JP2013015823A5 - - Google Patents

Download PDF

Info

Publication number
JP2013015823A5
JP2013015823A5 JP2012126206A JP2012126206A JP2013015823A5 JP 2013015823 A5 JP2013015823 A5 JP 2013015823A5 JP 2012126206 A JP2012126206 A JP 2012126206A JP 2012126206 A JP2012126206 A JP 2012126206A JP 2013015823 A5 JP2013015823 A5 JP 2013015823A5
Authority
JP
Japan
Prior art keywords
rmk
layer
conductive support
max
maximum value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012126206A
Other languages
English (en)
Japanese (ja)
Other versions
JP2013015823A (ja
JP6039921B2 (ja
Filing date
Publication date
Application filed filed Critical
Priority to JP2012126206A priority Critical patent/JP6039921B2/ja
Priority claimed from JP2012126206A external-priority patent/JP6039921B2/ja
Publication of JP2013015823A publication Critical patent/JP2013015823A/ja
Publication of JP2013015823A5 publication Critical patent/JP2013015823A5/ja
Application granted granted Critical
Publication of JP6039921B2 publication Critical patent/JP6039921B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

JP2012126206A 2011-06-07 2012-06-01 電子写真装置および電子写真装置の製造方法 Active JP6039921B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012126206A JP6039921B2 (ja) 2011-06-07 2012-06-01 電子写真装置および電子写真装置の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011127079 2011-06-07
JP2011127079 2011-06-07
JP2012126206A JP6039921B2 (ja) 2011-06-07 2012-06-01 電子写真装置および電子写真装置の製造方法

Publications (3)

Publication Number Publication Date
JP2013015823A JP2013015823A (ja) 2013-01-24
JP2013015823A5 true JP2013015823A5 (enExample) 2015-11-26
JP6039921B2 JP6039921B2 (ja) 2016-12-07

Family

ID=47688522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012126206A Active JP6039921B2 (ja) 2011-06-07 2012-06-01 電子写真装置および電子写真装置の製造方法

Country Status (1)

Country Link
JP (1) JP6039921B2 (enExample)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5938198B2 (ja) * 2011-12-02 2016-06-22 キヤノン株式会社 電子写真装置
JP6611479B2 (ja) * 2015-01-26 2019-11-27 キヤノン株式会社 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP6354863B2 (ja) * 2015-01-30 2018-07-11 京セラドキュメントソリューションズ株式会社 電子写真感光体及びそれを備えた画像形成装置
US9864285B2 (en) * 2015-06-25 2018-01-09 Canon Kabushiki Kaisha Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6682249B2 (ja) * 2015-11-30 2020-04-15 キヤノン株式会社 電子写真感光体の製造方法における検査方法
JP6774330B2 (ja) * 2016-12-28 2020-10-21 京セラ株式会社 電子写真感光体および画像形成装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136755A (ja) * 1984-07-30 1986-02-21 Canon Inc レーザー光用電子写真感光体
JPS63163468A (ja) * 1986-12-26 1988-07-06 Canon Inc 電子写真感光体
JP2876059B2 (ja) * 1989-02-27 1999-03-31 株式会社リコー 電子写真用感光体
JP2707341B2 (ja) * 1989-12-08 1998-01-28 キヤノン株式会社 電子写真感光体
EP0462439A1 (en) * 1990-06-21 1991-12-27 Xerox Corporation Plywood suppression in photosensitive imaging members
JPH05224450A (ja) * 1992-02-10 1993-09-03 Bando Chem Ind Ltd 下引き層を有する積層型電子写真感光体
JPH07199504A (ja) * 1993-12-28 1995-08-04 Kobe Steel Ltd 電子写真感光体ドラム基盤及びその製造方法
JPH10104988A (ja) * 1996-10-02 1998-04-24 Canon Inc 金属円周面の加工方法及びその加工品
JPH11327187A (ja) * 1998-05-20 1999-11-26 Ricoh Co Ltd 電子写真感光体用基体の製造方法
JP2003195541A (ja) * 2001-12-25 2003-07-09 Canon Inc 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2004101815A (ja) * 2002-09-09 2004-04-02 Canon Inc 電子写真感光体
JP2005107178A (ja) * 2003-09-30 2005-04-21 Canon Inc 電子写真感光体、プロセスカートリッジおよび電子写真装置
JP2005227551A (ja) * 2004-02-13 2005-08-25 Canon Inc 導電性支持体の製造方法及び電子写真感光体
JP5084381B2 (ja) * 2007-07-18 2012-11-28 キヤノン株式会社 電子写真感光体の製造方法
JP5268407B2 (ja) * 2008-03-31 2013-08-21 キヤノン株式会社 電子写真感光体及び電子写真装置

Similar Documents

Publication Publication Date Title
JP2013015823A5 (enExample)
Melville et al. Super-resolution imaging through a planar silver layer
Sweeney et al. Harmonic diffractive lenses
Ding et al. Recovering the absolute phase maps of two fringe patterns with selected frequencies
Minin et al. Plasmonic nanojet: an experimental demonstration
Weichelt et al. Resolution enhancement for advanced mask aligner lithography using phase-shifting photomasks
Kato et al. Effect of line roughness on the diffraction intensities in angular resolved scatterometry
Burkhardt et al. Investigation of mask absorber induced image shift in EUV lithography
Ma et al. Hybrid source mask optimization for robust immersion lithography
Medvedev et al. Infrared diffractive filtering for extreme ultraviolet multilayer Bragg reflectors
Ma et al. Block-based mask optimization for optical lithography
WO2023086218A1 (en) Metasurface waveguide coupler for display unit
Lin et al. Fast extreme ultraviolet lithography mask near-field calculation method based<? TeX\break?> on machine learning
Chen et al. Full-chip application of machine learning SRAFs on DRAM case using auto pattern selection
JP2013117624A5 (enExample)
Zheng et al. Robust binary fringe generation method with defocus adaptability
Duan et al. Aberration-compensated supercritical lens for sub-diffractive focusing within 20° field of view
Wang et al. Highly efficient reflective Dammann grating with a triangular structure
Siefke et al. Fabrication influences on deep-ultraviolet tungsten wire grid polarizers manufactured by double patterning
Zhang et al. Fast rigorous mask model for extreme ultraviolet lithography
Vierke et al. Diffraction theory for azimuthally structured Fresnel zone plate
Zhou et al. Speckle-noise-reduction method of projecting interferometry fringes based on power<? A3B2 show [pmg: line-break justify=" yes"/]?> spectrum density
Naulleau et al. Extreme ultraviolet mask roughness effects in high numerical aperture lithography
Routley et al. Optimization of near-field scanning optical lithography
Chen et al. Bandwidth-aware fast inverse lithography technology using Nesterov accelerated gradient