JP2013542401A - 形状測定装置、構造物の製造方法及び構造物製造システム - Google Patents

形状測定装置、構造物の製造方法及び構造物製造システム Download PDF

Info

Publication number
JP2013542401A
JP2013542401A JP2013519880A JP2013519880A JP2013542401A JP 2013542401 A JP2013542401 A JP 2013542401A JP 2013519880 A JP2013519880 A JP 2013519880A JP 2013519880 A JP2013519880 A JP 2013519880A JP 2013542401 A JP2013542401 A JP 2013542401A
Authority
JP
Japan
Prior art keywords
pattern
unit
shape
test object
shape measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013519880A
Other languages
English (en)
Inventor
小松  学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44993155&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2013542401(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2013519880A priority Critical patent/JP2013542401A/ja
Publication of JP2013542401A publication Critical patent/JP2013542401A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53022Means to assemble or disassemble with means to test work or product

Abstract

門柱状のフレーム部に光学式の測定プローブを備えた構造においても種々の被検物に対して最適な測定を行うことができる形状測定装置を提供する。
被検物にパターンを投影する投影部と、前記投影部による前記パターンの投影方向とは異なる方向から前記パターンの像を撮像し、前記撮像して得られた撮像データから前記被検物の表面上の位置を測定する測定部と、前記被検物を、2方向に回転可能な被検物回転機構と、前記パターンを回転するパターン回転機構を有することを特徴とする形状測定装置を提供する。

Description

本発明は、形状測定装置と、それを用いた構造物の製造方法及び構造物製造システムに関する。
工業製品等の物体の表面形状を測定する技術は従来から種々提案されており、接触式の測定プローブを用いて被検物の形状を三次元で測定するものが知られている(例えば、特許文献1参照)。特許文献1に係る形状測定装置においては、門柱状のフレーム部に保持された測定プローブが被検物に対してXYZ方向に移動可能な構成とされている。
特開2010−160084号公報
ところで、測定プローブとしては、上述の接触式のものの他に、光切断方式を用いた非接触プローブがある。このような光学式の測定プローブは、被検物に所定の投影パターン(スリット光や、縞模様)を投影して被検物を撮像し、その撮像画像から各画像位置(各画素)の基準面からの高さを算出し、被検物の三次元表面形状を測定するようになっている。そこで、上述した上記特許文献1に開示された門柱状のフレーム部に光学式の測定プローブを組み合わせる場合において、種々の被検物に対して最適な測定を行うことが可能な新たな装置の提供が望まれている。
本発明は上記課題を解決するためになされたものであり、門柱状のフレーム部に光学式の測定プローブを備えた構造においても種々の被検物に対して最適な測定を行うことができる形状測定装置を提供すること、及び、そのような形状測定装置を用いた構造物の製造方法及び構造物製造システムを目的とする。
本発明の第1の態様に従えば、被検物にパターンを投影する投影部と、前記投影部による前記パターンの投影方向とは異なる方向から前記パターンの像を撮像し、前記撮像して得られた撮像データから前記被検物の表面上の位置を測定する測定部と、前記被検物を、2方向に回転可能な被検物回転機構と、前記パターンを回転するパターン回転機構を有する形状測定装置が提供される。
本発明の第2の態様に従えば、構造物の製造方法であって、設計情報に基づいて前記構造物を作製することと、作製された前記構造物を2方向に回転可能な回転機構の上に載置して、前記構造物にパターンを投影しながら、前記パターンの投影方向とは異なる方向から前記パターンの像を撮影することで前記構造物の形状情報を取得することと、前記測定により得られた前記形状情報と前記設計情報とを比較することとを含み、前記構造物の形状を測定する際に、前記構造物の形状に応じて前記構造物に投影されたパターンの向きを回転させて前記構造物の形状を測定する構造物の製造方法が提供される。
本発明の第3の態様に従えば、構造物を製造する構造物製造システムであって、前記構造物を作製する加工装置と、前記加工装置によって作製された前記構造物の形状を測定して前記構造物の形状情報を取得する本発明の第1の態様に従う形状測定装置とを備える構造物製造システムが提供される。
本発明の第4の態様に従えば、被検物の形状を測定する形状測定装置であって、投影方向から被検物にパターンを投影する投影部と、前記投影方向とは異なる方向から前記パターンの像を撮像し、前記撮像して得られた撮像データから前記被検物の表面上の位置を測定する測定部と、前記被検物を、2方向に回転可能な被検物回転機構と、被検物の形状情報を取得する形状情報取得部と、前記形状情報取得部によって取得された前記形状情報に基づいて前記被検物回転機構に相対して前記パターンを回転させる自動パターン回転部とを備えることを特徴とする形状測定装置が提供される。
本発明によれば、門柱状のフレーム部に光学式の測定プローブを備えた構造においても種々の被検物に対して最適な測定を行うことができる。
図1は、形状測定装置の構成を示す斜視図である。 図2は、形状測定装置の構成を示す側面図である。 図3A、3Bは、回転機構の要部構成を示す図である。 図4A、4Bは、ロック状態判定部の要部構成を示す図である。 図5は、回転機構の要部構成を示す図である。 図6は、構造物製造システム700のブロック構成図である。 図7は、構造物製造システム700による処理の流れを示したフローチャートである。
以下、図面を参照して本発明の形状測定装置の一実施形態に係る構成について説明する。なお、本実施形態は、発明の要旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。また、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各要請要素の寸法比率などが実際と同じであるとは限らない。
図1は、本発明の形状測定装置に係る一実施形態の構成例を示す斜視図であり、図2は側面図である。本実施形態に係る形状測定装置は、光切断法を用いることで、被検物の表面に一本のライン光からなるライン状投影パターンを投影し、ライン状投影パターンを被検物表面の全域を走査させる毎に投影方向と異なる角度から被検物に投影されたライン状投影パターンを撮像する。そして、撮像された被検物表面の撮像画像よりライン状投影パターンの長手方向の画素毎に三角測量の原理等を用いて被検物表面の基準平面からの高さを算出し、被検物表面の三次元形状を求める装置である。
図1、2に示すように、形状測定装置100は、本体部11と、傾斜回転テーブル14と、被検物の形状を測定するためのセンサー部20と、センサー部20を移動させる移動部30と、センサー部20を移動部30に対して回転させる回転機構40と、を有している。
本体部11は、架台12と、該架台12上に載置される定盤13とを含む。架台12は、形状測定装置100全体の水平度を調整するためのものである。定盤13は、石製または鋳鉄製からなるものであり、上面が架台12により水平に保たれたものとなっている。この定盤13の上面には、傾斜回転テーブル14が載置されている。
以下、互いが直交する3方向により規定されるXYZ座標系を用いて形状測定装置100の構成について説明する。ここで、XY平面とは定盤13の上面と平行な面を規定するものである。すなわち、X方向とは定盤13上における一方向を規定するものであり、Y方向とは定盤13の上面においてX方向に直交する方向を規定するものであり、Z方向とは定盤13の上面に直交する方向を規定するものである。
傾斜回転テーブル14は、被検物200が上面に載置される回転テーブル21、回転テーブル21の上面に対して垂直なZ軸方向(センサー20から被検物200に向かう方向)に延びる回転軸L1を中心として回転テーブル21が回転可能に装着される傾斜テーブル22、並びに、X軸方向(回転軸L1と交差する方向)に延びる傾斜軸L2を中心に傾斜テーブル22を回転可能に支持する支持部23および24を備えて構成される。回転テーブル21は円形の板状の部材であり、上面の平面度が高精度に規定されている。
傾斜テーブル22は、回転軸駆動モータ22aを内蔵しており、回転軸駆動モータ22aは、回転軸L1を中心として回転テーブル21を回転駆動する。回転テーブル21は、中央部分に形成されている複数の貫通穴(不図示)を介して、複数のボルトにより回転軸駆動モータ22aのシャフトに連結されている。
また、支持部23は、傾斜軸駆動モータ23aを内蔵しており、傾斜軸駆動モータ23aは、傾斜軸L2を中心として傾斜テーブル22を回転駆動することで、回転テーブル21を水平面に対して所定の傾斜角度で傾斜させる。
このように、傾斜回転テーブル14では、回転テーブル21を回転させ、傾斜テーブル22を傾斜させることで、回転テーブル21に載置される被検物200を任意の姿勢で保持できるようになっている。なお、回転テーブル21は、傾斜テーブル22の傾斜角度が急勾配になっても被検物200がずれないように、被検物200を固定することができるように構成されている。
センサー部20は、傾斜回転テーブル14に載置される被検物200に光切断を行うためのライン光を照射する照射部91と、ライン光が照射されることで光切断面(線)が現れた被検物200の表面を検出する検出部92と、を主体に構成される。また、センサー部20には、検出部92により検出された画像データに基づいて被検物の形状を測定する演算処理部300が接続されている。演算処理部300は、形状測定装置100における全体の駆動を制御するための制御部500に含まれる。
照射部91は、図示しないシリンドリカルレンズや細い帯状の切り欠きを有したスリット板等から構成され、光源からの照明光を受けて扇状のライン光91aを生じさせるものである。光源としては、LEDやレーザー光源・SLD(super luminescent diode)等を用いることができる。LEDを用いた場合は安価に光源を形成することができる。また、レーザー光源を用いた場合、点光源であるため収差の少ないライン光を作ることができ、波長安定性に優れ半値幅が小さいため、迷光カットに半値幅の小さいフィルターが使えるため、外乱の影響を少なくすることができる。また、SLD(super luminescent diode)を用いた場合は、レーザー光源の特性に加え可干渉性がレーザー光よりも低いため被検物面でのスペックルの発生を抑えることができる。検出部92は、照射部91の光照射方向とは異なる方向から被検物200の表面に投影されるライン光91aを撮像するためのものである。また、検出部92は、図示しない結像レンズやCCD等から構成され、後述のように移動部30を駆動させてライン光91aが所定間隔走査される毎に被検物200を撮像するようになっている。なお、照射部91および検出部92の位置は、被検物200の表面上のライン光91aの検出部92に対する入射方向と、照射部91の光照射方向とが、所定角度θをなすように規定されている。本実施形態では、上記所定角度θが例えば45度に設定されている。
検出部92で撮像された被検物200の画像データは、演算処理部300に送られ、ここで所定の画像演算処理がなされて被検物200の表面の高さが算出され、被検物200の三次元形状(表面形状)が求められるようになっている。演算処理部300は、被検物200の画像において、被検物200の凹凸に応じて変形したライン光91aによる光切断面(線)の位置情報に基づき、光切断面(線)(ライン光91a)が延びる長手方向の画素毎に三角測量の原理を用いて被検物200表面の基準平面からの高さを算出し、被検物200の三次元形状を求める演算処理を行う。
移動部30は、被検物200に投影されたライン光91aの長手方向と略直角な方向にセンサー部20(照射部91)を移動させることで、ライン光91aを被検物200の表面に走査させるためのものである。本実施形態に係る形状測定装置100では、後述のように形状測定者により指定された方向にセンサー部20が移動部30により移動されるようになっている。なお、センサー部20の回転角度を検出し、該検出結果に基づいて移動部30の移動方向を自動的に算出する構成であっても構わない。
移動部30は門型フレーム15を主体として構成されている。なお、定盤13は、端部(図2では右側の端部)が、定盤13上をY軸方向に門型フレーム15を駆動させるY軸ガイドを兼ねるように構成されている。
門型フレーム15は、X軸方向に延びるX軸ガイド15a、定盤13のY軸ガイドに沿って駆動する駆動側柱15b、および駆動側柱15bの駆動に従って定盤13の上面を滑動する従動側柱15cにより構成されている。
ヘッド部16は、門型フレーム15のX軸ガイド15aに沿ってX軸方向に沿って駆動可能とされている。ヘッド部16には、該ヘッド部16に対してZ軸方向に駆動可能なZ軸ガイド17が装着されている。Z軸ガイド17の下端部にはセンサー部20が装着されている。
ところで、本実施形態に係る形状測定装置100のように光切断法を用いる場合、センサー部20の照射部91から被検物200に照射されるライン光91aが、センサー部20の移動方向(以下、スキャン方向と称す。)と直交する方向に配置させるのが望ましい。例えば、図2において、被検物200に対するセンサー部20のスキャン方向をY軸方向に設定した場合、ライン光91aをX軸方向に沿って配置するのが望ましい。センサー部20とライン光91aの出射方向とをこのような関係に設定すると、測定時にライン光91aの全域を有効に利用したスキャンを行うことができ、被検物200の形状を最適に測定できるためである。
本実施形態に係る形状測定装置100は、上述したように、センサー部20が移動部30により被検物200に対して移動可能とされている。移動部30は上述した門型フレーム15を主体として構成されるため、移動部30に取り付けられたセンサー部20の照射部91から照射されるライン光91aのスキャン方向は、被検物200に対し、原則としてX方向、Y方向、およびZ方向のいずれかに制約される。
そこで、本実施形態に係る形状測定装置100では、Z軸ガイド17とセンサー部20との間に上記回転機構40を配置し、センサー部20を移動部30に対して回転可能な構成としている。これにより、形状測定装置100は、上述のようにセンサー部20のスキャン方向と直交方向にライン光91aを配置可能となっている。
図3は回転機構40の要部構成を示す図であり、図3(a)は上面図、図3(b)は側面図である。回転機構40は、図3に示すように、取付部41と、回転部42と、ロック部43と、ロック状態判定部44と、を有している。センサー部20は回転部に設けられる回転軸42aの一端側に取り付けられている。本実施形態では回転軸42aにおける回転中心軸C1が照射部91から照射されるライン光91aの中心軸C2と一致するようにセンサー部20が回転軸42aに取り付けられている。
回転部42は、センサー部20を移動部30に対して回転可能に保持する回転軸42aと、回転軸42aが所定角度だけ回転する毎に当該回転軸42aの回転動作を一時的に規制する回転規制部60と、を有している。
回転規制部60は、回転軸42aの外周に形成された歯型溝61と、取付部41に設けられるボールプランジャ62と、を含む。歯型溝61は、回転軸42aの外周に例えば7.5°おきに形成されている。このような構成に基づき、回転軸42aは、7.5°回転する毎にボールプランジャ62が歯型溝61に係合するため、回転軸42aの回転動作に負荷がかかるようになり、作業者の手にクリック感を感じさせることができるようになっている。よって、作業者は、手に感じたクリック感の回数に応じて、回転軸42aの回転角度を容易に把握することが可能となっている。
なお、取付部41には、回転軸42aの回転角度を示す回転指標部45が設けられている。回転指標部45には、例えば目盛りが設けられており、回転軸42aが上述のように7.5°回転する毎に、7.5°、15°、22.5°…等のように回転角度の値を表示するようになっている。これにより、形状測定者は、回転指標部45の目盛りを目視することで、回転軸42aの回転角度を所定値に簡便且つ確実に設定することが可能となっている。
回転機構40は、図3(a)に示すように、回転軸42aの回転によりセンサー部20が0°〜120°の範囲で移動するようになっている。センサー部20が0°位置に配置されると、照射部91及び検出部92がX軸方向に沿って配置される。また、センサー部20が90°位置に配置されると、照射部91及び検出部92がY軸方向に配置される。センサー部20が回転すると、同図に示されるように被検物200の表面上に照射されるライン光91aの向きが変化する。
本実施形態に係る形状測定装置100は、回転軸42aにおける回転中心軸と、照射部91から照射されるライン光91aの中心軸とが一致した状態となっているので、回転後に被検物200に対するライン光91aの測定開始位置(測定中心位置)がXY平面内でずれることが防止されている。このように回転後に被検物200に対するライン光91aの測定開始位置がXY平面内でずれないため、被検物200の端部においてセンサー部20の向きを変更した場合であっても、ライン光91aが被検物200の表面から外れた位置に照射されてしまうことが防止されている。なお、本実施形態の係る形状測定装置100はライン光91aが被検物200の測定面の垂線方向から照射されているため、測定精度が向上するとともにライン光91aの中心軸と回転機構40の回転中心軸とを一致させることで、スキャン方向と直交する方向とライン光91aの延在方向を合わせることができる。また、被検物の測定対象の幅が広い場合など、ライン光91aの中心以外を測定対象に合わせたい場合がある。そのような場合は、回転に加えてX方向とY方向とに平行移動する変位機構を設け、被検物に照射されているライン光91aの一部の照射位置を保ちながらライン光91aの延在方向が変わるようにセンサー部20を変位することにより所望の位置と方向にライン光91aを合わせることができる。
ロック部43は、取付部41に取り付けられ、回転軸42aを挿通させる固定部71と、該固定部71に取り付けられたロックレバー72と、を含む。回転軸42aは軸受け部50により取付部41に対して滑らかに回転可能とされている。固定部71には、回転軸42aを挿通させる貫通孔71aと、貫通孔71aの、図3(a)における下端からY方向に延在する切れ込み71bとが形成されている。例えばロックレバー72が下方(−Z方向)に移動された場合に、固定部71に切れ込み71bの幅が狭くなる向きの力が加えられて、貫通孔71aの径が小さくなる。それに伴って回転軸42aが締め付けられる。このようにして、固定部71は、回転軸42aが取付部41に対して回転しないように固定する。一方、固定部71は、ロックレバー72が上方(+Z方向)に移動された場合には、固定部71に加えられていた、切れ込み71bの幅が狭くなる向きの力が取り除かれる。それに伴って、貫通孔71aの径が元に戻るため、回転軸42aを締め付けることがなく、回転軸42aが取付部41に対して回転可能とされる。
図4はロック状態判定部44の要部構成を示す図であり、図4(a)はロック状態判定部44によるロック非検出状態を示す図であり、図4(b)はロック状態判定部44によるロック検出状態を示す図である。ロック状態判定部44は、図4(a)に示すようにロックレバー72の先端に取り付けられたセンサー検出用板部44aと、該センサー検出用板部44aに接触するタッチセンサー44bとを含む。センサー検出用板部44aは、ロックレバー72が回転軸42aを良好に締め付け可能な位置に移動した際、タッチセンサー44bに接触するようになっている。タッチセンサー44bは、形状測定装置100の全体の駆動の制御を行う制御部500に電気的に接続されている。
タッチセンサー44bは、所定位置に配置されたセンサー検出用板部44aに接触可能な接触部44cを有している。接触部44cは、センサー検出用板部44aにより押圧可能な構成とされている。
接触部44cは、図4(b)に示すように所定の位置まで押圧された時にON信号を制御部500に通知するようになっている。一方、接触部44cは、所定の位置まで押圧されていない時にOFF信号を制御部500に通知するようになっている。ここで、ON信号が通知される場合とは、ロックレバー72による回転軸42aの締め付けが十分であることを意味し、OFF信号が通知される場合とは、ロックレバー72による回転軸42aの締め付けが不十分であることを意味する。
制御部500は、ON信号が通知されると、形状測定装置100の表示部(不図示)に回転軸42aのロック状態が良好(例えば、OK等)である旨を表示するようになっている。一方、制御部500は、OFF信号が通知されると、形状測定装置100の表示部(不図示)に回転軸42aのロック状態が不良(例えば、NO等)である旨を表示するようになっている。これにより、回転軸42aのロック状態が不良のままで、被検物200の形状測定が開始されるといった不具合の発生が防止されたものとなっている。
このような構成に基づき、形状測定装置100は、センサー部20にガタツキが生じることなく、照射部91からライン光91aを被検物200の所定方向に向けて照射できるようになっている。
続いて、形状測定装置100の動作として、被検物200の形状を測定する方法について以下に説明する。
はじめに、形状測定者は、回転テーブル21に被検物200を載置し、被検物200に照射されるライン光91aが所定方向を向くように回転機構40によりセンサー部20を移動部30に対して回転させる。
形状測定者は、回転規制部60のクリック感の回数及び回転機構40に設けられた上記回転指標部45の目盛りの少なくともいずれかを参照して、回転軸42a(センサー部20)の回転角度を所定値に容易に設定することができる。
なお、センサー部20を回転させる際、照射部91から被検物200に対してライン光91aを照射した状態のまま行うようにしても構わない。この場合、形状測定者は、被検物200に投影されるライン光を目安として、センサー部20における回転角度の設定をより容易に行うことが可能となる。
形状測定者は、回転軸42aを所定角度回転させた後、ロック部43を用いて回転軸42aを固定する。具体的には、形状測定者は、ロックレバー72を下方に移動することで回転軸42aを締め付け、回転軸42aを確実に固定することができる。これにより、後述の形状測定時にセンサー部20が移動部30により移動する途中に、回転軸42aが動くことでセンサー部20の照射部91から被検物200に照射されるライン光の位置がずれるといった不具合の発生を防止できる。
本実施形態では、形状測定者は、上述のようにして設定した回転軸42aの回転角度を不図示の入力部を用いて入力する。形状測定装置100は、被検物200に照射されたライン光91aの長手方向と略直角な方向にセンサー部20(照射部91)を移動させるように移動部30を駆動し、ライン光91aにより被検物200の表面に走査させる。
被検物200にライン光91aが照射されると、被検物200の表面にライン光91aによる光切断面(線)が現れるため、検出部92により、ライン光91aが所定間隔走査される毎に(光切断面が現れた)被検物200を撮像する。このとき、検出部92で撮像された被検物200の画像データは、演算処理部300に送られる。
このようにして得られた被検物200の画像データから、演算処理部300は被検物200の凹凸に応じて変形したライン光91aによる光切断面(線)の位置情報に基づいて、光切断面(線)(ライン光91a)が延びる長手方向の画素毎に、三角測量の原理を用いて被検物200表面の基準平面からの高さを算出し、被検物200の三次元形状を測定することができる。
本実施形態に係る形状測定装置100によれば、上記回転機構40を用いてセンサー部20を回転させることで、センサー部20のスキャン方向がX方向とY方向を組み合わせた斜め方向であってもスキャン方向と直交する方向にライン光91aを配置できるので、種々の被検物200においても最適な範囲を測定できる。
また、センサー部20がライン光91aの長さ方向と直交する方向にスキャンを行うので、ライン光91aの全域を有効に利用することができ、測定領域におけるスキャン回数を少なくすることができ、短時間で形状測定を行うことができる。
また、回転軸42aにおける回転中心軸と、照射部91から照射されるライン光91aの中心軸とが一致しているため、回転後のライン光91aの中心座標が変化することがない。よって、回転後のライン光91aの座標値を回転角度のみから算出することができる。よって、回転後のライン光91aを用いた形状測定を行う際、座標補正が容易に行うことで演算処理を簡略化できる。
また、回転軸42aにおける回転中心軸C1と、照射部91から照射されるライン光91aの中心軸C2とが一致しているため、回転後に被検物200に対するライン光91aの測定開始位置がXY平面内でずれることがない。よって、センサー部20を種々な方向に回転させることで被検物200の形状を最適な範囲で、且つ様々な方向から短時間で測定できる。
また、回転後に被検物200に対するライン光91aの測定開始位置がXY平面内でずれないため、被検物200の端部においてセンサー部20を回転させた場合であっても、ライン光91aが被検物200の表面から外れてしまい、被検物200に対するセンサー部20の位置を再調整する必要が生じることがない。また、非常に安定した定盤13を介してセンサー部20の回転機構と傾斜回転テーブル14を切り分けている。そのため、被検物を傾斜および回転させる際の誤差にセンサー部20の回転誤差が重畳することがなく高精度な測定が達成できる。
以上、本発明の一実施形態に係る構成について説明したが、本発明はこれに限定されることはなく、発明の趣旨を逸脱しない範囲において適宜変更可能である。
例えば、上記実施形態では、回転機構40におけるセンサー部20の移動範囲が0°〜120°の場合を例に挙げて説明したが、センサー部20の移動範囲を0°〜180°に設定しても構わない。この構成によれば、ライン光91aの向きが0°〜180°の範囲で変化するため、より広い範囲で被検物200の形状を測定することができる。
また、上記実施形態では、形状測定者が、被検物200に照射されるライン光91aが所定方向を向くように回転機構40によりセンサー部20を移動部30に対して回転させていた。しかしながら、本発明はこのような構成には限られない。例えば、図5に示すように、本教示に係る形状測定装置100Aは、手動による回転機構40に代えて、被検物200の形状に応じてライン光91aの向きを変更する自動回転機構140を有していてもよい。ここで、自動回転機構140は、上記実施形態の回転機構40と同様に取付部41と、ロック部43と、ロック状態判定部44を有しており、これらの構成については説明を省略する。さらに自動回転機構140は、センサー部20を移動部30に対して回転可能に保持する回転軸42aを有し、回転軸42aを中心としてセンサー部20を移動部30に対して回転させる駆動部142と、駆動部142の動作を制御する駆動制御部143とを有する。駆動部142は例えばステッピングモーター等のモータにより構成されてもよい。駆動制御部143は、被検物200の形状に関する形状情報を取得し保持する形状情報取得部144を有している。形状情報取得部144は、例えば、被検物200のCADデータから被検物200の形状情報を取得してもよく、あるいは、いわゆるティーチング作業において用いられる被検物200の形状情報を取得してもよい。ここで、駆動制御部143は、形状情報取得部144により取得された被検物200の形状情報に基づいて、測定に好適なライン光91aの向きを算出する。そして、駆動制御部143は駆動部142を駆動して、算出されたライン光91aの向きを実現するようにセンサー部20を移動部30に対して回転させる。このように、形状測定装置100Aが、上記実施形態の形状測定装置100の回転機構40に代えて、自動回転機構140を有している場合には、形状測定者が被検物200の形状に応じてライン光91aの向きを変更する必要がなく、形状情報取得部144により取得された被検物200の形状情報に基づいて自動的にライン光91aの向きを調整することができる。そのため、ライン光91aの向きの調整にかかる時間を短縮することができ、形状測定にかかる時間を短縮することができる。
上述の形状測定装置100Aは、手動の回転機構40に代えて自動回転機構140を有していたが、本教示はこのような構成には限られない。例えば本教示に係る形状測定装置は手動の回転機構40と自動回転機構140とを両方有していてもよい。また、形状測定装置100Aは、必ずしも回転規制部60、回転指標部45等を備えていなくてもよい。また、形状測定装置100Aは、必ずしも形状測定装置100のようなロック部43及び、ロック状態判定部44を備えていなくてもよい。例えば、駆動部142が電磁ブレーキを備えている場合、駆動部142に設けられた電磁ブレーキがロック部43と同様の機能を果たすことができる。また、電磁ブレーキの制御を行う駆動制御部143がロック状態判定部44と同様の機能を果たすことができる。
なお、上述の説明において、照射部91は、光源から照射された光を不図示のスリット板などを通すことによりライン光91aを生成していた。しかしながら本教示はこのような構成には限られない。例えば、照射部91は、不図示のスリット板に代えて、二次元マトリクス状に配置された複数の液晶素子を備える液晶パネルを用いてライン光91aを発生させることができる。この場合においては、各液晶素子に印加する電圧を制御することにより、液晶パネル上に任意のスリットパターンを形成することができる。この場合には、液晶パネル上に形成するスリットパターンの向きを変更することにより、ライン光91aの向きを変更することができる。そして、本教示に係る形状測定装置は、上述のような液晶パネルを用いてライン光91aを発生させる照射部91を備えてもよく、その場合において、被検物200の形状情報に基づいてライン光91aの向きを変更してもよい。
次に、上述した測定装置(形状測定装置)を備えた構造物製造システムについて説明する。
図5は、構造物製造システム700のブロック構成図である。構造物製造システム700は、少なくとも1つの材料部材からギア、回転タービン翼等のような少なくとも1つの構造物を製造するためのものであり、形状測定装置100により構造物を検査するためのものである。本実施形態の構造物製造システム700は、上記の実施形態において説明したような形状測定装置100と、設計装置610と、成形装置620と、制御装置(検査装置)630と、リペア装置640とを備える。制御装置630は、座標記憶部631及び検査部632を備える。
設計装置610は、構造物の形状に関する設計情報を作製し、作成した設計情報を成形装置620に送信する。また、設計装置610は、作成した設計情報を制御装置630の座標記憶部631に記憶させる。設計情報は、構造物の各位置の座標を示す情報を含む。
成形装置620は、設計装置610から入力された設計情報に基づいて、上記の構造物を作製する。成形装置620の成形は、例えば鋳造、鍛造、切削等が含まれる。形状測定装置100は、作製された構造物(測定対象物)の座標を測定し、測定した座標を示す情報(形状情報)を制御装置630へ送信する。
制御装置630の座標記憶部631は、設計情報を記憶する。制御装置630の検査部632は、座標記憶部631から設計情報を読み出す。検査部632は、形状測定装置100から受信した座標を示す情報(形状情報)と、座標記憶部631から読み出した設計情報とを比較する。検査部632は、比較結果に基づき、構造物が設計情報通りに成形されたか否かを判定する。換言すれば、検査部632は、作成された構造物が良品であるか否かを判定する。検査部632は、構造物が設計情報通りに成形されていない場合に、構造物が修復可能であるか否か判定する。検査部632は、構造物が修復できる場合、比較
結果に基づいて不良部位と修復量を算出し、リペア装置640に不良部位を示す情報と修復量を示す情報とを送信する。
リペア装置640は、制御装置630から受信した不良部位を示す情報と修復量を示す情報とに基づき、構造物の不良部位を加工する。
図6は、構造物製造システム700による処理の流れを示したフローチャートである。構造物製造システム700は、まず、設計装置610が構造物の形状に関する設計情報を作製する(ステップS101)。次に、成形装置620は、設計情報に基づいて上記構造物を作製する(ステップS102)。次に、形状測定装置100は、作製された上記構造物の形状を測定する(ステップS103)。作製された構造物は傾斜回転テーブル14に載置され、前記構造物にパターンを投影しながら、前記パターンの投影方向とは異なる方向から前記パターンの像を撮影される。なお、構造物の形状を測定する際に、前記構造物の形状に応じて前記構造物に投影されたパターンの向きを回転させて前記構造物の形状を測定する。次に、制御装置630の検査部632は、形状測定装置100で得られた形状情報と上記の設計情報とを比較することにより、構造物が誠設計情報通りに作成されたか否か検査する(ステップS104)。
次に、制御装置630の検査部632は、作成された構造物が良品であるか否かを判定する(ステップS105)。構造物製造システム700は、作成された構造物が良品であると検査部632が判定した場合(ステップS105 YES)、その処理を終了する。また、検査部632は、作成された構造物が良品でないと判定した場合(ステップS105 NO)、作成された構造物が修復できるか否か判定する(ステップS106)。
構造物製造システム700は、作成された構造物が修復できると検査部632が判定した場合(ステップS106 YES)、リペア装置640が構造物の再加工を実施し(ステップS107)、ステップS103の処理に戻る。構造物製造システム700は、作成された構造物が修復できないと検査部632が判定した場合(ステップS106 No)、その処理を終了する。以上で、構造物製造システム700は、図27に示すフローチャートの処理を終了する。
本実施形態の構造物製造システム700は、上記の実施形態における形状測定装置100が構造物の座標を正確に測定することができるので、作成された構造物が良品であるか否か判定することができる。また、構造物製造システム700は、構造物が良品でない場合、構造物の再加工を実施し、修復することができる。
なお、本実施形態におけるリペア装置640が実行するリペア工程は、成形装置620が成形工程を再実行する工程に置き換えられてもよい。その際には、制御装置630の検査部632が修復できると判定した場合、成形装置620は、成形工程(鍛造、切削等)を再実行する。具体的には、例えば、成形装置620は、構造物において本来切削されるべき箇所であって切削されていない箇所を切削する。これにより、構造物製造システム700は、構造物を正確に作成することができる。
上記実施形態において、構造物製造システム700は形状測定装置100、設計装置610、加工装置620、制御装置630(検査部632)及びリペア装置640を含んでいた。しかしながら本教示はこのような構成には限られない。例えば、本教示に係る構造物製造システムは少なくとも加工装置及び形状測定装置を持っていればよい。
本発明は、製造された構造物が良品であるか否かを判定できる構造物製造システムに適用することができる。
C1…回転中心軸、C2…中心軸、14…傾斜回転テーブル、15…門型フレーム、20…センサー部、30…移動部、40…回転機構、43…ロック部、44…ロック状態判定部、45…回転指標部、60…回転規制部、91…照射部、92…検出部、91a…ライン光、100…形状測定装置、200…被検物

Claims (21)

  1. 被検物の形状を測定する形状測定装置であって、
    被検物にパターンを投影する投影部と、
    前記投影部による前記パターンの投影方向とは異なる方向から前記パターンの像を撮像し、前記撮像して得られた撮像データから前記被検物の表面上の位置を測定する測定部と、
    前記被検物を、2方向に回転可能な被検物回転機構と、
    前記パターンを回転するパターン回転機構を有することを特徴とする形状測定装置。
  2. 請求項1に記載の形状測定装置において、
    前記被検物回転機構は、所定の方向に設定された傾斜軸を中心に、前記パターンの投影方向に対する前記被検物の傾斜角度を変更可能な傾斜機構と、
    前記傾斜軸とは交差する方向に回転軸を有し、前記回転軸を中心に前記被検物を前記投影部に対して回転させる回転機構とを有することを特徴とする形状測定装置。
  3. 請求項2に記載の形状測定装置において、
    前記投影部から投影されたパターンの投影位置を移動させる移動部を有し、
    前記測定部は、前記パターンの投影位置が変わる毎に、前記投影部による前記パターンの投影方向とは異なる方向から前記パターンの像を撮像し、前記撮像データから前記パターンが投影された部位における前記被検物の位置を測定することを特徴とする形状測定装置。
  4. 請求項1から3のうち、いずれか一項に記載の形状測定装置において、
    前記パターン回転機構は、前記被検物に投影されている前記パターンの一部の照射位置を保ちながら、前記パターンの向きが変わるように前記投影部を回転させることを特徴とする形状測定装置。
  5. 請求項1から4のうちいずれか一項に記載の形状測定装置において、
    前記測定部は、前記パターンの像を撮像して前記被検物に照射されたパターンを検出するための撮像データを取得する検出部と、
    前記検出部から取得される撮像データに基づいて被検物の形状を測定する演算処理部を有し、
    前記パターン回転機構は、前記投影部と前記検出部とを合わせて回転することにより、前記パターンを回転させることを特徴とする形状測定装置。
  6. 請求項1から5のうちいずれか一項に記載の形状測定装置において、
    前記投影部から投影されるパターンは、ラインパターンであり、
    前記パターン回転機構は、前記投影部を前記ラインパターンの中心軸を回転中心として回転することを特徴とする形状測定装置。
  7. 請求項1から6のうちいずれか一項に記載の形状測定装置において、
    前記パターン回転機構は、前記パターンの回転角度を示す回転指標部を有することを特徴とする形状測定装置。
  8. 請求項4又は5に記載の形状測定装置において
    前記パターン回転機構は、前記投影部の回転を所定角度ピッチ毎に係止する回転規制部を有することを特徴とする形状測定装置。
  9. 請求項2に記載の形状測定装置において、
    前記移動部は、前記傾斜機構及び前記回転機構を跨ぐ門柱型構造の移動機構を有することを特徴とする形状測定装置。
  10. 請求項5又は8に記載の形状測定装置において、
    前記パターン回転機構は、前記投影部及び検出部の回転をロックするロック部を有することを特徴とする形状測定装置。
  11. 前記パターン回転機構は、前記ロック部のロック状態を判定する判定部を有することを特徴とする請求項10に記載の形状測定装置。
  12. 構造物の製造方法であって、
    設計情報に基づいて前記構造物を作製することと、
    作製された前記構造物を2方向に回転可能な回転機構の上に載置して、前記構造物にパターンを投影しながら、前記パターンの投影方向とは異なる方向から前記パターンの像を撮影することで前記構造物の形状情報を取得することと、
    前記測定により得られた前記形状情報と前記設計情報とを比較することとを含み、
    前記構造物の形状を測定する際に、前記構造物の形状に応じて前記構造物に投影されたパターンの向きを回転させて前記構造物の形状を測定する構造物の製造方法。
  13. 前記パターンの向きを回転させる際には、前記パターンを投影するための投影部と、前記パターンの像を撮影して前記構造物に照射されたパターンを検出するための撮像データを取得する検出部とを合わせて回転させる請求項12に記載の構造物の製造方法。
  14. 前記比較の結果に基づいて、前記構造物の再加工を実施することを含む請求項13に記載の構造物の製造方法。
  15. 前記再加工は、前記構造物を作製することを再実行することを含む請求項14に記載の構造物の製造方法。
  16. 構造物を製造する構造物製造システムであって、
    前記構造物を作製する加工装置と、
    前記加工装置によって作製された前記構造物の形状を測定して前記構造物の形状情報を取得する請求項1〜11のいずれか一項に記載の形状測定装置とを備える構造物製造システム。
  17. さらに、前記形状測定装置によって測定された前記構造物の前記形状情報を記憶する記憶部を有する制御装置を備える請求項16に記載の構造物製造システム。
  18. さらに、前記構造物に関する設計情報を作製する設計装置を備え、
    前記加工装置は、前記設計装置によって作製された前記設計情報に基づいて前記構造物を作製し、
    前記制御装置は、前記設計情報と前記形状情報とを比較して、前記構造物が前記設計情報通りに加工されたかどうかを判定する検査部を有する請求項17に記載の構造物製造システム。
  19. 前記検査部は、前記構造物が前記設計情報通りに加工されていないと判断したときに、さらに、前記構造物が修復可能かどうかを判断し、
    前記構造物製造システムは、さらに、前記検査部が、前記構造物が修復可能であると判断したときに、前記構造物を修復するリペア装置を備える請求項18に記載の構造物製造システム。
  20. 前記検査部は、前記構造物が修復可能であると判断したときに、前記設計情報と前記形状情報との比較に基づいて、前記構造物の不良部位及び修復量を示す修復情報を作製し、前記リペア装置は前記修復情報に基づいて前記構造物を修復する請求項19に記載の構造物製造システム。
  21. 被検物の形状を測定する形状測定装置であって、
    投影方向から被検物にパターンを投影する投影部と、
    前記投影方向とは異なる方向から前記パターンの像を撮像し、前記撮像して得られた撮像データから前記被検物の表面上の位置を測定する測定部と、
    前記被検物を、2方向に回転可能な被検物回転機構と、
    被検物の形状情報を取得する形状情報取得部と、
    前記形状情報取得部によって取得された前記形状情報に基づいて前記被検物回転機構に相対して前記パターンを回転させる自動パターン回転部とを備えることを特徴とする形状測定装置。
JP2013519880A 2010-10-27 2011-10-14 形状測定装置、構造物の製造方法及び構造物製造システム Pending JP2013542401A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013519880A JP2013542401A (ja) 2010-10-27 2011-10-14 形状測定装置、構造物の製造方法及び構造物製造システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010240963 2010-10-27
JP2010240963 2010-10-27
PCT/JP2011/074242 WO2012057008A1 (en) 2010-10-27 2011-10-14 Profile measuring apparatus, method for manufacturing structure, and structure manufacturing system
JP2013519880A JP2013542401A (ja) 2010-10-27 2011-10-14 形状測定装置、構造物の製造方法及び構造物製造システム

Publications (1)

Publication Number Publication Date
JP2013542401A true JP2013542401A (ja) 2013-11-21

Family

ID=44993155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013519880A Pending JP2013542401A (ja) 2010-10-27 2011-10-14 形状測定装置、構造物の製造方法及び構造物製造システム

Country Status (7)

Country Link
US (1) US9086272B2 (ja)
EP (1) EP2633268B1 (ja)
JP (1) JP2013542401A (ja)
KR (1) KR20130129954A (ja)
CN (1) CN103229018A (ja)
TW (1) TW201229454A (ja)
WO (1) WO2012057008A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015114235A (ja) * 2013-12-12 2015-06-22 株式会社ニコン センサユニット、形状測定装置、及び構造物製造システム
JP2015152585A (ja) * 2014-02-19 2015-08-24 小林 茂樹 金属表面の形状測定装置及び形状検査装置
JP2018066767A (ja) * 2018-02-06 2018-04-26 株式会社ニコン 形状測定装置、構造物製造システム、及び形状測定方法
US11806810B2 (en) 2014-11-14 2023-11-07 Nikon Corporation Shaping apparatus and shaping method
US11911844B2 (en) 2014-11-14 2024-02-27 Nikon Corporation Shaping apparatus and shaping method
JP7468559B2 (ja) 2020-06-22 2024-04-16 株式会社ニコン 造形装置及び造形方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8307528B2 (en) * 2009-10-05 2012-11-13 Sonnax Industries, Inc. Low clearance machined part mating system
US9339691B2 (en) 2012-01-05 2016-05-17 Icon Health & Fitness, Inc. System and method for controlling an exercise device
CN103962418B (zh) * 2013-01-28 2016-02-03 鸿准精密模具(昆山)有限公司 整形装置
CN104028944B (zh) * 2013-03-08 2016-08-10 鸿准精密模具(昆山)有限公司 整形装置及其定位机构
US9254409B2 (en) 2013-03-14 2016-02-09 Icon Health & Fitness, Inc. Strength training apparatus with flywheel and related methods
JP6176957B2 (ja) * 2013-03-18 2017-08-09 株式会社ミツトヨ 形状測定装置
EP2884225B1 (en) * 2013-06-28 2020-11-18 Unimetrik, S.A. Laser sensor with a built-in rotary mechanism
CN105452802B (zh) * 2013-07-19 2019-02-01 株式会社尼康 形状测定装置、构造物制造系统、形状测定方法、构造物制造方法、形状测定程序、以及记录介质
US9403047B2 (en) 2013-12-26 2016-08-02 Icon Health & Fitness, Inc. Magnetic resistance mechanism in a cable machine
WO2015138339A1 (en) 2014-03-10 2015-09-17 Icon Health & Fitness, Inc. Pressure sensor to quantify work
TWI493153B (zh) * 2014-04-08 2015-07-21 Ind Tech Res Inst 非接觸式物件空間資訊量測裝置與方法及取像路徑的計算方法
US10426989B2 (en) 2014-06-09 2019-10-01 Icon Health & Fitness, Inc. Cable system incorporated into a treadmill
WO2015195965A1 (en) 2014-06-20 2015-12-23 Icon Health & Fitness, Inc. Post workout massage device
US10391361B2 (en) 2015-02-27 2019-08-27 Icon Health & Fitness, Inc. Simulating real-world terrain on an exercise device
US10857674B2 (en) * 2015-04-28 2020-12-08 Seiko Epson Corporation Robot system and robot
CN104880169B (zh) * 2015-05-04 2018-01-16 四川大学 一种XYZ‑β四维扫描探针微形貌测量系统
CN105081884B (zh) * 2015-08-24 2023-08-04 成都飞机工业(集团)有限责任公司 一种旋转扫描3d成型的法向测量装置
US10625137B2 (en) 2016-03-18 2020-04-21 Icon Health & Fitness, Inc. Coordinated displays in an exercise device
US10493349B2 (en) 2016-03-18 2019-12-03 Icon Health & Fitness, Inc. Display on exercise device
US10272317B2 (en) 2016-03-18 2019-04-30 Icon Health & Fitness, Inc. Lighted pace feature in a treadmill
US10671705B2 (en) 2016-09-28 2020-06-02 Icon Health & Fitness, Inc. Customizing recipe recommendations
TWI636234B (zh) * 2016-12-13 2018-09-21 由田新技股份有限公司 外形量測方法、外形量測設備及形變檢測設備
DK3367053T3 (da) * 2017-02-27 2021-05-10 Kulzer & Co Gmbh 3d-scanner med gyroskopsensor
EP3610971A4 (en) 2017-03-31 2021-02-17 Nikon Corporation PROCESSING METHOD AND PROCESSING SYSTEM
CN110709195B (zh) 2017-03-31 2022-05-03 株式会社尼康 造型系统及造型方法
WO2018203362A1 (ja) 2017-05-01 2018-11-08 株式会社ニコン 加工装置及び加工方法
JP2020537237A (ja) * 2017-10-08 2020-12-17 マジック アイ インコーポレイテッド 縦グリッドパターンを使用した距離測定
TWI662248B (zh) * 2018-04-02 2019-06-11 China University Of Science And Technology 三維空間觸控面板雙指檢測方法與系統
EP3803266A4 (en) * 2018-06-06 2022-03-09 Magik Eye Inc. DISTANCE MEASUREMENT USING HIGH DENSITY PROJECTION PATTERNS
US10885622B2 (en) * 2018-06-29 2021-01-05 Photogauge, Inc. System and method for using images from a commodity camera for object scanning, reverse engineering, metrology, assembly, and analysis
US11483503B2 (en) 2019-01-20 2022-10-25 Magik Eye Inc. Three-dimensional sensor including bandpass filter having multiple passbands
US11474209B2 (en) 2019-03-25 2022-10-18 Magik Eye Inc. Distance measurement using high density projection patterns
US11320537B2 (en) 2019-12-01 2022-05-03 Magik Eye Inc. Enhancing triangulation-based three-dimensional distance measurements with time of flight information
CN113203431B (zh) * 2021-07-05 2021-09-07 徐州立宁电子科技有限公司 一种用于车载显示屏的触摸传感器检测用操作装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04278407A (ja) * 1991-03-06 1992-10-05 Fujitsu Ltd 全方向型光切断形状計測装置
JPH05322527A (ja) * 1992-05-15 1993-12-07 Kanto Auto Works Ltd 三次元形状測定装置
JPH08136224A (ja) * 1994-11-09 1996-05-31 Tokai Rika Co Ltd 寸法測定器
JPH08327337A (ja) * 1995-06-02 1996-12-13 Technol Res Assoc Of Medical & Welfare Apparatus 3次元形状測定装置
JP2002066771A (ja) * 2000-08-16 2002-03-05 Toshiba Corp レーザ装置
JP2004085221A (ja) * 2002-08-23 2004-03-18 Hoya Corp プレス用成形型及びレンズの製造方法
JP2006064463A (ja) * 2004-08-25 2006-03-09 Sanyo Electric Co Ltd 形状測定装置および形状測定方法
JP2010216939A (ja) * 2009-03-16 2010-09-30 Nikon Corp 三次元形状測定装置

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3751647A (en) * 1971-09-22 1973-08-07 Ibm Semiconductor and integrated circuit device yield modeling
US3826558A (en) * 1972-07-21 1974-07-30 Us Air Force Mechanical rotary tilt stage
US4122525A (en) * 1976-07-12 1978-10-24 Eaton-Leonard Corporation Method and apparatus for profile scanning
JPS62239005A (ja) * 1986-04-11 1987-10-19 Fuji Photo Film Co Ltd 表面形状検査装置
US4895448A (en) * 1988-01-13 1990-01-23 Laird Richard P Method and apparatus for determining the surface quality of an object
JP2751435B2 (ja) * 1989-07-17 1998-05-18 松下電器産業株式会社 電子部品の半田付状態の検査方法
GB9114946D0 (en) 1991-07-11 1991-08-28 Renishaw Metrology Ltd Probe head
US5521707A (en) 1991-08-21 1996-05-28 Apeiron, Inc. Laser scanning method and apparatus for rapid precision measurement of thread form
DE4134546A1 (de) * 1991-09-26 1993-04-08 Steinbichler Hans Verfahren und vorrichtung zur bestimmung der absolut-koordinaten eines objektes
DE4208455A1 (de) * 1992-03-17 1993-09-23 Peter Dr Ing Brueckner Verfahren und anordnung zur beruehrungslosen dreidimensionalen messung
EP0671679B1 (de) 1994-03-07 2000-01-26 INTECU Gesellschaft für Innovation, Technologie und Umwelt mbH Vorrichtung und Verfahren zum berührungslosen Vermessen dreidimensionaler Objekte auf der Basis optischer Triangulation
US5848188A (en) * 1994-09-08 1998-12-08 Ckd Corporation Shape measure device
US5671056A (en) 1995-05-11 1997-09-23 Technology Research Association Of Medical & Welfare Apparatus Three-dimensional form measuring apparatus and method
US6044170A (en) * 1996-03-21 2000-03-28 Real-Time Geometry Corporation System and method for rapid shape digitizing and adaptive mesh generation
US5988862A (en) * 1996-04-24 1999-11-23 Cyra Technologies, Inc. Integrated system for quickly and accurately imaging and modeling three dimensional objects
US6556783B1 (en) * 1997-01-16 2003-04-29 Janet L. Gelphman Method and apparatus for three dimensional modeling of an object
US5886775A (en) * 1997-03-12 1999-03-23 M+Ind Noncontact digitizing imaging system
US6081739A (en) * 1998-05-21 2000-06-27 Lemchen; Marc S. Scanning device or methodology to produce an image incorporating correlated superficial, three dimensional surface and x-ray images and measurements of an object
US6396069B1 (en) 1999-06-25 2002-05-28 Macpherson David C. Topographer for real time ablation feedback having synthetic wavelength generators
DE19950780C2 (de) 1999-10-21 2003-06-18 Sirona Dental Systems Gmbh Verfahren und Vorrichtung zur Erfassung medizinischer Objekte, insbesondere von Modellen präparierter Zähne
DE10006753A1 (de) 2000-02-15 2001-08-16 Zeiss Carl Dreh-Schwenkeinrichtung für den Tastkopf eines Koordinatenmeßgerätes
US6377353B1 (en) * 2000-03-07 2002-04-23 Pheno Imaging, Inc. Three-dimensional measuring system for animals using structured light
US6986636B2 (en) * 2000-06-09 2006-01-17 Brooks Automation, Inc. Device for positioning disk-shaped objects
FR2814807B1 (fr) 2000-10-04 2003-01-03 Laurent Senee Dispositif et procede de determination de coordonnees surfacique et leurs utilisations
US7061628B2 (en) * 2001-06-27 2006-06-13 Southwest Research Institute Non-contact apparatus and method for measuring surface profile
CN1437000A (zh) 2002-02-09 2003-08-20 沈阳同联集团高新技术有限公司 投影栅线测量物体三维表面形状的方法和装置
JP4085671B2 (ja) * 2002-03-29 2008-05-14 コニカミノルタホールディングス株式会社 データ処理方法、データ処理プログラムおよび記録媒体
DE10233372B4 (de) 2002-07-18 2004-07-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Messsystem und Verfahren zur Erfassung geometrischer Größen
DE10260670B4 (de) 2002-12-23 2007-04-05 Carl Zeiss Industrielle Messtechnik Gmbh Vorrichtung zum optischen Abtasten von Werkstücken
US20050068544A1 (en) 2003-09-25 2005-03-31 Gunter Doemens Panoramic scanner
DE10344922B4 (de) * 2003-09-25 2008-06-26 Siemens Audiologische Technik Gmbh Rundum-Scanner
US7676077B2 (en) * 2005-11-18 2010-03-09 Kla-Tencor Technologies Corp. Methods and systems for utilizing design data in combination with inspection data
CN1971205A (zh) * 2006-12-08 2007-05-30 华中科技大学 一种便携式面结构光逆向测量系统
US8146024B2 (en) * 2006-12-18 2012-03-27 Cadence Design Systems, Inc. Method and system for process optimization
JP2009053184A (ja) 2007-07-30 2009-03-12 Hexagon Metrology Kk 非接触センサ用回転ユニット及び非接触センサ用回転装置
JP5287266B2 (ja) 2009-01-09 2013-09-11 株式会社ニコン 測定装置
CN101476881B (zh) * 2009-01-23 2010-09-15 清华大学 一字激光立旋式三维形貌测量装置及其方法
JP5448634B2 (ja) 2009-08-11 2014-03-19 オークマ株式会社 機械の誤差同定方法およびプログラム
DE202009011060U1 (de) 2009-09-25 2010-01-28 Amann Girrbach Ag Halteeinrichtung zum Einscannen eines Oberkiefermodells und eines Unterkiefermodells
DE102010020654A1 (de) 2010-05-07 2011-11-10 Carl Zeiss Industrielle Messtechnik Gmbh Tastkopf für ein Koordinatenmessgerät zum Bestimmen von Raumkoordinaten an einem Messobjekt
US20120194651A1 (en) 2011-01-31 2012-08-02 Nikon Corporation Shape measuring apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04278407A (ja) * 1991-03-06 1992-10-05 Fujitsu Ltd 全方向型光切断形状計測装置
JPH05322527A (ja) * 1992-05-15 1993-12-07 Kanto Auto Works Ltd 三次元形状測定装置
JPH08136224A (ja) * 1994-11-09 1996-05-31 Tokai Rika Co Ltd 寸法測定器
JPH08327337A (ja) * 1995-06-02 1996-12-13 Technol Res Assoc Of Medical & Welfare Apparatus 3次元形状測定装置
JP2002066771A (ja) * 2000-08-16 2002-03-05 Toshiba Corp レーザ装置
JP2004085221A (ja) * 2002-08-23 2004-03-18 Hoya Corp プレス用成形型及びレンズの製造方法
JP2006064463A (ja) * 2004-08-25 2006-03-09 Sanyo Electric Co Ltd 形状測定装置および形状測定方法
JP2010216939A (ja) * 2009-03-16 2010-09-30 Nikon Corp 三次元形状測定装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015114235A (ja) * 2013-12-12 2015-06-22 株式会社ニコン センサユニット、形状測定装置、及び構造物製造システム
JP2015152585A (ja) * 2014-02-19 2015-08-24 小林 茂樹 金属表面の形状測定装置及び形状検査装置
US11806810B2 (en) 2014-11-14 2023-11-07 Nikon Corporation Shaping apparatus and shaping method
US11911844B2 (en) 2014-11-14 2024-02-27 Nikon Corporation Shaping apparatus and shaping method
JP2018066767A (ja) * 2018-02-06 2018-04-26 株式会社ニコン 形状測定装置、構造物製造システム、及び形状測定方法
JP7468559B2 (ja) 2020-06-22 2024-04-16 株式会社ニコン 造形装置及び造形方法

Also Published As

Publication number Publication date
EP2633268A1 (en) 2013-09-04
CN103229018A (zh) 2013-07-31
KR20130129954A (ko) 2013-11-29
US20120105867A1 (en) 2012-05-03
EP2633268B1 (en) 2018-09-26
US9086272B2 (en) 2015-07-21
WO2012057008A1 (en) 2012-05-03
TW201229454A (en) 2012-07-16

Similar Documents

Publication Publication Date Title
JP2013542401A (ja) 形状測定装置、構造物の製造方法及び構造物製造システム
TWI623724B (zh) Shape measuring device, structure manufacturing system, stage system, shape measuring method, structure manufacturing method, shape measuring program, and computer readable recording medium
JP3678915B2 (ja) 非接触三次元測定装置
TW201341756A (zh) 形狀測定裝置、形狀測定方法、及記錄有其程式之記錄媒體
JP2013064644A (ja) 形状測定装置、形状測定方法、構造物製造システム及び構造物の製造方法
JP2014509730A (ja) 形状測定装置、形状測定方法、及び構造物の製造方法
JP2008026165A (ja) タイヤ検査用基準形状データの作成装置および作成方法
JP2010281621A (ja) 三次元形状計測装置
US20090323081A1 (en) Jig for measuring an object shape and method for measuring a three-dimensional shape
JP3678916B2 (ja) 非接触三次元測定方法
JP2015072197A (ja) 形状測定装置、構造物製造システム、形状測定方法、構造物製造方法、及び形状測定プログラム
JP3602965B2 (ja) 非接触三次元測定方法
JP2010256151A (ja) 形状測定方法
JP6205727B2 (ja) 形状測定方法、構造物製造方法、形状測定プログラム、光学式形状測定装置、及び構造物製造システム
JP2012093238A (ja) 形状測定装置
JP6702343B2 (ja) 形状測定装置、構造物製造システム、及び形状測定方法
JP6248510B2 (ja) 形状測定装置、構造物製造システム、形状測定方法、構造物製造方法、形状測定プログラム、及び記録媒体
JP4791568B2 (ja) 3次元測定装置
JP2005172610A (ja) 3次元測定装置
JP6476957B2 (ja) 形状測定装置および構造物の測定方法
JP6252178B2 (ja) 形状測定装置、姿勢制御装置、構造物製造システム、及び、形状測定方法
JP6287153B2 (ja) センサユニット、形状測定装置、及び構造物製造システム
JP2012093237A (ja) 誤差分布算出方法、形状測定方法、および形状測定装置
JP2012093258A (ja) 形状測定装置
JP2005214807A (ja) 格子投影型モアレ装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141125