JP2013178251A - シンチレータパネルとその製造方法 - Google Patents

シンチレータパネルとその製造方法 Download PDF

Info

Publication number
JP2013178251A
JP2013178251A JP2013078426A JP2013078426A JP2013178251A JP 2013178251 A JP2013178251 A JP 2013178251A JP 2013078426 A JP2013078426 A JP 2013078426A JP 2013078426 A JP2013078426 A JP 2013078426A JP 2013178251 A JP2013178251 A JP 2013178251A
Authority
JP
Japan
Prior art keywords
scintillator panel
phosphor
substrate
layer
scintillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013078426A
Other languages
English (en)
Other versions
JP5668776B2 (ja
Inventor
Takehiko Shoji
武彦 庄子
Yasushi Nakano
寧 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2013078426A priority Critical patent/JP5668776B2/ja
Publication of JP2013178251A publication Critical patent/JP2013178251A/ja
Application granted granted Critical
Publication of JP5668776B2 publication Critical patent/JP5668776B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • G21K2004/06Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens with a phosphor layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/266Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension of base or substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31721Of polyimide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]

Landscapes

  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Measurement Of Radiation (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)

Abstract

【課題】鮮鋭性や粒状性に優れたシンチレータパネルであって、当該シンチレータパネルと平面受光素子面の面内均一接触が可能で、シンチレータパネル面−平面受光素子面間での鮮鋭性の劣化が少ないシンチレータパネルを提供する。さらに当該シンチレータパネルの製造方法を提供する。
【解決手段】蛍光体柱状結晶からなる蛍光体層を含み、平面受光素子とともに放射線画像検出器を構成するために用いられるシンチレータパネルであって、
当該蛍光体柱状結晶の先端部が、蛍光体柱状結晶の融点よりも低い温度で熱処理されたものであることを特徴とするシンチレータパネル。
【選択図】なし

Description

本発明は被写体の放射線画像を形成する際に用いられるシンチレータパネルとその製造方法に関する。
従来、X線画像のような放射線画像は医療現場において病状の診断に広く用いられている。特に、増感紙−フィルム系による放射線画像は、長い歴史のなかで高感度化と高画質化が図られた結果、高い信頼性と優れたコストパフォーマンスを併せ持った撮像システムとして、今なお、世界中の医療現場で用いられている。しかしながらこれら画像情報はいわゆるアナログ画像情報であって、近年発展を続けているデジタル画像情報のような、自由な画像処理や瞬時の電送が出来ない。
そして、近年ではコンピューテッドラジオグラフィ(computed radiography:CR)やフラットパネル型の放射線ディテクタ(flat panel detector:FPD)等に代表されるデジタル方式の放射線画像検出装置が登場している。これらは、デジタルの放射線画像が直接得られ、陰極管や液晶パネル等の画像表示装置に画像を直接表示することが可能なので、必ずしも写真フィルム上への画像形成が必要なものではない。その結果、これらのデジタル方式のX線画像検出装置は、銀塩写真方式による画像形成の必要性を低減させ、病院や診療所での診断作業の利便性を大幅に向上させている。
X線画像のデジタル技術の一つとしてコンピューテッド・ラジオグラフィ(CR)が現在医療現場で受け入れられている。しかしながら鮮鋭性が十分でなく空間分解能も不十分であり、スクリーン・フィルムシステムの画質レベルには到達していない。そして、更に新たなデジタルX線画像技術として、例えば雑誌Physics Today,1997年11月号24頁のジョン・ローランズ論文"Amorphous Semiconductor Usher in Digital X−ray Imaging"や、雑誌SPIEの1997年32巻2頁のエル・イー・アントヌクの論文"Development of aHigh Resolution,Active Matrix,Flat−Panel Imager with Enhanced Fill Factor"等に記載された、薄膜トランジスタ(TFT)を用いた平板X線検出装置(FPD)が開発されている。
放射線を可視光に変換するために、放射線により発光する特性を有するX線蛍光体で作られたシンチレータパネルが使用されるが、低線量の撮影においてのSN比を向上するためには、発光効率の高いシンチレータパネルを使用することが必要になってくる。一般にシンチレータパネルの発光効率は、蛍光体層(シンチレータ層)の厚さ、蛍光体のX線吸収係数によって決まるが、蛍光体層の厚さは厚くすればするほど、蛍光体層内での発光光の散乱が発生し、鮮鋭性は低下する。そのため、画質に必要な鮮鋭性を決めると、膜厚が決定する。
なかでもヨウ化セシウム(CsI)はX線から可視光に対する変更率が比較的高く、蒸着によって容易に蛍光体を柱状結晶構造に形成出来るため、光ガイド効果により結晶内での発光光の散乱が抑えられ、蛍光体層の厚さを厚くすることが可能であった。
しかしながらCsIのみでは発光効率が低いために、例えば特公昭54−35060号公報に記載の方法の如く、CsIとヨウ化ナトリウム(NaI)を任意のモル比で混合したものを、蒸着を用いて基板上にナトリウム賦活ヨウ化セシウム(CsI:Na)として堆積、又近年ではCsIとヨウ化タリウム(TlI)を任意のモル比で混合したしたものを、蒸着を用いて基板上にタリリウム賦活ヨウ化セシウム(CsI:Tl)として堆積したものに、200℃〜500℃の温度で熱処理を行うことで可視変換効率を向上させ、X線蛍光体として使用している。
また他の光出力を増大する手段として、蛍光体層(シンチレータ層)を形成する基板を反射性とする方法(例えば特許文献1参照。)、基板上に反射層を設ける方法(例えば特許文献2参照。)、基板上に設けられた反射性金属薄膜と、金属薄膜を覆う透明有機膜上に蛍光体層を形成する方法(例えば特許文献3参照。)などが提案されているが、これらの方法は得られる光量は増加するが、平面受光素子であるTFTから距離が離れた位置のシンチレータ部分からの発光強度を増加するために、鮮鋭性が著しく低下するという欠点がある。
またシンチレータパネルを平面受光素子面上に配置するにあたっては、例えば特開平6−331749号公報に記載の方法があるがこれは生産効率が悪く、シンチレータパネルと平面受光素子面での鮮鋭性の劣化は避けられない。また特開2002−243859号公報にはシンチレータ表面の凸部を除去して配置する方法が記載されているが、この方法ではシンチレータ表面の凸部は除去されるが、シンチレータの発光効率の向上は得られない。
従来、気体層法によるシンチレータの製造方法としては、アルミやアモルファスカーボンなど剛直な基板上に蛍光体層を形成し、その上にシンチレータの表面全体を保護膜で被覆させることが一般的である(例えば特許文献4参照。)。しかしながら、自由に曲げることのできないこれらの基板上に蛍光体層を形成した場合、シンチレータパネルと平面受光素子面を貼り合せる際に、基板の変形や蒸着時の反りなどの影響を受け、フラットパネルデテイクタの受光面内で均一な画質特性が得られないという欠点がある。この問題は近年のフラットパネルデテイクタの大型化に伴い深刻化してきている。
この問題を回避するために撮像素子上に直接、蒸着でシンチレータを形成する方法や、鮮鋭性の低いが、可とう性を有する医用増感紙などをシンチレータパネルの代用として用いることが一般的に行われている。また、保護層としてポリパラキシリレン等の柔軟な保護層を使用した例が示されている(例えば特許文献5参照。)
しかしながら、基板として使用しているアルミやアモルファスカーボンなどは剛直であり、基板の凹凸や反りなどの影響により、シンチレータパネル面と平面受光素子面の均一接触は達成し難い。
また、高分子フイルムなどの可とう性を有する基板に、蒸着でシンチレータを形成する方法も考えられるが、柱状結晶に起因する表面の凹凸により良好な粒状性が得られないという欠点や高温での後処理が困難であるという欠点があった。
この様な状況から、粒状性や鮮鋭性に優れ、シンチレータパネルと平面受光素子面間での鮮鋭性の劣化が少ない放射線フラットパネルデテイクタを開発することが望まれている。
特公平7−21560号公報 特公平1−240887号公報 特開2000−356679号公報 特許第3566926号公報 特開2002−116258号公報
本発明は、上記問題・状況を鑑みてなされたものであり、その解決課題は、鮮鋭性や粒状性に優れたシンチレータパネルであって、当該シンチレータパネルと平面受光素子面の面内均一接触が可能で、シンチレータパネル面−平面受光素子面間での鮮鋭性の劣化が少ないシンチレータパネルを提供することである。さらに当該シンチレータパネルの製造方法を提供することである。
本発明者は、上記課題を解決すべく鋭意検討した結果、光学的カップリングにおいて、シンチレータパネルの蛍光体面の平面性が悪いと粒状性の高い画像が得られず、また受光素子と接する側の蛍光体層の輝度が低いと鮮鋭性の高い画像が得られないという知見を得て、本発明に至った。
すなわち、本発明に係る上記課題は下記手段により解決される。
1.高分子フイルム基板上に蛍光体柱状結晶からなる蛍光体層を設けて成り、平面受光素子とともに放射線画像検出器を構成するために用いられるシンチレータパネルであって、当該蛍光体柱状結晶の先端部が圧熱処理により平坦化されていることを特徴とするシンチレータパネル。
2.前記高分子フイルム基板が、厚さ50μm以上500μm以下の高分子フイルムからなることを特徴とする前記1に記載のシンチレータパネル。
3.前記平坦化のための圧熱処理が、温度200℃以上440℃以下の熱ローラーによる圧熱処理であることを特徴とする前記1又は2に記載のシンチレータパネル。
4.前記高分子フイルムがポリイミド又はポリエチレンナフタレートを含有する高分子フイルムであることを特徴とする前記2又は3に記載のシンチレータパネル。
5.前記蛍光体層がヨウ化セシウムとタリウムを含む添加剤を原材料として形成されたことを特徴とする前記1から4までのいずれか一項に記載のシンチレータパネル。
6.前記1から4までのいずれか一項に記載のシンチレータパネルの製造方法であって、蛍光体柱状結晶の先端部の平坦化を、温度200℃以上440℃以下の熱ローラーによる圧熱処理で行う工程を有することを特徴とするシンチレータパネルの製造方法。
本発明の上記手段により、鮮鋭性や粒状性に優れたシンチレータパネルであって、かつ当該シンチレータパネルと平面受光素子面の面内均一接触が可能で、シンチレータパネル面−平面受光素子面間での鮮鋭性の劣化が少ないシンチレータパネルを提供することができる。さらに当該シンチレータパネルの製造方法を提供することができる。
本発明の効果は、温度200℃以上440℃以下に制御された熱ローラーにより、柱状先端部のみを平坦化することで、光ガイド効果を損なうことなく、柱状先端の熱圧縮部の輝度が向上し鮮鋭性が向上すること、及び受光素子とのシンチレータパネル接触が均一になり粒状性が向上することに起因する。尚、柱状先端の熱圧縮部の輝度が増大することで鮮鋭性が向上するのは、平面受光素子から距離が近い位置の蛍光体(シンチレータ)からの発光光の割合が多くなる為である。
放射線用シンチレータパネル10の概略構成を示す断面図 放射線用シンチレータパネル10の拡大断面図 蒸着装置61の概略構成を示す図 放射線画像検出器100の概略構成を示す一部破断斜視図 撮像パネル51の拡大断面図
本発明のシンチレータパネルは、高分子フイルム基板上に蛍光体柱状結晶からなる蛍光体層を設けて成り、平面受光素子とともに放射線画像検出器を構成するために用いられるシンチレータパネルであって、当該蛍光体柱状結晶の先端部が圧熱処理により平坦化されていることを特徴とする。この特徴は、上記1.〜6.に係る発明に共通する技術的特徴である。
なお、本願において、「平坦化されている」とは、後述する圧熱処理により、蛍光体表面の凹凸が低減され、当該蛍光体表面の平均粗さ(Ra)[JIS B 0601:2001に準拠]が1.0μm以下になっている状態をいう。
以下、本発明と構成要素等について詳細な説明をする。
(シンチレータパネルの構成)
本発明のシンチレータパネルは、高分子フイルム基板上に柱状結晶からなる蛍光体層を設けて成るシンチレータパネルであるが、基板と蛍光体層の間に下引層を有する態様が好ましい。また基板上に反射層を設け、反射層、下引層、及び蛍光体層の構成であってもよい。以下、各構成層及び構成要素等について説明する。
(蛍光体層:シンチレータ層)
本発明に係る蛍光体層(「シンチレータ層」ともいう。)は、蛍光体柱状結晶からなる蛍光体層であることを特徴とする。また、当該蛍光体柱状結晶の先端部が圧熱処理により平坦化されていることを特徴とする。
蛍光体層を形成する材料としては、種々の公知の蛍光体材料を使用することができるが、X線から可視光に対する変更率が比較的高く、蒸着によって容易に蛍光体を柱状結晶構造に形成出来るため、光ガイド効果により結晶内での発光光の散乱が抑えられ、蛍光体層の厚さを厚くすることが可能であることから、ヨウ化セシウム(CsI)が好ましい。
但し、CsIのみでは発光効率が低いために、各種の賦活剤が添加される。例えば、特公昭54−35060号公報の如く、CsIとヨウ化ナトリウム(NaI)を任意のモル比で混合したものが挙げられる。また、例えば特開2001−59899号公報に開示されているようなCsIを蒸着で、タリウム(Tl)、ユウロピウム(Eu)、インジウム(In)、リチウム(Li)、カリウム(K)、ルビジウム(Rb)、ナトリウム(Na)などの賦活物質を含有するCsIが好ましい。本発明においては、特に、タリウム(Tl)、ユウロピウム(Eu)が好ましい。更に、タリウム(Tl)が好ましい。
なお、本発明においては、特に、1種類以上のタリウム化合物を含む添加剤とヨウ化セシウムとを原材料とすることが好ましい。すなわち、タリウム賦活ヨウ化セシウム(CsI:Tl)は400nmから750nmまでの広い発光波長をもつことから好ましい。
本発明に係る1種類以上のタリウム化合物を含有する添加剤のタリウム化合物としては、種々のタリウム化合物(+Iと+IIIの酸化数の化合物)を使用することができる。
本発明において、好ましいタリウム化合物は、臭化タリウム(TlBr)、塩化タリウム(TlCl)、又はフッ化タリウム(TlF,TlF3)等である。
また、本発明に係るタリウム化合物の融点は、400〜700℃の範囲内にあることが好ましい。700℃以内を超えると、柱状結晶内での添加剤が不均一に存在してしまい、発光効率が低下する。なお、本発明での融点とは、常温常圧下における融点である。
本発明に係る蛍光体層において、当該添加剤の含有量は目的性能等に応じて、最適量にすることが望ましいが、ヨウ化セシウムの含有量に対して、0.001〜50mol%、更に0.1〜10.0mol%であることが好ましい。
ここで、ヨウ化セシウムに対し、添加剤が0.001mol%未満であると、ヨウ化セシウム単独使用で得られる発光輝度と大差なく、目的とする発光輝度を得ることができない。また、50mol%を超えるとヨウ化セシウムの性質・機能を保持することができない。
なお、本発明においては、高分子フィルム上に蛍光体(シンチレータ)の原料の蒸着により蛍光体層を形成した後に、蛍光体表面を温度200℃以上440℃以下の熱ローラーによる圧熱処理を実施し、蛍光体柱状結晶の先端部を平坦化することを特徴とする。
これにより、基板である高分子フイルムの耐熱温度以上の温度で蛍光体表面を熱処理することが可能となり、鮮鋭性に寄与の大きい表面部の輝度を向上できる。好ましくは、基板である高分子フイルム側を低温化しておくことで、高分子フイルム側のダメージは軽減される。またこの圧縮処理により蛍光体表面の均一性が向上し、粒状性も向上する。これにより輝度、鮮鋭性、粒状性にすぐれたシンチレータパネルを実現することができる。
(反射層)
本発明においては、高分子基板上には反射層を設けることが好ましい、蛍光体(シンチレータ)から発した光を反射して、光の取り出し効率を高めるためのものである。当該反射層は、Al,Ag,Cr,Cu,Ni,Ti,Mg,Rh,Pt及びAuからなる元素群の中から選ばれるいずれかの元素を含む材料により形成されることが好ましい。特に、上記の元素からなる金属薄膜、例えば、Ag膜、Al膜などを用いることが好ましい。また、このような金属薄膜を2層以上形成するようにしても良い。
(下引層)
本発明においては、基板と蛍光体層の間、又は反射層と蛍光体層の間に膜付の観点から、下引き層を設けることが好ましい。当該下引層は、高分子結合材(バインダー)、分散剤等を含有することが好ましい。なお、下引層の厚さは、0.5〜4μmが好ましい、4μm以上になると下引層内での光散乱が大きくなり鮮鋭性が悪化する。また下引層の厚さが5μmより大きくなると熱処理より柱状結晶性の乱れが発生する。以下、下引層の構成要素について説明する。
〈高分子結合材〉
本発明に係る下引層は、溶剤に溶解又は分散した高分子結合材(以下「バインダー」ともいう。)を塗布、乾燥して形成することが好ましい。高分子結合材としては、具体的には、ポリウレタン、塩化ビニル共重合体、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−塩化ビニリデン共重合体、塩化ビニル−アクリロニトリル共重合体、ブタジエン−アクリロニトリル共重合体、ポリアミド樹脂、ポリビニルブチラール、ポリエステル、セルロース誘導体(ニトロセルロース等)、スチレン−ブタジエン共重合体、各種の合成ゴム系樹脂、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、フェノキシ樹脂、シリコン樹脂、アクリル系樹脂、尿素ホルムアミド樹脂等が挙げられる。なかでもポリウレタン、ポリエステル、塩化ビニル系共重合体、ポリビニールブチラール、ニトロセルロースを使用することが好ましい。
本発明に係る高分子結合材としては、特に蛍光体層との密着の点でポリウレタン、ポリエステル、塩化ビニル系共重合体、ポリビニールブチラール、ニトロセルロースなどが好ましい。また、ガラス転位温度(Tg)が30〜100℃のポリマーであることが、蒸着結晶と基板との膜付の点で好ましい。この観点からは、特にポリエステル樹脂であることが好ましい。
下引層の調製に用いることができる溶剤としては、メタノール、エタノール、n−プロパノール、n−ブタノールなどの低級アルコール、メチレンクロライド、エチレンクロライドなどの塩素原子含有炭化水素、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン、トルエン、ベンゼン、シクロヘキサン、シクロヘキサノン、キシレンなどの芳香族化合物、酢酸メチル、酢酸エチル、酢酸ブチルなどの低級脂肪酸と低級アルコールとのエステル、ジオキサン、エチレングリコールモノエチルエステル、エチレングリコールモノメチルエステルなどのエーテル及びそれらの混合物を挙げることができる。
なお、本発明に係る下引層には、蛍光体(シンチレータ)が発光する光の散乱の防止し、鮮鋭性等を向上させるために顔料や染料を含有させても良い。
(保護層)
本発明に係る保護層は、蛍光体層の保護を主眼とするものである。すなわち、
ヨウ化セシウム(CsI)は、吸湿性が高く露出したままにしておくと空気中の水蒸気を吸湿して潮解してしまうため、これを防止することを主眼とする。
当該保護層は、種々の材料を用いて形成することができる。例えば、CVD法によりポリパラキシリレン膜を形成する。即ち、蛍光体(シンチレータ)及び基板の表面全体にポリパラキシリレン膜を形成し、保護層とすることができる。
また、別の態様の保護層として、蛍光体層上に高分子フィルムを設けることもできる。なお、高分子フィルムの材料としては、後述する基板材料としての高分子フィルムと同様のフィルムを用いることができる。
上記高分子フィルムの厚さは、空隙部の形成性、蛍光体層の保護性、鮮鋭性、防湿性、作業性等を考慮し、12μm以上、120μm以下が好ましく、更には20μm以上、80μm以下が好ましい。また、ヘイズ率は、鮮鋭性、放射線画像ムラ、製造安定性及び作業性等を考慮し、3%以上、40%以下が好ましく、更には3%以上、10%以下が好ましい。ヘイズ率は、例えば、日本電色工業株式会社NDH5000Wにより測定できる。必要とするヘイズ率は、市販されている高分子フィルムから適宜選択し、容易に入手することが可能である。
保護フィルムの光透過率は、光電変換効率、蛍光体(シンチレータ)発光波長等を考慮し、550nmで70%以上あることが好ましいが、99%以上の光透過率のフィルムは工業的に入手が困難であるため実質的に99%〜70%が好ましい。
保護フィルムの透湿度は、蛍光体層の保護性、潮解性等を考慮し50g/m2・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましく、更には10g/m2・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましいが、0.01g/m2・day(40℃・90%RH)以下の透湿度のフィルムは工業的に入手が困難であるため実質的に、0.01g/m2・day(40℃・90%RH)以上、50g/m2・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましく、更には0.1g/m2・day(40℃・90%RH)以上、10g/m2・day(40℃・90%RH)(JIS Z0208に準じて測定)以下が好ましい。
(基板)
本発明のシンチレータパネルは、基板として、高分子フィルムを用いることを特徴とする。高分子フィルムとしては、セルロースアセテートフィルム、ポリエステルフィルム、ポリエチレンテレフタレート(PEN)フィルム、ポリアミドフィルム、ポリイミド(PI)フィルム、トリアセテートフィルム、ポリカーボネートフィルム、炭素繊維強化樹脂シート等の高分子フィルム(プラスチックフィルム)を用いることができる。特に、ポリイミド又はポリエチレンナフタレートを含有する高分子フィルムが、ヨウ化セシウムを原材料として気相法にて蛍光体柱状結晶を形成する場合に、好適である。
なお、本発明に係る基板としての高分子フィルムは、厚さ50〜500μmであること、更に可とう性を有する高分子フィルムであることが好ましい。
ここで、「可とう性を有する基板」とは、120℃での弾性率(E120)が1000〜6000N/mm2である基板をいい、かかる基板としてポリイミド又はポリエチレンナフタレートを含有する高分子フィルムが好ましい。
なお、「弾性率」とは、引張試験機を用い、JIS−C2318に準拠したサンプルの標線が示すひずみと、それに対応する応力が直線的な関係を示す領域において、ひずみ量に対する応力の傾きを求めたものである。これがヤング率と呼ばれる値であり、本発明では、かかるヤング率を弾性率と定義する。
本発明に用いられる基板は、上記のように120℃での弾性率(E120)が1000N/mm2〜6000N/mm2であることが好ましい。より好ましくは1200N/mm2〜5000N/mm2である。
具体的には、ポリエチレンナフタレート(E120=4100N/mm2)、ポリエチレンテレフタレート(E120=1500N/mm2)、ポリブチレンナフタレート(E120=1600N/mm2)、ポリカーボネート(E120=1700N/mm2)、シンジオタクチックポリスチレン(E120=2200N/mm2)、ポリエーテルイミド(E120=1900N/mm2)、ポリアリレート(E120=1700N/mm2)、ポリスルホン(E120=1800N/mm2)、ポリエーテルスルホン(E120=1700N/mm2)等からなる高分子フィルムが挙げられる。
これらは単独で用いてもよく積層あるいは混合して用いてもよい。中でも、特に好ましい高分子フィルムとしては、上述のように、ポリイミド又はポリエチレンナフタレートを含有する高分子フィルムが好ましい。
なお、シンチレータパネルと平面受光素子面を貼り合せる際に、基板の変形や蒸着時の反りなどの影響を受け、フラットパネルデテイクタの受光面内で均一な画質特性が得られないという点に関して、該基板を、厚さ50μm以上500μm以下の高分子フィルムとすることでシンチレータパネルが平面受光素子面形状に合った形状に変形し、フラットパネルデテイクタの受光面全体で均一な鮮鋭性が得られる。
(シンチレータパネルの作製方法)
本発明のシンチレータパネルの作製方法の典型的例について、図を参照しながら説明する。なお、図1は、放射線用シンチレータパネル10の概略構成を示す断面図である。図2Aは、本発明の放射線用シンチレータパネル10の拡大断面図であり、基板1、反射層3、下引層4及び蛍光体層2の順に形成されている。蛍光体層2の先端部2bは本発明の圧熱処理により平坦化されている。
図2Bは、圧熱処理の図であり、31は温度200℃以上440℃以下の熱ローラーを示す。図3は、蒸着装置61の概略構成を示す図面である。
〈蒸着装置〉
図3に示す通り、蒸着装置61は箱状の真空容器62を有しており、真空容器62の内部には真空蒸着用のボート63が配されている。ボート63は蒸着源の被充填部材であり、当該ボート63には電極が接続されている。当該電極を通じてボート63に電流が流れると、ボート63がジュール熱で発熱するようになっている。放射線用シンチレータパネル10の製造時においては、ヨウ化セシウムと賦活剤化合物とを含む混合物がボート63に充填され、そのボート63に電流が流れることで、上記混合物を加熱・蒸発させることができるようになっている。
なお、被充填部材として、ヒータを巻回したアルミナ製のるつぼを適用してもよいし、高融点金属製のヒータを適用してもよい。
真空容器62の内部であってボート63の直上には基板1を保持するホルダ64が配されている。ホルダ64にはヒータ(図示略)が配されており、当該ヒータを作動させることでホルダ64に装着した基板1を加熱することができるようになっている。基板1を加熱した場合には、基板1の表面の吸着物を離脱・除去したり、基板1とその表面に形成される蛍光体層(シンチレータ層)2との間に不純物層が形成されるのを防止したり、基板1とその表面に形成される蛍光体層2との密着性を強化したり、基板1の表面に形成される蛍光体層2の膜質の調整をおこなったりすることができるようになっている。
ホルダ64には当該ホルダ64を回転させる回転機構65が配されている。回転機構65は、ホルダ64に接続された回転軸65aとその駆動源となるモータ(図示略)から構成されたもので、当該モータを駆動させると、回転軸65aが回転してホルダ64をボート63に対向させた状態で回転させることができるようになっている。
蒸着装置61では、上記構成の他に、真空容器62に真空ポンプ66が配されている。真空ポンプ66は、真空容器62の内部の排気と真空容器62の内部へのガスの導入とをおこなうもので、当該真空ポンプ66を作動させることにより、真空容器62の内部を一定圧力のガス雰囲気下に維持することができるようになっている。
〈シンチレータパネル〉
次に、本発明に係るシンチレータパネル10の作製方法について説明する。
当該放射線用シンチレータパネル10の作製方法においては、上記で説明した蒸発装置61を好適に用いることができる。蒸発装置61を用いて放射線用シンチレータパネル10を作製する方法について説明する。
《反射層の形成》
基板1の一方の表面に反射層としての金属薄膜(Al膜、Ag膜等)をスパッタ法により形成する。また高分子フィルム上にAl膜をスパッタ蒸着したフィルムは、各種の品種が市場で流通しており、これらを本発明の基板として使用することも可能である。
《下引層の形成》
下引層は、上記の有機溶剤に高分子結合材を分散・溶解した組成物を塗布、乾燥して形成する。高分子結合材としては接着性、反射層の耐腐食性の観点でポリエステル樹脂、ポリウレタン樹脂等の疎水性樹脂が好ましい。
《蛍光体層の形成》
上記のように反射層と下引層を設けた基板1をホルダ64に取り付けるとともに、ボート63にヨウ化セシウムとヨウ化タリウムとを含む粉末状の混合物を充填する(準備工程)。この場合、ボート63と基板1との間隔を100〜1500mmに設定し、その設定値の範囲内のままで後述の蒸着工程の処理をおこなうのが好ましい。
準備工程の処理を終えたら、真空ポンプ66を作動させて真空容器62の内部を排気し、真空容器62の内部を0.1Pa以下の真空雰囲気下にする(真空雰囲気形成工程)。ここでいう「真空雰囲気下」とは、100Pa以下の圧力雰囲気下のことを意味し、0.1Pa以下の圧力雰囲気下であるのが好適である。
次にアルゴン等の不活性ガスを真空容器62の内部に導入し、当該真空容器62の内部を0.1Pa以下の真空雰囲気下に維持する。その後、ホルダ64のヒータと回転機構65のモータとを駆動させ、ホルダ64に取付け済みの基板1をボート63に対向させた状態で加熱しながら回転させる。
この状態において、電極からボート63に電流を流し、ヨウ化セシウムとヨウ化タリウムとを含む混合物を700℃程度で所定時間加熱してその混合物を蒸発させる。その結果、基板1の表面に無数の柱状結晶体2aが順次成長して所望の厚さの結晶が得られる(蒸着工程)。この後、温度200℃以上440℃以下の熱ローラーにより圧縮処理することにより、蛍光体層2が得られる。これにより、本発明に係る放射線用シンチレータパネル10を製造することができる。
なお、上記記載事項においては、本発明の主旨を逸脱しない範囲において種々の改良及び設計変更をおこなってもよい。
一の改良・設計変更事項として、上記蒸着工程では抵抗加熱法による処理としたが、当該各工程の処理は電子ビームによる処理であってもよいし、高周波誘導による処理でもよい。本実施形態では、比較的簡単な構成で取り扱いが容易、安価、かつ、非常に多くの物質に適用可能である点から、上記の通り、抵抗加熱法による加熱処理を適用するのが好ましい。抵抗加熱法による加熱処理を実行すると、同一のボート63において、ヨウ化セシウムとヨウ化タリウムとの混合物の加熱処理と蒸着処理という両処理を両立することができる。
他の改良・設計変更事項として、蒸着装置61のボート63とホルダ64との間に、ボート63からホルダ64に至る空間部を遮断するシャッタ(図示略)を配してもよい。この場合、当該シャッタによってボート63上の混合物の表面に付着した目的物以外の物質が蒸着工程の初期段階で蒸発し、その物質が基板1に付着するのを防止することができる。
(放射線画像検出器)
以下に、上記放射線用シンチレータパネル10の一適用例として、図4及び図5を参照しながら、当該放射線用シンチレータプレート10を具備した放射線画像検出器100の構成について説明する。なお、図4は放射線画像検出器100の概略構成を示す一部破断斜視図である。撮像パネル51の拡大断面図を図5に示す。
図4に示す通り、放射線画像検出器100には、撮像パネル51、放射線画像検出器100の動作を制御する制御部52、書き換え可能な専用メモリ(例えばフラッシュメモリ)等を用いて撮像パネル51から出力された画像信号を記憶する記憶手段であるメモリ部53、撮像パネル51を駆動して画像信号を得るために必要とされる電力を供給する電力供給手段である電源部54、等が筐体55の内部に設けられている。筐体55には必要に応じて放射線画像検出器100から外部に通信を行うための通信用のコネクタ56、放射線画像検出器100の動作を切り換えるための操作部57、放射線画像の撮影準備の完了やメモリ部53に所定量の画像信号が書き込まれたことを示す表示部58、等が設けられている。
ここで、放射線画像検出器100に電源部54を設けるとともに放射線画像の画像信号を記憶するメモリ部53を設け、コネクタ56を介して放射線画像検出器100を着脱自在にすれば、放射線画像検出器100を持ち運びできる可搬構造とすることができる。
図5に示すように、撮像パネル51は、放射線用シンチレータパネル10と、放射線用シンチレータパネル10からの電磁波を吸収して画像信号を出力する出力基板20と、から構成されている。
放射線用シンチレータパネル10は、放射線照射面側に配置されており、入射した放射線の強度に応じた電磁波を発光するように構成されている。
出力基板20は、放射線用シンチレータパネル10の放射線照射面と反対側の面に設けられており、放射線用シンチレータパネル10側から順に、隔膜20a、光電変換素子20b、画像信号出力層20c及び基板20dを備えている。
隔膜20aは、放射線用シンチレータパネル10と他の層を分離するためのものである。
光電変換素子20bは、透明電極21と、透明電極21を透過して入光した電磁波により励起されて電荷を発生する電荷発生層22と、透明電極21に対しての対極になる対電極23とから構成されており、隔膜20a側から順に透明電極21、電荷発生層22、対電極23が配置される。
透明電極21とは、光電変換される電磁波を透過させる電極であり、例えばインジウムチンオキシド(ITO)、SnO2、ZnOなどの導電性透明材料を用いて形成される。
電荷発生層22は、透明電極21の一面側に薄膜状に形成されており、光電変換可能な化合物として光によって電荷分離する有機化合物を含有するものであり、電荷を発生し得る電子供与体及び電子受容体としての導電性化合物をそれぞれ含有している。電荷発生層22では、電磁波が入射されると、電子供与体は励起されて電子を放出し、放出された電子は電子受容体に移動して、電荷発生層22内に電荷、すなわち、正孔と電子のキャリアが発生するようになっている。
ここで、電子供与体としての導電性化合物としては、p型導電性高分子化合物が挙げられ、p型導電性高分子化合物としては、ポリフェニレンビニレン、ポリチオフェン、ポリ(チオフェンビニレン)、ポリアセチレン、ポリピロール、ポリフルオレン、ポリ(p−フェニレン)又はポリアニリンの基本骨格を持つものが好ましい。
また、電子受容体としての導電性化合物としては、n型導電性高分子化合物が挙げられ、n型導電性高分子化合物としては、ポリピリジンの基本骨格を持つものが好ましく、特にポリ(p−ピリジルビニレン)の基本骨格を持つものが好ましい。
電荷発生層22の膜厚は、光吸収量を確保するといった観点から、10nm以上(特に100nm以上)が好ましく、また電気抵抗が大きくなりすぎないといった観点から、1μm以下(特に300nm以下)が好ましい。
対電極23は、電荷発生層22の電磁波が入光される側の面と反対側に配置されている。対電極23は、例えば、金、銀、アルミニウム、クロムなどの一般の金属電極や、透明電極21の中から選択して用いることが可能であるが、良好な特性を得るためには仕事関数の小さい(4.5eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするのが好ましい。
また、電荷発生層22を挟む各電極(透明電極21及び対電極23)との間には、電荷発生層22とこれら電極が反応しないように緩衝地帯として作用させるためのバッファー層を設けてもよい。バッファー層は、例えば、フッ化リチウム及びポリ(3,4−エチレンジオキシチオフェン):ポリ(4−スチレンスルホナート)、2,9−ジメチル−4,7−ジフェニル[1,10]フェナントロリンなどを用いて形成される。
画像信号出力層20cは、光電変換素子20bで得られた電荷の蓄積および蓄積された電荷に基づく信号の出力を行うものであり、光電変換素子20bで生成された電荷を画素毎に蓄積する電荷蓄積素子であるコンデンサ24と、蓄積された電荷を信号として出力する画像信号出力素子であるトランジスタ25とを用いて構成されている。
トランジスタ25は、例えばTFT(薄膜トランジスタ)を用いるものとする。このTFTは、液晶ディスプレイ等に使用されている無機半導体系のものでも、有機半導体を用いたものでもよく、好ましくはプラスチックフィルム上に形成されたTFTである。プラスチックフィルム上に形成されたTFTとしては、アモルファスシリコン系のものが知られているが、その他、米国Alien Technology社が開発しているFSA(Fluidic Self Assembly)技術、即ち、単結晶シリコンで作製した微小CMOS(Nanoblocks)をエンボス加工したプラスチックフィルム上に配列させることで、フレキシブルなプラスチックフィルム上にTFTを形成するものとしても良い。さらに、Science,283,822(1999)やAppl.Phys.Lett,771488(1998)、Nature,403,521(2000)等の文献に記載されているような有機半導体を用いたTFTであってもよい。
このように、本発明に用いられるトランジスタ25としては、上記FSA技術で作製したTFT及び有機半導体を用いたTFTが好ましく、特に好ましいものは有機半導体を用いたTFTである。この有機半導体を用いてTFTを構成すれば、シリコンを用いてTFTを構成する場合のように真空蒸着装置等の設備が不要となり、印刷技術やインクジェット技術を活用してTFTを形成できるので、製造コストが安価となる。さらに、加工温度を低くできることから熱に弱いプラスチック基板上にも形成できる。
トランジスタ25には、光電変換素子20bで発生した電荷を蓄積するとともに、コンデンサ24の一方の電極となる収集電極(図示せず)が電気的に接続されている。コンデンサ24には光電変換素子20bで生成された電荷が蓄積されるとともに、この蓄積された電荷はトランジスタ25を駆動することで読み出される。すなわちトランジスタ25を駆動させることで放射線画像の画素毎の信号を出力させることができる。
基板20dは、撮像パネル51の支持体として機能するものであり、基板1と同様の素材で構成することが可能である。
次に、放射線画像検出器100の作用について説明する。
まず、放射線画像検出器100に対し入射された放射線は、撮像パネル51の放射線用シンチレータパネル10側から基板20d側に向けて放射線を入射する。
すると、放射線用シンチレータパネル10に入射された放射線は、放射線用シンチレータパネル10中の蛍光体層2が放射線のエネルギーを吸収し、その強度に応じた電磁波を発光する。発光された電磁波のうち、出力基板20に入光される電磁波は、出力基板20の隔膜20a、透明電極21を貫通し、電荷発生層22に到達する。そして、電荷発生層22において電磁波は吸収され、その強度に応じて正孔と電子のペア(電荷分離状態)が形成される。
その後、発生した電荷は、電源部54によるバイアス電圧の印加により生じる内部電界により正孔と電子はそれぞれ異なる電極(透明電極膜及び導電層)へ運ばれ、光電流が流れる。
その後、対電極23側に運ばれた正孔は画像信号出力層20cのコンデンサ24に蓄積される。蓄積された正孔はコンデンサ24に接続されているトランジスタ25を駆動させると、画像信号を出力すると共に、出力された画像信号はメモリ部53に記憶される。
以上の放射線画像検出器100によれば、上記放射線用シンチレータパネル10を備えているので、光電変換効率を高めることができ、放射線画像における低線量撮影時のSN比を向上させるとともに、画像ムラや線状ノイズの発生を防止することができる。
(反射層を有する基板1の作製)
厚さ125μm、幅500mmのポリイミドフィルム(ガラス転移温度は285℃)(宇部興産製ユーピレックス)にアルミをスパッタして反射層(0.10μm)を形成した。
(下引層の作製)
バイロン20SS(東洋紡社製:高分子ポリエステル樹脂) 300質量部
メチルエチルケトン(MEK) 200質量部
トルエン 300質量部
シクロヘキサノン 150質量部
上記処方を混合し、ビーズミルにて15時間分散し、下引き塗設用の塗布液を得た。この塗布液を上記基板の反射層側に乾燥膜厚が1.0μmになるようにスピンコーターで塗布したのち100℃で8時間乾燥することで下引き層を作製した。
(蛍光体層の形成)
基板の下引き層側に蛍光体(CsI:0.03Tlmol%)を、図3に示した蒸着装置を使用して蒸着させ基板の全面に蛍光体層を形成した。
すなわち、まず、上記蛍光体原料を蒸着材料として抵抗加熱ルツボに充填し、また回転する支持体ホルダに基板を設置し、基板と蒸発源との間隔を400mmに調節した。
続いて蒸着装置内を一旦排気し、Arガスを導入して0.5Paに真空度を調整した後、10rpmの速度で基板を回転しながら基板の温度を200℃に保持した。次いで、抵抗加熱ルツボを加熱して蛍光体を蒸着し蛍光体層の膜厚が500μmになったところで蒸着を終了させ基板上に蛍光体層を形成した。
(圧熱処理)
蛍光体層が形成された幅500mmの基板をカレンダー装置を用いて総荷重200kgで蛍光体側ローラー温度を表1に示した温度に設定し、基板側ローラー温度40℃、速度0.1m/分にて圧熱処理した。その後、10cm×10cmのサイズに断裁した。尚、比較例として圧熱処理なし品も10cm×10cmのサイズに断裁した。
(評価)
得られた試料を、CMOSフラットパネル(ラドアイコン社製X線CMOSカメラシステムShad−o−Box4KEV)にセットし、12bitの出力データより輝度及び鮮鋭性を、以下に示す方法で測定し、結果を表1に示す。
尚、放射線入射窓のカーボン板とシンチレータパネルの放射線入射側(蛍光体のない側)にスポンジシートを配置し、平面受光素子面とシンチレータパネルを軽く押し付けることで両者を固定化した。
〈輝度の評価方法〉
管電圧80kVpのX線を試料の裏面(蛍光体層が形成されていない面)から照射し、画像データをシンチレータを配置したCMOSフラットパネルで検出し、画像の平均シグナル値を発光輝度とした。測定結果を下記表1に示す。ただし、表1中、試料の輝度を示す値は、比較例である試料の発光輝度を1.0とした相対値である。
〈鮮鋭性の評価方法〉
鉛製のMTFチャートを通して管電圧80kVpのX線を各試料の裏面(蛍光体層が形成されていない面)から照射し、画像データをシンチレータを配置したCMOSフラットパネルで検出しハードディスクに記録した。その後、ハードディスク上の記録をコンピュータで分析して当該ハードディスクに記録されたX線像の変調伝達関数MTF(空間周波数1サイクル/mmにおけるMTF値)を鮮鋭性の指標とした。表中、MTF値が高いほど鮮鋭性に優れていることを示す。MTFはModulation Transfer Functionの略号を示す。
上記評価結果を表1に示す。
Figure 2013178251
表1に示した結果から明らかなように、本発明に係る実施例は比較例に比べ輝度及び鮮鋭性が優れていることが分かる。すなわち、本発明の上記手段により、鮮鋭性や粒状性に優れたシンチレータパネルであって、かつ当該シンチレータパネルと平面受光素子面の面内均一接触が可能で、シンチレータパネル面−平面受光素子面間での鮮鋭性の劣化が少ないシンチレータパネルを提供することができる。さらに当該シンチレータパネルを製造方法を提供することができる。
1 基板
2 蛍光体(シンチレータ)層
3 反射層
4 下引層
10 放射線用シンチレータパネル
61 蒸着装置
62 真空容器
63 ボート(被充填部材)
64 ホルダ
65 回転機構
66 真空ポンプ
100 放射線画像検出器

Claims (7)

  1. 蛍光体柱状結晶からなる蛍光体層を含み、平面受光素子とともに放射線画像検出器を構成するために用いられるシンチレータパネルであって、
    当該蛍光体柱状結晶の先端部が、蛍光体柱状結晶の融点よりも低い温度で熱処理されたものであることを特徴とするシンチレータパネル。
  2. 前記熱処理の温度が、200℃以上440℃以下であることを特徴とする請求項1に記載のシンチレータパネル。
  3. 前記熱処理が、熱ローラーによる熱処理であることを特徴とする請求項1または2に記載のシンチレータパネル。
  4. 前記蛍光体層が、ヨウ化セシウムとタリウムを含む添加剤を原材料として形成されたことを特徴とする、請求項1〜3のいずれか1項に記載のシンチレータパネル。
  5. 前記蛍光体層が基板上に設けられたものであり、前記熱処理の温度が、該基板の耐熱温度以上であることを特徴とする、請求項1〜4のいずれか1項に記載のシンチレータパネル。
  6. 前記蛍光体層が高分子フィルム基板上に形成されたものであることを特徴とする、請求項1〜5のいずれか1項に記載のシンチレータパネル。
  7. 請求項1〜6のいずれか1項に記載のシンチレータパネルの製造方法であって、蛍光体柱状結晶の先端部を、温度200℃以上440℃以下の熱ローラーで熱処理する工程を有することを特徴とするシンチレータパネルの製造方法。
JP2013078426A 2007-03-23 2013-04-04 シンチレータパネルとその製造方法 Expired - Fee Related JP5668776B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013078426A JP5668776B2 (ja) 2007-03-23 2013-04-04 シンチレータパネルとその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007076448 2007-03-23
JP2007076448 2007-03-23
JP2013078426A JP5668776B2 (ja) 2007-03-23 2013-04-04 シンチレータパネルとその製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009506249A Division JP5240187B2 (ja) 2007-03-23 2008-02-22 シンチレータパネルとその製造方法

Publications (2)

Publication Number Publication Date
JP2013178251A true JP2013178251A (ja) 2013-09-09
JP5668776B2 JP5668776B2 (ja) 2015-02-12

Family

ID=39788340

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009506249A Active JP5240187B2 (ja) 2007-03-23 2008-02-22 シンチレータパネルとその製造方法
JP2013078426A Expired - Fee Related JP5668776B2 (ja) 2007-03-23 2013-04-04 シンチレータパネルとその製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009506249A Active JP5240187B2 (ja) 2007-03-23 2008-02-22 シンチレータパネルとその製造方法

Country Status (3)

Country Link
US (2) US20100092769A1 (ja)
JP (2) JP5240187B2 (ja)
WO (1) WO2008117601A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8461536B2 (en) * 2008-07-18 2013-06-11 Konica Minolta Medical & Graphic, Inc. Radiation scintillator and radiation image detector
US8368025B2 (en) * 2008-08-28 2013-02-05 Konica Minolta Medical & Graphic, Inc. Radiation image conversion panel and production method thereof
EP2439749A4 (en) * 2009-06-02 2013-12-04 Konica Minolta Med & Graphic METHOD FOR MANUFACTURING SCINTILLATOR PANEL, SCINTILLATOR PANEL, AND RADIOLOGICAL IMAGE DETECTOR
JP2012083186A (ja) * 2010-10-12 2012-04-26 Konica Minolta Medical & Graphic Inc シンチレータパネル、及びそれを用いた放射線像検出装置
KR20120084079A (ko) * 2011-01-19 2012-07-27 삼성전자주식회사 X-선 검출기의 광전변환층용 페이스트 및 x-선 검출기의 제조방법
JP2013217769A (ja) * 2012-04-09 2013-10-24 Canon Inc 放射線検出装置
WO2014007333A1 (ja) * 2012-07-06 2014-01-09 富士フイルム株式会社 静電容量式タッチパネルおよびその製造方法、入力デバイス
JP6107001B2 (ja) * 2012-09-04 2017-04-05 ソニー株式会社 シンチレータ及び放射線検出装置
KR102142962B1 (ko) * 2013-01-08 2020-08-10 비바모스 리미티드 다층 코팅을 포함하는 x-선 섬광체
DE102016205702B4 (de) * 2016-04-06 2017-12-14 Siemens Healthcare Gmbh Röntgendetektor mit Schutzelement und Klebeelement
US20190353805A1 (en) * 2018-05-21 2019-11-21 General Electric Company Digital x-ray detector having polymeric substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325445A (ja) * 2003-04-11 2004-11-18 Canon Inc シンチレーターパネル、放射線検出装置、及び放射線検出システム
JP2005172511A (ja) * 2003-12-09 2005-06-30 Canon Inc 放射線検出装置、その製造方法、および放射線撮像システム
JP2006017742A (ja) * 2005-08-24 2006-01-19 Canon Inc 放射線検出装置
JP2006258550A (ja) * 2005-03-16 2006-09-28 Canon Inc 放射線検出装置
JP2007016197A (ja) * 2005-06-10 2007-01-25 Hitachi Chem Co Ltd シンチレータ用単結晶及びその製造方法
WO2008108428A1 (ja) * 2007-03-08 2008-09-12 Konica Minolta Medical & Graphic, Inc. シンチレータパネルおよびシンチレータパネルの製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0440854B1 (de) * 1990-02-07 1995-10-04 Siemens Aktiengesellschaft Verfahren zur Herstellung eines stimulierbaren Speicherleuchtschirmes
JP3398406B2 (ja) * 1993-01-29 2003-04-21 コニカ株式会社 放射線画像変換パネル
JP3126715B2 (ja) * 1999-04-16 2001-01-22 浜松ホトニクス株式会社 シンチレータパネル及び放射線イメージセンサ
JP4201933B2 (ja) * 1999-09-22 2008-12-24 株式会社東芝 放射線励起蛍光面の加工方法および加工装置、それによるイメージインテンシファイア
JP2002343248A (ja) * 2001-05-10 2002-11-29 Toshiba Corp 蛍光面の形成方法および画像表示装置
JP4473495B2 (ja) * 2001-08-29 2010-06-02 株式会社東芝 X線イメージ検出器およびx線イメージ検出器の製造方法
CN1333421C (zh) * 2001-08-29 2007-08-22 株式会社东芝 X射线图像检测器的制造方法和制造装置及x射线图像检测器
US7355184B2 (en) * 2003-04-07 2008-04-08 Canon Kabushiki Kaisha Radiation detecting apparatus and method for manufacturing the same
JP2005337962A (ja) * 2004-05-28 2005-12-08 Canon Inc 放射線検出装置
EP1605472A1 (en) * 2004-06-10 2005-12-14 Konica Minolta Medical & Graphic, Inc. Radiation image conversion panel
JP2006064383A (ja) * 2004-08-24 2006-03-09 Konica Minolta Medical & Graphic Inc 放射線像変換パネル及びその製造方法
JP2006300647A (ja) * 2005-04-19 2006-11-02 Fuji Photo Film Co Ltd 蛍光体パネルの製造方法
JP2006335887A (ja) * 2005-06-02 2006-12-14 Canon Inc 蛍光板
US20070036893A1 (en) * 2005-08-12 2007-02-15 Jean-Pierre Tahon Method for reproducible manufacturing of storage phosphor plates

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325445A (ja) * 2003-04-11 2004-11-18 Canon Inc シンチレーターパネル、放射線検出装置、及び放射線検出システム
JP2005172511A (ja) * 2003-12-09 2005-06-30 Canon Inc 放射線検出装置、その製造方法、および放射線撮像システム
JP2006258550A (ja) * 2005-03-16 2006-09-28 Canon Inc 放射線検出装置
JP2007016197A (ja) * 2005-06-10 2007-01-25 Hitachi Chem Co Ltd シンチレータ用単結晶及びその製造方法
JP2006017742A (ja) * 2005-08-24 2006-01-19 Canon Inc 放射線検出装置
WO2008108428A1 (ja) * 2007-03-08 2008-09-12 Konica Minolta Medical & Graphic, Inc. シンチレータパネルおよびシンチレータパネルの製造方法

Also Published As

Publication number Publication date
US20120256335A1 (en) 2012-10-11
JP5240187B2 (ja) 2013-07-17
US20100092769A1 (en) 2010-04-15
WO2008117601A1 (ja) 2008-10-02
JPWO2008117601A1 (ja) 2010-07-15
JP5668776B2 (ja) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5668776B2 (ja) シンチレータパネルとその製造方法
JP4725533B2 (ja) シンチレータパネル
JP5343970B2 (ja) 放射線画像検出装置
JP5353886B2 (ja) 放射線シンチレータおよび放射線画像検出器
WO2010050358A1 (ja) シンチレータパネル、放射線検出装置及びそれらの製造方法
JP2008107222A (ja) シンチレータパネル
US20080149852A1 (en) Manufacturing method of scintillator panel, scintillator panel and vacuum evaporation apparatus
JP5429422B2 (ja) 放射線画像検出装置
WO2010061727A1 (ja) シンチレータパネル
JP2008107279A (ja) シンチレータパネル
JPWO2009028275A1 (ja) シンチレータパネル
JP2009047577A (ja) シンチレータパネル及びその作製方法
JP5347967B2 (ja) シンチレータプレート
JP5267458B2 (ja) シンチレータパネル及び放射線イメージセンサ
WO2010010735A1 (ja) シンチレータパネルとそれを用いた放射線画像検出器
JP5597930B2 (ja) 放射線画像検出装置とその製造方法
JP5353884B2 (ja) シンチレータパネル及び放射線画像検出器
WO2010026789A1 (ja) 放射線シンチレータおよび放射線画像検出器
JP5369906B2 (ja) 放射線像変換パネル、及び放射線像検出装置
JP2009025175A (ja) シンチレータパネルとその作製方法
WO2010021163A1 (ja) 放射線画像変換パネル、その製造方法及び放射線画像検出装置
JP2010185749A (ja) 放射線画像検出装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140917

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141201

R150 Certificate of patent or registration of utility model

Ref document number: 5668776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees