JP2012112663A - 分光光度計 - Google Patents

分光光度計 Download PDF

Info

Publication number
JP2012112663A
JP2012112663A JP2010259253A JP2010259253A JP2012112663A JP 2012112663 A JP2012112663 A JP 2012112663A JP 2010259253 A JP2010259253 A JP 2010259253A JP 2010259253 A JP2010259253 A JP 2010259253A JP 2012112663 A JP2012112663 A JP 2012112663A
Authority
JP
Japan
Prior art keywords
light
light source
transmission spectrum
sample
spectrophotometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010259253A
Other languages
English (en)
Inventor
Shigeru Matsui
松井  繁
Shuhei Yamamura
周平 山村
Hideyuki Akiyama
秀之 秋山
Yoshisada Ehata
佳定 江畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2010259253A priority Critical patent/JP2012112663A/ja
Priority to US13/879,816 priority patent/US20130222789A1/en
Priority to PCT/JP2011/076180 priority patent/WO2012067068A1/ja
Priority to DE112011103836T priority patent/DE112011103836T5/de
Priority to CN2011800548951A priority patent/CN103221802A/zh
Publication of JP2012112663A publication Critical patent/JP2012112663A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N21/3151Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths using two sources of radiation of different wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J2003/2866Markers; Calibrating of scan

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

【課題】シングルビーム方式の分光光度計において、光源の光量が時間的に変動しても、高S/N、かつ長時間にわたりドリフトを抑えた高安定な透過及び吸収スペクトルを得ることができる。
【解決手段】分光光度計は、光源と、試料セルと、前記光源からの光のうち前記試料セル内の試料を透過した光を複数の波長成分に分光することによって前記試料の透過スペクトルを生成するポリクロメータと、前記試料の透過スペクトルを検出するイメージセンサと、前記光源からの光のうち前記試料セルを透過しない光を検出する光源モニタ用光検出器と、前記光源モニタ用光検出器の出力信号を用いて前記試料の透過スペクトルを補正する演算部と、を有する。
【選択図】図1

Description

本発明は、試料の透過スペクトル又は吸収スペクトルを計測する分光光度計に関し、特に、シングルビーム方式の分光光度計に関する。
従来、透過スペクトル又は吸収スペクトルを測定する分光光度計として、所謂、ダブルビーム方式の分光光度計が知られている。ダブルビーム方式の分光光度計では、試料セルと参照セルの2つのセルを設け、各セルを通過した光の光量を計量し、その比を求めることによって透過スペクトルを得る。また、透過スペクトルの縦軸を対数変換することによって、吸収スペクトルが得られる。ダブルビーム方式の分光光度計では、試料セル用の光束と参照セル用の光束を同時に計測するため、光源の光量が時間的に変動しても、試料の正しい透過スペクトルを得ることができる長所がある。
特開昭59−230124号公報及び特開昭63−198832号公報には、イメージセンサを用いたダブルビーム方式の分光光度計の例が記載されている。イメージセンサを用いたダブルビーム方式の分光光度計は、構造の複雑化、容積の増大、製造コストの増大という問題がある。そのため、イメージセンサを搭載した分光光度計では、一般にシングルビーム方式が用いられている。
特開平11−108830号公報には、光源からの光を分散素子によって波長分散し、それをアレイ型光検出素子によって検出するシングルビーム方式の吸光度測定器が記載されている。
更に、特開昭61−53527号公報には、紫外域用の重水素放電管と可視域用のハロゲンランプの2種類の光源を搭載した分光光度計が記載されている。
特開昭59−230124号公報 特開昭63−198832号公報 特開平11−108830号公報 特開昭61−53527号公報
シングルビーム方式の分光光度計は、構造の簡単化、容積の減少、製造コストの減少等の長所がある。しかしながら、シングルビーム方式の分光光度計は、光源の光量が時間的に変動した場合、試料の正しい透過スペクトルを得ることが困難となる。
本発明の目的は、シングルビーム方式の分光光度計において、光源の光量が時間的に変動しても、高S/N、かつ長時間にわたりドリフトを抑えた高安定な透過及び吸収スペクトルを得ることができることにある。
本発明によると、分光光度計は、光源と、試料セルと、前記光源からの光のうち前記試料セルを透過した光を複数の波長成分に分光することによって前記試料セル内の試料の透過スペクトルを生成するポリクロメータと、前記試料の透過スペクトルを検出するイメージセンサと、前記光源からの光のうち前記試料セルを透過しない光を検出する光源モニタ用光検出器と、前記光源モニタ用光検出器の出力信号を用いて前記試料の透過スペクトルを補正する演算部と、を有する。
前記演算部は、前記透過スペクトルを、前記光源モニタ用光検出器の出力信号から求めた補正係数で除算することによって、補正を行う。
本発明によれば、シングルビーム方式の分光光度計において、光源の発光強度が時間的に変動しても、高S/N、かつ長時間にわたりドリフトを抑えた高安定な透過及び吸収スペクトルを得ることができる。
本発明による分光光度計の第1の例の構成を示す図である。 ハロゲンランプと重水素放電ランプの発光強度の波長スペクトルの例を説明する図である。 ハロゲンランプと重水素放電ランプの発光強度の時間変動を説明する図である。 ハロゲンランプと重水素放電ランプの発光強度の時間変動を説明する別の図である。 ハロゲンランプと重水素放電ランプの発光強度の時間変動を説明する別の図である。 本発明による分光光度計の第2の例の構成を示す図である。 本発明による分光光度計の第2の例の一部分を拡大した図である。
図1を参照して、本発明の分光光度計の第1の例を説明する。本例の分光光度計は、第1及び第2の光源1、2と、試料セル5と、検出光学系と、検出光学系演算部と、光源モニタ光学系と、光源モニタ系演算部と、コンピュータ17を有する。検出光学系は、ダイクロイックミラー3、結像レンズ7、ポリクロメータ10、及び、一次元イメージセンサ12を有する。一次元イメージセンサ12の代わり二次元イメージセンサを用いてもよい。検出光学系演算部は、増幅器15、及び、A/D変換器16を有する。
光源モニタ光学系は、第1及び第2の光ファイバ21A、21B、第1及び第2のレンズ23A、23B、及び、第1及び第2の光源モニタ用光検出器24A、24Bを有する。光ファイバ21A、21Bは光ファイババンドルであってもよい。光源モニタ光学系演算部は、第1及び第2の増幅器25A、25B、及び、A/D変換器26を有する。
第1の光源1は長波長領域用の光源であり、第2の光源2は短波長領域用の光源である。本例では、第1の光源1には可視域用のハロゲンランプを用い、第2の光源2には紫外域用の重水素放電ランプを用いる。試料セル5は、固体、液体、気体など種々の形態の試料に適合した構造の試料セルが用いられる。図示の例では、試料セル5は、液体試料用のフローセルである。試料は、矢印にて示すように、検出光学系の光軸に沿って流れる。フローセルは、液体クロマトグラフの検知器として用いて好適である。
先ず、検出光学系と検出光学系演算部を説明する。第1及び第2の光源1、2から出た光はダイクロイックミラー3で結合され、試料セル5に入射する。試料セル5を通過した光は結像レンズ7で集光された後、ポリクロメータ10に入射する。ポリクロメータ10は、入射スリット10Aと波長分散素子10Bを有する。波長分散素子10Bは回折格子であってよい。入射スリット10Aを経由した入射した光は、波長分散素子10Bによって波長分散され、出射側焦点面に、透過スペクトル像11を形成する。透過スペクトル像11は、試料セル5中の液体試料の分光透過特性を表す。透過スペクトル像11は、一次元イメージセンサ12によって、波長領域毎に、電気信号に変換され、増幅器15で増幅された後、A/D変換器16によってデジタル信号化される。デジタル信号化された透過スペクトルは、コンピュータ17のメモリに保存される。透過スペクトルを対数変換することによって吸収スペクトルが得られる。
次に、光源モニタ光学系と光源モニタ系演算部について説明する。第1及び第2の光源1、2から出た光は、第1及び第2の光ファイバ21A、21Bを、それぞれ経由して、第1及び第2のレンズ23A、23Bに、導かれ、そこで、其々、集光される。集光された光は、第1及び第2の光源モニタ用光検出器24A、24Bによって、其々、検出され、電気信号に変換される。これらの電気信号は、第1及び第2の増幅器25A、25Bによって、其々、増幅され、A/D変換器26によって、それぞれデジタル信号化される。デジタル信号化された検出信号は、コンピュータ17のメモリに保存される。
第1の光ファイバ21Aの入射側端面を、第1の光源1の近傍に配置する。それによって、第1の光ファイバ21Aの入射側端面より、第1の光源1の発光の一部分のみが取り出される。また、第2の光ファイバ21Bの入射側端面を、第2の光源2の近傍に配置する。それによって、第2の光ファイバ21Bの入射側端面より、第2の光源2の発光の一部のみが取り出される。このとき、光ファイバ21A、21Bは、2つの光源1、2から試料セル5へ向かう光の光路と干渉しないように配置する。
第1の光ファイバ21Aによって第2の光源2からの発光を検出しないように、かつ第2の光ファイバ21Bによって第1の光源1からの発光を検出しないように、第1及び第2の光ファイバ21A、21Bの入射端を配置する。
更に、第1の光ファイバ21Aの出射側端面からの出射光が、第1のレンズ23Aを経由して第1の光源モニタ用光検出器24Aに入射するように、第1の光ファイバ21Aを設置する。第2の光ファイバ21Bの出射側端面からの出射光が、第2のレンズ23Bを経由して第2の光源モニタ用光検出器24Bに入射するように、第2の光ファイバ21Bを設置する。
先ず、ブランク補正を説明する。一次元イメージセンサ12によって得られた透過スペクトル像11の強度分布には、試料セル5内の試料の分光透過特性だけでなく、光源1、2の分光発光特性、ポリクロメータ10の分光効率特性等の機器に起因した光学特性が反映されている。そこで、透過スペクトル像11の強度分布より、機器に起因した光学特性を除去する必要がある。
まず、試料セル5に試料を流さない状態で透過スペクトル像を取得する。試料セル5に試料を流さない状態とは、純水、又は、ブランク試料を流す状態を含む。これを参照用透過スペクトルとしてコンピュータ17のメモリ上に保存する。参照用透過スペクトルは、機器に起因した光学特性を表す。
次に、試料セル5に分析対象の試料を流した状態で透過スペクトル像を取得する。これを試料の透過スペクトルとしてコンピュータ17のメモリ上に保存する。試料の透過スペクトルは、試料の分光透過特性と機器に起因した光学特性の両者を含む。
透過スペクトルでは、機器に起因した光学特性は乗算の形で反映される。そこで、機器に起因した光学特性の影響を除去するには、機器に起因した光学特性を除算すればよい。即ち、試料の透過スペクトル中の波長毎の強度を、参照用透過スペクトル中の対応する波長毎の強度で除算すればよい。こうして、機器に起因した光学特性が除去された試料の透過スペクトルが得られる。
吸収スペクトルのブランク補正は、次のようにして行う。参照用透過スペクトルと試料の透過スペクトルをそれぞれ対数変換することによって、参照用吸収スペクトルと試料の吸収スペクトルが得られる。吸収スペクトルでは、機器に起因した光学特性は加算の形で反映される。そこで、機器に起因した光学特性の影響を除去するには、機器に起因した光学特性を減算すればよい。即ち、試料の吸収スペクトル中の波長毎の強度を、参照用吸収スペクトル中の対応する波長毎の強度で減算すればよい。こうして、機器に起因した光学特性が除去された吸収スペクトルが得られる。
上述の機器に起因した光学特性のうち、光源1、2の分光発光特性は、光源1、2の発光強度が変動すると、変化する。従って、参照用透過スペクトルは、光源1、2の発光強度が変動すると、変化する。本例の分光光度計はシングルビーム方式であるため、参照用透過スペクトルと試料の透過スペクトルの取得時刻にはずれがある。2つの透過スペクトルの取得時刻の間に、光源1、2の発光強度が変動すると、透過スペクトルに誤差が生じる。これを回避するには、参照用透過スペクトルを随時取得し、常に、最新の参照用透過スペクトルを用いればよい。
試料セル5がフローセルの場合、フローセルに流れる液体の成分濃度や組成比率が所定の時間内にどのように変化するかを分析することがある。このような場合には、参照用透過スペクトルを、必要なときに随時取得することができない。
そこで本発明によると、ブランク補正を行ったら、次に、光量補正を行う。以下に詳細に説明するように、光源1、2の発光強度を、光源モニタ光学系によって測定し、それによって、透過スペクトル及び吸収スペクトルを修正する。
図2は、ハロゲンランプおよび重水素放電ランプの発光強度のスペクトルの例を示し、縦軸は発光強度、横軸は波長である。曲線201は、ハロゲンランプの発光スペクトルを示し、曲線202は、重水素放電ランプの発光強度のスペクトルを示す。ハロゲンランプは可視領域の光を発光し、重水素放電ランプは紫外領域の光を発光する。しかしながら、2つのランプからの光の波長領域の一部は重なる。そこで、横軸に沿って、3つの波長領域W1,W2,W3を設定する。第1の波長領域W1は、重水素放電ランプの発光のみの領域であり、第2の波長領域W2は、2つのランプの発光が重なる領域であり、第3の領域W3はハロゲンランプの発光のみの領域である。
図3は、ハロゲンランプおよび重水素放電ランプの発光強度の時間変化特性の一例を示す。図3から判るように、ハロゲンランプの時間変動と重水素放電ランプの時間変動の間には、大きな相関は見られない。
図4Aは、重水素放電ランプからの光の測定開始時と10分後における発光強度の間の相関を示す。横軸は、測定開始時における波長毎の発光強度を表し、縦軸は、測定開始から10分後における波長毎の発光強度を表す。図4Bは、ハロゲンランプからの光の測定開始時と10分後における発光強度の間の相関を示す。横軸は、測定開始時における波長毎の発光強度を表し、縦軸は、測定開始から10分後における波長毎の発光強度を表す。両ランプとも測定開始時と10分後の発光強度の間には、波長毎に異なる変動が僅かに見られるが、変動量のうちの主たる部分は波長に依らず共通の比率で変動している成分であることが判る。
図4A及び図4Bのグラフから、各光源の広い波長領域における発光強度を集約して1個の補正値を求め、それによって、試料側に照射される光量を波長毎に補正しても大きな改善効果が得られることが判る。
以下に本例の分光光度計における光量補正を説明する。まず、簡単化のために、2つの光源のうち第1の光源1であるハロゲンランプのみを使用する場合を説明する。時刻t=0にて、参照用透過スペクトルを取得し、以後、時刻t=ti (i=1,2,3,…)において、試料の透過スペクトルS(λ, ti)(λは波長を表す)を取得したものとする。時刻t=0及びt=ti (i=1,2,3,…)におけるハロゲンランプの発光強度を、それぞれH(0)、H(ti)とする。参照用透過スペクトルを用いて、上述のように試料の透過スペクトルに対してブランク補正を行う。ブランク補正後の試料の透過スペクトルに対して、更に、光量補正を行う。透過スペクトルでは、光源の光量変動は乗算の形で反映される。そこで、光源の光量変動の影響を除去するには、試料の透過スペクトル中の波長毎の強度を、光源の光量変動を表す補正係数αによって除算すればよい。補正後の試料の透過スペクトルS’(λ, ti)は次の式1によって求められる。
S’(λ, ti) = S(λ, ti) / α= S(λ, ti) / (H(ti) / H(0)) 式1
S(λ, ti)はブランク補正後の試料の透過スペクトル、S’(λ, ti)は光量補正後の試料の透過スペクトルである。式1の右辺の各項H(0)、H(ti)は、第1の光源モニタ用光検出器24Aの出力信号を表す。この式の右辺の分母α=H(ti) / H(0)が補正係数である。
式1に示すように、時刻t=ti (i=1,2,3,…)は、試料の透過スペクトルを取得する時間間隔を表す。本例では、各ランプの光量変動をモニタする時間間隔を、試料の透過スペクトルを取得する時間間隔に等しいとしている。しかしながら、各ランプの光量変動をモニタする時間間隔は、各ランプの時間変動特性に対して適切な間隔に設定してよい。
ここではハロゲンランプのみを使用する場合を説明した。しかしながら、ハロゲンランプの代わりに重水素放電ランプのみを使用する場合も同様である。更に、2つのランプの発光を時間的に切り替える方式であっても同様である。更に、図2の重水素放電ランプの発光のみの第1の波長領域W1、又は、ハロゲンランプの発光のみの第3の領域W3における測定も同様である。
次に、図1の例のように、2つのランプの発光を、ダイクロイックミラーによって結合し、試料に常に両方の光源からの発光が同時に照射される場合を考察する。これは、図2の重水素放電ランプとハロゲンランプの2つのランプの波長領域が重なる第2の波長領域W2における測定に相当する。
時刻t=0にて、参照用透過スペクトルを取得し、以後、時刻t=ti (i=1,2,3,…)において、試料の透過スペクトルS(λ, ti)(λは波長を表す)を取得したものとする。時刻t=0及びt=tiにおけるハロゲンランプの発光強度を、それぞれH(0)、H(ti)とし、時刻t=0及びt=tiにおける重水素放電ランプの発光強度を、それぞれD(0)、D(ti)とする。参照用透過スペクトルを用いて、上述のように試料の透過スペクトルに対してブランク補正を行う。ブランク補正後の試料の透過スペクトルに対して、更に、光量補正を行う。透過スペクトルでは、光源の光量変動は乗算の形で反映される。そこで、光源の光量変動の影響を除去するには、試料の透過スペクトル中の波長毎の強度を、光源の光量変動を表す補正係数βによって除算すればよい。補正後の試料の透過スペクトルS’(λ, ti)は次の式2によって求められる。
S’(λ, ti) = S(λ, ti) / β= S(λ, ti) /{(H(ti)+D(ti))/ (H(0) +D(0))} 式2
S(λ, ti)はブランク補正後の試料の透過スペクトル、S’(λ, ti)は光量補正後の試料の透過スペクトルである。式2の右辺の項H(0)、H(ti)は、第1の光源モニタ用光検出器24Aの出力信号を表し、右辺の項D(0)、D(ti)は、第2の光源モニタ用光検出器24Bの出力信号を表す。この式の右辺の分母β=(H(ti)+D(ti))/ (H(0)+D(0))が補正係数である。
式2に示すように、時刻t=ti (i=1,2,3,…)は、試料の透過スペクトルを取得する時間間隔を表す。本例では、各ランプの光量変動をモニタする時間間隔を、試料の透過スペクトルを取得する時間間隔に等しいとしている。しかしながら、各ランプの光量変動をモニタする時間間隔は、各ランプの時間変動特性に対して適切な間隔に設定してよい。
吸収スペクトルでは、光源の光量変動は加算の形で反映される。そこで、光源の光量変動の影響を除去するには、試料の吸収スペクトル中の波長毎の強度を、補正係数α、βを対数変換して得た値によって減算すればよい。
式2の右辺の補正係数βの分母及び分子では、第1の光源モニタ用光検出器24Aの出力信号H(0)、H(ti)と第2の光源モニタ用光検出器24Bの出力信号D(0)、D(ti)をそのまま加算している。しかしながら、2つの検出光学系の出力信号の比は、各光ファイバの設置状態や各光検出器の分光感度特性などの影響によって変化する。従って、2つの出力信号H(t)、D(t)の比は、実際に試料セル5に入射する光のうち、第1の光源1からの光量と第2の光源2からの光量の比率を正しく表しているとは限らない。
そこで、実際に試料セル5に入射する光のうち、第1の光源1からの光量と第2の光源2からの光量の比率を予め測定する。この比率kを2つの検出光学系の出力信号H(t)、D(t)の一方に乗算する。H(t)+D(t)は、H(t)+k×D(t) 又はk×H(t)+D(t)となる。こうして2つの検出光学系の出力信号H(t)、D(t)の比kを考慮すると、補正後の試料の透過スペクトルS’(λ, ti)は次の式3によって求められる。
S’(λ, ti) = S(λ, ti) / {(H(ti)+k×D(ti))/ (H(0) + k×D(0))} 式3
ここでk=1の場合には、式3は式2と同一となる。このように本例では、光源の発光強度が時間的に変動しても、光量変動の影響が補正された高安定なスペクトルを測定することができる。
図5を参照して本発明の分光光度計の第2の例を説明する。本例の分光光度計は、第1及び第2の光源1、2と、試料セル5と、検出光学系と検出光学系演算部と光源モニタ光学系とコンピュータ17を有する。本例の分光光度計を図1の第1の例と比較すると、光源モニタ光学系の構成が異なり、更に、本例では、光源モニタ光学系演算部が省略され、その代わりに検出光学系演算部が使用されている点が異なる。
ここでは、検出光学系と検出光学系演算部の説明は省略し、光源モニタ光学系の構成を説明する。光源モニタ光学系は、第1及び第2の光ファイバ21A、21Bとレンズ22を有する。本例の分光光度計では、一次元イメージセンサ12を、検出光学系と光源モニタ光学系の両者によって使用する。
図6を参照して、本発明の分光光度計の第2の例における一次元イメージセンサ12の使用方法を説明する。図示の例では、一次元イメージセンサ12の受光面は1024画素を含む。1024画素のうち、4画素を、第2の光源モニタ用画素121、その隣の4画素を分離用画素122、その隣の4画素を第1の光源モニタ用画素120、その隣の4画素を分離用画素122、それ以外の画素123を検出光学系用画素123とする。第1及び第2の光源モニタ用画素120、121は、それぞれ、図1に示す分光光度計の第1の例の第1及び第2の光源モニタ用光検出器24A、24Bの機能を有する。
一次元イメージセンサ12の画素並び方向のピッチは約25マイクロメートル程度が一般的である。図1に示した第1の例における2つの光源モニタ用光検出器24A、24Bの間の距離と比較すると、2つの光源モニタ用画素120、121の間の距離は、小さい。従って、2つの光ファイバ21A、21Bの出射側端面からの出射光は、共通のレンズ22によって集光され、2つの光源モニタ用画素120、121上にて縮小結像するように構成されている。
2つの光源モニタ用画素120、121の間の分離用画素122は、両者の光信号または電気信号がクロストークすることを防止するために設ける。また、第1の光源モニタ用画素120と検出光学系用画素123の間の分離用画素122は、両者の間の光信号または電気信号がクロストークすることを防止するために設ける。
本例では、第1の光源モニタ用画素120の4画素からの出力信号を合算したものが式2におけるH(t)となり、第2の光源モニタ用画素121の4画素からの出力信号を合算したものが式2におけるD(t)となる。本例においても、第1及び第2の光源1、2の光量変動を補正する方法については第1の例と同様であるので以降の説明は省略する。
本例では、第1の例と同様の効果として、光源の発光強度が時間的に変動しても、光量変動の影響が補正された高安定なスペクトルを測定することができる。更に、本例では、第1の例では必要であった光源モニタ用光学系及び演算部が不要となる。従って、低コスト且つ省スペースな装置を提供することができる。
なお本例では、2つの光源モニタ用画素120、121として、4画素を用いるが、上述の補正計算において必要なS/N比を得る目的で適宜画素数を増減してもよい。
以上本発明の例を説明したが本発明は上述の例に限定されるものではなく、特許請求の範囲に記載された発明の範囲にて様々な変更が可能であることは、当業者によって容易に理解されよう。
1、2…光源、3…ダイクロイックミラー、5…試料セル、7…結像レンズ、10A…入射スリット、10…ポリクロメータ、11…透過スペクトル像、12…イメージセンサ、15…増幅器、16…A/D変換器、17…コンピュータ、21A、21B…光ファイバ、22、23A、23B…レンズ、24A、24B…光源モニタ用光検出器、25A、25B…増幅器、26…A/D変換器、120、121…光源モニタ用画素、122…分離用画素、123…検出光学系用画素

Claims (20)

  1. 光源と、試料セルと、前記光源からの光のうち前記試料セルを透過した光を複数の波長成分に分光することによって前記試料セル内の試料の透過スペクトルを生成するポリクロメータと、前記試料の透過スペクトルを検出するイメージセンサと、前記光源からの光のうち前記試料セルを透過しない光を検出する光源モニタ用光検出器と、前記光源モニタ用光検出器の出力信号を用いて前記試料の透過スペクトルを補正する演算部と、を有し、
    前記演算部は、前記透過スペクトルを、前記光源モニタ用光検出器の出力信号から求めた光源の光量変動を表す補正係数で除算することによって、補正を行うことを特徴とする分光光度計。
  2. 請求項1記載の分光光度計において、
    前記演算部は、時刻t=0及びt=ti (i=1,2,3,…)における前記光源の発光強度を、それぞれH(0)、H(ti)とし、時刻t=ti (i=1,2,3,…)における試料の透過スペクトルをS(λ, ti)(λは波長を表す)とするとき、次の式1によって補正後の透過スペクトルS’(λ, ti)を求めることを特徴とする分光光度計。
    S’(λ, ti) = S(λ, ti) / (H(ti) / H(0)) 式1
  3. 請求項1記載の分光光度計において、
    時刻t=0にて、前記試料セルに分析対象の試料が存在しない状態で前記ポリクロメータによって参照用透過スペクトルを取得し、該参照用透過スペクトルを用いて、時刻t=ti (i=1,2,3,…)における前記試料の透過スペクトルS(λ, ti)(λは波長を表す)を補正することを特徴とする分光光度計。
  4. 請求項1記載の分光光度計において、前記光源からの光のうち前記試料セルを透過しない光を前記光源モニタ用光検出器に導くための光ファイバが設けられていることを特徴とする分光光度計。
  5. 請求項1記載の分光光度計において、前記イメージセンサの画素のうちの一部分を前記光源モニタ用光検出器として用い、他の部分を前記試料の透過スペクトルを検出するための光検出器として用いることを特徴とする分光光度計。
  6. 請求項5記載の分光光度計において、前記イメージセンサの画素のうち、前記光源モニタ用光検出器として用いる画素領域と、前記試料の透過スペクトルを検出するための画素領域の間に光を検出しない画素領域が設けられていることを特徴とする分光光度計。
  7. 請求項1記載の分光光度計において、
    前記演算部は、前記透過スペクトルを対数変換することによって吸収スペクトルを求め、該吸収スペクトルを、前記光源モニタ用光検出器の出力信号の対数変換値から求めた光源の光量変動を表す補正係数で減算することによって、補正を行うことを特徴とする分光光度計。
  8. 請求項1記載の分光光度計において、
    前記光源は、発光の波長領域が互いに異なる第1及び第2の光源を有し、
    前記演算部は、時刻t=0及びt=ti (i=1,2,3,…)における前記第1の光源の発光強度を、それぞれH(0)、H(ti)とし、時刻t=0及びt=tiにおける前記第2の光源の発光強度を、それぞれD(0)、D(ti)とし、時刻t=ti (i=1,2,3,…)における試料の透過スペクトルをS(λ, ti)(λは波長を表す)とするとき、次の式2によって補正後の透過スペクトルS’(λ, ti)を求めることを特徴とする分光光度計。
    S’(λ, ti) = S(λ, ti) / β= S(λ, ti) /{(H(ti)+D(ti))/ (H(0) +D(0))} 式2
  9. 請求項8記載の分光光度計において、
    前記第1の光源は可視域用のハロゲンランプであり、前記第2の光源は紫外域用の重水素放電ランプであることを特徴とする分光光度計。
  10. 発光の波長領域が互いに異なる第1及び第2の光源と、試料セルと、前記第1及び第2の光源からの光のうち前記試料セルを透過した光より前記試料セル内の試料の透過スペクトルを生成する検出光学系と、前記第1及び第2の光源からの光のうち前記試料セルを透過しない光を検出する光源モニタ光学系と、前記光源モニタ光学系からの出力信号を用いて前記試料の透過スペクトルを補正する演算部と、を有し、
    前記演算部は、前記透過スペクトルを、前記光源モニタ光学系の出力信号から求めた光源の光量変動を表す補正係数で除算することによって、補正を行うことを特徴とする分光光度計。
  11. 請求項10記載の分光光度計において、
    前記演算部は、時刻t=0及びt=ti (i=1,2,3,…)における前記第1の光源の発光強度を、それぞれH(0)、H(ti)とし、前記第2の光源の発光強度を、それぞれD(0)、D(ti)とし、時刻t=ti (i=1,2,3,…)における試料の透過スペクトルをS(λ, ti)(λは波長を表す)とし、前記第1の光源からの光量と前記第2の光源からの光量の比率をkとするとき、次の式3によって補正後の透過スペクトルS’(λ, ti)を求めることを特徴とする分光光度計。
    S’(λ, ti) = S(λ, ti) / {(H(ti)+k×D(ti))/ (H(0) + k×D(0))} 式3
  12. 請求項10記載の分光光度計において、
    時刻t=0にて、前記試料セルに分析対象の試料が存在しない状態で前記検出光学系によって参照用透過スペクトルを取得し、該参照用透過スペクトルを用いて、時刻t=ti (i=1,2,3,…)における前記試料の透過スペクトルS(λ, ti)(λは波長を表す)を補正することを特徴とする分光光度計。
  13. 請求項10記載の分光光度計において、
    前記検出光学系は、前記第1及び第2の光源からの光のうち前記試料セルを透過した光を複数の波長成分に分光することによって前記試料セル内の試料の透過スペクトルを生成するポリクロメータと、前記試料の透過スペクトルを検出するイメージセンサと、を有し、
    前記光源モニタ光学系は、前記第1及び第2の光源からの光のうち前記試料セルを透過しない光を其々取り込む第1及び第2の光ファイバを有し、
    前記第1及び第2の光ファイバによって取り込まれた光は、前記イメージセンサによって検出されることを特徴とする分光光度計。
  14. 請求項13記載の分光光度計において、前記イメージセンサの画素のうちの一部分を前記光源モニタ用光検出器として用い、他の部分を前記試料の透過スペクトルを検出するための光検出器として用いることを特徴とする分光光度計。
  15. 請求項14記載の分光光度計において、前記イメージセンサの画素のうち、前記光源モニタ用光検出器として用いる画素領域と、前記試料の透過スペクトルを検出するための画素領域の間に光を検出しない画素領域が設けられていることを特徴とする分光光度計。
  16. 請求項10記載の分光光度計において、
    前記第1の光源は可視域用のハロゲンランプであり、前記第2の光源は紫外域用の重水素放電ランプであることを特徴とする分光光度計。
  17. 発光の波長領域が互いに異なる第1及び第2の光源と、試料セルと、前記第1及び第2の光源からの光のうち前記試料セルを透過した光より前記試料セル内の試料の透過スペクトルを生成する検出光学系と、前記第1及び第2の光源からの光のうち前記試料セルを透過しない光を検出する光源モニタ光学系と、前記光源モニタ光学系からの出力信号を用いて前記試料の透過スペクトルを補正する演算部と、を有し、
    前記検出光学系は、前記第1及び第2の光源からの光のうち前記試料セルを透過した光を複数の波長成分に分光することによって前記試料セル内の試料の透過スペクトルを生成するポリクロメータと、前記試料の透過スペクトルを検出するイメージセンサと、を有し、
    前記イメージセンサは、前記光源モニタ光学系の光検出器として用いる画素領域と、前記試料の透過スペクトルを検出するための画素領域を有することを特徴とする分光光度計。
  18. 請求項17記載の分光光度計において、
    前記演算部は、時刻t=0及びt=ti (i=1,2,3,…)における前記第1の光源の発光強度を、それぞれH(0)、H(ti)とし、前記第2の光源の発光強度を、それぞれD(0)、D(ti)とし、時刻t=ti (i=1,2,3,…)における試料の透過スペクトルをS(λ, ti)(λは波長を表す)とし、前記第1の光源からの光量と前記第2の光源からの光量の比率をkとするとき、次の式3によって補正後の透過スペクトルS’(λ, ti)を求めることを特徴とする分光光度計。
    S’(λ, ti) = S(λ, ti) / {(H(ti)+k×D(ti))/ (H(0) + k×D(0))} 式3
  19. 請求項17記載の分光光度計において、
    時刻t=0にて、前記試料セルに試料を収納しない状態で前記ポリクロメータによって参照用透過スペクトルを取得し、該参照用透過スペクトルを用いて、時刻t=ti (i=1,2,3,…)における前記試料の透過スペクトルS(λ, ti)(λは波長を表す)を補正することを特徴とする分光光度計。
  20. 請求項17記載の分光光度計において、
    前記光源モニタ光学系は、前記第1の光源からの光を取り込む第1の光ファイバと、前記第2の光源からの光を取り込む第2の光ファイバと、を有し、
    前記第1及び第2の光ファイバによって取り込まれた光は、前記イメージセンサの前記光源モニタ光学系の光検出器として用いる画素領域に導かれることを特徴とする分光光度計。
JP2010259253A 2010-11-19 2010-11-19 分光光度計 Pending JP2012112663A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010259253A JP2012112663A (ja) 2010-11-19 2010-11-19 分光光度計
US13/879,816 US20130222789A1 (en) 2010-11-19 2011-11-14 Spectrophotometer
PCT/JP2011/076180 WO2012067068A1 (ja) 2010-11-19 2011-11-14 分光光度計
DE112011103836T DE112011103836T5 (de) 2010-11-19 2011-11-14 Spektrophotometer
CN2011800548951A CN103221802A (zh) 2010-11-19 2011-11-14 分光光度计

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010259253A JP2012112663A (ja) 2010-11-19 2010-11-19 分光光度計

Publications (1)

Publication Number Publication Date
JP2012112663A true JP2012112663A (ja) 2012-06-14

Family

ID=46083995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010259253A Pending JP2012112663A (ja) 2010-11-19 2010-11-19 分光光度計

Country Status (5)

Country Link
US (1) US20130222789A1 (ja)
JP (1) JP2012112663A (ja)
CN (1) CN103221802A (ja)
DE (1) DE112011103836T5 (ja)
WO (1) WO2012067068A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115154A (ja) * 2012-12-07 2014-06-26 Shimadzu Corp フォトダイオードアレイ検出器
JP2014209063A (ja) * 2013-04-16 2014-11-06 横河電機株式会社 分光分析装置
JP2015102545A (ja) * 2013-11-21 2015-06-04 アジレント・テクノロジーズ・インクAgilent Technologies, Inc. ダイクロイック・ビームコンバイナおよびスプリッタを含む光学吸収分光システム
JP2019518206A (ja) * 2016-04-26 2019-06-27 モレキュラー デバイシーズ, エルエルシー 選択可能な励起光経路を用いる光学ベースの測定のための方法およびシステム
JP2019132606A (ja) * 2018-01-29 2019-08-08 株式会社Jvcケンウッド 分光器
KR20200019240A (ko) * 2017-08-01 2020-02-21 조에티스 서비시즈 엘엘씨 배지를 식별하기 위한 장치 및 관련 난 식별 장치 및 방법
WO2021193592A1 (ja) * 2020-03-27 2021-09-30 東京エレクトロン株式会社 ガス濃度測定装置及び処理システム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193572A1 (ja) * 2017-04-20 2018-10-25 株式会社島津製作所 分光光度計
JP6879363B2 (ja) * 2017-04-21 2021-06-02 株式会社島津製作所 分光検出器
US11953475B2 (en) * 2018-04-16 2024-04-09 Shimadzu Corporation Absorbance detector and liquid chromatograph
CN108844908B (zh) * 2018-07-11 2023-07-21 天津工业大学 一种多维光谱检测装置与分析方法
WO2020100242A1 (ja) * 2018-11-14 2020-05-22 株式会社島津製作所 クロマトグラフィ検出器用フローセル、クロマトグラフィ検出器およびクロマトグラフ装置
CN111060453A (zh) * 2019-12-23 2020-04-24 江西省水投江河信息技术有限公司 一种多参数水体监测装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102114A (ja) * 1981-12-14 1983-06-17 Union Giken:Kk 分光測光装置
JPS63198867A (ja) * 1987-02-14 1988-08-17 Shimadzu Corp アレイ型分光光度計検出器
JPH05113369A (ja) * 1991-10-21 1993-05-07 Shimadzu Corp 分光光度計
JPH08233659A (ja) * 1995-02-28 1996-09-13 Shimadzu Corp 分光光度計
JPH09145478A (ja) * 1995-11-27 1997-06-06 Shimadzu Corp マルチチャンネル型分光光度計
JPH10185686A (ja) * 1996-12-26 1998-07-14 Shimadzu Corp 分光光度計
JPH11108830A (ja) * 1997-09-30 1999-04-23 Hitachi Ltd 吸光度測定方法、吸光度測定器および吸光度測定システム
JP2009008554A (ja) * 2007-06-28 2009-01-15 Hitachi High-Technologies Corp 分光光度計及び液体クロマトグラフィ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4511986A (en) * 1982-08-30 1985-04-16 International Business Machines Method and apparatus for simultaneously recording multiple FT-IR signals
JPS59230124A (ja) 1983-06-11 1984-12-24 Japan Spectroscopic Co 複光束分光光度計
JPS6153527A (ja) 1984-08-24 1986-03-17 Hitachi Ltd 分光光度計
US5175697A (en) * 1986-06-02 1992-12-29 Minolta Camera Kabushiki Kaisha Spectrophotometer for accurately measuring light intensity in a specific wavelength region
JPS63198832A (ja) 1987-02-12 1988-08-17 Shimadzu Corp アレイ型分光光度計検出器
JP3346095B2 (ja) * 1995-05-17 2002-11-18 ミノルタ株式会社 分光光度計
JPH0915156A (ja) * 1995-06-28 1997-01-17 Kdk Corp 分光測定方法及び測定装置
US5790250A (en) * 1996-11-04 1998-08-04 Ail Systems, Inc. Apparatus and method for real-time spectral alignment for open-path fourier transform infrared spectrometers
US6052195A (en) * 1998-05-22 2000-04-18 Xerox Corporation Automatic colorant mixing method and apparatus
JP2008046287A (ja) * 2006-08-14 2008-02-28 Fuji Xerox Co Ltd 樹脂粒子分散液、静電荷像現像トナー及びその製造方法、静電荷像現像剤、並びに、画像形成方法
JP2008286562A (ja) * 2007-05-16 2008-11-27 Shimadzu Corp 蛍光分光光度計
US8164045B2 (en) * 2009-02-09 2012-04-24 Delphi Technologies, Inc. Optical system for controlling light propagation along a light path
JP5286571B2 (ja) * 2009-05-22 2013-09-11 大塚電子株式会社 全光束測定装置および全光束測定方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102114A (ja) * 1981-12-14 1983-06-17 Union Giken:Kk 分光測光装置
JPS63198867A (ja) * 1987-02-14 1988-08-17 Shimadzu Corp アレイ型分光光度計検出器
JPH05113369A (ja) * 1991-10-21 1993-05-07 Shimadzu Corp 分光光度計
JPH08233659A (ja) * 1995-02-28 1996-09-13 Shimadzu Corp 分光光度計
JPH09145478A (ja) * 1995-11-27 1997-06-06 Shimadzu Corp マルチチャンネル型分光光度計
JPH10185686A (ja) * 1996-12-26 1998-07-14 Shimadzu Corp 分光光度計
JPH11108830A (ja) * 1997-09-30 1999-04-23 Hitachi Ltd 吸光度測定方法、吸光度測定器および吸光度測定システム
JP2009008554A (ja) * 2007-06-28 2009-01-15 Hitachi High-Technologies Corp 分光光度計及び液体クロマトグラフィ

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115154A (ja) * 2012-12-07 2014-06-26 Shimadzu Corp フォトダイオードアレイ検出器
JP2014209063A (ja) * 2013-04-16 2014-11-06 横河電機株式会社 分光分析装置
JP2015102545A (ja) * 2013-11-21 2015-06-04 アジレント・テクノロジーズ・インクAgilent Technologies, Inc. ダイクロイック・ビームコンバイナおよびスプリッタを含む光学吸収分光システム
JP2019518206A (ja) * 2016-04-26 2019-06-27 モレキュラー デバイシーズ, エルエルシー 選択可能な励起光経路を用いる光学ベースの測定のための方法およびシステム
KR20200019240A (ko) * 2017-08-01 2020-02-21 조에티스 서비시즈 엘엘씨 배지를 식별하기 위한 장치 및 관련 난 식별 장치 및 방법
KR102457640B1 (ko) * 2017-08-01 2022-10-21 조에티스 서비시즈 엘엘씨 배지를 식별하기 위한 장치 및 관련 난 식별 장치 및 방법
JP2019132606A (ja) * 2018-01-29 2019-08-08 株式会社Jvcケンウッド 分光器
WO2021193592A1 (ja) * 2020-03-27 2021-09-30 東京エレクトロン株式会社 ガス濃度測定装置及び処理システム

Also Published As

Publication number Publication date
DE112011103836T5 (de) 2013-08-29
WO2012067068A1 (ja) 2012-05-24
CN103221802A (zh) 2013-07-24
US20130222789A1 (en) 2013-08-29

Similar Documents

Publication Publication Date Title
WO2012067068A1 (ja) 分光光度計
JP5419301B2 (ja) 試料分析装置
KR102122840B1 (ko) 분광 분석 방법 및 분광 분석 장치
JP5775687B2 (ja) 分光検出装置
JP2009270939A (ja) 光学式変位計
WO2016129033A1 (ja) マルチチャンネル分光光度計及びマルチチャンネル分光光度計用データ処理方法
EP4339570A2 (en) Device for gas analysis using raman spectroscopy
JP2015152347A (ja) 分光分析装置および分光分析方法
JP5842652B2 (ja) 波長可変単色光光源
JP2009025220A (ja) 光スペクトラムアナライザおよび光スペクトラムアナライザのピーク検出方法
TW201829991A (zh) 光譜測定裝置及光譜測定方法
CN110031402B (zh) 用于分析流体的装置和方法
US20090173891A1 (en) Fluorescence detection system
JP6530669B2 (ja) ガス濃度測定装置
JP2005156343A (ja) 分光装置及び分光装置用光学フィルタ
JP2013221763A (ja) 分光分析装置、分光分析方法及び分光分析装置用プログラム
JP2021051074A (ja) 分光分析装置
JP2013088263A (ja) 分光装置校正方法
KR101054017B1 (ko) 분광기의 보정방법
Plaipichit et al. Spectroscopy system using digital camera as two dimensional detectors for undergraduate student laboratory
CN108713135B (zh) 一种光谱分析系统
US11692874B2 (en) Peak alignment for the wavelength calibration of a spectrometer
JP2014025897A (ja) 分光光学系、分光測定装置
KR101484695B1 (ko) 광파이버와 분광장치를 연결하는 연결장치 및 열간 슬래브의 청정도 측정 시스템
CN114295565B (zh) 测定图像传感器量子效率的方法、装置、设备和介质

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131119