JP2013039425A5 - - Google Patents

Download PDF

Info

Publication number
JP2013039425A5
JP2013039425A5 JP2012242985A JP2012242985A JP2013039425A5 JP 2013039425 A5 JP2013039425 A5 JP 2013039425A5 JP 2012242985 A JP2012242985 A JP 2012242985A JP 2012242985 A JP2012242985 A JP 2012242985A JP 2013039425 A5 JP2013039425 A5 JP 2013039425A5
Authority
JP
Japan
Prior art keywords
collagen
edc
peg
nhs
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012242985A
Other languages
English (en)
Other versions
JP5661722B2 (ja
JP2013039425A (ja
Filing date
Publication date
Application filed filed Critical
Publication of JP2013039425A publication Critical patent/JP2013039425A/ja
Publication of JP2013039425A5 publication Critical patent/JP2013039425A5/ja
Application granted granted Critical
Publication of JP5661722B2 publication Critical patent/JP5661722B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

実施例I−NiColl/MPC IPNヒドロゲル[NiColl/MPC,バイオポリマー/合成ポリマーの完全IPN]
材料
ニッポンコラーゲン(ブタ皮膚);
0.625Mモルホリノエタンスルホン酸[バッファー](AalizarinRed S pH指示薬(6.5mg/100ml水)を含有するMES);
1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミドHCl(EDC)と、N−ヒドロキシ−スクシンイミド(NHS)と、MPC(2−メタクリロイルオキシエチルホスホリルコリン)[生体適合性合成モノマー]は、Biocompatibles International社(英国)から購入した。
NaOH溶液(2N)と、PEG−ジアクリレート[架橋剤](Mw=575ダルトン)と、過硫酸アンモニウム(APS)と、N,N,N’,N’−テトラメチルエチレンジアミン(TEMED)は、シグマ・アルドリッチ社から購入した。
NiColl/MPC IPNヒドロゲルの調製
まず、氷水浴中の、プラスチック製T字管で連結された2つのシリンジにおいて、13.7重量%ニッポンコラーゲン溶液0.3mlおよび0.625M MES0.1mlを混合した。続いて、MPC12.9mg(コラーゲンとMPCの比は4:1(w/w))をMES0.25mlに溶解し、得られた溶液の0.2mlを、100μlマイクロシリンジで上記の混合物中に注入した。次いで、PEG−ジアクリレート4.6μlを、500μlマイクロシリンジを使用して注入し、PEG−ジアクリレートとMPCとの重量比を1:2にした。別段の指定がない限り、PEG−ジアクリレート[生体適合性合成モノマー]とMPCの比は、1:2で一定である。次いで、その溶液を完全に混合した。次に、2%APSおよびTEMED溶液(MES中)25μlを、100μlマイクロシリンジで注入し[MPCが重合し、PEG−ジアクリレートの架橋により合成ネットワークが形成される]、続いてEDC/NHS溶液(MES中)57μlを注入し[連続的なIPN]、EDC:NHS:コラーゲンNHのモル比を3:3:1にした[バイオポリマーが形成される]。この研究では、EDCとコラーゲンの比も一定に維持した。NaOH(2N)を使用して、pHを約5に調整した。均一な混合物をガラス製の型に流し込み、室温にて湿度100%で16時間インキュベートした。後硬化するために、その型を37℃で5時間インキュベータに移した。
同様の方法で、コラーゲンとMPCの比1:1、2:1、3:1を有する「NiColl/MPCIPNヒドロゲル」と示されるIPNを調製した。
[連続的なIPN:コラーゲン→合成モノマーの重合→合成ポリマーの架橋→コラーゲンの架橋]
実施例II[NiColl/MPC,バイオポリマー及び合成ポリマーの双方がネットワークを形成しているIPN]
−NiColl/MPC IPNヒドロゲル
本実施例では、コラーゲン溶液濃度を13.7%から20%に上げることによって、EDC/コラーゲンNH比を1.5:1にし、実施例Iと同様に製造されたIPNの特性を変化させる能力を実証することを目的に実験を行った。さらに、pH指示薬を含有しないMESを使用した。
NiColl/MPC IPNヒドロゲルの調製
まず、氷水浴中の、プラスチック製T字管で連結された2つのシリンジにおいて、20.0重量%ニッポンコラーゲン溶液0.3mlおよびMES(0.625M)0.1mlを混合した。次に、MPC12.9mg(コラーゲンとMPCの比4:1(w/w))をMES0.25mlに溶解した。得られた溶液の0.2mlを、100μlマイクロシリンジで上記の混合物中に注入した。次いで、PEG−ジアクリレート4.6μlを500μlマイクロシリンジで注入し、PEG−ジアクリレートとMPCとの重量比を1:2にした。その溶液を完全に混合した。次に、2%APSおよびTEMED溶液(MES中)25μlを100μlマイクロシリンジで注入し、続いてEDC/NHS溶液(MES中)86μlを注入し、EDC:NHS:コラーゲンNHのモル比を1.5:1.5:1にした。均一な混合物をガラス製の型またはプラスチック製の型(厚さ500μm)に流し込み、室温にて湿度100%で16時間インキュベートした。後硬化するために、その型を37℃で5時間インキュベータに移した。
[連続的なIPN:コラーゲン→合成モノマーの重合→合成ポリマーの架橋→コラーゲンの架橋]
実施例III[コラーゲン/キトサン]
−視力向上眼用デバイスのための新規な生合成素材
この実施例における組織工学素材は、従来から知られている素材と比較して、向上した靱性および弾性を有する、本質的に頑丈な移植素材である。この素材はコラーゲンをベースとするが、キトサンなどのバイオミメティック分子(biomimetic molecule)も組み込まれる。バイオミメティック分子は、ヒト角膜中で発見された天然細胞外マトリックス分子(ECM)に匹敵し、それと同時に引張り強さを著しく向上させる。さらに、コラーゲン/キトサン足場を安定化するため、ハイブリッド架橋システムが開発されて使用され、素材の弾性および靱性がさらに向上した。これらの向上した素材の機械的性質、光学的性質、および生物学的性質を試験した。その結果から、足場は、強靭、弾性であり、かつ光学的透明性においてアイバンクのヒト角膜よりも優れており、in vitroでの角膜細胞および神経の再生を可能にすることが示唆されている。
材料および方法[2種のバイオポリマー;キトサンは多糖(ポリマー)である]
ベース材料は、I型アテロコラーゲン10%(w/v)とキトサン3%(w/v)の混合物を含む。日本ハム株式会社(日本)から入手した凍結乾燥されたブタコラーゲン粉末を冷水(滅菌dd HO)に溶解し、4℃で攪拌して、濃度10%(w/v)を得た。0.2N塩酸(HCl)にキトサン粉末(フルカ社から入手、MW40000)を溶解し、4℃で攪拌することによって、3%(w/v)キトサン溶液も調製した。次いで、架橋前に均一なブレンドを調製するために、2つの溶液を所定の比で、シリンジシステム中で混合した。様々な架橋剤(つまり、PEGジアルデヒドおよびEDC/NHS)を使用して、架橋剤およびバイオミメティック成分(biomimetic component)の種類および濃度に基づく特有の性質を有する相互侵入ネットワーク(IPN)を形成した(表7参照)。
[2種のバイオポリマーの同時架橋]
コラーゲンベースの角膜移植片(IPN−II)の作製[コラーゲン/キトサン]
ルアーガラス製シリンジにおいて、3%キトサン溶液0.02mlを10%コラーゲン溶液0.6mlに添加した[モル比0.1:1のキトサン:コラーゲン]。次いで、テフゼル(Tefzel)T字管を使用して、この組成物をMESバッファー0.4mlと混合した。次いで、MESバッファー0.35ml中にて約0〜4℃で気泡捕捉せず、その混合物をハイブリッド架橋剤[PEG:NHのモル当量比が0.25:1であり、EDC:NHのモル当量比が4.5:1であり、EDC:NHSのモル当量比が1:1である]と混合した。T字管を通して第1シリンジと第2シリンジの間で繰り返しポンピング(pumping)することによって、その組成物を完全に混合した。
IPN−II(EP10−11):
PEG−ジブチルアルデヒド(MW4132ダルトン、ネクター社から入手)、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド(EDC)およびN−ヒドロキシスクシンイミド(NHS)で構成されるハイブリッド架橋システムを使用して、コラーゲン/キトサンブレンドを架橋した。コラーゲン/キトサンブレンド、およびPEG−EDC/NHSハイブリッド架橋剤を酸性pH約5にて共に混合し、2−(N−モルホリノ)エタンスルホン酸(MES)バッファーを使用してpHの急上昇(surge)を防いだ。十分に混合した後、混合組成物の一部を型に注ぎ、型内で硬化させて、IPN−IIを形成した。
[実施例IIIにおいて、IPN−II,PEG−ジアクリレート,EDC/NHSを添加]
実施例IV−コラーゲン/PAA IPNヒドロゲル[バイオポリマー及び合成ポリマーの双方がネットワークを形成しているIPN]
材料
ニッポンコラーゲン(ブタ皮膚)
0.625Mモルホリノエタンスルホン酸[Aalizarin Red SpH指示薬(6.5mg/100ml水)を含有するMES]
1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミドHCl(EDC)、N−ヒドロキシ−スクシンイミド(NHS)
アクリル酸(AA)をアルドリッチ社から購入した。
PEG−ジアクリレート(Mw575)、過硫酸アンモニウム(APS)およびN,N,N’,N’−テトラメチルエチレンジアミン(TEMED)は、アルドリッチ社によって提供された。
コラーゲン/PAA IPNヒドロゲルの調製
第1に、氷水浴中の、プラスチック製T字管で連結された2つのシリンジにおいて、10.0重量%ニッポンコラーゲン溶液0.3mlおよびMES(0.625M)0.1mlを混合した。第2に、AA30μl(コラーゲンとAAの比1/1(w/w))を上記混合物中に100μlマイクロシリンジで注入した。第3に、PEG−ジアクリレート5.0μlを50μlマイクロシリンジで注入し、PEG−ジアクリレートとAAとの重量比を1:5にした。別段の指定がない限り、PEG−ジアクリレートとAAの比は、1:5で一定である。次いで、その溶液を完全に混合した。第4に、2%APSおよびTEMED溶液(MES中)25μlを100μlマイクロシリンジで注入し、続いて、EDC/NHS溶液(MES中)57μlを注入し、EDC:NHS:コラーゲンNHのモル比を6:6:1にした。本実施例では、EDCとコラーゲンの比も一定に維持した。均一な混合物をガラス製の型に流し込み、室温にて湿度100%で16時間インキュベートした。次いで、後硬化するために、得られた型を37℃で5時間インキュベータに移した。得られたヒドロゲルは、頑丈かつ透明であった。
[連続的なIPN:コラーゲン→合成モノマーの重合→合成ポリマーの架橋→コラーゲンの架橋]
実施例V[素材の潜在的な用途のみ記載]
−角膜に対する、眼への、薬物、生理活性因子送達システムにおける素材の適用
生理活性ペプチドまたは成長因子が組み込まれた生合成素材が開発されている。これらの素材は、主に角膜代替物として有用であり、特に、生理活性YIGSR(ラミニン)ペプチドを組み込んだ後に、角膜細胞の再生および切断された角膜神経の再成長を促進することが示されている(Li et al. 2003, 2005)。素材は、成長因子の送達に適応させることもできる(Klenker et al. 2005)。
実施例VI[開示ハイドロゲルの用途のみ記載]
−眼の前区画(anterior compartment)および後区画(posterior compartment)のための接着剤
角膜断裂などの角膜穿通性創傷を修復するために、縫合は、有効な方法であった。しかしながら、縫合には、手術時間が長くなったり、外科技術が必要とされるなど、いくつかの不利点がある。縫合は、著しい局所的な歪みおよび高レベルの乱視も生じさせる恐れがある。緩い縫合は、細菌の温床となり、炎症および組織の壊死を起こす恐れがある。さらに、縫合によって、著しい不快感が起こり得る。さらに、非生分解性縫合糸は、除去する必要があり、そのため患者の経過観察が長くなる。
実施例VII[RHC−III/MPCの双方がネットワークを形成しているIPN]
−コラーゲン12.1%(w/w)を有する組換えヒトIII型コラーゲン−MPCIPN
第1に、氷水浴中の、プラスチック製T字管で連結された2つのシリンジにおいて、12.1重量%III型コラーゲン溶液0.3mlおよびMES(0.625M)0.1mlを混合した。第2に、MPC(コラーゲンとMPCの比1/1(w/w))50mgをMES0.138mlに溶解し、その0.1mlを100μlマイクロシリンジで上記混合物中に注入した。第3に、PEG−ジアクリレート(Mn=575)16μlを100μlマイクロシリンジで注入し、PEG−ジアクリレートとMPCとの重量比を1:2にした。次いで、その溶液を完全に混合した。第4に、2%APSおよびTEMED溶液(MES中)25μlを100μlマイクロシリンジで注入し、続いて、EDC/NHS溶液(MES中)57μlを注入し、EDC:NHS:コラーゲンNHのモル比を3:3:1にした。均一な混合物をガラス製またはプラスチック製の型(厚さ500μm)に流し込み、室温に湿度100%で16時間放置した。次いで、後硬化するために、その型を37℃で5時間インキュベータに移した。
[連続的なIPN:コラーゲン→合成モノマーの重合→合成ポリマーの架橋→コラーゲンの架橋]
実施例VIII[コラーゲン/キトサン、バイオポリマー/バイオポリマー]
−コラーゲンまたはコラーゲンヒドロゲル
実施例IIIと同様に、このセクションに記載の眼科素材は、従来から知られている素材と比較して、向上した靱性および弾性を有する、本質的に頑丈な移植可能な素材である。この素材はコラーゲンをベースとするが、ヒト角膜中で発見された天然細胞外マトリックス分子(ECM)に匹敵し、それと同時に引張り強さを著しく向上させる、キトサンなどのバイオミメティック分子(biomimetic molecule)も組み込まれる。さらに、架橋システムが開発され、コラーゲンおよびコラーゲン/キトサン足場を安定化するために使用され、素材の弾性および靱性がさらに向上した。これらの向上した素材の機械的性質、光学的性質、および生物学的性質に関して試験した。その結果から、足場は、強靭、弾性であり、かつ光学的透明性においてアイバンクのヒト角膜よりも優れており、in vitroでの角膜細胞および神経の再生を可能にすることが示唆されている。
材料および一般法
ベース材料は、I型アテロコラーゲン10%(w/v)とキトサン3%(w/v)の混合物を含む。日本ハム株式会社(日本)から入手した凍結乾燥されたブタコラーゲン粉末を冷水(滅菌dd HO)に溶解し、4℃で攪拌して、濃度10%(w/v)とした。0.2N塩酸(HCl)にキトサン粉末(フルカ社から入手、MW40000)を溶解し、4℃で攪拌することによって、3%(w/v)キトサン溶液も調製した。次いで、架橋前に均一なブレンドを調製するために、2つの溶液を所定の比でシリンジシステムにおいて混合した。PEG−ジブチルアルデヒド(MW3400ダルトン、ネクター社)および1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド(EDC)およびN−ヒドロキシスクシンイミド(NHS)などの様々な架橋剤を使用して、架橋剤およびバイオミメティック成分(biomimetic component)の種類および濃度に基づいた特有の性質を有する相互侵入ネットワークを形成した(表8参照)。
[PEG−ジブチルアルデヒド及びEDC/NHSを添加]
実施例IX[コラーゲン/キトサン、バイオポリマー/バイオポリマー]
−EDC/NHSおよびPEG−ジブチルアルデヒドによって架橋されるコラーゲンヒドロゲル(HPN−3)の製造
ルアーガラス製シリンジにおいて、テフゼル(Tefzel)T字管を使用して、10%コラーゲン溶液0.6mLをMESバッファー0.4mlと混合した。PEG−ジブチルアルデヒドおよびEDC/NHS[PEG:NHのモル当量比が0.36:1であり、EDC:NHのモル当量比が5.4:1であり、EDC:NHSのモル当量比が1:1である]で構成される架橋システムを使用して、MESバッファー0.35ml中にて約0〜4℃で気泡捕捉せず、コラーゲンブレンドを架橋した。MESバッファーを使用して、架橋反応中、pH5を維持した。T字管を通して第1シリンジと第2シリンジの間で繰り返しポンピング(pumping)することによって、その組成物を完全に混合した。
[PEG−ジブチルアルデヒド及びEDC/NHSを添加]
実施例X[コラーゲン/キトサン;2種の架橋剤;バイオポリマー/バイオポリマー]
−EDC/NHSおよびPEG−ジブチルアルデヒドで架橋されるコラーゲン−キトサンヒドロゲルの製造(HPN−4)
ルアーガラス製シリンジにおいて、15%コラーゲン溶液0.6mLに3%キトサン0.036mLを添加した[キトサン:コラーゲンのモル比を0.01:1とした]。次いで、テフゼルT字管を使用して、この組成物をMESバッファー0.4mlと混合した。MESバッファー0.35ml中にて約0〜4℃で気泡捕捉せず、PEG−ジブチルアルデヒドおよびEDC/NHS[PEG:NHのモル当量比は0.3:1であり、EDC:NHのモル当量比は4.5:1であり、EDC:NHSのモル当量比は1:1である]で構成されるハイブリッド架橋システムを使用して、コラーゲン/キトサンブレンドを架橋した。MESバッファーを使用して、架橋反応中、pH5を維持した。T字管を通して第1シリンジと第2シリンジの間で繰り返しポンピング(pumping)することによって、その組成物を完全に混合した。
実施例XI[15%コラーゲンのみ;2種の架橋剤]
EDC/NHSおよびPEG−ジブチルアルデヒドによって架橋されるコラーゲンヒドロゲルの製造(HPN−5)
テフゼルT字管を使用して、ルアーガラス製シリンジ中の15%コラーゲン溶液0.6mLをMESバッファー0.4mlと混合した。MESバッファー0.35ml中にて約0〜4℃で気泡捕捉せず、PEG−ジブチルアルデヒドおよびEDC/NHS[PEG:NHのモル当量比が0.36:1であり、EDC:NHのモル当量比が5.4:1であり、EDC:NHSのモル当量比が1:1である]で構成されるハイブリッド架橋システムを使用して、コラーゲンブレンドを架橋した。MESバッファーを使用して、架橋反応中、pH5を維持した。T字管を通して第1シリンジと第2シリンジの間で繰り返しポンピング(pumping)することによって、その組成物を完全に混合した。
実施例XII[20%コラーゲンのみ]
PEG−ジブチルアルデヒドによって架橋されるコラーゲンヒドロゲルの製造(HPN−6)
テフゼルT字管を使用して、ルアーガラス製シリンジ中の20%コラーゲン溶液0.6mLをMESバッファー0.4mlと混合した。MESバッファー0.35ml中にて約0〜4℃で気泡捕捉せず、PEG−ジブチルアルデヒド[PEG:NHのモル当量比が1:1である]を使用して、コラーゲンブレンドを架橋した。MESバッファーを使用して、架橋反応中、pH5を維持した。T字管を通して第1シリンジと第2シリンジの間で繰り返しポンピング(pumping)することによって、その組成物を完全に混合した。
実施例XIII[20%コラーゲンのみ;1種の架橋剤;実施例XIIの架橋剤:ポリマー比の半分;非IPN]
PEG−ジブチルアルデヒドによって架橋されるコラーゲンヒドロゲルの製造(HPN−7)
一般に、テフゼルT字管を使用して、ルアーガラス製シリンジ中の20%コラーゲン溶液0.6mLをMESバッファー0.4mlと混合した。MESバッファー0.35ml中にて約0〜4℃で気泡捕捉せず、PEG−ジブチルアルデヒド[PEG:NHのモル当量比が2:1である]を使用して、コラーゲンブレンドを架橋した。MESバッファーを使用して、架橋反応中、pH5を維持した。T字管を通して第1シリンジと第2シリンジの間で繰り返しポンピング(pumping)することによって、その組成物を完全に混合した。
実施例XIV[12.7%RHC−Iのみ;1種の架橋剤]
組換えヒトI型コラーゲンおよびEDC/NHSから製造されるコラーゲンマトリックス
気泡を含有しないシリンジ混合システム中に、組換えヒトI型コラーゲン溶液(12.7%(w/w))のアリコートを添加した。第2のシリンジからセプタム(septum)を通して、計算量のEDCおよびNHS(どちらも10%(w/v)、EDC:コラーゲン−NH比=0.4:1;EDC:NHS比=1:1)を添加し、再び0℃で完全に混合した。最終溶液を直ちに、ガラスプレート上に分配し、平坦なフィルムを形成した。その平坦なフィルムを湿度100%で硬化させた(21℃で24時間、次いで37℃で24時間)。フィルムを新たなPBSで3回洗浄し、クロロホルム1%を含有するPBS中に保存し、無菌に維持した。他の比のEDC/コラーゲンNHを有するゲルを同じ方法で製造した。
実施例XV[12.7%RHC−IIIのみ;1種の架橋剤]
組換えヒトIII型コラーゲンおよびEDC/NHSから製造されるコラーゲンマトリックス
気泡を含有しないシリンジ混合システム中に、組換えヒトIII型コラーゲン溶液(12.7%(w/w))のアリコートを添加した。第2のシリンジからセプタム(septum)を通して、計算量のEDCおよびNHS(どちらも10%(w/v)、EDC:コラーゲン−NH比=0.4:1;EDC:NHS比=1:1)を添加し、再び0℃で完全に混合した。最終溶液を直ちに、ガラスプレート上に分配し、平らなフィルムを形成した。その平らなフィルムを湿度100%で硬化させた(21℃で24時間、次いで37℃で24時間)。フィルムを新たなPBSで3回洗浄し、クロロホルム1%を含有するPBS中に保存し、無菌に維持した。他の比のEDC/コラーゲンNHを有するゲルを同じ方法で製造した。
実施例XVI[12.7%RHC−IIIおよび12.7%RHC−III;1種の架橋剤]
組換えヒトI型およびIII型デュアルコラーゲンおよびEDC/NHSから製造される角膜マトリックス
気泡を含有しないシリンジ混合システム中に、組換えヒトI型コラーゲン溶液(12.7%(w/w))のアリコートを添加し、計量した。等量の組換えヒトコラーゲンIII型溶液(12.7%(w/w))のアリコートを同じシリンジ混合システム中に添加し、シリンジ混合システムにおいてコラーゲンI型およびIII型溶液の50/50(wt/wt)%溶液を得た。第2のシリンジからセプタム(septum)を通して、計算量のEDCおよびNHS(どちらも10%(w/v)、EDC:NH比=0.4:1;EDC:NHS比=1:1)を添加し、再び0℃で完全に混合した。最終溶液を直ちに、ガラスプレート上に分配し、平らなフィルムを形成した。その平らなフィルムを湿度100%で硬化させた(21℃で24時間、次いで37℃で24時間)。フィルムを新たなPBSで3回洗浄し、クロロホルム1%を含有するPBS中に保存し、無菌に維持した。他の比のEDC/コラーゲンNHを有するゲルを同じ方法で製造した。最終ゲルの含水率は、93.3%であった。
実施例XVII[Coll−DMA,バイオポリマー及び合成ポリマーの双方がネットワークを形成しているIPN]
コラーゲン−合成相互侵入高分子ネットワーク
材料
ニッポンコラーゲン(ブタ皮膚);
0.625Mモルホリノエタンスルホン酸[Aalizarin Red SpH指示薬(6.5mg/100ml水)を含有するMES];
1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミドHCl(EDC)、N−ヒドロキシ−スクシンイミド(NHS)、NaOH溶液(2N)、PEG−ジアクリレート(Mw575)、過硫酸アンモニウム(APS)およびN,N,N′,N′−テトラメチルエチレンジアミン(TEMED)をシグマ・アルドリッチ社から購入した。
コラーゲン−DMAIPNヒドロゲルの製造
第1に、氷水浴中の、プラスチック製T字管で連結された2つのシリンジにおいて、13.7重量%ニッポンコラーゲン溶液0.3mlおよびMES(0.625M)0.3mlを混合した。第2に、DMA(コラーゲンとDMAとの比3/1(w/w))14.2mlを50μlマイクロシリンジで上記混合物中に注入した。第3に、PEG−ジアクリレート(Mn=575)6.14μlを100μlマイクロシリンジで注入し、PEG−ジアクリレートとDMAとの重量比を1:2にした。別段の指定がない限り、PEG−ジアクリレートとDMAの比は1:2で一定である。次いで、その溶液を完全に混合した。第4に、DMAに対して1%APSおよび1%TEMED溶液(MES25μl中)を100μlマイクロシリンジで注入し、続いて、EDC/NHS溶液(MES中)57μlを注入し[連続的なIPN]、EDC:NHS:コラーゲンNHのモル比を3:3:1にした。本実施例では、EDCとコラーゲンの比も一定に維持した。均一な混合物をガラス製の型に流し込み、室温にて湿度100%で16時間放置した。次いで、後硬化するために、その型を37℃で5時間インキュベータに移した。コラーゲンとDMAの比1:1、2:1および4:1を有するコラーゲン−DMAIPNヒドロゲルを製造した。
[連続的なIPN:コラーゲン→合成モノマーの重合→合成ポリマーの架橋→コラーゲンの架橋]
実施例XVIII[開示ハイドロゲルの用途のみ]
生理活性剤を含有する眼科デバイス
抗菌剤、抗ウイルス剤などの生理活性剤または神経栄養因子などの成長因子を組み込んだヒドロゲル素材は、例えば、角膜移植に有用な、または薬物送達または創傷治癒のための治療用レンズとして有用である、改良型デバイスを構成する。IPNヒドロゲル中に組み込まれる抗菌性ペプチドの例としては、限定されないが:
ペプチド番号1:
酸−CGSGSGGGZZQOZGOOZOOZGOOZGY−NH
ペプチド番号2:
酸−GZZQOZGOOZOOZGOOZGYGGSGSGC−NH
実施例XIX[コラーゲン/MPCハイドロゲルの分解のみ記載]
コラーゲン−MPC IPNヒドロゲルのin vitroでの生分解
手順:
水和ヒドロゲル50〜80mgを0.1M PBS(pH7.4)5mlを含有するバイアルに入れ、続いてコラゲナーゼ(ヒストリチクス菌、EC3.4.24.3、シグマケミカル社)(1mg/mL)60μlを添加した。次いで、バイアルを37℃で異なる時間間隔にてオーブン内でインキュベートし、表面の水を拭き取って計量するためにゲルを取り出した。初期膨潤重量に基づいて、ヒドロゲルの残存量の時間経過を追跡した。各ヒドロゲル試料において、3つの試験片を試験した。ヒドロゲルの残存量%を以下の等式で計算した:
残存量%=W/W
(上記式中、Wは、ヒドロゲルの初期重量であり、Wは、各時点でのヒドロゲルの重量である。)
実施例XX[RHC−III/MPCバイオポリマー/合成ポリマーのIPNの製造及び分解]
III型コラーゲン−MPC IPNヒドロゲルの特性およびin vitroでの生分解
III型組換えヒトコラーゲン(rhc)−MPC IPNヒドロゲルの製造
第1に、氷水浴中の、プラスチック製T字管で連結された2つのシリンジにおいて、13.7重量%rhcIII溶液0.3mlおよびMES(0.625M)0.1mlを混合した。第2に、MPC溶液(MES中、MPC/コラーゲン=2/1(w/w))250μlを500mlマイクロシリンジで上記混合物中に注入した。第3に、PEG−ジアクリレート9.3mlを100mlマイクロシリンジで注入し、PEG−ジアクリレートとMPCとの重量比を1:2にした。次いで、その溶液を完全に混合した。第4に、2%APSおよびTEMED溶液(MES中)25mlを100mlマイクロシリンジで注入し、続いて、EDC/NHS溶液(MES中)19mlを注入し[連続的なIPN]、EDC:NHS:コラーゲンNHのモル比を1:1:1にした。均一な混合物をガラス製の型に流し込み、室温、湿度100%でN下にて24時間放置した。次いで、後硬化するために、型を37℃で24時間インキュベータに移した。生成物は、Coll−III−MPCIPN2−1−1とコード化した。
[連続的なIPN:コラーゲン→合成モノマーの重合→合成ポリマーの架橋→コラーゲンの架橋]
実施例XXI[以前のコラーゲン/キトサンハイドロゲルの製造方法であり、人工角膜後面の修飾を行う]
アルジネートグラフト化巨大分子
この実施例において、本発明者らは、コラーゲンベースの人工角膜マトリックスの後面にアルジネート巨大分子を共有結合でグラフトし、内皮細胞付着および増殖を防ぐ、二段階プラズマ補助表面改質技術(two-stage plasma-assisted surface modification technique)を開発した。
JP2012242985A 2005-09-09 2012-11-02 眼用デバイス及びその製造方法 Expired - Fee Related JP5661722B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US71541105P 2005-09-09 2005-09-09
US60/715,411 2005-09-09

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008529440A Division JP2009507110A (ja) 2005-09-09 2006-09-11 相互侵入ネットワーク、およびそれに関連する方法および組成物

Publications (3)

Publication Number Publication Date
JP2013039425A JP2013039425A (ja) 2013-02-28
JP2013039425A5 true JP2013039425A5 (ja) 2013-12-05
JP5661722B2 JP5661722B2 (ja) 2015-01-28

Family

ID=37836182

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008529440A Pending JP2009507110A (ja) 2005-09-09 2006-09-11 相互侵入ネットワーク、およびそれに関連する方法および組成物
JP2012242985A Expired - Fee Related JP5661722B2 (ja) 2005-09-09 2012-11-02 眼用デバイス及びその製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008529440A Pending JP2009507110A (ja) 2005-09-09 2006-09-11 相互侵入ネットワーク、およびそれに関連する方法および組成物

Country Status (10)

Country Link
US (1) US20080317818A1 (ja)
EP (2) EP1934289A4 (ja)
JP (2) JP2009507110A (ja)
KR (1) KR101382083B1 (ja)
CN (1) CN101305052B (ja)
AU (1) AU2006289625B2 (ja)
CA (1) CA2621824C (ja)
HK (1) HK1125395A1 (ja)
SG (2) SG165337A1 (ja)
WO (1) WO2007028258A2 (ja)

Families Citing this family (186)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6302875B1 (en) 1996-10-11 2001-10-16 Transvascular, Inc. Catheters and related devices for forming passageways between blood vessels or other anatomical structures
US9636174B2 (en) 2002-04-08 2017-05-02 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US20080213331A1 (en) 2002-04-08 2008-09-04 Ardian, Inc. Methods and devices for renal nerve blocking
US8150519B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
US7617005B2 (en) 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US20070135875A1 (en) 2002-04-08 2007-06-14 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US20070129761A1 (en) 2002-04-08 2007-06-07 Ardian, Inc. Methods for treating heart arrhythmia
JP2006508709A (ja) 2002-09-13 2006-03-16 オキュラー サイエンシス インコーポレイテッド 視力を向上させる器具及び方法
JP2007504910A (ja) 2003-09-12 2007-03-08 ミノウ・メディカル・エルエルシイ 粥状硬化物質の選択可能な偏倚性再造形および/または切除
US8396548B2 (en) 2008-11-14 2013-03-12 Vessix Vascular, Inc. Selective drug delivery in a lumen
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US7857447B2 (en) * 2004-10-05 2010-12-28 The Board Of Trustees Of The Leland Stanford Junior University Interpenetrating polymer network hydrogel contact lenses
US7909867B2 (en) * 2004-10-05 2011-03-22 The Board Of Trustees Of The Leland Stanford Junior University Interpenetrating polymer network hydrogel corneal prosthesis
US20090088846A1 (en) 2007-04-17 2009-04-02 David Myung Hydrogel arthroplasty device
US7857849B2 (en) * 2004-10-05 2010-12-28 The Board Of Trustees Of The Leland Stanford Junior Iniversity Artificial corneal implant
JP5219518B2 (ja) 2004-12-09 2013-06-26 ザ ファウンドリー, エルエルシー 大動脈弁修復
US8019435B2 (en) 2006-05-02 2011-09-13 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
EP2068828A2 (en) 2006-09-29 2009-06-17 SurModics, Inc. Biodegradable ocular implants and methods for treating ocular conditions
EP2992850A1 (en) 2006-10-18 2016-03-09 Vessix Vascular, Inc. Inducing desirable temperature effects on body tissue
CA2666663C (en) 2006-10-18 2016-02-09 Minnow Medical, Inc. System for inducing desirable temperature effects on body tissue
ES2546773T3 (es) 2006-10-18 2015-09-28 Vessix Vascular, Inc. Energía de RF sintonizada y caracterización eléctrica de tejido para el tratamiento selectivo de tejidos diana
EP2219604A2 (fr) * 2007-11-14 2010-08-25 MA.I.A Woundcare Biomateriau permettant la delivrance controlee d'actifs
FR2924615B1 (fr) * 2007-12-07 2010-01-22 Vivacy Lab Hydrogel cohesif biodegradable.
WO2009091728A2 (en) * 2008-01-14 2009-07-23 Coopervision International Holding Company, Lp Polymerizable contact lens formulations and contact lenses obtained therefrom
US20120209396A1 (en) 2008-07-07 2012-08-16 David Myung Orthopedic implants having gradient polymer alloys
WO2010017282A1 (en) 2008-08-05 2010-02-11 Biomimedica, Inc. Polyurethane-grafted hydrogels
JP5271632B2 (ja) * 2008-08-08 2013-08-21 国立大学法人金沢大学 神経細胞死抑制作用をもつvi型コラーゲン
WO2010056745A1 (en) 2008-11-17 2010-05-20 Minnow Medical, Inc. Selective accumulation of energy with or without knowledge of tissue topography
FR2938544B1 (fr) * 2008-11-20 2011-01-21 Univ Cergy Pontoise Materiaux sous forme de reseaux interpenetres de polymeres associant un gel de fibrine et un reseau de polyethylene glycol
KR100994747B1 (ko) * 2008-12-31 2010-12-07 주식회사 인터로조 습윤성이 향상된 하이드로젤 콘택트렌즈
EP2398577A2 (en) * 2009-02-19 2011-12-28 Bonner, Alex Garfield Porous interpenetrating polymer network
EP2429496A4 (en) * 2009-05-14 2014-03-26 Anja Mueller COMPOSITION AND METHOD FOR PREPARING SCAFFOLDING OF BIODEGRADABLE ARTIFICIAL SKIN BASED ON POLYSACCHARIDE GEL
WO2011005974A2 (en) * 2009-07-08 2011-01-13 Northwestern University Interpenetrating biomaterial matrices and uses thereof
JP5641483B2 (ja) * 2009-08-18 2014-12-17 国立大学法人東北大学 持続性ドラッグデリバリーシステム
CA2775670C (en) 2009-09-30 2018-02-20 Ottawa Hospital Research Institute Crosslinked hydrogels and related method of preparation
KR20130108067A (ko) 2010-04-09 2013-10-02 베식스 바스큘라 인코포레이티드 조직 치료를 위한 발전 및 제어 장치
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
US8473067B2 (en) 2010-06-11 2013-06-25 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
CN101891946B (zh) * 2010-07-17 2012-07-04 厦门大学 一种具有dn-l结构的增强生物水凝胶及其制备方法
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
WO2012027678A1 (en) 2010-08-27 2012-03-01 Biomimedica, Inc. Hydrophobic and hydrophilic interpenetrating polymer networks derived from hydrophobic polymers and methods of preparing the same
CN101942198B (zh) * 2010-09-03 2012-05-23 东华大学 多孔硅水凝胶互穿网络(ipn)膜的制备方法
EP4002330A1 (en) 2010-10-01 2022-05-25 Applied Medical Resources Corporation Portable laparoscopic trainer
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US20120157993A1 (en) 2010-12-15 2012-06-21 Jenson Mark L Bipolar Off-Wall Electrode Device for Renal Nerve Ablation
WO2012100095A1 (en) 2011-01-19 2012-07-26 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
KR101240133B1 (ko) 2011-01-27 2013-03-11 서울대학교산학협력단 히알루론산과 알지네이트를 포함하는 상호관입고분자망목 구조의 세포전달용 지지체의 제조방법
US9211256B2 (en) 2011-03-08 2015-12-15 The Johns Hopkins University Wound healing compositions comprising biocompatible cellulose hydrogel membranes and methods of use thereof
US8871016B2 (en) 2011-08-03 2014-10-28 The Johns Hopkins University Cellulose-based hydrogels and methods of making thereof
US9175153B2 (en) 2011-03-08 2015-11-03 The Johns Hopkins University Cellulose hydrogel compositions and contact lenses for corneal applications
CN103517731B (zh) 2011-04-08 2016-08-31 柯惠有限合伙公司 用于去除肾交感神经和离子电渗式药物传递的离子电渗式药物传递系统和方法
CN102229732B (zh) * 2011-05-11 2013-04-03 东华大学 基于半互穿网络结构的pH刺激响应性纳米水凝胶的制备
AU2012283908B2 (en) 2011-07-20 2017-02-16 Boston Scientific Scimed, Inc. Percutaneous devices and methods to visualize, target and ablate nerves
US9186209B2 (en) 2011-07-22 2015-11-17 Boston Scientific Scimed, Inc. Nerve modulation system having helical guide
WO2013040559A1 (en) * 2011-09-16 2013-03-21 Wake Forest University Health Sciences Fabrication of gelatin hydrogel sheet for the transplantation of corneal endothelium
CA2885996A1 (en) 2011-10-03 2013-04-11 Biomimedica, Inc. Polymeric adhesive for anchoring compliant materials to another surface
WO2013055826A1 (en) 2011-10-10 2013-04-18 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US10085799B2 (en) 2011-10-11 2018-10-02 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
US9162046B2 (en) 2011-10-18 2015-10-20 Boston Scientific Scimed, Inc. Deflectable medical devices
WO2013059202A1 (en) 2011-10-18 2013-04-25 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
CA3146636A1 (en) 2011-10-21 2013-04-25 Applied Medical Resources Corporation Simulated tissue structure for surgical training
WO2013070724A1 (en) 2011-11-08 2013-05-16 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
US9119600B2 (en) 2011-11-15 2015-09-01 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
EP2782524B1 (en) 2011-11-21 2017-12-20 Biomimedica, Inc Systems for anchoring orthopaedic implants to bone
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
CA2859967A1 (en) 2011-12-20 2013-06-27 Applied Medical Resources Corporation Advanced surgical simulation
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
CN102532566B (zh) * 2011-12-21 2013-09-25 四川大学 互穿网络复合水凝胶的制备方法
CN104244856B (zh) 2011-12-23 2017-03-29 维西克斯血管公司 重建身体通道的组织或身体通路附近的组织的方法及设备
JP5939796B2 (ja) * 2011-12-28 2016-06-22 学校法人 関西大学 キチンまたはキトサンと合成高分子との複合体およびその製造方法
US9433760B2 (en) 2011-12-28 2016-09-06 Boston Scientific Scimed, Inc. Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US9387276B2 (en) 2012-01-05 2016-07-12 President And Fellows Of Harvard College Interpenetrating networks with covalent and Ionic Crosslinks
CN102688525B (zh) * 2012-05-07 2013-11-27 东南大学 一种生物大分子水凝胶及其制备方法
US10660703B2 (en) 2012-05-08 2020-05-26 Boston Scientific Scimed, Inc. Renal nerve modulation devices
CN102631711B (zh) * 2012-05-16 2014-03-26 金陵科技学院 一种水凝胶角膜接触镜药物载体
US10321946B2 (en) 2012-08-24 2019-06-18 Boston Scientific Scimed, Inc. Renal nerve modulation devices with weeping RF ablation balloons
WO2014043687A2 (en) 2012-09-17 2014-03-20 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
US10398464B2 (en) 2012-09-21 2019-09-03 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
WO2014047454A2 (en) 2012-09-21 2014-03-27 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
EP2907125B1 (en) 2012-09-26 2017-08-02 Applied Medical Resources Corporation Surgical training model for laparoscopic procedures
KR102105980B1 (ko) 2012-09-27 2020-05-04 어플라이드 메디컬 리소시스 코포레이션 복강경 절차들을 위한 수술 훈련 모델
US10679520B2 (en) 2012-09-27 2020-06-09 Applied Medical Resources Corporation Surgical training model for laparoscopic procedures
WO2014059165A2 (en) 2012-10-10 2014-04-17 Boston Scientific Scimed, Inc. Renal nerve modulation devices and methods
CN102895699A (zh) * 2012-11-19 2013-01-30 江南大学 一种用于皮肤创伤修复的复合水凝胶敷料的制备方法
ES2897418T3 (es) 2013-03-01 2022-03-01 Applied Med Resources Construcciones y métodos de simulación quirúrgica avanzada
WO2014163987A1 (en) 2013-03-11 2014-10-09 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9693821B2 (en) 2013-03-11 2017-07-04 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
CN103131054B (zh) * 2013-03-12 2015-05-13 武汉大学 一种高强度水凝胶
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
WO2014150553A1 (en) 2013-03-15 2014-09-25 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9297845B2 (en) 2013-03-15 2016-03-29 Boston Scientific Scimed, Inc. Medical devices and methods for treatment of hypertension that utilize impedance compensation
US10336896B2 (en) * 2013-04-25 2019-07-02 The University Of Akron One-pot synthesis of highly mechanical and recoverable double-network hydrogels
CN103272268B (zh) * 2013-05-16 2015-04-22 华南理工大学 一种抗菌角膜修复材料及其制备方法
KR102607634B1 (ko) 2013-06-18 2023-11-29 어플라이드 메디컬 리소시스 코포레이션 수술 절차들을 가르치고 실습하기 위한 담낭 모델
CN105473091B (zh) 2013-06-21 2020-01-21 波士顿科学国际有限公司 具有可一起移动的电极支撑件的肾脏去神经球囊导管
JP2016524949A (ja) 2013-06-21 2016-08-22 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 回転可能シャフトを有する腎神経アブレーション用医療装置
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
JP6204579B2 (ja) 2013-07-01 2017-09-27 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 腎神経アブレーション用医療器具
CN105377170A (zh) 2013-07-11 2016-03-02 波士顿科学国际有限公司 具有可伸展电极组件的医疗装置
US10660698B2 (en) 2013-07-11 2020-05-26 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation
EP3049007B1 (en) 2013-07-19 2019-06-12 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
WO2015013205A1 (en) 2013-07-22 2015-01-29 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
EP3024405A1 (en) 2013-07-22 2016-06-01 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
US10198966B2 (en) 2013-07-24 2019-02-05 Applied Medical Resources Corporation Advanced first entry model for surgical simulation
EP3410421A1 (en) 2013-07-24 2018-12-05 Applied Medical Resources Corporation First entry model
US10722300B2 (en) 2013-08-22 2020-07-28 Boston Scientific Scimed, Inc. Flexible circuit having improved adhesion to a renal nerve modulation balloon
US9895194B2 (en) 2013-09-04 2018-02-20 Boston Scientific Scimed, Inc. Radio frequency (RF) balloon catheter having flushing and cooling capability
US10039859B2 (en) 2013-09-09 2018-08-07 Uab Ferentis Transparent hydrogel and method of making the same from functionalized natural polymers
JP6392348B2 (ja) 2013-09-13 2018-09-19 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 蒸着されたカバー層を有するアブレーション用医療デバイス及びその製造方法
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
WO2015057521A1 (en) 2013-10-14 2015-04-23 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
US10166314B2 (en) 2013-10-14 2019-01-01 Uab Ferentis Regenerative prostheses as alternatives to donor corneas for transplantation
WO2015057584A1 (en) 2013-10-15 2015-04-23 Boston Scientific Scimed, Inc. Medical device balloon
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
EP3057521B1 (en) 2013-10-18 2020-03-25 Boston Scientific Scimed, Inc. Balloon catheters with flexible conducting wires
WO2015061457A1 (en) 2013-10-25 2015-04-30 Boston Scientific Scimed, Inc. Embedded thermocouple in denervation flex circuit
JP2016539226A (ja) 2013-11-20 2016-12-15 トラスティーズ オブ ボストン ユニバーシティ 注射可能な組織補充物
CN103655002A (zh) * 2013-12-13 2014-03-26 无锡合众信息科技有限公司 一种水凝胶人工晶体及其制备方法
KR101664444B1 (ko) 2013-12-13 2016-10-12 재단법인 유타 인하 디디에스 및 신의료기술개발 공동연구소 생분해성 의료용 접착제 또는 실란트 조성물
US9512279B2 (en) * 2013-12-18 2016-12-06 Universite Cegy-Pontoise Interpenetrating polymer network
EP3091922B1 (en) 2014-01-06 2018-10-17 Boston Scientific Scimed, Inc. Tear resistant flex circuit assembly
JP6325121B2 (ja) 2014-02-04 2018-05-16 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 双極電極上の温度センサの代替配置
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
EP3913602A1 (en) 2014-03-26 2021-11-24 Applied Medical Resources Corporation Simulated dissectible tissue
KR102665331B1 (ko) 2014-11-13 2024-05-13 어플라이드 메디컬 리소시스 코포레이션 시뮬레이션된 조직 모델들 및 방법들
WO2016100355A1 (en) * 2014-12-15 2016-06-23 The Regents Of The University Of Colorado, A Body Corporate Biocompatible hydrogels, systems including the hydrogels, and methods of using and forming same
EP3259107B1 (en) 2015-02-19 2019-04-10 Applied Medical Resources Corporation Simulated tissue structures and methods
CA2980776A1 (en) 2015-05-14 2016-11-17 Applied Medical Resources Corporation Synthetic tissue structures for electrosurgical training and simulation
JP6820281B2 (ja) 2015-06-09 2021-01-27 アプライド メディカル リソーシーズ コーポレイション 子宮摘出術モデル
EP3323122B1 (en) 2015-07-16 2020-09-02 Applied Medical Resources Corporation Simulated dissectable tissue
CA2993197A1 (en) 2015-07-22 2017-01-26 Applied Medical Resources Corporation Appendectomy model
US11077228B2 (en) 2015-08-10 2021-08-03 Hyalex Orthopaedics, Inc. Interpenetrating polymer networks
EP3357054B1 (en) 2015-10-02 2023-08-30 Applied Medical Resources Corporation Hysterectomy model
JP6886975B2 (ja) 2015-11-20 2021-06-16 アプライド メディカル リソーシーズ コーポレイション 模擬切開可能組織
WO2017165490A1 (en) * 2016-03-22 2017-09-28 President And Fellows Of Harvard College Biocompatible adhesives and methods of use thereof
CN105833344B (zh) * 2016-04-26 2019-04-26 青岛慧生惠众生物科技有限公司 一种可注射水凝胶在制备眼内填充物中的应用
CN106189027B (zh) * 2016-06-03 2017-10-24 深圳市前海金卓生物技术有限公司 一种生物制动器
JP7063892B2 (ja) 2016-06-27 2022-05-09 アプライド メディカル リソーシーズ コーポレイション 模擬腹壁
CN113456889B (zh) * 2016-07-27 2022-06-28 珐博进(中国)医药技术开发有限公司 生物合成角膜
EP3291208B1 (en) * 2016-08-31 2020-09-30 Ricoh Company, Ltd. Hydrogel structure, blood vessel, internal organ model, practice tool for medical procedure, and method of manufacturing the hydrogel structure
WO2018069873A1 (en) 2016-10-13 2018-04-19 Hyderabad Eye Research Foundation Collagen and collagen like peptide based hydrogels, corneal implants, filler glue and uses thereof
CA3053498A1 (en) 2017-02-14 2018-08-23 Applied Medical Resources Corporation Laparoscopic training system
US10847057B2 (en) 2017-02-23 2020-11-24 Applied Medical Resources Corporation Synthetic tissue structures for electrosurgical training and simulation
WO2019018942A1 (en) * 2017-07-27 2019-01-31 University Health Network BENZOIC ACID CONDUCTIVE POLYMER CONTAINING BIOMATERIAL FOR ENHANCED IN VITRO AND IN VIVO TISSUE CONDUCTION
CN107469139B (zh) * 2017-07-31 2021-01-22 河南工程学院 一种兼具有抗菌和消炎效果的高强度创伤敷料的制备方法
KR101944008B1 (ko) 2017-09-18 2019-01-30 (주) 제이씨바이오 히알루론산을 포함하는 투명 하이드로겔 막 및 이를 이용한 콘택트렌즈
CN108144109A (zh) * 2017-12-28 2018-06-12 浙江海创医疗器械有限公司 一种含蜂蜜的互穿网络交联结构的水凝胶敷料
JP7221297B2 (ja) 2017-12-29 2023-02-13 ビーイーエフ、メディカル、インコーポレイテッド ヒトの線維軟骨または弾性軟骨再生用組成物
US11116561B2 (en) 2018-01-24 2021-09-14 Medtronic Ardian Luxembourg S.A.R.L. Devices, agents, and associated methods for selective modulation of renal nerves
CN109021166A (zh) * 2018-07-03 2018-12-18 北京理工大学 一种简易快速制备高粘附作用力水凝胶双层膜的方法
US10869950B2 (en) 2018-07-17 2020-12-22 Hyalex Orthopaedics, Inc. Ionic polymer compositions
JP2020055916A (ja) * 2018-09-28 2020-04-09 Spiber株式会社 モールド成形体、モールド成形体の製造方法、およびモールド成形体の柔軟性調整方法
CN109589455B (zh) * 2018-11-07 2022-02-15 山东大学第二医院 一种热变性胶原蛋白或热变性真皮支架替代物及制备方法
CN109481730B (zh) * 2018-11-27 2021-10-26 五邑大学 海藻酸钙/聚乙二醇(二醇)二丙烯酸酯三维纤维网络凝胶及其制备方法和应用
CN113164650B (zh) * 2018-11-30 2023-04-04 株式会社 Nextbiomedical 包含生物降解高分子的用于化疗栓塞的水凝胶粒子
CN111481735A (zh) * 2019-01-25 2020-08-04 华中科技大学同济医学院附属协和医院 一种医用抗菌护创水凝胶敷料及其制备方法
CN110448727B (zh) * 2019-09-17 2021-10-19 南通大学 一种粘性水凝胶材料、免缝合人工神经导管及其制备方法
CN110743038B (zh) * 2019-11-06 2021-09-10 大连理工大学 一种双网络结构复合水凝胶及其制备方法和应用
CN110760076B (zh) * 2019-11-06 2022-04-08 大连理工大学 一种基于胶体颗粒-iPRF双网络结构的可注射、高强度复合水凝胶及其制备方法和应用
CN112108083A (zh) * 2020-09-09 2020-12-22 江南大学 一种n-烷基乳糖胺表面活性剂小分子水凝胶及其制备方法
US20240001002A1 (en) * 2020-11-18 2024-01-04 The University Of British Columbia Protein hydrogels and methods for their preparation
CN113134113B (zh) * 2021-04-07 2022-07-01 赛克赛斯生物科技股份有限公司 可吸收止血流体明胶的制备方法及可吸收止血流体明胶
WO2022272090A1 (en) * 2021-06-24 2022-12-29 Rvo 2.0, Inc, D/B/A Optics Medical Hydrogel composition and methods of use
WO2022272107A1 (en) * 2021-06-24 2022-12-29 Rvo 2.0, Inc, D/B/A Optics Medical Corneal inlay implant
CN114381083B (zh) * 2021-12-17 2023-03-24 浙江理工大学上虞工业技术研究院有限公司 一种角膜接触镜用抗菌抗氧化水凝胶及其制备方法
CN114716724B (zh) * 2022-03-16 2023-08-22 华南理工大学 一种基于墨鱼骨的仿生智能水凝胶及其制备方法
CN114796620B (zh) * 2022-04-24 2023-09-29 广东顺德工业设计研究院(广东顺德创新设计研究院) 一种用作医用植入材料的互穿网络水凝胶及其制备方法和应用
CN114773692B (zh) * 2022-06-20 2022-09-27 北京智枢生物科技有限公司 一种可长期控制ngf释放的活性生物凝胶及其应用
CN116392397B (zh) * 2023-04-13 2024-05-31 四川大学 一种光响应排龈材料及制备方法和应用
CN117467074A (zh) * 2023-10-23 2024-01-30 苏州健雄职业技术学院 一种基于两性离子聚合物凝胶的生物降解纳米酶的制备与应用

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4388428A (en) 1981-07-20 1983-06-14 National Patent Development Corporation Biologically stabilized compositions comprising collagen as the major component with ethylenically unsaturated compounds used as contact lenses
US4452929A (en) 1983-09-09 1984-06-05 Celanese Corporation Water reducible epoxy based coating compositions
JPS6145765A (ja) * 1984-08-07 1986-03-05 宇部興産株式会社 血管補綴物及びその製造方法
US4731078A (en) * 1985-08-21 1988-03-15 Kingston Technologies Limited Partnership Intraocular lens
US5114627A (en) * 1986-10-16 1992-05-19 Cbs Lens Method for producing a collagen hydrogel
US5112350A (en) * 1986-10-16 1992-05-12 Cbs Lens, A California General Partnership Method for locating on a cornea an artificial lens fabricated from a collagen-hydrogel for promoting epithelial cell growth and regeneration of the stroma
BR9007643A (pt) * 1989-09-15 1992-08-18 Chiron Ophthalmics Inc Metodo para se conseguir a epitelizacao de lentes sinteticas
US5112250A (en) * 1991-05-31 1992-05-12 Wang Tsan Chi T-type coaxial cable connector
IT1260154B (it) * 1992-07-03 1996-03-28 Lanfranco Callegaro Acido ialuronico e suoi derivati in polimeri interpenetranti (ipn)
US5632773A (en) * 1994-05-03 1997-05-27 Allergan, Inc. Biostable corneal implants
US5518732A (en) * 1995-02-14 1996-05-21 Chiron Vision, Inc. Bio-erodible ophthalmic shield
EP2111876B1 (en) * 1995-12-18 2011-09-07 AngioDevice International GmbH Crosslinked polymer compositions and methods for their use
US5746633A (en) * 1996-01-22 1998-05-05 Jeffrey; Lawrence W. Personal flotation device
US5718012A (en) * 1996-05-28 1998-02-17 Organogenesis, Inc. Method of strength enhancement of collagen constructs
CN1176272A (zh) * 1996-09-12 1998-03-18 翟光远 蓖麻油型互穿网络聚合物的制备方法
US6030634A (en) * 1996-12-20 2000-02-29 The Chinese University Of Hong Kong Polymer gel composition and uses therefor
WO1998028364A1 (en) * 1996-12-20 1998-07-02 The Chinese University Of Hong Kong Novel polymer gel composition and uses therefor
US6224893B1 (en) * 1997-04-11 2001-05-01 Massachusetts Institute Of Technology Semi-interpenetrating or interpenetrating polymer networks for drug delivery and tissue engineering
US6113629A (en) * 1998-05-01 2000-09-05 Micrus Corporation Hydrogel for the therapeutic treatment of aneurysms
US6899889B1 (en) * 1998-11-06 2005-05-31 Neomend, Inc. Biocompatible material composition adaptable to diverse therapeutic indications
US20030020870A1 (en) * 2001-06-27 2003-01-30 Zms, Llc Biomedical molding materials from semi-solid precursors
TW574302B (en) * 2001-08-10 2004-02-01 Ind Tech Res Inst A method for producing cross-linked hyaluronic acid-protein bio-composites
US6552172B2 (en) * 2001-08-30 2003-04-22 Habto Biotech, Inc. Fibrin nanoparticles and uses thereof
AU2003234159A1 (en) * 2002-04-22 2003-11-03 Purdue Research Foundation Hydrogels having enhanced elasticity and mechanical strength properties
EP1530449A4 (en) * 2002-06-18 2006-05-03 Univ Leland Stanford Junior ARTIFICIAL HORN SKIN
US7476398B1 (en) * 2002-06-28 2009-01-13 Universite Laval Corneal implant and uses thereof
KR101053792B1 (ko) * 2002-08-09 2011-08-04 내셔날 리서치 카운실 오브 캐나다 생체 합성 매트릭스 및 그의 용도
US20040147016A1 (en) * 2002-09-30 2004-07-29 Rowley Jonathan A. Programmable scaffold and methods for making and using the same
US7279174B2 (en) * 2003-05-08 2007-10-09 Advanced Cardiovascular Systems, Inc. Stent coatings comprising hydrophilic additives
CA2430185A1 (en) * 2003-05-28 2004-11-28 Heather D. Sheardown Ophthalmic biomaterials and preparation thereof
EP1753787B1 (en) * 2004-05-20 2016-10-19 Mentor Worldwide LLC Method of covalently linking hyaluronan and chitosan
EP1791499A4 (en) * 2004-08-13 2011-08-17 Ottawa Health Research Inst OPHTHALMIC DEVICES ENHANCING VISION AND METHODS AND COMPOSITIONS THEREFOR
US7857849B2 (en) * 2004-10-05 2010-12-28 The Board Of Trustees Of The Leland Stanford Junior Iniversity Artificial corneal implant
US20060287721A1 (en) * 2004-10-05 2006-12-21 David Myung Artificial cornea

Similar Documents

Publication Publication Date Title
JP2013039425A5 (ja)
CA2621824C (en) Interpenetrating networks, and related methods and compositions
KR101844878B1 (ko) 주입형 이중가교 하이드로젤 및 이의 생의학적 용도
RU2496474C2 (ru) Гели на основе гиалуроновой кислоты, включающие обезболивающие агенты
CN107708675A (zh) 假塑性微凝胶基质的组合物和试剂盒
BR122021001969B1 (pt) Hidrogel usando, como substrato, derivado de ácido hialurônico modificado com grupo galol e uso do mesmo
Portnov et al. Injectable hydrogel-based scaffolds for tissue engineering applications
JP2008093451A (ja) 眼用インプラント
CA2576308A1 (en) Ophthalmic devices and related methods and compositions
Feng et al. Thermo-gelling dendronized chitosans as biomimetic scaffolds for corneal tissue engineering
WO2023020256A1 (zh) 一种生物多糖水凝胶及其制备方法和应用
Long et al. Collagen–hydroxypropyl methylcellulose membranes for corneal regeneration
KR20150040817A (ko) 선택적 중합성 조성물 및 생체 내에서 사용 방법
Selvam et al. Injectable in situ forming xylitol–PEG-based hydrogels for cell encapsulation and delivery
CN104804199A (zh) 一种生物医用复合水凝胶及制备方法及其应用
WO2021173698A9 (en) Compositions and methods for in situ-forming gels for wound healing and tissue regeneration
US20100303911A1 (en) Hydrogel systems
Thambi et al. Hyaluronic acid decorated pH-and temperature-induced injectable bioconjugates for sustained delivery of bioactive factors and highly efficient wound regeneration
Liu et al. Sutureless transplantation using a semi-interpenetrating polymer network bioadhesive for ocular surface reconstruction
WO1996003147A1 (en) Synthesis of chemical gels from polyelectrolyte polysaccharides by gamma-irradiation
Zhang et al. A self-healing hydrogel wound dressing based on oxidized Bletilla striata polysaccharide and cationic gelatin for skin trauma treatment
EP3294778A1 (en) Hyaluronic acid micro-sponges and method for the production thereof
Yadav et al. Meropenem loaded 4-arm-polyethylene-succinimidyl-carboxymethyl ester and hyaluronic acid based bacterial resistant hydrogel
RU2810578C1 (ru) Способ получения конъюгированных гидрогелей на основе поли-N-изопропилакриламида, растворимой фракции гликопротеинов и гликозаминогликанов эндометриального внеклеточного матрикса и тромбоцитарного лизата
Li et al. Injectable and self-fused hydrogels with antifouling capability based on amino acid derivatives for postoperative anti-adhesion application