JP2012526375A - 大出力パワー用の横結合を持つdfbレーザダイオード - Google Patents

大出力パワー用の横結合を持つdfbレーザダイオード Download PDF

Info

Publication number
JP2012526375A
JP2012526375A JP2012509029A JP2012509029A JP2012526375A JP 2012526375 A JP2012526375 A JP 2012526375A JP 2012509029 A JP2012509029 A JP 2012509029A JP 2012509029 A JP2012509029 A JP 2012509029A JP 2012526375 A JP2012526375 A JP 2012526375A
Authority
JP
Japan
Prior art keywords
ridge
laser diode
layer
dfb laser
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012509029A
Other languages
English (en)
Other versions
JP5717726B2 (ja
Inventor
ヨハネス ケート,
ヴォルフガング ツェラー,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanoplus Nanosystems and Technologies GmbH
Original Assignee
Nanoplus Nanosystems and Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanoplus Nanosystems and Technologies GmbH filed Critical Nanoplus Nanosystems and Technologies GmbH
Publication of JP2012526375A publication Critical patent/JP2012526375A/ja
Application granted granted Critical
Publication of JP5717726B2 publication Critical patent/JP5717726B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1228DFB lasers with a complex coupled grating, e.g. gain or loss coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • H01S5/2031Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers characterized by special waveguide layers, e.g. asymmetric waveguide layers or defined bandgap discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1003Waveguide having a modified shape along the axis, e.g. branched, curved, tapered, voids
    • H01S5/1014Tapered waveguide, e.g. spotsize converter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1203Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers over only a part of the length of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1237Lateral grating, i.e. grating only adjacent ridge or mesa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本発明は、横結合を有するDFBレーザダイオードに関するもので、該DFBレーザダイオードは、少なくとも1つの半導体基板10と、該半導体基板上に配設された少なくとも1つの活性層40と、該活性層40より上に配設された少なくとも1つのリッジ70と、該リッジ70に隣接して上記活性層40より上に配設された少なくとも1つの周期表面構造110と、上記活性層の下及び/又は上に配設された1μm以上の厚さを有する少なくとも1つの導波層30,50とを有する。
【選択図】 図9

Description

本発明は、大出力パワー用の横結合を持つDFBレーザダイオードに関する。
レーザダイオードは、コヒーレントな光の光源として使用することができ、多くの経済的分野において重要な役割を果たしている。例示として、2つの応用分野を解説する。電気通信におけるデータ送信のための使用、及びセンサ技術の分野における分析ツールとしての使用である。これらの及び殆どの他の応用分野においては、レーザダイオードにより放出される放射がレーザ空洞(キャビティ)の単一の固有モードに実質的に対応すること、及びこの単一の固有モードの帯域幅が小さいことが非常に重要である。
半導体レーザは、通常、幾つかの固有モードの光を放出し、これは斯かるレーザの広い増幅スペクトルによるものである。放出されるレーザ放射が実質的に単一の固有モードの光を有することを保証するために、レーザ空洞の両ミラーの間でのレーザ光の分布帰還(DFB)の概念がかつて提案された。このようなDFBレーザダイオードを構築するために、レーザダイオードの積層体を半導体基板に付着するために使用されるエピタキシャル工程は中断され、放出される放射の吸収の及び/又は屈折率の周期的変化が活性層自体に又は上又は下の層に導入される。これにより、空洞の固有モードの閾増幅(threshold amplification)が減少され、及び/又は増幅スペクトル内の全ての他の固有モードの閾増幅が増加され、かくして半導体レーザは1つの固有モードの(従って1つの波長の)光のみを発生するようになる。第2エピタキシャル段階では、次いで、残りの層が堆積される。しかしながら、この層成長の中断は、幾つかの問題を有している。即ち、一方において、この製造工程は複雑であり、他方において、レーザダイオードを形成する層の品質が、結晶欠陥に起因して構造化工程及び上記第2エピタキシャル工程により妥協され得る。このことは、効率に対して、特にDFBレーザダイオードの寿命に対して悪影響を有し得る。
数年前に導入され、ヨーロッパ特許第EP0984535B1号に記載されているDFBレーザダイオードの横結合(lateral
coupling)の概念は、前記通常のDFBレーザの上述した欠点を克服する。以下において、横方向とは積層に対して平行であり、且つ、光の伝搬に対して垂直な方向を指す。積層に対して垂直であり、且つ、光の伝搬に対して垂直な方向は垂直方向と称す。以下では、長手方向が、レーザ空洞内のレーザ放射の伝搬方向を示す。
横結合を有するDFBレーザダイオードは、単一のエピタキシャル工程において製造される。レーザの構造を作製した後、該レーザの放出スペクトルを測定することができ、これら測定に基づいて、放射の所望の波長を表面構造の周期を介して正確に調整することができるということが、横方向DFB結合の思想の重要な利点である。
単一のエピタキシャル工程における横結合を有するDFBレーザダイオードの製造により、レーザダイオードを形成する積層の結晶品質は、層の成長、構造化工程及び前記第2エピタキシャル工程を中断することにより影響を受け得ない。正確に調整可能な放射波長に関しては、この結果、製造工程における大きな歩留まりが得られる。
横結合を持つDFBレーザダイオードは、好ましくは、小さな又は中程度の出力パワーのための単一モード光源として使用される。分布帰還機構により、DFBレーザダイオードは、通常、かなり低い出力パワーを有している。しかしながら、幾つかの応用例は、従来技術により製造された横結合を有するDFBレーザダイオードによっては供給され得ないような大きな出力パワーの割り当てを必要とする。
大出力パワー用に構成されたレーザダイオードの場合、最も高い光パワー密度は、通常、レーザ空洞のミラー(又は複数のミラー)において発生する。しばらくの間、酸化物層の形成によるレーザミラーの劣化作用は知られていたが、これらの作用は非常に高い光子密度の存在により増幅される。これらの劣化作用の結果として、半導体材料の局部的溶融によりレーザミラーの突然の破壊が生じる。この作用は、破局的光損傷又はCODと称される。従って、レーザ空洞から導出することができる光出力、及びレーザミラーにおいて発生し得、且つ、レーザミラーの劣化により当該レーザダイオードの加速された加齢作用を生じさせない光パワー密度を制限することが必須要因である。
劣化作用の速度を低下させる1つの可能性は、レーザミラーに対する誘電体材料によるコーティングの付着である。このコーティング処理は、M. Fukudaにより“半導体レーザ及びLED”の第134〜136頁に記載されている。
米国特許第4328469号は、一対の中間インデックス層により挟まれた活性層を有するヘテロ構造のインジェクションレーザダイオードを開示している。米国特許出願公開第2003/0007766号は、導波器が前側に先細りにされた導波部品を開示している。米国特許出願公開第2004/0017836号は、高次の横方向光モードを減衰させるために隔離層及び吸収層を備えた単一モード光学装置を開示している。米国特許出願公開第2008/0144691号は、導波器の両側に回折格子が配設された光半導体装置を開示している。米国特許出願公開第2002/0141582号は、光学装置に組み込まれたスポットコンバータを開示している。
従って、本発明の技術的課題は、横結合を持つDFBレーザダイオードから大光出力を、前述した劣化作用を回避することができ、且つ、当該レーザダイオードの他の特性が大きく悪化されることがないようにして、導出することを可能にする技術を提供することである。
米国特許第5982804号は、上側及び下側導波層を有する横結合されたDFB半導体レーザを製造する方法を開示している。更に、該半導体レーザは上側及び下側クラッド層を有している。フォト層を付着する前に、リッジ(畝)の接触層上に保護層が形成される。これにより、格子のエッチングの間に、上記リッジ上にも格子がエッチングされ、その結果、電気接触が不良になることを回避することができる。
特許出願公開第2001-024275号は、横結合されたDFB量子井戸レーザの製造方法を開示している。該量子井戸レーザは非対称な導波構造を有し、下側のnドープ導波層は100nmの厚さを有し、上側のpドープ導波層は10nmの厚さを有している。横方向に配設された格子構造は、絶縁材料から形成された回折格子である。一方のレーザファセットは1%までの反射度を持つ反射防止コーティングを有する一方、第2レーザファセットは90%の反射度を持つ反射層を有している。
IEEE J. of
Selected Topics in Quantum Electronics第15巻、第3号、2009年5月/6月、第978〜983頁のC. Fiebig他による論文“High-Power DBR Tapered Laser
at 980 nm for Single-Path Second Harmonic Generation”は、980nmで発光するエッジ発光DFBテーパ状ダイオードレーザの実験結果を有している。調査されたレーザの出力パワーは、約45%の変換効率で12Wまでである。該レーザは15度未満の半値全幅(FWHM)の小さな垂直発散、略回折が制限されたビーム品質及び12pmより小さなFWHMの狭いスペクトル線幅も示す。
米国特許出願公開第2007/00002914号は、基板上に形成されたnドープ下側クラッド層、nドープ下側光導波層、活性層、pドープ上側光導波層及びpドープ上側クラッド層を備える半導体レーザダイオードを開示している。上記のnドープ下側光導波層の厚さは、上記pドープ上側導波層のものよりも大きい。
IEEE Phot. Techn. Lett.第20巻、第3号、2008年2月1日、第214〜216頁の H.
Wenzel他による論文“Fundamental-Lateral Mode Stabilized
High-Power-Ridge Waveguide Lasers With a Low Beam Divergence”は、5及び20μmのトレンチ幅を持つリッジ導波レーザを比較している。放射波長は約1064nmであり、リッジ幅は5μmである。最大出力パワーは2Wを越える。垂直遠視野プロファイルの半値全幅は、巨大光空洞により僅か15度である。
J. of Appl. Phys. 97, (2005)第123103-1〜123103-6頁のB.S. Ryvkin及びE.A. Avrutinによる論文“Asymmetric, nonbroadened
large optical cavity wave guide structures for high-power long-wavelength
semiconductor lasers”は、自由キャリアの損失が大きなバイアス電流では重要になることを証明する、自由キャリアを評価するための簡単な半解析モデルを提示している。拡大されていない非対称導波構造が、閾、近視野及び遠視野特性の僅かな劣化で又は劣化無しで、これらの損失を大幅に低減することができることが示されている。
米国特許第6301283号は、半導体基板と、該半導体基板の上面上に形成された活性層と、該活性層上に形成されたリッジ条片と、該リッジ条片に沿って延びる周期構造とを有し、上記リッジ条片が少なくとも2つの異なる幅を有するようなDFBレーザを開示している。
米国特許出願公開第2003/0007719号は、内部を光が伝搬する第1モードを持つ第1導波器と、内部を光が伝搬する第2モードを持つ第2導波器とを有する光集積回路を開示している。上記光の第1及び第2モードは、異なる実効屈折率を有する。第2導波器内に形成された先細り(テーパ)は、導波器間の光の通信を容易にする。
Semiconductor Conf. 2008, CAS 2008, Intern., IEEE, Piscataway, NJ,アメリカ合衆国の J. Viheriiala 他による論文“Surface-grating-based
distributed feedback lasers fabricated using nanoimprint lithography”は、横方向に波を打つリッジにより形成された三次格子を用いるDFBレーザの製造に関して報告している。これらレーザは、50dBより大きなサイドモード抑圧比を有する。
本発明の一実施例によれば、この課題は、請求項1に記載の装置により解決される。一実施例において、該装置は、少なくとも1つの半導体基板と、該半導体基板上に配設された少なくとも1つの活性層と、該活性層より上に配設された少なくとも1つのリッジ(畝)と、上記活性層より上に配設された少なくとも1つの周期表面構造と、上記活性層の下及び/又は上に配設された1μm以上の厚さを持つ少なくとも1つの導波層とを有するような横結合を備えるDFBレーザダイオードを有する。
上記厚い導波層により、この層における、従って当該積層に対して垂直な光強度の空間分布は、大きな距離にわたり拡大し得る。このレーザ放射の垂直方向における拡大の結果、レーザモード内に等しい光パワーを有することにより、当該光強度の最大値が減少する。このように、レーザモードの同じ光パワーを有することにより、レーザミラー上の最大光パワー密度が、従って該レーザミラーの負荷が減少される。このように、レーザミラーの所与の最大負荷に対して、当該レーザ空洞から導出することが可能な光出力を増加させることができる。更に、当該レーザ空洞の積層の方向におけるレーザモードの放射の一層広い分布の結果、該レーザ空洞からの放出後のレーザ光の垂直発散角が減少される。横方向の発散角と類似した、この垂直方向のビーム発散の減少により、光学エレメントへの当該レーザ放射の簡単ではあるが一層効率的な結合が達成される。
活性層より上に配置される上記周期表面構造は、該活性層の全長にわたり長手方向に配設することができる。しかしながら、該周期表面構造が上記活性層の領域にわたり部分的にのみ延在するようにすることもできる。更に、長手方向における上記活性層及び周期表面構造が、互いに完全に分離されて配置されるようにすることもできる。
本発明による横結合を有するDFBレーザダイオードの好ましい実施例において、前記導波層は、1.0μmないし5.0μmの、好ましくは1.5μmないし3.0μmの、特に好ましくは2.0μmないし2.5μmの範囲内の厚さを有する。しかしながら、上記活性層の厚さ及び異なる波長のレーザダイオードの製造のために使用される半導体材料系に依存して、該導波層の厚さを下方及び上方に向かって拡張することも可能である。上記の指定された層厚は900nm〜1000nmの波長範囲において光を放出する横結合を有するDFBレーザダイオードに対して最適であることが分かった。上記活性層及び導波層の一定の屈折率においては、上記導波層の厚さは当該レーザ光の波長に従って線形に増減する。
本発明の他の態様によれば、潜在的課題は請求項3に記載の装置により解決される。一実施例において、該装置は、少なくとも1つの半導体基板と、該半導体基板上に配設された少なくとも1つの活性層と、該活性層より上に配設された少なくとも1つのリッジと、該リッジに隣接して上記活性層より上に配設された少なくとも1つの周期表面構造と、上記活性層の下及び/又は上に配設された少なくとも1つの導波層とを有する横結合を備えるDFBレーザダイオードを有し、上記各導波層の層厚は相違する。
横結合を有するDFBレーザダイオードの場合、上記活性層上の厚い導波層は、実質的に、上記周期表面構造との空間的重なりを減少させることによる放出レーザ放射の導出につながる。これにより、当該分布帰還の、従って当該増幅帯域幅内でのレーザ空洞の他の固有モードの抑圧が、明らかに減少され得る。活性層より上の薄い導波層と下の厚い導波層との組み合わせにより、周期表面構造の結合係数の減少を広く回避することができる。同時に、この層の組み合わせにより、垂直方向における光強度の伝搬が従来技術による通常の層の設計と比較して増加される。この結果、垂直方向の遠視野角度が一層小さくなる。このことは、当該レーザ放射が回転対称なレンズに導入される場合に一層高度の効率につながり、その結果、当該レーザダイオードにより同一の光出力を放出させることにより、利用可能な光パワーの量が増加する。
特に好ましい実施例によれば、上記活性層より下に配設される導波層は1μm以上の層厚を有し、上記活性層より上に配設される導波層は1μm以下の厚さを有する。これらのパラメータは、900nmから1000nmまでの波長範囲において光を放出するレーザダイオードに対して最適である。上記活性層及び導波層に対して一定の屈折率を維持することにより、上記厚い導波層(層厚≧1μm)の厚さは当該レーザ放射の波長に伴い線形に変化する。
特に好ましい実施例によれば、下側導波層は1.0μmから5.0μmまでの、好ましくは1.5μmから3.0μmまでの、特に好ましくは2.0μmから2.5μmまでの範囲内の厚さを有し、上側導波層は10nmから500nmまでの、好ましくは15nmから100nmまでの、特に好ましくは20nmから50nmまでの範囲内の厚さを有する。
他の好ましい実施例によれば、前記活性層と前記導波層との間の屈折率の差は、0.04から0.40までの、好ましくは0.06から0.30までの、特に好ましくは0.08から0.25までの範囲内である。この屈折率の差も、900nmから1000nmまでのレーザ光の波長範囲に対して最適化されている。より長いに波長に対しては、層厚、前記リッジの幅及び格子周期等の幾何学パラメータの増加が必要であり得る。
本発明の他の態様によれば、潜在的な技術課題は、請求項9に記載の装置により解決される。一実施例において、該装置は、少なくとも1つの半導体基板と、該半導体基板上に配設された少なくとも1つの活性層と、該活性層より上に配設された少なくとも1つのリッジと、該リッジに隣接して上記活性層より上に配設された少なくとも1つの周期表面構造とを有する横結合を備えるDFBレーザダイオードを有し、上記リッジの断面、好ましくは該リッジの幅、は少なくとも一方のレーザミラーの方向へと先細りに(テーパ付け)される。
上記リッジを一方のレーザミラーの方向へ先細りとすることにより、レーザモードの強度分布は前記下側導波層の方向へと下方に向かってずらされる。特に厚い下側導波層に関しては、この結果、該下側導波層内においてレーザミラーにおける光強度分布が同時に拡幅される。これに関連されるものは、レーザミラーにおける最大強度密度の減少であり、これも該レーザミラーを用いて当該レーザ空洞から導出することが可能な光出力を増加させるために利用することができる。更に、上記先細りにより生じる垂直強度分布の拡大の結果、当該レーザ空洞から垂直方向に放出される光出力の発散角が減少する。これにより、垂直方向及び横方向の発散角が互いに略等しくなることを達成することができる。このように、上記リッジを先細りにすることにより、レーザ放射の簡単ではあるが効率的な態様での結合が可能となる。
リッジの幅の減少以外に、リッジの高さの減少によっても、光強度分布を下側導波層の方向へずらすことができる。更に、少なくとも一方のレーザミラーの方向へのリッジの高さの減少及び該リッジの先細りを組み合わせることもできる。
特に非常に好ましい実施例は、前記活性層の下及び上に配設された少なくとも1つの導波層を有し、この場合において、両導波層の厚さは相違し、当該リッジの断面、好ましくは該リッジの幅は少なくとも一方のレーザミラーの方向へ先細りとされる。
好ましい実施例において、上記リッジの幅は少なくとも一方のレーザミラーの方向へ線形に先細りとされる。他の好ましい実施例において、該リッジの幅は少なくとも一方のレーザミラーの方向へ指数関数的に先細りとされる。
他の好ましい実施例において、上記リッジの幅は、0.5μmから10μmまでの、好ましくは1.0μmから7.0μmまでの、特に好ましくは2.0μmから4.0μmまでの範囲内である。他の好ましい実施例において、少なくとも一方のレーザミラーにおける上記リッジの幅は、0nmから1000nmまでの、好ましくは100nmから700nmまでの、特に好ましくは200nmから500nmまでの範囲内である。
特に好ましい実施例において、少なくとも一方のレーザミラーの方向への前記リッジの幅の先細りは、50μmから1000μmまでの、好ましくは100μmから600μmまでの、特に好ましくは200μmから400μmまでの範囲の長さにわたり生じる。
特に好ましい実施例において、前記リッジの幅は、両レーザミラーの方向に先細りとされる。
本発明の更なる態様によれば、潜在的な技術課題は請求項18に記載の装置により解決される。一実施例において、該装置は、少なくとも1つの半導体基板と、該半導体基板上に配設された少なくとも1つの活性層と、該活性層より上に配設された少なくとも1つのリッジと、該リッジに隣接して上記活性層より上に配設された少なくとも1つの周期表面構造と、上記リッジ内に配設されると共に該リッジの屈折率より高い屈折率を持つ層とを有する、横結合を備えるDFBレーザダイオードを有する。
高い屈折率を備えると共に上記リッジ内に埋め込まれた追加の層の結果、光強度分布は該層内において且つ該層の方向へと変形される。該変形された垂直強度分布は、上側導波層上に配設された周期表面構造に対するレーザモードの結合強度を変化させる。これにより、拡大された上側導波層に起因するレーザモードと周期表面構造との間の結合係数の低下を、少なくとも部分的に、補償することができる。リッジ内に埋め込まれた上記層は、高い屈折率を有し、従って当該レーザの他のパラメータの品質を大きく低下させることなくレーザミラー上の最大強度密度を減少させるための更なる自由度を提供する。
特に好ましい実施例は、前記リッジ内に配設されると共に屈折率が該リッジの屈折率よりも高い層を有する一方、前記活性層の下及び上に少なくとも1つの導波層を更に有し、これら両導波層の層厚さは相違する。
他の特に好ましい実施例は、前記リッジ内に配設されると共に屈折率が該リッジの屈折率よりも高い層を有し、当該リッジの断面、好ましくは該リッジの幅、は少なくとも一方のレーザミラーの方向に先細りとされる。
特に非常に好ましい実施例は、前記リッジ内に配設されると共に屈折率が該リッジの屈折率よりも高い層を有する一方、前記活性層の下及び上に配設された少なくとも1つの導波層を更に有し、これら両導波層の厚さは相違すると共に、当該導波器の断面、好ましくは幅、は少なくとも一方のレーザミラーの方向に先細りとされる。
特に好ましい実施例において、高い屈折率を有する上記層は、前記周期表面構造より上に配設される。
好ましい実施例において、前記高屈折率を有する層と前記リッジとの間の屈折率の差は、0.10から0.40までの、好ましくは0.15から0.35までの、特に好ましくは0.20から0.30までの範囲内である。この屈折率の差は、放出波長が900nmから1000nmまでの範囲内である横結合を備えるDFBレーザダイオードにとり特に有利である。異なる波長範囲で光を放出する半導体レーザを製造するために使用される他の材料系に対して、この屈折率の差は変化し得る。
本発明による装置の他の実施例は、従属請求項に記載されている。
後述する詳細な説明においては、本発明の現在のところ好ましい実施例が図面を参照して説明される。
図1は、レーザ空洞内で生成された放射に対する横結合のための周期表面構造を有するDFBレーザダイオードの最も重要な層の概略図を示す。 図2は、従来技術による導波構造を備えた横結合を有するDFBレーザダイオードに関する、レーザミラーの面内での正規化された表現でのシミュレーションされた二次元光強度分布を示す。 図3は、光子密度分布の最大点における図2の光強度分布の垂直切断図を示す。 図4は、図1〜3の横結合を有するDFBレーザダイオードの光強度の横方向及び垂直方向の遠視野分布を示す。 図5は、横結合を有するDFBレーザ構造の最も重要な層の概略図を示し、上側及び下側導波層は、各々、大きな厚さを有し、従って、大光空洞(LOC)のタイプに構築されている。 図6は、図5による導波構造を備えた横結合を有するDFBレーザダイオードに関する、レーザミラーの面内での正規化された表現でのシミュレーションされた二次元光強度分布を示す。 図7は、光子密度分布の最大点における図6による光強度分布の垂直切断図を示す。 図8は、従来技術による導波光構造を備える、及び活性層の上及び下に対称な厚さの導波層(対称LOC)を備える、横結合を有するDFBレーザダイオードのシミュレーションされた光強度の垂直方向遠視野分布を示す。 図9は、横結合を有するDFBレーザ構造の最も重要な層の概略図を示し、下側導波層は上側導波層より大幅に大きな厚さを有し、従って非対称LOCを形成している。 図10は、図9の導波構造を備えた横結合を有するDFBレーザダイオードに関する、レーザミラーの面内での正規化された表現でのシミュレーションされた二次元光強度分布を示す。 図11は、光子密度分布の最大点における図10による光強度分布の垂直切断図を示す。 図12は、従来技術による導波光構造(図1)を備える、対称LOC(図5)を備える、及び非対称LOC(図9)を備える、横結合を有するDFBレーザダイオードのシミュレーションされた光強度の垂直方向遠視野分布を示す。 図13は、図9の概要図を示し、周期格子構造より上のリッジ内に高屈折率の追加の層が埋め込まれている。 図14は、図13による横結合を有するDFBレーザダイオードに関する、1つのレーザミラーの面内での正規化された表現でのシミュレーションされた二次元光強度分布を示す。 図15は、光子密度分布の最大点における図14のシミュレーションされた光強度分布の垂直切断図を示す。 図16は、図9の一部の概略図を示し、リッジが付加的にレーザミラーの方向への線形な先細りを有する。 図17は、図9の一部の概略図を示し、リッジが付加的にレーザミラーの方向への指数関数的な先細りを有する。 図18は、図9の導波構造及び図17の先細りを備える、横結合を有するDFBレーザダイオードに関する、レーザミラー上でのシミュレーションされた二次元光強度分布を正規化された表現で示す。 図19は、従来技術による導波光構造を備える(図1)、対称LOCを備える(図5)、非対称LOCを備える(図9)、及びリッジの先細りを備える(図17)、横結合を有するDFBレーザダイオードのシミュレーションされた光強度の垂直方向遠視野分布を示す。 図20は、図18によるシミュレーションされた二次元光強度分布を示し、図13によりリッジ内に高屈折率の層が付加的に埋め込まれている。
以下、本発明による装置の好ましい実施例を詳細に説明する。
図1は、横結合を有するDFBレーザダイオードを表す最も重要な層を概略図示している。異なる層が、エピタキシャル処理を用いて半導体基板10上に堆積されている。半導体基板10の材料系は、当該レーザダイオードの所望の波長により定められる。以下に詳細に説明する本発明が基づく原理は、青色(例えば、窒化ガリウム基板)から深赤外波長(例えば、アンチモン化ガリウム基板に基づくもの)の範囲の光を放出するレーザダイオードを製造するために、全ての既知の材料系に適用することができる。III/V化合物半導体に基づく基板とは別に、開示される原理は、II/VI半導体基板又は他の好適な基板に基づく横結合を備えるDFBレーザダイオードにも適用することができる。以下の記載は、本発明の基となる原理を、GaAs/AlxGa(1-x)As(ガリウム砒素/アルミニウムガリウム砒素)なる材料系の横結合を備えるDFBレーザダイオードに関して説明する。
最初に、厚い(d≒1μm)下側クラッド層20(図3参照)が基板10上に堆積される。この層は、通常、良好な導電性を達成するために高度にドーピングされると共に、低屈折率をもたらすために大きな割合の(x≒0.3)のアルミニウムを有する。簡略化のために、下側クラッド層20無しとすることもできる。この場合、半導体基板10が、下側クラッド層20の機能を果たす。
下側クラッド層20には下側導波層30が続き、該下側導波層は、従来技術によれば、横結合を有するDFBレーザダイオードに対しては200nmの範囲内の厚さを有する。下側導波層30のアルミニウムの割合は、下側クラッド層20のものと活性層40のものとの間である。これにより、当該屈折率は、下側クラッド層20の低い方の値と活性層40の高い値との間にあるような数値を有する。
活性層40は、少なくとも部分的な反転分布が可能であるような層である。この状態の結果、当該半導体材料の増幅帯域幅における反転分布が広がる領域内で非常に大きな自発性光子放出率が生じる。自発性放出により生成され、且つ、実質的に長手方向に放出される光子は、誘導放出による当該レーザミラー上での反射の結果として、増幅帯域幅の極大にある当該レーザ空洞の幾つかのモードのコヒーレントな光強度分布を形成する。横結合を有するDFBレーザダイオードの場合、正味利得、即ち内部吸収により減じられた物質増幅(material amplification)の変調の結果、周期表面構造上での光子の周波数選択的吸収により当該レーザ空洞の単一の長手方向固有モードが選択される。
上記活性層は、アルミニウムの割合を有さないか又は大幅に減少されたアルミニウム割合(x≦0.05)を有する薄いバルク層(d≒0.2μm)として構築することができる。横結合を有する近代的DFBレーザダイオードにおいては、活性層は、1以上の量子井戸又は1個若しくは複数の量子ドットの形態の非常に精細な追加構造を有する。中間赤外範囲(λ≧4μm)に対しては、燐化インジウム(InP)量子カスケードレーザを使用することができ、斯かるレーザは複数の薄いInAlAs/InGaAs周期を含む活性層を有する。更に、量子カスケードレーザは、ガリウム砒素又はアンチモン化ガリウム系に基づくものとすることもできる。
以下に詳細に説明する横結合を備えるGaAs/AlxGa(1-x)DFBレーザダイオードの活性層40は、2つの量子井戸を有する。
横結合を有するDFBレーザダイオードに関する従来技術によれば、上側導波層50は、下側導波層30と実質的に同一の厚さを有すると共に同一のアルミニウム割合を有する。下側導波層30は電子を解放する元素によりドーピング(nドーピング)され得る一方、上側導波層50は電子を収集する元素によりドーピング(pドーピング)することができる。下側導波層30及び上側導波層50のアルミニウム割合は、これら層の厚さにわたり一定とすることができる。しかしながら、導波層30、50のアルミニウム割合を活性層40の方向に先細りさせることも可能である。この先細りの関数の進展は、線形に又はGRINSCH(傾斜屈折率分離閉じ込め ヘテロ構造)構造を有するように選択することができるか、又は如何なる任意の関数に適合させることもできる。
下側クラッド層20と同様に、上側導波層50には上側クラッド層60が続く。下側クラッド層20は、通常、nドープ型であるが、上側クラッド層60は、通常、Pドープ型である。上側クラッド層60及び下側クラッド層20の厚さ、アルミニウム割合及びドーピングの量は、同等のものである。
薄い、非常に高くドーピングされたGaAs接触層80の堆積により、横結合を有するDFBレーザダイオードの製造のためのエピタキシャル工程は完了する。このように、横結合を有するDFBレーザダイオードの製造のための半導体材料は、単一のエピタキシャル工程において製造される。
図1に示されるように、当該エピタキシャル工程が完了した後、レーザミラー90、100の間の上側クラッド層60は、リッジの外側が小さな残りの厚さを除き単一エッチング工程により除去される。該上側クラッド層60の残存する中央の部分が、リッジ(畝)70を形成する。
先に既述したように、ファブリ・ペロ・レーザ空洞のスペクトルから単一固有モード選択するために、周期表面構造110が残存する上側クラッド層60上にリッジ70に隣接して付着される。必要なら、上側クラッド層60と周期表面構造110との間にパシベーション(不動態化)層(図1には図示せず)を付着することも可能である。周期表面構造110は、リッジ70の一方の側に又は図1に示されるようにリッジ70の両側に配設することができる。周期表面構造110は、ストライプ状の格子構造として形成することができ、これらストライプはリッジ70に対して垂直に延びることができる。該周期表面構造110のストライプは、レーザ放射を吸収する材料、好ましくは金属を有する。該ストライプの幾何学構造及び該周期表面構造110の材料の組成により、レーザ放射の吸収の量を調整することができる。
周期表面構造110は、リッジ70の全長の一部に沿って延在することができる。他の例として、周期表面構造110はリッジ70の全長に沿って延在することもできる。更に他の実施例では、周期表面構造及び活性層は、長手方向にではあるが、互いに空間的に分離されて配置することができる。
活性層40は、下側導波層30及び上側導波層50よりも高い屈折率を有する。更に、導波層30、50の屈折率は、クラッド層20、60の屈折率よりも大きい。このような屈折率の分布の結果、積層体20〜60内で光子が案内される。
図2は、従来技術による導波構造及び横結合を有するDFBレーザダイオードの結果としての、レーザミラー90、100の一方における光強度分布の横方向及び垂直方向の面内における二次元切断図を示す。この場合、該強度分布は、光子密度分布の最大点が1なる値を持つように正規化されている。最大強度点の周りの同心的曲線は、一定の光子密度の点を示している。最外側曲線の光強度の密度は、それでも、最大値の12.5%に相当する。図2における中心の最大点と最外側曲線との間の光強度は、線形に変化する。このシミュレーションは、以下のシミュレーション結果の全てと同様に、疑似ベクトル的二次元モードソルバ(pseudo-vectorial two-dimensional mode solver)により達成された。
ここで説明する横結合を備えるGaAs/AlxGa(1-x)AsのDFBレーザダイオードの場合、放出される電磁場のベクトルは横方向に見える。即ち、該放射はTE(横電場:transverse electrical)偏光である。本発明による原理は、TM(横磁場:transverse magnetic)偏光の光を放出するレーザダイオードにも適用することができ、斯かるTM偏光の光は、例えば、歪量子井戸を備える半導体レーザにより又は量子カスケードレーザにより生成することができる。
図3は、図2の光強度分布の最大点における垂直方向の一次元切断図を示す。図2から理解され得、且つ、図1の対称な導波構造から予測されるように、垂直方向の強度分布は薄い活性層40に対して対称となっている。レーザモードの強度最大値は活性層40内にあって、下側導波層30及び上側導波層50において急峻に減少し、これにより、当該強度の主要な部分は層20、30及び40における導波領域内で案内される。しかしながら、下側クラッド層20、上側クラッド層60及びリッジ70は、該光子分布の重要な尾部を各々案内する。
当該分布のピークにおける非常に高い光パワー密度は、レーザミラー90、100に対する非常に大きな負荷を示す。レーザミラー90、100が誘電体コーティングにより保護されていたとしても、該光パワー密度は、当該レーザ空洞からレーザミラー90、100を介して導出することが可能な最大パワーを制限することになる。
垂直電界の分布を特徴付ける量的尺度は、有効モード面積Aeffである。ガウス関数に従う垂直電界分布、即ちE(r)∝exp(−r/w0 )、を有するレーザモードの場合、w0と有効モード面積Aeffとの間の関係は、Aeff=π・w0 となる。図2及び3に図示した従来技術による横結合を備えるGaAsのDFBレーザダイオードの強度分布の場合、有効モード面積はAeff=0.78μmとなる。
図4は、図2の二次元光強度分布の横方向及び垂直方向の遠視野分布を示している。図2から理解されるように、横方向の光子密度分布は垂直方向より大幅に広がっている。レーザミラー90、100からのレーザモードの放射は実質的に回折制限されて生じるので、レーザミラー90、100上での非対称な光強度分布は、横方向及び垂直方向における放出された光の強く異なる発散角度により反映される。この放射プロファイルを収束させるためには、複雑で多部品の光学系が必要とされる。それにも拘わらず、光ファイバ等の回転対称性を備えるエレメントに対しては、非常に大きな角度における強度分布の尾部により結合効率が制限される。
図5は、図1の積層体を示し、この場合、下側導波層30及び上側導波層50の厚さは約0.2μmから約1.0μmへと各々増加され、かくして、両導波層30、50が所謂LOC(大光空洞)を構築するようにしている。更に詳細には、両導波層30、50は同じ厚さを有しているので、これは対称なLOCである。横結合を備える該DFBレーザダイオードの残りの組み立て部は図1に対して変更されていない。既述したように、該対称LOCの導波層30、50のアルミニウム割合は、当該層の厚さにわたり一定とすることができるか、又は、前述したように、アルミニウム割合を活性層40の方向に向かって減少されるようにすることもできる。
図6は、横結合及び対称LOCの形状を有する導波層構造を備えるDFBレーザダイオードに対して測定され得る、レーザミラー90、100の面におけるシミュレーションされた光強度分布の二次元切断図を示す。図2及び6を比較することにより、対称LOCによって横方向及び垂直方向の光子密度分布の非対称性が明らかに減少されることが直接分かる。これは、実質的に、垂直方向のレーザモードの明確な拡幅の結果である。従来技術に対して大幅に増加された8.63μmなる有効モード面積も、この関係を反映している。
この結論は、図7によっても支持される。図7は、図6の光強度分布の最大点における垂直方向の一次元切断図を示す。図7は、本質的に、2つの結果を与える。即ち、図3と比較して、光パワー密度の最大値は、より低く、Aeffは0.78μmから8.63μmに増加されている。更に、レーザモードは、導波層30、50内で略完全に案内されている。
従来技術による横結合を有するDFBレーザダイオードと対称LOCを備えるものとの間の10より大きな因数による最大光パワー密度のピークの低下により、レーザミラー90、100に対する負荷は、それに応じて、低下される。このように、所与の最大光パワー密度において、当該レーザ空洞から導出することが可能な光出力は、CODによる横結合を有するDFBレーザダイオードの寿命の制限となるようなレーザミラー90、100の加齢作用を開始させることなく、増加することができる。
図8は、図3及び図7の光強度分布の垂直方向の遠視野分布を、互いに隣り合わせで比較している。発散角の半値全幅は、従来技術と比較して半分に削減されている。これにより、横結合を有する当該DFBレーザダイオードの遠視野における横方向及び垂直方向における放射分布の非対称性も半分に削減されている。このことは、当該放射プロファイルの、例えば光ファイバへの結合を簡単にすると同時に、結合効率を増加させる。何故なら、非常に大きな発散角においては、当該放射の如何なる部分も存在しないからである。
図6及び7から分かるように、図5の対称LOC構造は、厚い上側導波層50により周期格子構造110に対するレーザモードの結合が劇的に低下されるという重大な欠点を有している。このことは、活性層40の材料の増幅帯域幅内にある当該レーザ空洞の不所望な固有モードの抑圧が明らかに低下されるか、又は完全に失われることを意味する。この場合、横結合を備える該DFBレーザダイオードは、最早、DFBレーザとしては作用せず、異なる波長の幾つかの固有振動で光を放出するようなファブリー・ペロ・レーザダイオードとして作用する。
この問題は、上側導波層50を非常に薄くすることにより解決することができる。これにより、該上側導波層の厚さは、従来技術から既知のものよりも小さくすることができる(d≦0.1μm)。しかしながら、下側導波層30は、図5に見られるように、自身の厚さ(d≒1.0μm)を維持する。他の例として、下側導波層30の厚さは、図5の完全な対称LOCの厚さを実質的に有するように、拡大することもできる(d≒2.5μm)。また、下側導波層30の厚さは、両代替例の間の全ての他の値をとることもできる。アルミニウムの割合、従って屈折率も、既述したように層の厚さにわたり一定とすることができるか、又は変化するようにすることができる。
図9は図5の積層体を示すが、この場合、導波層30、50の厚さは、高度に非対称なLOCを形成するように、上側導波層50に対しては約1.0μmから約25nmに減少される一方、下側導波層30の厚さは約1.0μmから約2.5μmへと増加されている。図9の横結合を有するDFBレーザダイオードは、図5と比較して、それ以上の変更は有していない。
図10は、横結合及び非対称LOCの形態の導波層構造を有するDFBレーザダイオードに対して形成される、レーザミラー90、100の面におけるシミュレーションされた光強度分布の二次元切断図を示す。非対称LOCの結果、活性層40により非対称な垂直方向の光強度分布が生じる。この構造の有効モード面積は0.63μmであり、従って、従来技術によるDFBレーザダイオードのもの(Aeff=0.78μm)より小さい。このことは、選択された非対称LOCにおける従来技術から既知の厚さを越えた上側導波層50の厚さの減少は、有効モード面積の点で、対称LOCの状態を超えて下側導波層30の厚さを更に増加させることによっては補償され得ないことを意味する。図6及び10の比較は、非対称LOCに対してリッジの範囲内で案内される光強度の寄与度が、図6の対称LOCに対してよりも大幅に大きいことを明らかに示している。周期格子構造110に対するレーザ放射の過度に低い結合という前述した問題を、非対称LOCは大いに回避する。
図11は、光強度の最大点における垂直方向の切断図を示す。当該光パワー密度の最高値は、依然として、活性層40内に位置している。しかしながら、垂直方向の分布は明らかに非対称であり、当該光放射の主要部は下側導波層30内で案内されている。下側クラッド層20における放射部分は小さい。上側導波層50は極めて薄いので、該層は光子密度の極めて大きな勾配を有する。上側クラッド層60又はリッジ70は、当該放射のかなりの部分を伝達する当該強度分布の尾部を案内する。既述したように、該非対称LOCは、従来技術による横結合を有するDFBレーザダイオード(Aeff=0.78μm)と比較して、有効モード面積を低下させる(Aeff=0.63μm)。
図12は、図3、7及び11の光強度分布の垂直方向の遠視野分布を互いに隣り合わせで比較している。対称なLOC及び強く非対称なLOCの発散角の半値全幅は略同一である。何故なら、両分布は50%より上の発散角に対して同一の特性を示すからである。しかしながら、非対称LOC内で案内されるレーザモードの強度分布は、対称LOCの強度分布よりも広い尾部を示す。
図10及び11から分かるように、当該レーザモードのうちの上側クラッド層において案内される割合は、対称LOCと比較して明らかに増加し、これは非対称LOCによるものである。このことは、当該レーザモードの周期表面構造110との或る程度の重なりを可能にし、これは横結合の機能にとり必要である。当該レーザモードの周期表面構造110との結合強度に影響を与えるための追加の可能性は、リッジ70内で、且つ、周期表面構造110より上に高屈折率の薄い層120を形成するというものである。図13に、斯様な層が示されている。他の点では、図13は非対称LOCを示す図9と同一である。
図14は、図10に示したような、レーザミラー90、100の面内でのシミュレーションされた光強度分布の二次元切断図を示し、この場合、高屈折率の追加の層120が、図9に示したリッジ70内で実施化されている。この層120により、光強度分布は下側導波層30から上側クラッド層60へと僅かに変位される。図10と図14との比較から分かるように、高屈折率を持つ層120は、非対称LOCの既に小さな有効モード面積(Aeff=0.63μm)を更に減少させる。周期表面構造110より上の上側クラッド層60内に高屈折率を持つ層120(図13)を有する図14の非対称LOCの有効モード面積は、0.43μmである。
図15の垂直方向強度密度の一次元切断図から分かるように、高屈折率を持つ層120の結果、リッジ70の範囲内の光パワー密度が僅かに増加する。更に、高屈折率の層120の領域内に、略一定な光パワー密度の小さな平坦部が形成される。これは、周期表面構造110に対する当該レーザモードの結合を、残りの光強度分布に著しく影響を及ぼすことなく改善する。これにより、非対称LOCに対する周期表面構造の結合定数を改善することが特に可能となる。しかしながら、リッジ70内に高屈折率の薄い層120を用いることは、非対称LOC構造に限定されるものではない。この層は、従来技術による横結合を有するDFBレーザダイオードにも、及び対称LOCを有する斯様なレーザダイオードにも適用することができる。
高屈折率を備える層120は、DFBレーザダイオードの製造において発生し得る他の問題も克服又は少なくとも明確に減少させることができる。リッジの外側の上側クラッド層60を除去する際に、該上側カバー層60を除去するために使用されるエッチング処理の変動により、リッジ70の外側に上側クラッド層60の異なる残留厚さが生じる可能性があり得る。図3及び11に示されるように、この領域においては光強度分布の尾部が大きく変化する。高屈折率の斯様な層120は、周期表面構造110に対する結合定数の変化を少なくとも部分的に補償するために使用することができる。
図12から分かるように、図9及び13の非対称LOCは大きな発散角に対して対称LOCよりも大きな強度の割合を有している。従来から既知の通常の構造の垂直方向の遠視野と比較して、当該遠視野は極めて発散性が小さく、かくして、光学デバイスへの簡単な結合が可能となる。
対称LOC構造(図5)を除き、図3、7、11及び15に示された強度分布のピークにおける依然として非常に大きな最大光パワー密度が問題を提起する。この相関関係の量的原因は、今までに説明した導波構造の有効モード面積である。図16及び17は、この問題を如何にして解決することができるかの可能性を示している。
図16は図9の非対称LOC構造の一部を示すが、ここでは、リッジ70がレーザミラー90、100の方向に線形に先細りと(テーパ付け)されている。図17では、リッジ70の幅の該先細りが、指数関数に従っている。これらの図の両者は、リッジ70の先細りの単なる例を示している。リッジ70は、如何なる任意の非線形関数に従って、又は例えばステップ状に先細りとすることもできる。更に、リッジ70の幅は一方の側においてのみ先細りとされることもできる。従って、図16及び17に示されるように、リッジの長軸に対して対称に先細りとする代わりに、リッジ70の両側に非対称な先細りを構築することも可能であり、その場合、両側の先細りは同一の又は異なる関数依存性に従うことができる。
リッジの斯かる先細りは、レーザミラー90若しくは100の方向においてとすることもでき、又は両レーザミラー90及び100の方向におけるものとすることもできる。これにより、斯かる先細りは、両レーザミラー90、100の方向において等しく又は異なるように実行することができる。
接触層80の金属化部は、リッジ70の幅が変化する全範囲にわたって延在することができる。他の例として、接触層80の金属化部はリッジ70の幅が変化する範囲の一部にわたり延在することができるか、又は該接触層80の金属化部はリッジ70の幅が変化される範囲にわたっては延在しないようにする。更に、リッジ70の幅にわたる接触層80の電気メッキが、リッジ70の幅の先細りが開始する位置で中断されることも考えられる。
図16及び17は、上記先細り領域においては周期表面構造110を有さない。しかしながら、周期表面構造110は、該先細りの範囲へと延びることもできる。これにより、該構造の周期性をリッジ70の各幅に適合させることができる。代わりに、当該リッジの幅が一定である範囲の周期を、先細り領域内へと維持することもできる。
図16及び17に示すようなリッジ70の幅の減少の代わりに、同一の結果を達成するためにリッジ70の高さを減少させることも可能である。更に、リッジの幅の先細りと、リッジの高さの減少との組み合わせを有利に使用することもできる。
リッジ70の先細りを、非対称LOCの関連において説明した。しかしながら、LOCが、必ずしもリッジの幅の先細りに関するものであるとは限らない。この原理は、従来技術によるDFBレーザダイオードに対しても適用することができる。
図18は、非対称LOC及び図16又は17によるリッジ70の先細りを備える横結合を有するDFBレーザダイオードから得られる、レーザミラー90、100の面内でのシミュレーションされた光強度分布における二次元切断図を示す。リッジ70の幅は、約2.0μmからレーザミラー90、100上における約0.3μmまで減少された。一般的に、リッジ70は、該リッジの幅が当該半導体材料において放出される放射の数波長に対応するように構成される。当該先細りの端部において、リッジ70の幅は、大凡、当該レーザ空洞におけるレーザ光の波長まで減少される。
レーザモードは、リッジ70内での収縮を下方に逃れて、レーザミラー上では実質的に全下側導波層30を占領する。有効モード面積は、リッジ70の先細りにより、非対称LOCと比較して約17なる因数によりAeff=10.74μmまで増加された。特に、先細り非対称LOCの有効モード面積は、対称LOCの有効モード面積(Aeff=8.63μm)より大きい。従来技術による横結合を有するDFBレーザダイオード(Aeff=0.78μm)と比較して、非対称LOC及び先細りを備える横結合を有するDFBレーザダイオードは、約14倍大きな有効モード面積を有する。レーザミラー90におけるレーザモードの劇的な拡大により、最大光パワー密度は約1桁の大きさ減少される。このことは、レーザミラー90、100から導出することが可能な光出力の対応する増加を可能にする。
図19は、従来技術による(図1)、対称LOCを備えた(図5)、非対称LOCを備えた(図9)、並びに非対称LOC及びリッジ70の付加的な先細りを備えた(図16及び17)横結合を有するDFBレーザダイオードの光強度分布の垂直方向の遠視野分布を互いに比較して示している。先細りを備える非対称LOCの発散角の半値全幅は、ここでも、対称LOCの発散角より小さい。このように、追加の先細りを備える非対称LOCの横方向及び垂直方向遠視野分布の発散角は、実質的に揃えられている。従って、導出することが可能で、且つ、リッジ70の先細りにより大幅に増加されている光出力は、光ファイバ等の回転対称な光学エレメントに、大きな労力なく且つ高い効率で導入することができる。
図14及び15に関連して既述したように、リッジ70内で周期格子構造110より上の高屈折率を持つ薄い層120は、当該周期構造110へのレーザモードの結合を増加させ、これにより望ましくない固有モードの抑圧さを増加させることを可能にする。図20は、図18のレーザミラー90、100の面におけるシミュレーションされた光強度分布の二次元切断図を示し、この場合、高屈折率を持つ層120がリッジ70内に追加的に実施化されている。図18と図20との比較から、この層120の結果として、リッジ70の範囲内及び該リッジの両側において光強度が或る程度増加することが分かる。先細りを備える非対称LOCと比較すると共に、モード面積の減少に関して表した場合、レーザミラー90、100上での当該強度分布の悪化は、Aeff=9.96μmへと、8%未満の減少を示す。リッジ70の先細りを備える非対称LOCと高屈折率の層120との組み合わせは、レーザモードと周期表面構造110との間の十分な結合効率及び大きな有効モード面積を同時に達成する。最後に述べた量の大きな値は、レーザミラー90、100の一方に関して導出することが可能な大きな光出力にとり必須の要件である。
レーザモードのずれ及び広がりは、リッジ70が先細りされる範囲内でのみ生じる。図2及び3、図10及び11、並びに図14及び15から分かるように、レーザ空洞の中心において達成される強度分布は、活性層40の範囲内に強度の最大点を有する。下記の表1から分かるように、選択された非対称LOC及び高屈折率の層120を備える非対称LOCの有効モード面積は、従来技術による横結合を有するDFBレーザダイオードのものより小さい。従って、レーザ空洞の中心における活性層40の増幅領域内へのレーザモードの閉じ込め係数は、目立って変化されることはない。これにより、本発明による原理の何れも、横結合を備えるDFBレーザダイオードの重要なパラメータを大きく変化させることはない。
下記の表は、本発明の上述した原理における有効モード面積を要約している。
Figure 2012526375
下記の表には、非対称LOC及び高屈折率を持つ層120なる本発明の両原理をエピタキシャル処理で実現する、横結合を有するGaAs/AlxGa(1-x)AsのDFBレーザダイオードの例示的積層体が示されている。
Figure 2012526375

Claims (17)

  1. a.少なくとも1つの半導体基板(10)と、
    b.前記半導体基板(10)上に配設される少なくとも1つの活性層(40)と、
    c.前記活性層(40)より上に配設される少なくとも1つのリッジ(70)と、
    d.前記活性層(40)より上に前記リッジ(70)に隣接して配設され、エッチング処理後に残存する上側クラッド層(60)に付着される少なくとも1つの周期表面構造(110)と、
    e.前記活性層(40)より下及び上に配設される少なくとも1つの導波層(30,50)であって、下側導波層(30)が1μmないし5μmの、好ましくは1.5μmないし3μmの、特に好ましくは2.0μmないし2.5μmの範囲内の厚さを有し、上側導波層(50)が15nmないし100nmの、好ましくは20nmないし50nmの範囲内の厚さを有する少なくとも1つの導波層(30,50)と、
    を有する、横結合を有するDFBレーザダイオード。
  2. 請求項1に記載のDFBレーザダイオードであって、前記活性層(40)と前記導波層(30,50)との間の屈折率の差が、0.04から0.40までの、好ましくは0.06から0.30までの、特に好ましくは0.08から0.25までの範囲内であるDFBレーザダイオード。
  3. 請求項1又は請求項2に記載のDFBレーザダイオードであって、前記導波層(30,50)の屈折率が該層の厚さにわたり一定に留まるDFBレーザダイオード。
  4. 請求項1ないし3の何れか一項に記載のDFBレーザダイオードであって、前記導波層(30,50)の屈折率が該層の厚さにわたり、好ましくは線形に、変化するDFBレーザダイオード。
  5. 請求項1ないし4の何れか一項に記載のDFBレーザダイオードであって、前記リッジ(70)の断面、好ましくは該リッジの幅、が少なくとも一方のレーザミラー(90,100)の方向に先細りにされるDFBレーザダイオード。
  6. 請求項5に記載のDFBレーザダイオードであって、前記リッジ(70)の幅が少なくとも一方のレーザミラー(90,100)の方向に線形に先細りにされるDFBレーザダイオード。
  7. 請求項5又は請求項6に記載のDFBレーザダイオードであって、前記リッジ(70)の幅が少なくとも一方のレーザミラー(90,100)の方向に指数関数的に先細りにされるDFBレーザダイオード。
  8. 請求項5ないし7の何れか一項に記載のDFBレーザダイオードであって、前記リッジ(70)が0.5μmから10μmまでの、好ましくは2μmから7μmまでの、特に好ましくは2μmから4μmまでの範囲内の幅を有するDFBレーザダイオード。
  9. 請求項5ないし8の何れか一項に記載のDFBレーザダイオードであって、少なくとも一方のレーザミラー(90,100)における前記リッジ(70)の幅が、100nmから700nmまでの、好ましくは200nmから500nmまでの範囲内であるDFBレーザダイオード。
  10. 請求項5ないし9の何れか一項に記載のDFBレーザダイオードであって、少なくとも一方のレーザミラー(90,100)の方向への前記リッジ(70)の幅の先細りが、50μmから1000μmまでの、好ましくは100μmから600μmまでの、特に好ましくは200μmから400μmまでの範囲の長さにわたり生じるDFBレーザダイオード。
  11. 請求項5ないし10の何れか一項に記載のDFBレーザダイオードであって、前記リッジ(70)の幅が、両レーザミラー(90,100)の方向に先細られているDFBレーザダイオード。
  12. 請求項5ないし11の何れか一項に記載のDFBレーザダイオードであって、両レーザミラー(90,100)の方向への前記リッジ(70)の幅の先細りが、長手方向及び/又は横方向に対して非対称であるDFBレーザダイオード。
  13. 請求項5ないし12の何れか一項に記載のDFBレーザダイオードであって、前記周期表面構造(110)が、前記リッジ(70)の断面が変化する領域に沿っては延在しないDFBレーザダイオード。
  14. 請求項1ないし13の何れか一項に記載のDFBレーザダイオードであって、前記リッジ(70)内に配設されると共に該リッジ(70)の屈折率よりも高い屈折率を有する層(120)を更に有するDFBレーザダイオード。
  15. 請求項14に記載のDFBレーザダイオードであって、前記高屈折率の層(120)が前記周期表面構造(110)よりも上に配設されるDFBレーザダイオード。
  16. 請求項14又は請求項15に記載のDFBレーザダイオードであって、前記高屈折率を有する層(120)と前記リッジ(70)との間の屈折率の差が、0.10から0.40までの、好ましくは0.15から0.35までの、特に好ましくは0.20から0.30までの範囲内であるDFBレーザダイオード。
  17. 請求項14ないし16の何れか一項に記載のDFBレーザダイオードであって、前記高屈折率を有する層(120)の厚さが、前記リッジ(70)の厚さの5%以下の範囲内であるDFBレーザダイオード。
JP2012509029A 2009-05-05 2010-05-05 大出力パワー用の横結合を持つdfbレーザダイオード Active JP5717726B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009019996A DE102009019996B4 (de) 2009-05-05 2009-05-05 DFB Laserdiode mit lateraler Kopplung für große Ausgangsleistungen
DE102009019996.9 2009-05-05
PCT/EP2010/056096 WO2010128077A1 (de) 2009-05-05 2010-05-05 Dfb laserdiode mit lateraler kopplung für grosse ausgangsleistungen

Publications (2)

Publication Number Publication Date
JP2012526375A true JP2012526375A (ja) 2012-10-25
JP5717726B2 JP5717726B2 (ja) 2015-05-13

Family

ID=42235159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012509029A Active JP5717726B2 (ja) 2009-05-05 2010-05-05 大出力パワー用の横結合を持つdfbレーザダイオード

Country Status (7)

Country Link
US (1) US8855156B2 (ja)
EP (1) EP2427937B1 (ja)
JP (1) JP5717726B2 (ja)
DE (1) DE102009019996B4 (ja)
LT (1) LT2427937T (ja)
PL (1) PL2427937T3 (ja)
WO (1) WO2010128077A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015228494A (ja) * 2014-05-05 2015-12-17 ナノプラス ナノシステムズ アンド テクノロジーズ ゲーエムベーハーnanoplus Nanosystems and Technologies GmbH 半導体レーザ、および帰還素子を含む半導体レーザの製造方法
WO2017158870A1 (ja) * 2016-03-15 2017-09-21 株式会社 東芝 分布帰還型半導体レーザ
CN107306011A (zh) * 2016-04-21 2017-10-31 中国科学院半导体研究所 激光器的侧边耦合光栅及其制备方法、包含其的激光器
JP2019522379A (ja) * 2016-07-27 2019-08-08 ウニヴェルシテ・パリ−シュド 分布帰還型レーザーダイオード
JP2021012990A (ja) * 2019-07-09 2021-02-04 住友電気工業株式会社 量子カスケードレーザ
JP2021525962A (ja) * 2018-05-30 2021-09-27 エヌライト, インコーポレイテッドNlight, Inc. 量子井戸オフセットおよび効率的な単一モードレーザ発光を速軸に沿って有する大光共振器(loc)レーザダイオード

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011002923A1 (de) 2011-01-20 2012-07-26 Forschungsverbund Berlin E.V. Diodenlaser mit hoher Effizienz
DE102012207339B4 (de) 2012-03-30 2018-08-30 Trumpf Laser Gmbh Pumpstrahlungsanordnung und Verfahren zum Pumpen eines laseraktiven Mediums
US20150244149A1 (en) * 2012-05-30 2015-08-27 Euphoenix B.V. Tunable Semiconductor Device And Method For Making Tunable Semiconductor Device
US9034734B2 (en) * 2013-02-04 2015-05-19 Avago Technologies General Ip (Singapore) Pte. Ltd. Systems and methods for plasma etching compound semiconductor (CS) dies and passively aligning the dies
CN103326243A (zh) * 2013-03-29 2013-09-25 中国科学院半导体研究所 基横模低水平发散角一维啁啾光子晶体边发射激光器阵列
JP6654468B2 (ja) * 2016-02-29 2020-02-26 日本ルメンタム株式会社 光送信モジュール
CN105720479B (zh) * 2016-04-26 2019-03-22 中国科学院半导体研究所 一种具有光束扩散结构的高速半导体激光器
CN108919414A (zh) * 2018-07-02 2018-11-30 中国科学院半导体研究所 一种soi平面波导布拉格光栅及制作方法
CN111755949B (zh) * 2019-03-29 2021-12-07 潍坊华光光电子有限公司 一种具有非对称注入窗口的脊型GaAs基激光器的制备方法
EP3832817A1 (de) * 2019-12-03 2021-06-09 nanoplus Nanosystems and Technologies GmbH Halbleiterlaser sowie verfahren zur herstellung eines halbleiterlasers
CN111370995B (zh) * 2020-03-12 2021-05-18 中国科学院半导体研究所 表面光栅半导体激光器及其制作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1098235A (ja) * 1996-08-01 1998-04-14 Pioneer Electron Corp 無再成長分布帰還リッジ型半導体レーザ及びその製造方法
JPH11214793A (ja) * 1998-01-28 1999-08-06 Pioneer Electron Corp 分布帰還型半導体レーザ
JP2001024275A (ja) * 1999-07-05 2001-01-26 Hitachi Ltd 光伝送装置
US20030007719A1 (en) * 1998-06-24 2003-01-09 Forrest Stephen R. Photonic integrated circuits
JP2003152273A (ja) * 2001-11-08 2003-05-23 Furukawa Electric Co Ltd:The 半導体レーザ素子
EP0984535B1 (de) * 1998-08-31 2005-08-17 Alfred Prof. Dr. Forchel Halbleiterlaser mit Gitterstruktur
US20070002914A1 (en) * 2005-06-27 2007-01-04 Samsung Electronics Co., Ltd. Semiconductor laser diode having an asymmetric optical waveguide layer
JP2007184511A (ja) * 2005-12-09 2007-07-19 Fujitsu Ltd 光導波路を伝搬する光と回折格子とを結合させた光素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1137605A (en) * 1979-01-15 1982-12-14 Donald R. Scifres High output power laser
JPH10144991A (ja) * 1996-11-08 1998-05-29 Sony Corp 半導体レーザー
US6381380B1 (en) * 1998-06-24 2002-04-30 The Trustees Of Princeton University Twin waveguide based design for photonic integrated circuits
US20020141582A1 (en) 2001-03-28 2002-10-03 Kocher Paul C. Content security layer providing long-term renewable security
DE60200132T2 (de) * 2001-03-29 2004-08-26 Interuniversitair Microelektronica Centrum Vzw Sich verjüngender Wellenleiter (Taper) mit lateralen strahlbegrenzenden Rippenwellenleitern
KR20020077567A (ko) * 2001-04-02 2002-10-12 한국전자통신연구원 광모드 크기 변환기가 결합된 레이저 및 그 제조 방법
US7251381B2 (en) * 2002-04-03 2007-07-31 The Australian National University Single-mode optical device
US7373048B2 (en) * 2004-02-18 2008-05-13 Trustees Of Princeton University Polarization insensitive semiconductor optical amplifier
JP4817255B2 (ja) * 2006-12-14 2011-11-16 富士通株式会社 光半導体素子及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1098235A (ja) * 1996-08-01 1998-04-14 Pioneer Electron Corp 無再成長分布帰還リッジ型半導体レーザ及びその製造方法
JPH11214793A (ja) * 1998-01-28 1999-08-06 Pioneer Electron Corp 分布帰還型半導体レーザ
US20030007719A1 (en) * 1998-06-24 2003-01-09 Forrest Stephen R. Photonic integrated circuits
EP0984535B1 (de) * 1998-08-31 2005-08-17 Alfred Prof. Dr. Forchel Halbleiterlaser mit Gitterstruktur
JP2001024275A (ja) * 1999-07-05 2001-01-26 Hitachi Ltd 光伝送装置
JP2003152273A (ja) * 2001-11-08 2003-05-23 Furukawa Electric Co Ltd:The 半導体レーザ素子
US20070002914A1 (en) * 2005-06-27 2007-01-04 Samsung Electronics Co., Ltd. Semiconductor laser diode having an asymmetric optical waveguide layer
JP2007184511A (ja) * 2005-12-09 2007-07-19 Fujitsu Ltd 光導波路を伝搬する光と回折格子とを結合させた光素子

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015228494A (ja) * 2014-05-05 2015-12-17 ナノプラス ナノシステムズ アンド テクノロジーズ ゲーエムベーハーnanoplus Nanosystems and Technologies GmbH 半導体レーザ、および帰還素子を含む半導体レーザの製造方法
WO2017158870A1 (ja) * 2016-03-15 2017-09-21 株式会社 東芝 分布帰還型半導体レーザ
JP2017168592A (ja) * 2016-03-15 2017-09-21 株式会社東芝 分布帰還型半導体レーザ
US10714897B2 (en) 2016-03-15 2020-07-14 Kabushiki Kaisha Toshiba Distributed feedback semiconductor laser
CN107306011A (zh) * 2016-04-21 2017-10-31 中国科学院半导体研究所 激光器的侧边耦合光栅及其制备方法、包含其的激光器
JP2019522379A (ja) * 2016-07-27 2019-08-08 ウニヴェルシテ・パリ−シュド 分布帰還型レーザーダイオード
JP7112387B2 (ja) 2016-07-27 2022-08-03 ウニヴェルシテ・パリ-シュド 分布帰還型レーザーダイオード
JP2021525962A (ja) * 2018-05-30 2021-09-27 エヌライト, インコーポレイテッドNlight, Inc. 量子井戸オフセットおよび効率的な単一モードレーザ発光を速軸に沿って有する大光共振器(loc)レーザダイオード
JP7361728B2 (ja) 2018-05-30 2023-10-16 エヌライト, インコーポレイテッド 量子井戸オフセットおよび効率的な単一モードレーザ発光を速軸に沿って有する大光共振器(loc)レーザダイオード
JP2021012990A (ja) * 2019-07-09 2021-02-04 住友電気工業株式会社 量子カスケードレーザ

Also Published As

Publication number Publication date
WO2010128077A1 (de) 2010-11-11
US8855156B2 (en) 2014-10-07
EP2427937A1 (de) 2012-03-14
EP2427937B1 (de) 2018-09-26
PL2427937T3 (pl) 2019-03-29
DE102009019996A1 (de) 2010-12-16
JP5717726B2 (ja) 2015-05-13
LT2427937T (lt) 2019-01-10
US20120093187A1 (en) 2012-04-19
DE102009019996B4 (de) 2011-09-15

Similar Documents

Publication Publication Date Title
JP5717726B2 (ja) 大出力パワー用の横結合を持つdfbレーザダイオード
Kintzer et al. High-power, strained-layer amplifiers and lasers with tapered gain regions
US6580740B2 (en) Semiconductor laser device having selective absorption qualities
US7869483B2 (en) Surface emitting laser
US8319229B2 (en) Optical semiconductor device and method for manufacturing the same
US9502861B2 (en) Semiconductor laser
CN107230931B (zh) 分布反馈半导体激光芯片及其制备方法、光模块
JP2001308451A (ja) 半導体発光素子
US7586970B2 (en) High efficiency partial distributed feedback (p-DFB) laser
JP2005538532A (ja) 傾斜型共振器半導体レーザー(tcsl)及びその製造方法
WO2018168430A1 (ja) 半導体レーザ装置、半導体レーザモジュール及び溶接用レーザ光源システム
JP2010232424A (ja) 半導体光増幅装置及び光モジュール
JPH05275798A (ja) レーザダイオード
Qiu et al. Fabrication and characterization of low-threshold single fundamental mode VCSELs with dielectric DBR mirror
JP5455919B2 (ja) 発光素子の製造方法および発光素子
JP2016072302A (ja) 量子カスケード半導体レーザ
JP2010232371A (ja) 半導体光増幅素子
US20030047738A1 (en) Semiconductor laser device having selective absorption qualities over a wide temperature range
Vaissié et al. High efficiency surface-emitting laser with subwavelength antireflection structure
US6661828B2 (en) Semiconductor laser device
US20050201437A1 (en) Semiconductor laser
US7711016B2 (en) Semiconductor laser with side mode suppression
JP2010021430A (ja) 半導体光素子
JP5163355B2 (ja) 半導体レーザ装置
Suhara et al. Broad-area and MOPA lasers with integrated grating components for beam shaping and novel functions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131007

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131212

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150317

R150 Certificate of patent or registration of utility model

Ref document number: 5717726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250