1 (en) 2012-04-19
US20160364047A1 (en) 2016-12-15
WO2012050606A3 (en) 2012-07-19
US20220308729A1 (en) 2022-09-29
US9317154B2 (en) 2016-04-19
EP2628069A2 (en) 2013-08-21
US12008195B2 (en) 2024-06-11
US11809659B2 (en) 2023-11-07
US10310695B2 (en) 2019-06-04
US20190384432A1 (en) 2019-12-19
EP2628069B1 (en) 2020-12-02
CN103154867B (zh) 2017-09-22
US20160364051A1 (en) 2016-12-15
US11249589B2 (en) 2022-02-15
US20190332207A1 (en) 2019-10-31

Similar Documents

Publication Publication Date Title
US11809659B2 (en) Fusing depth and pressure imaging to provide object identification for multi-touch surfaces
US11809653B2 (en) Sensor having a mesh layer with protrusions, and method
US20200192463A1 (en) Sensors Having a Connecting Frame and Method for Composite Sensors
Schmitz et al. Flexibles: deformation-aware 3D-printed tangibles for capacitive touchscreens
Zhang et al. Electrick: Low-cost touch sensing using electric field tomography
US8766925B2 (en) Method and apparatus for providing input to a processor, and a sensor pad
Follmer et al. deForm: an interactive malleable surface for capturing 2.5 D arbitrary objects, tools and touch
CN105992992B (zh) 低外形指点杆
Grau et al. Mechanical force redistribution: enabling seamless, large-format, high-accuracy surface interaction
Brito et al. Multimodal augmentation of surfaces using conductive 3D printing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161004

R150 Certificate of patent or registration of utility model

Ref document number: 6021812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250