JP2012009512A - 不揮発性半導体記憶装置及びその製造方法 - Google Patents
不揮発性半導体記憶装置及びその製造方法 Download PDFInfo
- Publication number
- JP2012009512A JP2012009512A JP2010141924A JP2010141924A JP2012009512A JP 2012009512 A JP2012009512 A JP 2012009512A JP 2010141924 A JP2010141924 A JP 2010141924A JP 2010141924 A JP2010141924 A JP 2010141924A JP 2012009512 A JP2012009512 A JP 2012009512A
- Authority
- JP
- Japan
- Prior art keywords
- pillar
- insulating film
- film
- electrode
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 386
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- 239000010410 layer Substances 0.000 claims description 181
- 238000003860 storage Methods 0.000 claims description 79
- 239000011229 interlayer Substances 0.000 claims description 51
- 230000000149 penetrating effect Effects 0.000 claims description 18
- 238000000605 extraction Methods 0.000 claims description 7
- 238000002347 injection Methods 0.000 claims description 7
- 239000007924 injection Substances 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 2
- 101000617708 Homo sapiens Pregnancy-specific beta-1-glycoprotein 1 Proteins 0.000 description 57
- 102100022024 Pregnancy-specific beta-1-glycoprotein 1 Human genes 0.000 description 57
- 239000000758 substrate Substances 0.000 description 28
- 101100437508 Rhizobium radiobacter cbg-1 gene Proteins 0.000 description 20
- 101150091511 glb-1 gene Proteins 0.000 description 20
- 238000000034 method Methods 0.000 description 19
- 239000011159 matrix material Substances 0.000 description 12
- 230000006870 function Effects 0.000 description 11
- 229910052735 hafnium Inorganic materials 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 230000002093 peripheral effect Effects 0.000 description 8
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229910021417 amorphous silicon Inorganic materials 0.000 description 7
- 239000012535 impurity Substances 0.000 description 7
- 238000009413 insulation Methods 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 229910052814 silicon oxide Inorganic materials 0.000 description 7
- 239000002356 single layer Substances 0.000 description 7
- -1 hafnium nitride aluminate Chemical class 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- 229920005591 polysilicon Polymers 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- 241000588731 Hafnia Species 0.000 description 4
- 101100204457 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) SVF1 gene Proteins 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 4
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 4
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 4
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 101001064542 Homo sapiens Liprin-beta-1 Proteins 0.000 description 2
- 101000650857 Homo sapiens Small glutamine-rich tetratricopeptide repeat-containing protein beta Proteins 0.000 description 2
- 101710113900 Protein SGT1 homolog Proteins 0.000 description 2
- 102100027722 Small glutamine-rich tetratricopeptide repeat-containing protein alpha Human genes 0.000 description 2
- 102100027721 Small glutamine-rich tetratricopeptide repeat-containing protein beta Human genes 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 244000126211 Hericium coralloides Species 0.000 description 1
- 150000004645 aluminates Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/40—EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/792—Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
- H01L29/7926—Vertical transistors, i.e. transistors having source and drain not in the same horizontal plane
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/04—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
- G11C16/0466—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/0688—Integrated circuits having a three-dimensional layout
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66833—Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a charge trapping gate insulator, e.g. MNOS transistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/20—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/20—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
- H10B43/23—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
- H10B43/27—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Abstract
【課題】消去動作特性を向上した一括加工型3次元積層メモリ構成の不揮発性半導体記憶装置及びその製造方法を提供する。
【解決手段】実施形態によれば、積層構造体MLと、導電芯ピラーPBG、芯絶縁膜49、半導体パイプピラーSP、内側絶縁膜42、記憶層48、外側絶縁膜43、を備えた不揮発性半導体記憶装置が提供される。積層構造体は、第1方向に積層された複数の電極膜61と、複数の電極膜どうしの間に設けられた電極間絶縁膜62と、を有する。導電芯ピラーは積層構造体を第1方向に貫通する。芯絶縁膜は導電芯ピラーと電極膜との間に設けられる。半導体パイプピラーは芯絶縁膜と電極膜との間に設けられ、積層構造体を第1方向に貫通する。内側絶縁膜は半導体パイプピラーと電極膜との間に設けられる。記憶層は内側絶縁膜と電極膜との間に設けられる。外側絶縁膜は記憶層と電極膜との間に設けられる。
【選択図】図1
【解決手段】実施形態によれば、積層構造体MLと、導電芯ピラーPBG、芯絶縁膜49、半導体パイプピラーSP、内側絶縁膜42、記憶層48、外側絶縁膜43、を備えた不揮発性半導体記憶装置が提供される。積層構造体は、第1方向に積層された複数の電極膜61と、複数の電極膜どうしの間に設けられた電極間絶縁膜62と、を有する。導電芯ピラーは積層構造体を第1方向に貫通する。芯絶縁膜は導電芯ピラーと電極膜との間に設けられる。半導体パイプピラーは芯絶縁膜と電極膜との間に設けられ、積層構造体を第1方向に貫通する。内側絶縁膜は半導体パイプピラーと電極膜との間に設けられる。記憶層は内側絶縁膜と電極膜との間に設けられる。外側絶縁膜は記憶層と電極膜との間に設けられる。
【選択図】図1
Description
本発明の実施形態は、不揮発性半導体記憶装置及びその製造方法に関する。
従来の不揮発性半導体記憶装置においては、シリコン基板上の2次元平面内に素子を集積してきた。メモリの記憶容量を増加させるには1つの素子の寸法を微細化するが、近年その微細化もコスト的、技術的に困難になってきた。
これに対し、一括加工型3次元積層メモリが提案されている。この一括加工型3次元積層メモリにおいては、交互に積層された絶縁膜と電極膜とを有する積層構造体と、積層構造体を積層方向において貫通するシリコンピラーと、シリコンピラーと電極膜との間の電荷蓄積層(記憶層)と、が設けられ、これにより、シリコンピラーと各電極膜との交差部にメモリセルが設けられる。さらに、2本のシリコンピラーを基板の側で接続したU字形状のメモリストリングを用いる構成も提案されている。
このような一括加工型3次元積層メモリにおいて、動作性能をさらに向上するために、改良の余地がある。
このような一括加工型3次元積層メモリにおいて、動作性能をさらに向上するために、改良の余地がある。
本発明の実施形態は、消去動作特性を向上した一括加工型3次元積層メモリ構成の不揮発性半導体記憶装置及びその製造方法を提供する。
本発明の実施形態によれば、第1積層構造体と、第1導電芯ピラーと、第1ピラー部芯絶縁膜と、第1半導体パイプピラーと、第1ピラー部内側絶縁膜と、第1ピラー部記憶層と、第1ピラー部外側絶縁膜と、を備えた不揮発性半導体記憶装置が提供される。前記第1積層構造体は、第1方向に積層された複数の第1電極膜と、前記複数の第1電極膜どうしの間に設けられた第1電極間絶縁膜と、を有する。前記第1導電芯ピラーは、前記第1積層構造体を前記第1方向に貫通する。前記第1ピラー部芯絶縁膜は、前記第1導電芯ピラーと前記第1電極膜との間に設けられ、前記第1導電芯ピラーの側面を取り囲む。前記第1半導体パイプピラーは、前記第1ピラー部芯絶縁膜と前記第1電極膜との間に設けられ、前記第1積層構造体を前記第1方向に貫通し、前記第1ピラー部芯絶縁膜の側面を取り囲む。前記第1ピラー部内側絶縁膜は、前記第1半導体パイプピラーと前記第1電極膜との間に設けられ、前記第1半導体パイプピラーの側面を取り囲む。前記第1ピラー部記憶層は、前記第1ピラー部内側絶縁膜と前記第1電極膜との間に設けられ、前記第1ピラー部内側絶縁膜の側面を取り囲む。前記第1ピラー部外側絶縁膜は、前記第1ピラー部記憶層と前記第1電極膜との間に設けられ、前記第1ピラー部記憶層の側面を取り囲む。
本発明の実施形態によれば、不揮発性半導体記憶装置の製造方法が提供される。前記製造方法においては、第1方向に積層された複数の電極膜と、前記複数の電極膜どうしの間に設けられた電極間絶縁膜と、を有する積層構造体と、前記積層構造体と積層された層間絶縁膜と、を前記第1方向に沿って貫通する貫通ホールを形成し、前記貫通ホールの内壁に、ピラー部外側絶縁膜となる膜と、ピラー部記憶層となる膜と、ピラー部内側絶縁膜となる膜と、半導体パイプピラーとなる膜と、ピラー部芯絶縁膜となる膜と、導電芯ピラーとなる膜と、の積層膜を順次堆積し、前記層間絶縁膜の少なくとも一部をエッチバックして、前記ピラー部外側絶縁膜となる前記膜と、前記ピラー部記憶層となる前記膜と、前記ピラー部内側絶縁膜となる前記膜と、を露出させ、前記露出した前記ピラー部外側絶縁膜となる前記膜、前記ピラー部記憶層となる前記膜、及び、前記ピラー部内側絶縁膜となる前記膜を除去して、前記半導体パイプピラーとなる前記膜の側面を露出し、前記露出した前記半導体パイプピラーとなる前記膜の前記側面に電気的に接続されるように配線となる膜を形成する。
以下に、本発明の各実施の形態について図面を参照しつつ説明する。
図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
(第1の実施の形態)
図1は、第1の実施形態に係る不揮発性半導体記憶装置の構成を例示する模式的斜視図である。
図1においては、図を見易くするために、導電部分のみを示し、絶縁部分は図示を省略している。
図2は、第1の実施形態に係る不揮発性半導体記憶装置の構成を例示する模式的断面図である。
図3は、第1の実施形態に係る不揮発性半導体記憶装置の電極膜の構成を例示する模式的平面図である。
図4は、第1の実施形態に係る不揮発性半導体記憶装置の一部の構成を例示する模式的断面図である。
図5は、第1の実施形態に係る不揮発性半導体記憶装置の構成を例示する模式図である。
図1は、第1の実施形態に係る不揮発性半導体記憶装置の構成を例示する模式的斜視図である。
図1においては、図を見易くするために、導電部分のみを示し、絶縁部分は図示を省略している。
図2は、第1の実施形態に係る不揮発性半導体記憶装置の構成を例示する模式的断面図である。
図3は、第1の実施形態に係る不揮発性半導体記憶装置の電極膜の構成を例示する模式的平面図である。
図4は、第1の実施形態に係る不揮発性半導体記憶装置の一部の構成を例示する模式的断面図である。
図5は、第1の実施形態に係る不揮発性半導体記憶装置の構成を例示する模式図である。
本実施形態に係る不揮発性半導体記憶装置110は、例えば、3次元積層型のフラッシュメモリである。
図1及び図2に表したように、不揮発性半導体記憶装置110においては、例えば単結晶シリコンからなる基板11(半導体基板)が設けられる。
図1及び図2に表したように、不揮発性半導体記憶装置110においては、例えば単結晶シリコンからなる基板11(半導体基板)が設けられる。
図2に表したように、基板11においては、例えば、メモリセルが形成されるメモリアレイ領域MRと、メモリアレイ領域MRに併設される周辺領域PRと、が設定される。メモリアレイ領域MRは、例えば基板11の中心の側に設けられ、周辺領域PRは、例えば基板11のうちでメモリアレイ領域MRよりも外側に設けられる。周辺領域PRにおいては、基板11の主面11a上には、例えば、各種の周辺領域回路PR1が設けられる。
メモリアレイ領域MRにおいては、基板11の主面11a上に例えば回路部CUが設けられ、回路部CUの上にメモリ部MUが設けられる。回路部CUは必要に応じて設けられ、省略可能である。回路部CUとメモリ部MUとの間には、例えば酸化シリコンからなる層間絶縁膜13が設けられている(図2参照)。
図2に表したように、メモリ部MUは、例えば、3次元マトリクス状に配列したメモリセルトランジスタを有するマトリクスメモリセル部MU1と、マトリクスメモリセル部MU1の配線を接続する配線接続部MU2と、を有する。複数のメモリセルトランジスタは、例えば基板11の主面11aに対して垂直な方向と、主面11aに対して平行で互いに異なる2つの方向と、の3つの方向に沿って、3次元マトリクス状に並ぶ。
図1は、マトリクスメモリセル部MU1の構成を例示している。
図2においては、マトリクスメモリセル部MU1として、図1のA1−A2線断面の一部と、図1のB1−B2線断面の一部が例示されている。
図2においては、マトリクスメモリセル部MU1として、図1のA1−A2線断面の一部と、図1のB1−B2線断面の一部が例示されている。
図1及び図2に表したように、マトリクスメモリセル部MU1においては、基板11の主面11a上に、積層構造体MLが設けられる。
積層構造体MLは、第1方向に交互に積層された複数の電極膜61と複数の電極間絶縁膜62とを有する。電極間絶縁膜62は、電極膜61どうしを絶縁する層間絶縁膜として機能する。
積層構造体MLは、第1方向に交互に積層された複数の電極膜61と複数の電極間絶縁膜62とを有する。電極間絶縁膜62は、電極膜61どうしを絶縁する層間絶縁膜として機能する。
本願明細書において、「積層」とは、複数の層が直接重ねられる場合の他、複数の層の間に他の要素が挿入されて重ねられる場合も含む。
積層構造体MLにおける電極膜61及び電極間絶縁膜62の積層方向をZ軸方向(第1方向)とする。Z軸方向は、基板11の主面11aに対して垂直な方向である。Z軸方向に対して垂直な1つの方向をY軸方向(第2方向)とする。そして、Z軸方向とY軸方向とに垂直な方向をX軸方向(第3方向)とする。
積層構造体MLにおける電極膜61及び電極間絶縁膜62の積層方向をZ軸方向(第1方向)とする。Z軸方向は、基板11の主面11aに対して垂直な方向である。Z軸方向に対して垂直な1つの方向をY軸方向(第2方向)とする。そして、Z軸方向とY軸方向とに垂直な方向をX軸方向(第3方向)とする。
不揮発性半導体記憶装置110は、選択ゲート電極SGをさらに備える。選択ゲート電極SGは、積層構造体MLとZ軸方向に沿って積層される。
電極膜61は、X軸方向に沿って延在する帯状の部分を有している。選択ゲート電極SGも、X軸方向に沿って延在する帯状の部分を有している。
そして、積層構造体ML及び選択ゲート電極SGをZ軸方向に貫通する半導体パイプピラーSPが設けられる。この半導体パイプピラーSPは、例えば、積層構造体MLをZ軸方向に貫通する貫通ホールTHの中に半導体を埋め込むことによって形成される。半導体パイプピラーSPは、Z軸方向に延在する筒状(例えば円筒状)である。
さらに、不揮発性半導体記憶装置110においては、円筒状の半導体パイプピラーSPのそれぞれの内部に、後述する絶縁層を介して、導電芯ピラーPBGが設けられている。導電芯ピラーPBGは、柱状でも良く、筒状でも良い。すなわち、導電芯ピラーPBGの内部が中空でも良く、導電芯ピラーPBGの内側に例えば絶縁層などが設けられても良い。
後述するように、不揮発性半導体記憶装置110においては、電極膜61と半導体パイプピラーSPとが交差する部分において、記憶層を有するメモリセルトランジスタが形成される。メモリセルトランジスタは3次元マトリクス状に配列され、この記憶層に電荷を蓄積させることにより、各メモリセルトランジスタがデータを記憶するメモリセルMCとして機能する。
図1及び図2においては、電極膜61が4枚描かれているが、積層構造体MLにおいて、設けられる電極膜61の数は任意である。
半導体パイプピラーSPのうち、積層構造体MLを貫通する部分と、選択ゲート電極SGを貫通する部分と、は、連続して形成された半導体層でも良く、半導体パイプピラーSPのうちの積層構造体MLを貫通する部分と、半導体パイプピラーSPのうちの選択ゲート電極SGを貫通する部分と、が別の工程で形成され、これらの部分が電気的に接続されていても良い。
図2に表したように、積層構造体MLの最下部(例えば、基板11に最も近い側)の電極膜61の下に絶縁膜15aを設けることができる。この絶縁膜15aを積層構造体MLに含めても良い。積層構造体MLの最上部(例えば、基板11から最も遠い側)の電極膜61の上に絶縁膜15を設けることができる。この絶縁膜15aを積層構造体MLに含めても良い。絶縁膜15及び15aには、例えば酸化シリコンが用いられる。ただし、実施形態はこれに限らず、絶縁膜15及び15aの材料は任意である。
積層構造体MLと選択ゲート電極SGとの間に、例えば層間絶縁膜16が設けられる。
図2に表したように、選択ゲート電極SGどうしをY軸方向に沿って分断する層間絶縁膜17が設けられている。層間絶縁膜17は、X軸方向に沿って延在する。
そして、層間絶縁膜17の上に層間絶縁膜18が設けられ、その上に、ソース線SL(第2配線WR2)とコンタクト電極22とが設けられている。ソース線SLの周りには層間絶縁膜19が設けられている。
そして、ソース線SLの上に層間絶縁膜23が設けられ、その上にビット線BL(第1配線WR1)が設けられている。ビット線BLは、例えば、Y軸方向に沿った帯状の形状を有している。層間絶縁膜16、17、18、19及び23には、例えば酸化シリコンが用いられる。
そして、不揮発性半導体記憶装置110においては、2本ずつの半導体パイプピラーSPは、基板11の側で接続されている。
すなわち、不揮発性半導体記憶装置110は、第1半導体パイプピラーSP1と第2半導体パイプピラーSP2とを基板11の側で電気的に接続する半導体接続部SCをさらに備える。半導体接続部SCには、例えば、半導体パイプピラーSPとなる材料が用いられる。
すなわち、不揮発性半導体記憶装置110は、第1半導体パイプピラーSP1と第2半導体パイプピラーSP2とを基板11の側で電気的に接続する半導体接続部SCをさらに備える。半導体接続部SCには、例えば、半導体パイプピラーSPとなる材料が用いられる。
ただし、後述するように、半導体パイプピラーSPのそれぞれが独立し、半導体パイプピラーSPどうしが接続されていなくても良い。以下では、2本ずつの半導体パイプピラーSPが接続される場合について説明する。
後述するように、半導体パイプピラーSPのそれぞれの内部には、絶縁層を介して導電芯ピラーPBGが設けられる。半導体接続部SCの内部において、絶縁層を介して、芯接続部CBGが設けられている。芯接続部CBGは、2つの導電芯ピラーPBGを基板11の側で電気的に接続する。芯接続部CBGは必要に応じて設けられ、場合によっては省略される。以下では、芯接続部CBGが設けられる場合として説明する。
不揮発性半導体記憶装置110において、複数の半導体パイプピラー(例えば、第1〜
図1に表したように、例えば、第2半導体パイプピラーSP2は、Y軸方向において、第1半導体パイプピラーSP1と並ぶ。第3半導体パイプピラーSP3は、Y軸方向において、第2半導体パイプピラーSP2の第1半導体パイプピラーSP1とは反対の側で第2半導体パイプピラーSP2と並ぶ。第4半導体パイプピラーSP4は、Y軸方向において、第3半導体パイプピラーSP3の第2半導体パイプピラーSP2とは反対の側で第3半導体パイプピラーSP3と並ぶ。
図1に表したように、例えば、第2半導体パイプピラーSP2は、Y軸方向において、第1半導体パイプピラーSP1と並ぶ。第3半導体パイプピラーSP3は、Y軸方向において、第2半導体パイプピラーSP2の第1半導体パイプピラーSP1とは反対の側で第2半導体パイプピラーSP2と並ぶ。第4半導体パイプピラーSP4は、Y軸方向において、第3半導体パイプピラーSP3の第2半導体パイプピラーSP2とは反対の側で第3半導体パイプピラーSP3と並ぶ。
第1半導体接続部SC1によって接続された第1半導体パイプピラーSP1及び第2半導体パイプピラーSP2がペアとなって1つのU字形状のNANDストリングとなり、第2半導体接続部SC2によって接続された第3半導体パイプピラーSP3及び第4半導体パイプピラーSP4がペアとなって別のU字形状のNANDストリングとなる。
図3に表したように、第1半導体パイプピラーSP1及び第4半導体ピラーSP4に対応する電極膜61が共通に接続され電極膜61Aとなる。第2半導体パイプピラーSP2及び第3半導体パイプピラーSP3に対応する電極膜61が共通に接続され電極膜61Bとなる。すなわち、電極膜61は、X軸方向に対向して櫛歯状に互いに組み合わされた電極膜61A及び電極膜61Bの形状を有している。
図3に表したように、電極膜61Aと電極膜61Bとは、絶縁層ILによって互いに分断される。
図3に表したように、電極膜61Aと電極膜61Bとは、絶縁層ILによって互いに分断される。
そして、図2に例示したように、配線接続部MU2においては、X軸方向における一方の端において、電極膜61Bは、コンタクト電極31によってワード配線32に接続され、例えば基板11に設けられる駆動回路と電気的に接続される。そして、同様に、X軸方向における他方の端において、電極膜61Aは、コンタクト電極によってワード配線に接続され、駆動回路と電気的に接続される(図2では図示しない)。すなわち、Z軸方向に積層された各電極膜61(電極膜61A及び電極膜61B)のX軸方向における長さが階段状に変化させられ、X軸方向の一方の端で電極膜61Aが駆動回路との電気的に接続され、X軸方向の他方の端で電極膜61Bが駆動回路との電気的に接続される。図2では、Y軸方向の同じ位置で、各電極膜61のそれぞれにコンタクト電極31が接続されているが、各電極膜61に対応するコンタクト電極31の位置は、Y軸方向の異なる位置に設けられる。
これにより、基板11からの距離が同じ電極膜61において、ペアとなる第1半導体パイプピラーSP1及び第2半導体パイプピラーSP2とで異なる電位が設定できる。これにより、第1半導体パイプピラーSP1と第2半導体パイプピラーSP2とに対応する同層のメモリセルMCは互いに独立して動作できる。第3半導体パイプピラーSP3及び第4半導体パイプピラーSP4に関しても同様である。
接続部導電層SCCは、例えば、コンタクト電極33によって接続部導電層配線34に接続される。
図1及び図2に表したように、半導体パイプピラーSPの半導体接続部SCとは反対の端のそれぞれが、ビット線BLまたはソース線SLに接続され、半導体パイプピラーSPのそれぞれに、選択ゲート電極SG(第1〜第4選択ゲート電極SG1〜SG4)が設けられることにより、任意の半導体パイプピラーSPの任意のメモリセルMCに所望のデータを書き込み、そして、読み出すことができる。
各電極膜61に設けられる半導体パイプピラーSPの数は任意である。
図4は、マトリクスメモリセル部MU1の構成を例示しており、例えば図1のB1−B2線断面の一部に相当する断面図である。
図4においては、回路部CUは省略されている。
図4に表したように、不揮発性半導体記憶装置110は、積層構造体ML(第1積層構造体ML1)と、導電芯ピラーPBG(第1導電芯ピラーPBG1)と、芯絶縁膜49(第1ピラー部芯絶縁膜49p1)と、半導体パイプピラーSP(第1半導体パイプピラーSP1)と、内側絶縁膜42(第1ピラー部内側絶縁膜42p1)と、記憶層48(第1ピラー部記憶層48p1)と、外側絶縁膜43(第1ピラー部外側絶縁膜43p1)と、を備える。
図4においては、回路部CUは省略されている。
図4に表したように、不揮発性半導体記憶装置110は、積層構造体ML(第1積層構造体ML1)と、導電芯ピラーPBG(第1導電芯ピラーPBG1)と、芯絶縁膜49(第1ピラー部芯絶縁膜49p1)と、半導体パイプピラーSP(第1半導体パイプピラーSP1)と、内側絶縁膜42(第1ピラー部内側絶縁膜42p1)と、記憶層48(第1ピラー部記憶層48p1)と、外側絶縁膜43(第1ピラー部外側絶縁膜43p1)と、を備える。
第1積層構造体ML1は、第1方向(Z軸方向)に積層された複数の第1電極膜61aと、複数の第1電極膜61aどうしの間に設けられた第1電極間絶縁膜62aと、を有する。
第1導電芯ピラーPBG1は、第1積層構造体ML1を第1方向に貫通する。第1ピラー部芯絶縁膜49p1は、第1導電芯ピラーPBG1と第1電極膜61aとの間に設けられ、第1導電芯ピラーPBG1の側面を取り囲む。第1半導体パイプピラーSP1は、第1ピラー部芯絶縁膜49p1と第1電極膜61aとの間に設けられ、第1積層構造体ML1を第1方向に貫通し、第1ピラー部芯絶縁膜49p1の側面を取り囲む。第1ピラー部内側絶縁膜42p1は、第1半導体パイプピラーSP1と第1電極膜61aとの間に設けられ、第1半導体パイプピラーSP1の側面を取り囲む。第1ピラー部記憶層48p1は、第1ピラー部内側絶縁膜42p1と第1電極膜61aとの間に設けられ、第1ピラー部内側絶縁膜42p1の側面を取り囲む。第1ピラー部外側絶縁膜43p1は、第1ピラー部記憶層48p1と第1電極膜61aとの間に設けられ、第1ピラー部記憶層48p1の側面を取り囲む。
第1ピラー部芯絶縁膜49p1は、第1導電芯ピラーPBG1と第1電極間絶縁膜62aとの間に延在し、第1ピラー部内側絶縁膜42p1は、第1半導体パイプピラーSP1と第1電極間絶縁膜62aとの間に延在し、第1ピラー部記憶層48p1は、第1ピラー部内側絶縁膜42p1と第1電極間絶縁膜62aとの間に延在し、第1ピラー部外側絶縁膜43p1は、第1ピラー部記憶層48p1と第1電極間絶縁膜62aとの間に延在する。
第1導電芯ピラーPBG1の側面、第1ピラー部芯絶縁膜49p1の側面、第1半導体パイプピラーSP1の側面、第1ピラー部内側絶縁膜42p1の側面、第1ピラー部記憶層48p1の側面、及び、第1ピラー部外側絶縁膜43p1の側面は、Z軸方向に対して平行な面である。
不揮発性半導体記憶装置110は、第2積層構造体ML2と、第2導電芯ピラーPBG2と、第2ピラー部芯絶縁膜49p1と、第2半導体パイプピラーSP2と、第2ピラー部内側絶縁膜42p2と、第2ピラー部記憶層48p2と、第2ピラー部外側絶縁膜43p2と、半導体接続部SC(第1半導体接続部SC1)と、をさらに備える。
第2積層構造体ML2は、第1方向(Z軸方向)に対して垂直な第2方向(Y軸方向)において第1積層構造体ML1と並ぶ。第2積層構造体ML2は、第1方向に積層された複数の第2電極膜61bと、複数の第2電極膜61bどうしの間に設けられた第2電極間絶縁膜62bと、を有する。
複数の第1電極膜61aのそれぞれと、複数の第2電極膜61bのそれぞれと、は同層である。すなわち、基板11と、複数の第1電極膜61aのそれぞれと、の距離は、基板11と、複数の第2電極膜61bのそれぞれと、の距離と、同じである。基板11と、複数の第2電極間絶縁膜62aのそれぞれと、の距離は、基板11と、複数の第2電極間絶縁膜62bのそれぞれと、の距離と、同じである。
第2導電芯ピラーPBG2は、第2積層構造体ML2を第1方向に貫通する。第2ピラー部芯絶縁膜49p2は、第2導電芯ピラーPBG2と第2電極膜61bとの間に設けられ、第2導電芯ピラーPBG2の側面を取り囲む。第2半導体パイプピラーSP2は、第2ピラー部芯絶縁膜49p2と第2電極膜61bとの間に設けられ、第2積層構造体ML2を第1方向に貫通し、第2ピラー部芯絶縁膜49p2の側面を取り囲む。第2ピラー部内側絶縁膜42p2は、第2半導体パイプピラーSP2と第2電極膜61bとの間に設けられ、第2半導体パイプピラーSP2の側面を取り囲む。第2ピラー部記憶層48p2は、第2ピラー部内側絶縁膜42p2と第2電極膜61bとの間に設けられ、第2ピラー部内側絶縁膜42p2の側面を取り囲む。第2ピラー部外側絶縁膜43p2は、第2ピラー部記憶層48p2と第2電極膜61bとの間に設けられ、第2ピラー部記憶層48p2の側面を取り囲む。
第2ピラー部芯絶縁膜49p2は、第2導電芯ピラーPBG2と第2電極間絶縁膜62bとの間に延在し、第2ピラー部内側絶縁膜42p2は、第2半導体パイプピラーSP2と第2電極間絶縁膜62bとの間に延在し、第2ピラー部記憶層48p2は、第2ピラー部内側絶縁膜42p2と第2電極間絶縁膜62bとの間に延在し、第2ピラー部外側絶縁膜43p2は、第2ピラー部記憶層48p2と第2電極間絶縁膜62bとの間に延在する。
第2導電芯ピラーPBG2の側面、第2ピラー部芯絶縁膜49p2の側面、第2半導体パイプピラーSP2の側面、第2ピラー部内側絶縁膜42p2の側面、第2ピラー部記憶層48p2の側面、及び、第2ピラー部外側絶縁膜43p2の側面は、Z軸方向に対して平行な面である。
半導体接続部SC(第1半導体接続部SC1)は、第1半導体パイプピラーSP1の一端と第2半導体パイプピラーSP2の一端とを電気的に接続する。
不揮発性半導体記憶装置110は、芯接続部CBG(第1芯接続部CBG1)と、接続部芯絶縁膜49c(第1接続部芯絶縁膜49c1)と、をさらに備える。ただし、芯接続部CBGと、接続部芯絶縁膜49cと、は必要に応じて設けられ、場合によっては省略可能である。以下では、芯接続部CBGと、接続部芯絶縁膜49cと、が設けられる場合として説明する。
芯接続部CBG(第1芯接続部CBG1)は、第1導電芯ピラーPBG1の端(例えば下端)と第2導電芯ピラーPBG2の端(例えば下端)とを電気的に接続する。
接続部芯絶縁膜49c(第1接続部芯絶縁膜49c1)は、半導体接続部SC(第1半導体接続部SC1)と芯接続部CBG(第1芯接続部CBG1)との間に設けられる。
芯接続部CBG(第1芯接続部CBG1)は、例えばX−Y平面内に延在する。半導体接続部SC(第1半導体接続部SC1)は、例えばX−Y平面内に延在し、芯接続部CBG(第1芯接続部CBG1)の側面を取り囲む。芯接続部CBG(第1芯接続部CBG1)の側面は、Z軸方向に対して垂直な面である。
さらに、不揮発性半導体記憶装置110は、接続部導電層SCCと、接続部内側絶縁膜(第1接続部内側絶縁膜42c1)と、接続部記憶層(第1接続部記憶層48c1)と、接続部外側絶縁膜(第1接続部外側絶縁膜43c1)と、をさらに備える。
接続部導電層SCCは、半導体接続部SC(第1半導体接続部SC1)に対向して設けられる。接続部内側絶縁膜(第1接続部内側絶縁膜42c1)は、半導体接続部SC(第1半導体接続部SC1)と、接続部導電層SCCと、の間に設けられる。接続部記憶層(第1接続部記憶層48c1)は、接続部内側絶縁膜(第1接続部内側絶縁膜42c1)と、接続部導電層SCCと、の間に設けられる。接続部外側絶縁膜(第1接続部外側絶縁膜43c1)は、接続部記憶層(第1接続部記憶層48p1)と、接続部導電層SCCと、の間に設けられる。
電極膜61(第1電極膜61a及び第2電極膜61b)と、半導体パイプピラーSP(第1半導体パイプピラーSP1及び第2半導体パイプピラーSP2)と、が交差する部分に、メモリセルトランジスタが形成され、このメモリセルトランジスタのそれぞれがメモリセルMCとなる。
電極膜61には所定の電気信号が印加され、電極膜61は、不揮発性半導体記憶装置110の例えばワード電極として機能する。
メモリセルMCのそれぞれにおいて、記憶層48(第1ピラー部記憶層48p1及び第2ピラー部記憶層48p1)は、半導体パイプピラーSPと電極膜61との間に印加される電界によって電荷を蓄積または放出し、情報を記憶する部分として機能する。すなわち、記憶層48(第1ピラー部記憶層48p1及び第2ピラー部記憶層48p1)は、電荷蓄積層として機能する。
内側絶縁膜42(第1ピラー部内側絶縁膜42p1及び第2ピラー部内側絶縁膜42p2)は、メモリセルMCのそれぞれにおいて例えばトンネル絶縁膜として機能する。
外側絶縁膜43(第1ピラー部外側絶縁膜43p1及び第2ピラー部外側絶縁膜43p2)は、メモリセルMCのそれぞれにおいて例えばブロック絶縁膜として機能する。
接続部記憶層48c(第1接続部記憶層48c1)には、例えば第1ピラー部記憶層48p1及び第2ピラー部記憶層48p2に用いられる材料と同じ材料が用いられる。接続部記憶層48c(第1接続部記憶層48c1)は、例えば、第1ピラー部記憶層48p1及び第2ピラー部記憶層48p2と同時に形成される。
第1接続部内側絶縁膜42c1には、例えば、第1ピラー部内側絶縁膜42p1及び第2ピラー部内側絶縁膜42p2に用いられる材料と同じ材料が用いられる。第1接続部内側絶縁膜42c1は、例えば、第1ピラー部内側絶縁膜42p1及び第2ピラー部内側絶縁膜42p2と同時に形成される。
第1接続部外側絶縁膜43c1には、例えば、第1ピラー部外側絶縁膜43p1及び第2ピラー部外側絶縁膜43p2に用いられる材料と同じ材料が用いられる。第1接続部外側絶縁膜43c1は、例えば、第1ピラー部外側絶縁膜43p1及び第2ピラー部外側絶縁膜43p2と同時に形成される。
接続部導電層SCCに与えられる電圧によって、半導体接続部SC(第1半導体接続部SC1)により、第1半導体パイプピラーSP1と第2半導体パイプピラーSP2とが電気的に接続される。
さらに、接続部導電層SCCと第1半導体接続部SC1とが対向する部分を、第1接続部記憶層48c1を電荷蓄積層として含むメモリセルMCとして利用しても良い。すなわち、接続部記憶層48c(第1接続部記憶層48c1)は、例えば、半導体接続部SCと接続部導電層SCCとの間に印加される電界よって電荷を蓄積または放出し、情報を記憶する部分として機能する。
電極膜61(第1電極膜61a及び第2電極膜61b)及び接続部導電層SCCには、任意の導電材料を用いることができ、例えば、不純物が導入されて導電性が付与されたアモルファスシリコン(非晶質シリコン)、または、不純物が導入されて導電性が付与されたポリシリコン(多結晶シリコン)が用いられる。または、電極膜61には、金属及び合金などが用いられる。
電極間絶縁膜62(第1電極間絶縁膜62a及び第2電極間絶縁膜62b)、内側絶縁膜42(第1ピラー部内側絶縁膜42p1、第2ピラー部内側絶縁膜42p2及び第1接続部内側絶縁膜42c1)、及び、外側絶縁膜43(第1ピラー部外側絶縁膜43p1、第2ピラー部外側絶縁膜43p2及び第1接続部外側絶縁膜43c1)には、例えば酸化シリコンが用いられる。これらの膜は、単層膜でも良く、積層膜でも良い。
記憶層48(第1ピラー部記憶層48p1、第2ピラー部記憶層48p2及び第1接続部記憶層48c1)には、例えば窒化シリコンが用いられる。記憶層48は単層膜でも良く、積層膜でも良い。
電極間絶縁膜62、内側絶縁膜42、外側絶縁膜43及び記憶層48には、上記に例示した材料に限らず、任意の材料を用いることができる。
不揮発性半導体記憶装置110においては、導電芯ピラーPBG(第1導電芯ピラーPBG1及び第2導電芯ピラーPBG2)は、例えば、電極膜61と半導体パイプピラーSPとが交差する部分のメモリセルMCのメモリセルトランジスタのバックゲートして機能する。芯接続部CBG(第1芯接続部CBG1)は、例えば、接続部導電層SCCと半導体接続部SCとが対向する部分のメモリセルMCのメモリセルトランジスタのバックゲートとして機能する。
第1導電芯ピラーPBG1、第2導電芯ピラーPBG2及び芯接続部CBG(第1芯接続部CBG1)には、任意の導電材料を用いることができる。第1導電芯ピラーPBG1、第2導電芯ピラーPBG2及び芯接続部CBG(第1芯接続部CBG1)には、例えば、不純物が導入されて導電性が付与されたアモルファスシリコン(非晶質シリコン)、または、不純物が導入されて導電性が付与されたポリシリコン(多結晶シリコン)が用いられる。または、第1導電芯ピラーPBG1、第2導電芯ピラーPBG2及び芯接続部CBG(第1芯接続部CBG1)には、金属及び合金などが用いられる。ただし、プロセス適合性(例えば耐熱性を含む)の観点で、第1導電芯ピラーPBG1、第2導電芯ピラーPBG2及び芯接続部CBG(第1芯接続部CBG1)には、アモルファスシリコンまたはポリシリコンを用いることが望ましい。
第1ピラー部芯絶縁膜49p1、第2ピラー部芯絶縁膜49p2、及び、接続部芯絶縁膜49c(第1接続部芯絶縁膜49c1)には、例えば酸化シリコンが用いられる。第1ピラー部芯絶縁膜49p1、第2ピラー部芯絶縁膜49p2、及び、接続部芯絶縁膜49c(第1接続部芯絶縁膜49c1)は、単層膜でも良く、積層膜でも良い。
不揮発性半導体記憶装置110は、第1選択ゲート電極SG1と、第2選択ゲート電極SG2と、第1配線WR1(ビット線BL)と、第2配線WR2(ソース線SL)と、第3配線WR3(バックゲート線BGL)と、をさらに備える。
第1選択ゲート電極SG1は、第1積層構造体ML1と第1方向において積層される。第1選択ゲート電極SG1は、第1半導体パイプピラーSP1に貫通される。
第2選択ゲート電極SG2は、第2積層構造体ML2と第1方向において積層される。第2選択ゲート電極SG2は、第2半導体パイプピラーSP2に貫通される。
ビット線BLは、第1半導体パイプピラーSP1の他端(半導体接続部SCすなわち第1半導体接続部SC1とは反対の側の端)に電気的に接続される。
ビット線BLは、第1選択ゲート電極SG1の側のコンタクト電極22aと、ビット線BLの側のコンタクト電極24aと、を介して、第1半導体パイプピラーSP1の他端と電気的に接続される。コンタクト電極22a及びコンタクト電極24aが、図2に例示したコンタクト電極22(図1に例示したコンタクト電極VA1)に相当する。
ビット線BLは、第1半導体パイプピラーSP1の他端(半導体接続部SCすなわち第1半導体接続部SC1とは反対の側の端)に電気的に接続される。
ビット線BLは、第1選択ゲート電極SG1の側のコンタクト電極22aと、ビット線BLの側のコンタクト電極24aと、を介して、第1半導体パイプピラーSP1の他端と電気的に接続される。コンタクト電極22a及びコンタクト電極24aが、図2に例示したコンタクト電極22(図1に例示したコンタクト電極VA1)に相当する。
ソース線SLは、第2半導体パイプピラーSP2の他端(半導体接続部SCすなわち第1半導体接続部SC1とは反対の側の端)に電気的に接続される。
ソース線SLは、コンタクト電極22bを介して、第2半導体パイプピラーSP2の他端と電気的に接続される。
ソース線SLは、コンタクト電極22bを介して、第2半導体パイプピラーSP2の他端と電気的に接続される。
バックゲート線BGLは、第1導電芯ピラーPBG1の一端(芯接続部CBGすなわち第1芯接続部CBG1とは反対の側の端であり、例えば上端)及び第2導電芯ピラーPBG2の一端(芯接続部CBGすなわち第1芯接続部CBG1とは反対の側の端であり、例えば上端)の少なくともいずれかに電気的に接続される。
例えば、第1導電芯ピラーPBG1と第2導電芯ピラーPBG2とが芯接続部CBG(第1芯接続部CBG1)で接続される場合には、バックゲート線BGLは、第1導電芯ピラーPBG1及び第2導電芯ピラーPBG2のいずれかに接続されても良く、両方に接続されても良い。以下では、バックゲート線BGLは、第1導電芯ピラーPBG1の一端及び第2導電芯ピラーPBG2の一端に電気的に接続されている場合として説明する。
第3配線(バックゲート線BGL)は、第1配線WR1(この例ではビット線BL)の第1積層構造体ML1とは反対の側に設けられている。そして、第1導電芯ピラーPBG1は、第1配線WR1を第1方向に沿って貫通する。
さらに、第3配線(バックゲート線BGL)は、第2配線WR2(この例ではソース線SL)の第2積層構造体ML2とは反対の側に設けられている。そして、第2導電芯ピラーPBG2は、第2配線WR2を第1方向に沿って貫通する。
バックゲート線BGLは、第1選択ゲート電極SG1の側のコンタクト電極BGCaaと、ビット線BLを貫通するコンタクト電極BGCabと、バックゲート線BGLの側のコンタクト電極BGCacと、を介して、第1導電芯ピラーPBG1の他端と電気的に接続される。コンタクト電極BGCaaとコンタクト電極22aとの間にはコンタクト電極部絶縁層BGIaaが設けられ、コンタクト電極BGCabとコンタクト電極24aとの間にはコンタクト電極部絶縁層BGIabが設けられる。
一方、バックゲート線BGLは、ソース線SLを貫通するコンタクト電極BGCbaと、ビット線BLを貫通するコンタクト電極BGCbbと、バックゲート線BGLの側のコンタクト電極BGCbcと、を介して、第2導電芯ピラーPBG2の他端と電気的に接続される。コンタクト電極BGCbaとコンタクト電極22bとの間にはコンタクト電極部絶縁層BGIbaが設けられ、コンタクト電極BGCbbとビット線BLとの間にはコンタクト電極部絶縁層BGIbbが設けられる。
コンタクト電極22a及びコンタクト電極24aは、第1半導体パイプピラーSP1が延在することで第1半導体パイプピラーSP1と一体的に設けられても良い。コンタクト電極22a及びコンタクト電極24aは、第1半導体パイプピラーSP1とは別に設けられても良い。
コンタクト電極22bは、第2半導体パイプピラーSP2が延在することで第2半導体パイプピラーSP2と一体的に設けられても良い。コンタクト電極22bは、第2半導体パイプピラーSP2とは別に設けられても良い。
コンタクト電極BGCaa、コンタクト電極BGCab及びコンタクト電極BGCacは、第1導電芯ピラーPBG1が延在することで第1導電芯ピラーPBG1と一体的に設けられても良い。コンタクト電極BGCaa、コンタクト電極BGCab及びコンタクト電極BGCacは、第1導電芯ピラーPBG1とは別に設けられても良い。
コンタクト電極BGCba、コンタクト電極BGCba、コンタクト電極BGCbb及びコンタクト電極BGCbcは、第2導電芯ピラーPBG2が延在することで第2導電芯ピラーPBG2と一体的に設けられても良い。コンタクト電極BGCba、コンタクト電極BGCbb及びコンタクト電極BGCbcは、第2導電芯ピラーPBG2とは別に設けられても良い。
コンタクト電極部絶縁層BGIaa及びコンタクト電極部絶縁層BGIabの少なくとも一部は、第1ピラー部芯絶縁膜49p1が延在することで第1ピラー部芯絶縁膜49p1と一体的に設けられても良い。コンタクト電極部絶縁層BGIaa及びコンタクト電極部絶縁層BGIabの少なくとも一部は、第1ピラー部芯絶縁膜49p1とは別に設けられても良い。
コンタクト電極部絶縁層BGIba及びコンタクト電極部絶縁層BGIbbの少なくとも一部は、第2ピラー部芯絶縁膜49p2が延在することで第2ピラー部芯絶縁膜49p2と一体的に設けられても良い。コンタクト電極部絶縁層BGIba及びコンタクト電極部絶縁層BGIbbの少なくとも一部は、第2ピラー部芯絶縁膜49p2とは別に設けられても良い。
第1電極膜61a及び第2電極膜61bは、第1方向(Z軸方向)と第2方向(Y軸方向)とに対して垂直な第3方向(X軸方向)に延在する。例えば、第1電極膜61a及び第2電極膜61bは、X軸方向に沿って延在する部分を有する。ビット線BLは、Y軸方向に延在する。例えば、ビット線BLは、Y軸方向に沿って延在する部分を有する。ソース線SLは、X軸方向に延在する。例えば、ソース線SLは、X軸方向に沿って延在する部分を有する。
さらに、第1選択ゲート電極SG1及び第2選択ゲート電極SG2は、X軸方向に沿って延在する部分を有する。すなわち、第1選択ゲート電極SG1及び第2選択ゲート電極SG2は、第1電極膜61a及び第2電極膜61bの延在方向に対して平行な方向に沿って延在する。
選択ゲート電極SG(第1選択ゲート電極SG1及び第2選択ゲート電極SG2)には、任意の導電材料を用いることができる。選択ゲート電極SGには、例えば、不純物が導入されて導電性が付与されたアモルファスシリコン(非晶質シリコン)、または、不純物が導入されて導電性が付与されたポリシリコン(多結晶シリコン)が用いられる。または、選択ゲート電極SGには金属及び合金などが用いられる。
選択ゲート電極SGと半導体パイプピラーSPとの間に選択ゲート絶縁膜SGIが設けられる。
すなわち、不揮発性半導体記憶装置110は、第1積層構造体ML1とZ軸方向に沿って積層され、第1半導体パイプピラーSP1に貫通された第1選択ゲート電極SG1と、第1選択ゲート電極SG1と第1半導体パイプピラーSP1との間に設けられた第1選択ゲート絶縁膜SGI1と、第2積層構造体ML2とZ軸方向に沿って積層され、第2半導体パイプピラーSP2に貫通された第2選択ゲート電極SG2と、第2選択ゲート電極SG2と第2半導体パイプピラーSP2との間に設けられた第2選択ゲート絶縁膜SGI1と、をさらに備える。
選択ゲート絶縁膜SGI(第1選択ゲート絶縁膜SGI1及び第2選択ゲート絶縁膜SGI2)には、内側絶縁膜42、記憶層48及び外側絶縁膜43の積層膜を用いても良く、内側絶縁膜42、記憶層48及び外側絶縁膜43の積層膜とは異なる絶縁膜を用いても良い。選択ゲート絶縁膜SGIは、単層膜でも良く、積層膜でも良い。
選択ゲート電極SGと第1半導体パイプピラーSP1とが交差する部分に第1選択ゲートトランジスタSGT1が形成され、選択ゲート電極SGと第2半導体パイプピラーSP2とが交差する部分に第2選択ゲートトランジスタSGT2が形成される。選択ゲート絶縁膜SGIは、これらの選択ゲートトランジスタのゲート絶縁膜として機能する。これらの選択ゲートトランジスタは、半導体パイプピラーSPを選択する機能を有する。
図1に例示したように、不揮発性半導体記憶装置110は、第3半導体パイプピラーSP3と、第4半導体パイプピラーSP4と、第2半導体接続部SC2と、をさらに備える。そして、不揮発性半導体記憶装置110は、第3導電芯ピラーPBG3(図示しない)と、第4導電芯ピラーPBG4(図示しない)と、第2芯接続部CBG2(図示しない)と、をさらに有する。
第3半導体パイプピラーSP3、第4半導体パイプピラーSP4、第2半導体接続部SC2、第3導電芯ピラーPBG3、第4導電芯ピラーPBG4及び第2芯接続部CBG2には、第1半導体パイプピラーSP1、第2半導体パイプピラーSP2、第1半導体接続部SC1、第1導電芯ピラーPBG1、第2導電芯ピラーPBG2及び第1芯接続部CBG1に関して説明した構成のそれぞれを適用できる。
すなわち、第3半導体パイプピラーSP3は、第3積層構造体をZ軸方向に沿って貫通する。第4半導体パイプピラーSP4は、第4積層構造体をZ軸方向に沿って貫通する。そして、第3導電芯ピラーPBG3は、第3半導体パイプピラーSP3の内部に設けられる。第4導電芯ピラーPBG4は、第4半導体パイプピラーSP4の内部に設けられる。
第2半導体接続部SC2は、第3半導体パイプピラーSP3の一端と、第4半導体パイプピラーSP4の一端とを電気的に接続する。第2芯接続部CBG2は、第3導電芯ピラーPBG3の端(例えば下端)と第4導電芯ピラーPBG4の端(例えば下端)とを電気的に接続する。
図3に関して説明したように、第3半導体パイプピラーSP3が貫通する電極膜61は、第2半導体パイプピラーSP2が貫通する第2電極膜61bと連続し、第4半導体パイプピラーSP4が貫通する電極膜61は、第1半導体パイプピラーSP1が貫通する第1電極膜61aと連続している。ただし、実施形態はこれに限らず、半導体パイプピラーSPのそれぞれは、それぞれ別の(例えばY軸方向に沿って分断された)電極膜61を貫通しても良い。
第1配線(ビット線BL)は、例えば第4半導体パイプピラーSP4の第2半導体接続部SC2とは反対の側の他端とさらに接続される。第2配線(ソース線SL)は、第3半導体パイプピラーSP3の第2半導体接続部SC2とは反対の側の他端とさらに接続される。
図1に例示したように、第1半導体パイプピラーSP1は、コンタクト電極VA1によってビット線BLに接続され、第4半導体パイプピラーSP4は、コンタクト電極VA2によってビット線BLに接続される。
図5(a)は、半導体パイプピラーSPの構成を例示する模式的斜視図である。第5(b)は、半導体パイプピラーSPの構成を例示する模式的断面図であり、半導体パイプピラーSPをX−Y平面で切断したときの断面図である。すなわち、これらの図は、メモリセルMC(メモリセルトランジスタ)の構成を例示している。
図5(a)に表したように、電極膜61に貫通ホールTHが設けられ、貫通ホールTHの中に第1導電芯ピラーPBG1が設けられ、第1導電芯ピラーPBG1の側面を取り囲むように第1ピラー部芯絶縁膜49p1が設けられ、第1ピラー部芯絶縁膜49p1の側面を取り囲むように第1半導体パイプピラーSP1が設けられ、第1半導体パイプピラーSP1の側面を取り囲むように第1ピラー部内側絶縁膜42p1が設けられ、第1ピラー部内側絶縁膜42p1の側面を取り囲むように第1ピラー部記憶層48p1が設けられ、第1ピラー部記憶層48p1の側面を取り囲むように第1ピラー部外側絶縁膜43p1が設けられている。
この構成は、例えば、積層構造体ML1に設けられた貫通ホールTHの内側の壁面に、第1ピラー部外側絶縁膜43p1、第1ピラー部記憶層48p1、第1ピラー部内側絶縁膜42p1、第1半導体パイプピラーSP1、第1ピラー部芯絶縁膜49p1及び第1導電芯ピラーPBG1となる材料を順次成膜することで得られる。
図5(b)に表したように、貫通ホールTHの断面形状(X−Y平面で切断したときの断面形成)は曲線を有する形状(例えば円形)であり、第1半導体パイプピラーSP1の断面形状は、曲線を有する形状(例えば円形)である。これにより、第1ピラー部内側絶縁膜42p1における曲率が、第1ピラー部外側絶縁膜43p1における曲率よりも高くなる。これにより、第1半導体パイプピラーSP1と第1電極膜61aとの間に電圧を印加した場合に、第1ピラー部内側絶縁膜42p1に印加される電界が、第1ピラー部外側絶縁膜43p1に印加される電界よりも高くなる。
この電界の差を利用することで、例えば、第1ピラー部内側絶縁膜42p1を介して、所望の電荷(例えば電子)を第1ピラー部記憶層48p1に効果的に注入することができる。または、例えば、第1ピラー部内側絶縁膜42p1を介して、所望の電荷(例えば正孔)を第1ピラー部記憶層48p1に効果的に注入することができる。
ここで、記憶層48(例えば第1ピラー部記憶層48p1)への電子の注入、及び、記憶層48(例えば第1ピラー部記憶層48p1)からの正孔の引き抜き、の少なくともいずれかを行う動作を書き込み動作とする。
そして、記憶層48(例えば第1ピラー部記憶層48p1)への正孔の注入、及び、記憶層48(例えば第1ピラー部記憶層48p1)からの電子の引き抜き、の少なくともいずれかを行う動作を消去動作とする。
すなわち、メモリセルMCとなるメモリセルトランジスタは、しきい値電圧が低い状態(消去状態)と、しきい値電圧が低い状態よりも相対的にしきい値電圧が高い状態(書き込み状態)と、を有する。
そして、書き込み動作は、メモリトランジスタのしきい値電圧を、高い側の状態に設定する動作である。消去動作は、メモリトランジスタのしきい値電圧を、低い側の状態に設定する動作である。
本実施形態に係る不揮発性半導体記憶装置110においては、メモリセルMCが形成される半導体パイプピラーSP(例えば第1半導体パイプピラーSP1)の内部に、導電芯ピラーPBG(例えば第1導電芯ピラーPBG1)が設けられ、導電芯ピラーPBG(例えば第1導電芯ピラーPBG1)をバックゲートとして利用することで、安定した消去動作が実現できる。
例えば、不揮発性半導体記憶装置110においては、消去動作において、第1電極膜61aに印加される電圧よりも高い電圧が第1導電芯ピラーPBG1に印加される。すなわち、第1電極膜61aに印加される電位よりも高い電位に第1導電芯ピラーPBG1が設定される。これにより、例えば第1ピラー部記憶層48p1への正孔の注入、及び、第1ピラー部記憶層48p1からの電子の引き抜き、の少なくともいずれかが効果的に安定して実施される。
このような動作は、制御部CTUによって実施できる。すなわち、不揮発性半導体記憶装置110は、複数の第1電極膜61aと第1導電芯ピラーPBG1とに電気的に接続された制御部CTUをさらに備える。制御部CTUは、複数の第1電極膜61aのそれぞれと第1半導体パイプピラーSP1との交差部分の第1ピラー部記憶層48p1に蓄積される電荷の状態を制御する。
制御部CTUは、第1ピラー部記憶層48p1への正孔の注入、及び、第1ピラー部記憶層48p1からの電子の引き抜き、の少なくともいずれかを行う動作の際に、第1電極膜61aに印加される電圧よりも高い電圧を第1導電芯ピラーPBG1に印加する。
このような制御部CTUの少なくとも一部は、例えば、図1に関して説明した周辺領域PRに設けられる。制御部CTUの少なくとも一部は、例えば、周辺領域回路PR1に設けられる。制御部CTUの少なくとも一部は、メモリアレイ領域MRの回路部CUに設けても良い。さらに、制御部CTUは、基板11とは別体として設けても良い。
図6(a)及び図6(b)は、第1の実施形態に係る不揮発性半導体記憶装置の動作を例示する模式図である。
すなわち、これらの図は、消去動作におけるタイミング図である。図6(a)は、導電芯ピラーPBG(例えば第1導電芯ピラーPBG1)に印加されるバックゲート電圧VBGを例示している。バックゲート電圧VBGは、例えば、バックゲート線BGLに印加される電圧である。図6(b)は、電極膜61(例えば第1電極膜61a)に印加されるワード線電圧VWLを例示している。これらの図において横軸は時間tである。図6(a)の縦軸はバックゲート電圧VBGである。図6(b)の縦軸はワード線電圧VWLである。これらの動作は、例えば、制御部CTUによって実施される。
すなわち、これらの図は、消去動作におけるタイミング図である。図6(a)は、導電芯ピラーPBG(例えば第1導電芯ピラーPBG1)に印加されるバックゲート電圧VBGを例示している。バックゲート電圧VBGは、例えば、バックゲート線BGLに印加される電圧である。図6(b)は、電極膜61(例えば第1電極膜61a)に印加されるワード線電圧VWLを例示している。これらの図において横軸は時間tである。図6(a)の縦軸はバックゲート電圧VBGである。図6(b)の縦軸はワード線電圧VWLである。これらの動作は、例えば、制御部CTUによって実施される。
図6(a)及び図6(b)に表したように、制御部CTUは、消去動作の際に、第1導電芯ピラーPBG1に第1電圧V01を印加し、第1電極膜61aに第2電圧V02を印加する。第1電圧V01は、第2電圧V02よりも高い電圧である。
第2電圧V02は、例えば基準電圧V00であり、例えば0ボルト(0V)である。第1電圧V01は高電圧の消去電圧Veraである。第1電圧V01は例えば、10V以上20V以下程度とされる。
例えば、第1時刻t11よりも前の時刻においては、第1導電芯ピラーPBG1に印加されるバックゲート電圧VBGは、基準電圧V00である。第1時刻t11において、バックゲート電圧VBGは、基準電圧V00から上昇し、第2時刻t12において消去電圧Vera(第1電圧V01)に達する。その後、第3時刻t13において、バックゲート電圧VBGは低下し始め、第4時刻t14において、基準電圧V00に戻る。
一方、ワード線電圧VWLは、第2電圧V02(基準電圧V00)で一定である。
これにより、第1ピラー部記憶層48p1への正孔の注入、及び、第1ピラー部記憶層48p1からの電子の引き抜き、の少なくともいずれかを行う消去動作が安定して実施される。
上記の消去動作において、第1半導体パイプピラーSP1に接続されたビット線BL、及び、第2半導体パイプピラーSP2に接続されたソース線SLには、例えば、高電圧の第1電圧V01を印加しても良く、または、第1電圧V01と第2電圧V02との間の電圧を印加しても良い。または、ビット線BL及びソース線SLは、例えば、浮遊状態とされても良い。
上記の消去動作において、第1選択ゲート電極SG1及び第2選択ゲート電極SG2には、例えば、第1電圧V01と第2電圧V02との間の電圧が印加される。接続部導電層SCCには、例えば、第1電圧V01と第2電圧V02との間の電圧が印加される。
これにより、適正に消去動作が実施できる。
これにより、適正に消去動作が実施できる。
例えば、第1導電芯ピラーPBG1及び第2導電芯ピラーPBG2を設けない場合は、消去動作が行い難い場合がある。すなわち、このような構成の場合には、半導体パイプピラーに相当する半導体ピラーに、電極膜61に印加される電圧よりも高い消去電圧を印加して消去動作を行う。この消去電圧は、例えば、選択ゲートトランジスタの選択ゲート絶縁膜SGIにおいて絶縁破壊が発生しないような電圧が用いられるという制限が生じる。選択ゲート電極SGの側から半導体ピラーに電圧を供給するため、半導体ピラーの全体に渡って均一な電圧を印加し難く、均一な消去は行われ難いことがある。
これに対し、本実施形態に係る不揮発性半導体記憶装置110においては、第1導電芯ピラーPBG1及び第2導電芯ピラーPBG2を設け、これらをバックゲートとして用いることで、選択ゲート絶縁膜SGIにおける絶縁破壊に関する制限が解除され、そして、半導体パイプピラーSPの全体に対応するメモリセルMCにおいて均一な消去電圧を印加でき、消去動作を確実に均一に実施することが容易になる。
図7(a)、図7(b)、図7(c)及び図7(d)は、第1の実施形態に係る不揮発性半導体記憶装置の動作を例示する模式図である。
すなわち、これらの図は、書き込み動作におけるタイミング図である。図7(a)は、ビット線BLに印加されるビット線電圧VBL及びソース線SLに印加されるソース線電圧VSLを例示している。図7(b)は、選択ゲート電極SG(第1選択ゲート電極SG1及び第2選択ゲート電極SG2)に印加される選択ゲート電圧VSGを例示している。図7(c)は、書き込みを行う選択メモリセルの電極膜61(例えば第1電極膜61a)に印加される選択ワード線電圧VWLSを例示している。図7(d)は、書き込みを行わない非選択メモリセルの電極膜61(例えば第1電極膜61a)に印加される非選択ワード線電圧VWLNを例示している。これらの図において横軸は時間tである。図7(a)の縦軸はビット線電圧VBL及びソース線電圧VSLであり、図6(b)の縦軸は選択ゲート電圧VSGであり、図7(c)の縦軸は選択ワード線電圧VWLSであり、図7(d)の縦軸は非選択ワード線電圧VWLNである。これらの動作は、例えば、制御部CTUによって実施される。
すなわち、これらの図は、書き込み動作におけるタイミング図である。図7(a)は、ビット線BLに印加されるビット線電圧VBL及びソース線SLに印加されるソース線電圧VSLを例示している。図7(b)は、選択ゲート電極SG(第1選択ゲート電極SG1及び第2選択ゲート電極SG2)に印加される選択ゲート電圧VSGを例示している。図7(c)は、書き込みを行う選択メモリセルの電極膜61(例えば第1電極膜61a)に印加される選択ワード線電圧VWLSを例示している。図7(d)は、書き込みを行わない非選択メモリセルの電極膜61(例えば第1電極膜61a)に印加される非選択ワード線電圧VWLNを例示している。これらの図において横軸は時間tである。図7(a)の縦軸はビット線電圧VBL及びソース線電圧VSLであり、図6(b)の縦軸は選択ゲート電圧VSGであり、図7(c)の縦軸は選択ワード線電圧VWLSであり、図7(d)の縦軸は非選択ワード線電圧VWLNである。これらの動作は、例えば、制御部CTUによって実施される。
図7(a)〜図7(d)に表したように、制御部CTUは、書き込み動作の際に、ビット線BL及びソース線SLに第3電圧V03を印加し、選択メモリセルの電極膜61(例えば第1電極膜61a)に第3電圧V03よりも高い第4電圧V04(書き込み電圧Vpgm)を印加し、非選択メモリセルの電極膜61(例えば第1電極膜61a)に第3電圧V03よりも高く、第4電圧V04よりも低い第5電圧V05(パス電圧Vpass)を印加する。
これにより、選択メモリセルに対応する記憶層48(例えば第1ピラー部記憶層48p1)への電子の注入、及び、記憶層48(例えば第1ピラー部記憶層48p1)からの正孔の引き抜き、の少なくともいずれかを行う書き込み動作が実施される。非選択メモリセルに対応する記憶層48(例えば第1ピラー部記憶層48p1)においては、印加される第5電圧V05(パス電圧Vpass)が低いため、書き込みは行われない。
図7(b)に表したように、上記の書き込み動作においては、第1選択ゲート電極SG1及び第2選択ゲート電極SG2には、第3電圧V03よりも高く、第4電圧V04よりも低い第6電圧V06(選択ゲートパス電圧VpassG)が印加される。
具体的には、第5時刻t15において、選択ゲート電圧VSGは基準電圧V00から上昇し始め、第6時刻t16において第6電圧V06(選択ゲートパス電圧VpassG)に到達する。そして、第7時刻t17において、選択ゲート電圧VSGは低下し始め、第8時刻t18において基準電圧V00に戻る。
非選択ワード線電圧VWLNも、例えば第5時刻t15において基準電圧V00から上昇し始め、第6時刻t16において第5電圧V05(パス電圧Vpass)に到達し、第7時刻t17において低下し始め、第8時刻t18において基準電圧V00に戻る。
一方、選択ワード線電圧VWLSは、例えば、第5時刻t15以降において基準電圧V00から上昇し始め、第6時刻t16以降において第4電圧V04(書き込み電圧Vpgm)に到達し、第7時刻t17以前において低下し始め、第8時刻t18以前において基準電圧V00に戻る。
上記の書き込み動作において、第1導電芯ピラーPBG1には、第3電圧V03よりも高く第4電圧V04よりも低い電圧(例えば第5電圧V05と同じ電圧など)が印加される。または、第1導電芯ピラーPBG1には、第3電圧V03と同じ低電圧を印加しても良い。または、第1導電芯ピラーPBG1は、浮遊状態とされても良い。
上記の書き込み動作においては、接続部導電層SCCには、例えば、第3電圧V03と第4電圧V04との間の中間電圧が印加される。
上記の書き込み動作においては、接続部導電層SCCには、例えば、第3電圧V03と第4電圧V04との間の中間電圧が印加される。
読み出し動作においては、例えば、ビット線BLに、第3電圧V03よりも高く第4電圧V04よりも低い読み出し時ビット線電圧(例えば1V〜2V)を印加し、ビット線BLに第3電圧V03を印加し、非選択メモリセルに対応する電極膜61に例えば低電圧(例えば5V)を印加し、選択メモリセルに対応する電極膜61に検知電圧を印加する。このとき、接続部導電層SCCには、例えば、低電圧(例えば5V)を印加する。または、第1導電芯ピラーPBG1には、例えば、第3電圧V03(例えば基準電圧V00の0V)を印加する。
(第2の実施の形態)
図8は、第2の実施形態に係る不揮発性半導体記憶装置の構成を例示する模式的斜視図である。
図8においては、図を見易くするために、導電部分のみを示し、絶縁部分は図示を省略している。
図9は、第2の実施形態に係る不揮発性半導体記憶装置の一部の構成を例示する模式的断面図である。
すなわち、図9は、マトリクスメモリセル部MU1の構成を例示しており、例えば図8のA1−A2線断面の一部に相当する断面図である。
図9においては、回路部CUは省略されている。
図8は、第2の実施形態に係る不揮発性半導体記憶装置の構成を例示する模式的斜視図である。
図8においては、図を見易くするために、導電部分のみを示し、絶縁部分は図示を省略している。
図9は、第2の実施形態に係る不揮発性半導体記憶装置の一部の構成を例示する模式的断面図である。
すなわち、図9は、マトリクスメモリセル部MU1の構成を例示しており、例えば図8のA1−A2線断面の一部に相当する断面図である。
図9においては、回路部CUは省略されている。
図8及び図9に表したように、本実施形態に係る不揮発性半導体記憶装置120も、積層構造体ML(第1積層構造体ML1)と、導電芯ピラーPBG(第1導電芯ピラーPBG1)と、芯絶縁膜49(第1ピラー部芯絶縁膜49p1)と、半導体パイプピラーSP(第1半導体パイプピラーSP1)と、内側絶縁膜42(第1ピラー部内側絶縁膜42p1)と、記憶層48(第1ピラー部記憶層48p1)と、外側絶縁膜43(第1ピラー部外側絶縁膜43p1)と、を備える。
さらに、不揮発性半導体記憶装置120は、第2積層構造体ML2と、第2導電芯ピラーPBG2と、第2ピラー部芯絶縁膜49p2と、第2半導体パイプピラーSP2と、第2ピラー部内側絶縁膜42p2と、第2ピラー部記憶層48p2と、第2ピラー部外側絶縁膜43p2と、をさらに備える。
不揮発性半導体記憶装置120においては、第1電極膜61a及び第2電極膜61bは、図3に例示したX軸方向に対向して櫛歯状に互いに組み合わされた電極膜61A及び電極膜61Bの形状ではなく、第1電極膜61a及び第2電極膜61bのそれぞれは、X軸方向に延在する帯状の形状を有している。
それ以外の構成(積層構造体ML、導電芯ピラーPBG、芯絶縁膜49、半導体パイプピラーSP、内側絶縁膜42、記憶層48及び外側絶縁膜43)の構成は、不揮発性半導体記憶装置110と類似の構成とすることができるので説明を省略する。
不揮発性半導体記憶装置120は、半導体接続部SC(第1半導体接続部SC1)と、第1選択ゲート電極SG1と、第2選択ゲート電極SG2と、第1配線WR1(第1導電配線LL1)と、第2配線WR2(第2導電配線LL2と、第3配線WR3(バックゲート線BGL)と、をさらに備える。
半導体接続部SC(第1半導体接続部SC1)は、第1半導体パイプピラーSP1の一端と第2半導体パイプピラーSP2の一端とを電気的に接続する。
第1選択ゲート電極SG1は、第1積層構造体ML1と第1方向において積層され、第1半導体パイプピラーSP1に貫通される。第2選択ゲート電極SG2は、第2積層構造体ML2と第1方向において積層され、第2半導体パイプピラーSP2に貫通される。そして、第1選択ゲート電極SG1及び第2選択ゲート電極SG2は、X軸方向に延在する帯状の形状を有している。
第1配線WR1(第1導電配線LL1)は、第1半導体パイプピラーSP1の他端に電気的に接続される。第2配線WR2(第1導電配線LL2)は、第2半導体パイプピラーSP2の他端に電気的に接続される。第1配線WR1と第2配線WR2とは、層間絶縁膜23aによって分断されている。
第3配線WR3(バックゲート線BGL)は、第1導電芯ピラーPBG1の一端及び第2導電芯ピラーPBG2の一端の少なくともいずれかに電気的に接続される。
このように、不揮発性半導体記憶装置120においては、第1電極膜61a、第2電極膜61b、第1選択ゲート電極SG1及び第2選択ゲート電極SG2は、第1方向と第2方向とに対して垂直な第3方向(X軸方向)に延在する部分を有する。
第1配線WR1及び第2配線WR2は、第2方向に沿って延在する部分を有する。
そして、半導体接続部SC(第1半導体接続部SC1)は、第2方向及び第3方向に対して斜め方向に延在する。
そして、半導体接続部SC(第1半導体接続部SC1)は、第2方向及び第3方向に対して斜め方向に延在する。
電極膜61が延在するX軸方向と、配線(第1配線WR1及び第2配線WR2)が延在するY軸方向とは、交差(非平行)(不揮発性半導体記憶装置110においては、直交)であり、半導体接続部SCはY軸方向及びX軸方向に対して斜め方向に延在する。
そして、第1半導体パイプピラーSP1、第2半導体パイプピラーSP2及び半導体接続部SCを含むU字形状のメモリストリングが、X軸方向及びY軸方向に沿って繰り返して複数設けられる。そして、第1配線WR1及び第2配線WR2がX軸方向に沿って、繰り返して、複数設けられる。
第1配線WR1と第2配線WR2とは同層であり、例えば第1配線WR1と基板11との距離は、第2配線WR2と基板11との距離と実質的に同じである。
半導体接続部SCをY軸方向及びX軸方向に対して斜め方向に沿って配置することで、互いに異なる電極膜61(第1電極膜61a及び第2電極膜61b)をそれぞれ貫通する第1半導体パイプピラーSP1及び第2半導体パイプピラーSP2は、互いに同じ方向(第2方向)に沿って延在する互いに異なる配線(第1配線WR1及び第2配線WR2)にそれぞれ接続される。これにより、第1半導体パイプピラーSP1と第1電極膜61aとの交差部に形成されるメモリセルMCと、第2半導体パイプピラーSP2と第2電極膜61bとの交差部に形成されるメモリセルMCと、を互いに独立して動作させることができる。
そして、不揮発性半導体記憶装置120においては、第1導電芯ピラーPBG1及び第2導電芯ピラーPBG2をバックゲートとして用いることで、第1の実施形態に係る不揮発性半導体記憶装置110と同様に、消去動作を安定して実施することができる。
不揮発性半導体記憶装置120は、第1導電芯ピラーPBG1の端(例えば他端)と第2導電芯ピラーPBG2の端(例えば他端)とを電気的に接続する芯接続部CBG(第1芯接続部CBG1)と、半導体接続部SC(第1半導体接続部SC1)と芯接続部CBG(第1芯接続部CBG1)との間に設けられた接続部芯絶縁膜49c(第1接続部芯絶縁膜49c1)と、をさらに備える。芯接続部CBG(第1芯接続部CBG1)も、第2方向及び第3方向に対して斜め方向に延在する。
不揮発性半導体記憶装置120は、接続部導電層SCCと、接続部内側絶縁膜(第1接続部内側絶縁膜42c1)と、接続部記憶層(第1接続部記憶層48c1)と、接続部外側絶縁膜(第1接続部外側絶縁膜43c1)と、をさらに備える。これらの構成は、第1の実施形態に関して説明したのと同様とすることができる。
不揮発性半導体記憶装置120の消去動作においては、例えば図6(a)及び図6(b)に関して説明したのと同様の動作を適用できる。書き込み動作においては、例えば図7(a)〜図7(d)に関して説明したのと同様の動作を適用できる。この場合、図7(a)に関して説明したビット線電圧VBL及びソース線電圧VSLが第1配線WR1(第1導電配線LL1)及び第2配線WR2(第2導電配線LL2)に印加される。不揮発性半導体記憶装置120の読み出し動作においても、例えば不揮発性半導体記憶装置110に関して説明した読み出し動作を適用できる。
以下、不揮発性半導体記憶装置120の製造方法の例について説明する。
図10〜図15は、第2の実施形態に係る不揮発性半導体記憶装置の製造方法を例示する工程順模式的断面図である。
図10に表したように、例えば、基板11の主面11aの上に、層間絶縁膜13、接続部導電層SCCとなる接続部導電膜SCCfを形成し、半導体接続部SCが形成される領域に溝を形成し、その溝に犠牲層を埋め込む。その後、その上に、絶縁膜15aを形成した後に、交互に積層された電極膜61及び電極間絶縁膜62、並びに絶縁膜15を含む積層構造体MLを形成する。そして、積層構造体MLをY軸方向に沿って分断する溝を形成し、その溝に絶縁材料を埋め込んで電極膜61どうしを分断する絶縁層ILを形成する。その上に、層間絶縁膜16を形成する。その上に層間絶縁膜17を形成し、層間絶縁膜17に溝を形成し、その溝に導電材料を埋め込んで選択ゲート電極SG(第1選択ゲート電極SG1及び第2選択ゲート電極SG2)を形成する。その上に、層間絶縁膜18fを形成する。そして、層間絶縁膜18fの上面から、接続部導電膜SCCfに形成した溝に埋め込まれた犠牲層に到達する貫通ホールTHを形成する。貫通ホールTHを介して、接続部導電膜SCCfに形成した溝に埋め込まれた犠牲層を除去する。これにより、U字形状を有するメモリホールが形成される。
図10〜図15は、第2の実施形態に係る不揮発性半導体記憶装置の製造方法を例示する工程順模式的断面図である。
図10に表したように、例えば、基板11の主面11aの上に、層間絶縁膜13、接続部導電層SCCとなる接続部導電膜SCCfを形成し、半導体接続部SCが形成される領域に溝を形成し、その溝に犠牲層を埋め込む。その後、その上に、絶縁膜15aを形成した後に、交互に積層された電極膜61及び電極間絶縁膜62、並びに絶縁膜15を含む積層構造体MLを形成する。そして、積層構造体MLをY軸方向に沿って分断する溝を形成し、その溝に絶縁材料を埋め込んで電極膜61どうしを分断する絶縁層ILを形成する。その上に、層間絶縁膜16を形成する。その上に層間絶縁膜17を形成し、層間絶縁膜17に溝を形成し、その溝に導電材料を埋め込んで選択ゲート電極SG(第1選択ゲート電極SG1及び第2選択ゲート電極SG2)を形成する。その上に、層間絶縁膜18fを形成する。そして、層間絶縁膜18fの上面から、接続部導電膜SCCfに形成した溝に埋め込まれた犠牲層に到達する貫通ホールTHを形成する。貫通ホールTHを介して、接続部導電膜SCCfに形成した溝に埋め込まれた犠牲層を除去する。これにより、U字形状を有するメモリホールが形成される。
次に、図11に表したように、貫通ホールTHの内側の壁面に、外側絶縁膜43、記憶層48、内側絶縁膜42、半導体パイプピラーSPとなる半導体パイプピラー膜SPf、芯絶縁膜49、及び、導電芯ピラーPBGとなる導電芯ピラー膜PBGfを順次形成する。
これにより、第1ピラー部外側絶縁膜43p1、第2ピラー部外側絶縁膜43p2及び接続部外側絶縁膜(第1接続部外側絶縁膜43c1)が一括して形成される。そして、第1ピラー部記憶層48p1、第2ピラー部記憶層48p2及び接続部記憶層(第1接続部記憶層48c1)が一括して形成される。そして、第1ピラー部内側絶縁膜42p1、第2ピラー部内側絶縁膜42p2及び接続部内側絶縁膜(第1接続部内側絶縁膜42c1)が一括して形成される。そして、第1半導体パイプピラーSP1、第2半導体パイプピラーSP2及び接続部導電層SCCが一括して形成される。そして、第1ピラー部芯絶縁膜49p1、第2ピラー部芯絶縁膜49p2及び接続部芯絶縁膜49c(第1接続部芯絶縁膜49c1)が一括して形成される。そして、第1導電芯ピラーPBG1、第2導電芯ピラーPBG2及び芯接続部CBG(第1芯接続部CBG1)が一括して形成される。
必要に応じて、半導体パイプピラーSPの上端部(基板11とは反対の側)に、以降の種々の処理から半導体パイプピラーSPを保護する保護層を設けることができる。この保護層には、例えば、半導体パイプピラー膜SPfを選択的に酸化または窒化して得られる酸化シリコンまたは窒化シリコン等が用いられる。
次に、図12に表したように、層間絶縁膜18fをエッチバックし、層間絶縁膜18を形成する。そして、層間絶縁膜18から露出している部分の外側絶縁膜43、記憶層48、内側絶縁膜42を除去する。これにより、層間絶縁膜18から露出している部分において半導体パイプピラー膜SPfの側面が露出する。必要に応じて、半導体パイプピラー膜SPfに不純物がドープされる。
次に、図13に表したように、層間絶縁膜18及び露出した半導体パイプピラー膜SPfを覆うように、第1配線WR1及び第2配線WR2となる導電配線膜LLfを形成する。導電配線膜LLfには例えばポリシリコンが用いられる。さらにその上に、層間絶縁膜23fを形成する。このとき半導体パイプピラー膜SPfの側面が導電配線膜LLfで覆われるが、必要に応じて、半導体パイプピラー膜SPfの側面の導電配線膜LLfを選択的に酸化して、絶縁体にすることができる。
次に、図14に表したように、層間絶縁膜23fに溝を形成し、溝が形成された層間絶縁膜23fをマスクにして、導電配線膜LLfを分断して、第1配線WR1及び第2配線WR2を形成する。その後、層間絶縁膜23fの溝に絶縁材料を埋め込み層間絶縁膜23aを形成する。
次に、図15に表したように、層間絶縁膜23f及び層間絶縁膜23aをエッチバックする。これにより層間絶縁膜23が形成される。その後、層間絶縁膜23から露出する半導体パイプピラー膜SPfをエッチングして除去し、さらに、層間絶縁膜23から露出する芯絶縁膜49をエッチングして除去する。これにより、導電芯ピラー膜PBGfの側面が露出する。このとき、必要に応じて、半導体パイプピラー膜SPfの上端部を選択的に酸化し、半導体パイプピラー膜SPfの上端部に絶縁層を設けても良い。この後、層間絶縁膜23、層間絶縁膜23a及び露出した導電芯ピラー膜PBGfを覆うように、バックゲート線BGLとなる導電膜を形成する。
所定の工程において、配線接続部MU2における電極膜61の加工、種々のコンタクト電極の形成、並びに、第1配線WR1、第2配線WR2及び第3配線WR3にそれぞれ接続される配線の形成が行われる。
これにより図8及び図9に例示した不揮発性半導体記憶装置120が形成される。
これにより図8及び図9に例示した不揮発性半導体記憶装置120が形成される。
(第3の実施の形態)
図16は、第3の実施形態に係る不揮発性半導体記憶装置の構成を例示する模式的斜視図である。
図16においては、図を見易くするために、導電部分のみを示し、絶縁部分は図示を省略している。
図17は、第3の実施形態に係る不揮発性半導体記憶装置の構成を例示する模式的断面図である。
すなわち、図17には、マトリクスメモリセル部MU1として、図16のA1−A2線断面の一部と、図16のB1−B2線断面の一部が例示されている。
図18は、第3の実施形態に係る不揮発性半導体記憶装置の一部の構成を例示する模式的断面図である。
すなわち、図18は、マトリクスメモリセル部MU1の構成を例示しており、図16のB1−B2線断面の一部に相当する断面図である。図18においては、回路部CUは省略されている。
図16は、第3の実施形態に係る不揮発性半導体記憶装置の構成を例示する模式的斜視図である。
図16においては、図を見易くするために、導電部分のみを示し、絶縁部分は図示を省略している。
図17は、第3の実施形態に係る不揮発性半導体記憶装置の構成を例示する模式的断面図である。
すなわち、図17には、マトリクスメモリセル部MU1として、図16のA1−A2線断面の一部と、図16のB1−B2線断面の一部が例示されている。
図18は、第3の実施形態に係る不揮発性半導体記憶装置の一部の構成を例示する模式的断面図である。
すなわち、図18は、マトリクスメモリセル部MU1の構成を例示しており、図16のB1−B2線断面の一部に相当する断面図である。図18においては、回路部CUは省略されている。
図16、図17及び図18に表したように、本実施形態に係る不揮発性半導体記憶装置130においては、半導体接続部SCが設けられず、半導体パイプピラーSPのそれぞれが独立している。すなわち、不揮発性半導体記憶装置130においては、直線状のNANDストリングが設けられる。
不揮発性半導体記憶装置130は、積層構造体ML(第1積層構造体ML1)と、導電芯ピラーPBG(第1導電芯ピラーPBG1)と、芯絶縁膜49(第1ピラー部芯絶縁膜49p1)と、半導体パイプピラーSP(第1半導体パイプピラーSP1)と、内側絶縁膜42(第1ピラー部内側絶縁膜42p1)と、記憶層48(第1ピラー部記憶層48p1)と、外側絶縁膜43(第1ピラー部外側絶縁膜43p1)と、を備える。これらの構成は第1及び第2の実施形態と同様とすることができるので説明を省略する。
不揮発性半導体記憶装置130のメモリ部MUにおいては、積層構造体MLの上に上部選択ゲート電極USG(第1選択ゲート電極SG1であり、例えばドレイン側選択ゲート電極SGDとなる)が設けられ、積層構造体MLの下に下部選択ゲート電極LSG(第2選択ゲート電極SG2であり、例えばソース側選択ゲート電極SGSとなる)が設けられている。
すなわち、不揮発性半導体記憶装置130は、第1積層構造体ML1と第1方向において積層され、第1半導体パイプピラーSP1に貫通され第1選択ゲート電極SG1と、第1積層構造体ML1の第1選択ゲート電極SG1とは反対の側において第1積層構造体ML1と積層され、第1半導体パイプピラーSP1に貫通された第2選択ゲート電極SG2と、をさらに備える。
上部選択ゲート電極USGと半導体パイプピラーSPとの間には上部選択ゲート絶縁膜USGIが設けられ、下部選択ゲート電極LSGと半導体パイプピラーSPとの間には、下部選択ゲート絶縁膜LSGIが設けられる。
選択ゲート絶縁膜SGI(上部選択ゲート絶縁膜USGI及び下部選択ゲート絶縁膜LSGI)には、上記の内側絶縁膜42、記憶層48及び外側絶縁膜43の積層膜を用いても良く、内側絶縁膜42、記憶層48及び外側絶縁膜43の積層膜とは異なる絶縁膜を用いても良い。選択ゲート絶縁膜SGIは、単層膜でも良く、積層膜でも良い。
選択ゲート絶縁膜SGI(上部選択ゲート絶縁膜USGI及び下部選択ゲート絶縁膜LSGI)には、上記の内側絶縁膜42、記憶層48及び外側絶縁膜43の積層膜を用いても良く、内側絶縁膜42、記憶層48及び外側絶縁膜43の積層膜とは異なる絶縁膜を用いても良い。選択ゲート絶縁膜SGIは、単層膜でも良く、積層膜でも良い。
そして、下部選択ゲート電極LSGの下側に、ソース線SL(例えば第2配線WR2)が設けられている。ソース線SLの下に層間絶縁膜13aが設けられ、ソース線SLと下部選択ゲート電極LSGとの間に層間絶縁膜13bが設けられている。
下部選択ゲート電極LSGの下方において半導体パイプピラーSPはソース線SLに接続され、上部選択ゲート電極USGの上方において半導体パイプピラーSPはビット線BL(例えば第1配線WR1)に接続されている。そして、上部選択ゲート電極USGと下部選択ゲート電極LSGとの間の積層構造体MLにおいて、メモリセルMCが形成される。半導体パイプピラーSPが、直線状の1つのメモリストリングとして機能する。
上部選択ゲート電極USGは、層間絶縁膜17によってY軸方向に分断されており、X軸方向に沿って延在する帯状の形状を有している。下部選択ゲート電極LSGは、層間絶縁膜13cによってY軸方向に分断されており、X軸方向に沿って延在する帯状の形状を有している。
一方、半導体パイプピラーSPの上部に接続されるビット線BL、及び、半導体パイプピラーSPの下部に接続されるソース線SLは、Y軸方向に延在する帯状の形状を有している。
そして、不揮発性半導体記憶装置130においては、電極膜61は、X−Y平面に平行な板状の導電膜である。
そして、不揮発性半導体記憶装置130においては、電極膜61は、X−Y平面に平行な板状の導電膜である。
そして、不揮発性半導体記憶装置130においては、導電芯ピラーPBGに接続されたバックゲート線BGL(第3配線WR3)が設けられる。
第3配線は、第1配線WR1(この例ではビット線BL)の積層構造体ML(第1積層構造体ML1)とは反対の側に設けられている。そして、導電芯ピラーPBG(第1導電芯ピラーPBG1)は、第1配線WR1を第1方向に沿って貫通する。
第3配線は、第1配線WR1(この例ではビット線BL)の積層構造体ML(第1積層構造体ML1)とは反対の側に設けられている。そして、導電芯ピラーPBG(第1導電芯ピラーPBG1)は、第1配線WR1を第1方向に沿って貫通する。
バックゲート線BGLは、例えばコンタクト電極BGCaa及びコンタクト電極BGCacを介して、第1導電芯ピラーPBG1と電気的に接続される。コンタクト電極BGCaaとコンタクト電極22aとの間にはコンタクト電極部絶縁層BGIaaが設けられる。
このような構造を有する不揮発性半導体記憶装置130においても、導電芯ピラーPBGをバックゲートとして用いることで、消去動作が安定して実施できる。
(第4の実施の形態)
図19は、第4の実施形態に係る不揮発性半導体記憶装置の製造方法を例示するフローチャート図である。
本実施形態に係る不揮発性半導体記憶装置の製造方法は、例えば、第1方向に積層された複数の第1電極膜61aと、複数の第1電極膜61aどうしの間に設けられた第1電極間絶縁膜62aと、を有する第1積層構造体ML1と、第1積層構造体ML1を第1方向に貫通する第1導電芯ピラーPBG1と、第1導電芯ピラーPBG1と第1電極膜61aとの間に設けられ、第1導電芯ピラーPBG1の側面を取り囲む第1ピラー部芯絶縁膜49p1と、第1ピラー部芯絶縁膜49p1と第1電極膜61aとの間に設けられ、第1積層構造体ML1を第1方向に貫通し、第1ピラー部芯絶縁膜49p1の側面を取り囲む第1半導体パイプピラーSP1と、第1半導体パイプピラーSP1と第1電極膜61aとの間に設けられ、第1半導体パイプピラーSP1の側面を取り囲む第1ピラー部内側絶縁膜42p1と、第1ピラー部内側絶縁膜42p1と第1電極膜61aとの間に設けられ、第1ピラー部内側絶縁膜42p1の側面を取り囲む第1ピラー部記憶層48p1と、第1ピラー部記憶層48p1と第1電極膜61aとの間に設けられ、第1ピラー部記憶層48p1の側面を取り囲む第1ピラー部外側絶縁膜43p1と、第1半導体パイプピラーSP1に電気的に接続された第1配線WR1と、を有する不揮発性半導体記憶装置の製造方法である。
図19は、第4の実施形態に係る不揮発性半導体記憶装置の製造方法を例示するフローチャート図である。
本実施形態に係る不揮発性半導体記憶装置の製造方法は、例えば、第1方向に積層された複数の第1電極膜61aと、複数の第1電極膜61aどうしの間に設けられた第1電極間絶縁膜62aと、を有する第1積層構造体ML1と、第1積層構造体ML1を第1方向に貫通する第1導電芯ピラーPBG1と、第1導電芯ピラーPBG1と第1電極膜61aとの間に設けられ、第1導電芯ピラーPBG1の側面を取り囲む第1ピラー部芯絶縁膜49p1と、第1ピラー部芯絶縁膜49p1と第1電極膜61aとの間に設けられ、第1積層構造体ML1を第1方向に貫通し、第1ピラー部芯絶縁膜49p1の側面を取り囲む第1半導体パイプピラーSP1と、第1半導体パイプピラーSP1と第1電極膜61aとの間に設けられ、第1半導体パイプピラーSP1の側面を取り囲む第1ピラー部内側絶縁膜42p1と、第1ピラー部内側絶縁膜42p1と第1電極膜61aとの間に設けられ、第1ピラー部内側絶縁膜42p1の側面を取り囲む第1ピラー部記憶層48p1と、第1ピラー部記憶層48p1と第1電極膜61aとの間に設けられ、第1ピラー部記憶層48p1の側面を取り囲む第1ピラー部外側絶縁膜43p1と、第1半導体パイプピラーSP1に電気的に接続された第1配線WR1と、を有する不揮発性半導体記憶装置の製造方法である。
図19に表したように、本製造方法においては、第1積層構造体ML1と、第1積層構造体ML1と積層された層間絶縁膜(例えば層間絶縁膜18f)と、を第1方向に沿って貫通する貫通ホールTHを形成する(ステップS110)。すなわち、例えば図10に関して説明した処理を行う。
そして、貫通ホールTHの内壁に、第1ピラー部外側絶縁膜43p1となる膜と、第1ピラー部記憶層48p1となる膜と、第1ピラー部内側絶縁膜42p1となる膜と、第1半導体パイプピラーSP1となる膜と、第1ピラー部芯絶縁膜49p1となる膜と、導電芯ピラーPBG1となる膜と、の積層膜を順次堆積する(ステップS120)。すなわち、例えば図11に関して説明した処理を行う。
そして、層間絶縁膜(例えば層間絶縁膜18f)の少なくとも一部をエッチバックして、上記の、第1ピラー部外側絶縁膜43p1となる膜を露出させる(ステップS130)。
そして、露出した第1ピラー部外側絶縁膜43p1となる膜、第1ピラー部記憶層48p1となる膜、及び、第1ピラー部内側絶縁膜42p1となる膜を除去して、第1半導体パイプピラーSP1となる膜の側面を露出する(ステップS140)。
すなわち、ステップS130及びステップS140においては、例えば図12に関して説明した処理を行う。
すなわち、ステップS130及びステップS140においては、例えば図12に関して説明した処理を行う。
そして、露出した第1半導体パイプピラーSP1となる膜の側面に電気的接触するように、第1配線WR1となる膜を形成する(ステップS150)。すなわち、例えば図13に関して説明した処理を行う。
さらに、実施形態に係る不揮発性半導体記憶装置は、第1導電芯ピラーPBG1に電気的に接続された第3配線WR3をさらに有することができる。本実施形態に係る不揮発性半導体記憶装置の製造方法においては、さらに、以下の処理を行う。
すなわち、第1半導体パイプピラーSP1となる膜を除去して、第1ピラー部芯絶縁膜49p1となる膜の側面を露出する(ステップS160)。
そして、露出した第1ピラー部芯絶縁膜49p1となる膜を除去して、第1導電芯ピラーPBG1となる膜の側面を露出する(ステップS170)。
そして、露出した第1導電芯ピラーPBG1となる膜の側面に電気的接触するように、第3配線WR3となる膜を形成する(ステップS180)。
すなわち、ステップS160、ステップS170及びステップS180においては、図15に関して説明した処理を行う。
そして、露出した第1ピラー部芯絶縁膜49p1となる膜を除去して、第1導電芯ピラーPBG1となる膜の側面を露出する(ステップS170)。
そして、露出した第1導電芯ピラーPBG1となる膜の側面に電気的接触するように、第3配線WR3となる膜を形成する(ステップS180)。
すなわち、ステップS160、ステップS170及びステップS180においては、図15に関して説明した処理を行う。
これにより、第1半導体パイプピラーSP1の内部に設けられた第1導電芯ピラーPBG1を有する不揮発性半導体記憶装置が効率的に製造できる。
以上、実施形態に係る不揮発性半導体記憶装置及びその製造方法によれば、消去動作特性を向上した一括加工型3次元積層メモリ構成の不揮発性半導体記憶装置及びその製造方法が提供できる。
上記においては、記憶層48として窒化シリコンを用いる場合について説明したが、実施形態はこれに限らず、記憶層48には、窒化シリコン、酸窒化シリコン、酸化アルミニウム、酸窒化アルミニウム、ハフニア、ハフニウム・アルミネート、窒化ハフニア、窒化ハフニウム・アルミネート、ハフニウム・シリケート、窒化ハフニウム・シリケート、酸化ランタン及びランタン・アルミネートよりなる群から選択されたいずれかの単層膜、または、前記群から選択された複数からなる積層膜を用いることができる。
電極間絶縁膜62、内側絶縁膜42及び外側絶縁膜43には、酸化シリコン、窒化シリコン、酸窒化シリコン、酸化アルミニウム、酸窒化アルミニウム、ハフニア、ハフニウム・アルミネート、窒化ハフニア、窒化ハフニウム・アルミネート、ハフニウム・シリケート、窒化ハフニウム・シリケート、酸化ランタン及びランタン・アルミネートよりなる群から選択されたいずれかの単層膜、または、前記群から選択された複数からなる積層膜を用いることができる。
本願明細書において、「垂直」及び「平行」は、厳密な垂直及び厳密な平行だけではなく、例えば製造工程におけるばらつきなどを含むものであり、実質的に垂直及び実質的に平行であれは良い。
以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、不揮発性半導体記憶装置に含まれる電極膜、電極間絶縁膜、選択ゲート電極、半導体パイプピラー、導電芯ピラー、ピラー部芯絶縁膜、半導体接続部、接続部導電膜、記憶層、内側絶縁膜、外側絶縁膜、絶縁膜、導電膜、層間絶縁膜、ソース線、ビット線、バックゲート線、配線などの各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
その他、本発明の実施の形態として上述した不揮発性半導体記憶装置及びその製造方法を基にして、当業者が適宜設計変更して実施し得る全ての不揮発性半導体記憶装置及びその製造方法も、本発明の要旨を包含する限り、本発明の範囲に属する。
その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
11…基板、 11a…主面、 13、13a、13b、13c…層間絶縁膜、 15、15a…絶縁膜、 16、17、18、18f、19…層間絶縁膜、 22、22a、22b…コンタクト電極、 23、23a、23f…層間絶縁膜、 24a…コンタクト電極、 31…コンタクト電極、 32…ワード配線、 33…コンタクト電極、 34…接続部導電層配線、 42…内側絶縁膜、 42c…接続部内側絶縁膜、 42c1…第1接続部内側絶縁膜、 42p1、42p2…第1及び第2ピラー部内側絶縁膜、 43…外側絶縁膜、 43c…接続部外側絶縁膜、 43c1…第1接続部絶縁膜、 43p1、43p2…第1及び第2ピラー部外側絶縁膜、 48…記憶層、 48c…接続部記憶層、 48c1…第1接続部記憶層、 48p1、48p2…第1及び第2ピラー部記憶層、 49…芯絶縁膜、 49c…接続部芯絶縁膜、 49c1…第1接続部芯絶縁膜、 49p1、49p2…第1及び第2接続部芯絶縁膜、 61、61A、61B…電極膜、 61a、61b…第1及び第2電極膜、 62…電極間絶縁膜、 62a、62b…第1及び第2電極間絶縁膜、 110、120、130…不揮発性半導体記憶装置、 BGCaa、BGCab、BGCac、BGCba、BGCbb、BGCbc…コンタクト電極、 BGIaa、BGIab、BGIba、BGIbb…コンタクト電極部絶縁層、 BGL…バックゲート線、 BL…ビット線、 CBG、CBGn…芯接続部、 CBG1、CBG2…第1及び第2芯接続部、 CTU…制御部、 CU…回路部、 IL…絶縁層、 LL1、LL2…第1及び第2導電配線、 LLf…導電配線膜、 LSG…下部選択ゲート電極、 LSGI…下部選択ゲート絶縁膜、 MC…メモリセル、 ML…積層構造体、 ML1、ML2…第1及び第2積層構造体、 MR…メモリアレイ領域、 MU…メモリ部、 MU1…マトリクスメモリセル部、 MU2…配線接続部、 PBG…導電芯ピラー、 PBG1〜PBG4…第1〜第4導電芯ピラー、 PGBf…導電芯ピラー膜、 PR…周辺領域、 PR1…周辺領域回路、 SC、SCn…半導体接続部、 SC1、SC2…第1及び第2半導体接続部、 SCC…接続部導電層、 SCCf…接続部導電膜、 SG…選択ゲート電極、 SG1〜SG4…第1〜第4選択ゲート電極、 SGD…ドレイン側選択ゲート電極、 SGI…選択ゲート絶縁膜、 SGI1、SGI2…第1及び第2選択ゲート絶縁膜、 SGS…ソース側選択ゲート電極、 SGT1、SGT2…第1及び第2選択ゲートトランジスタ、 SL…ソース線、 SP、SPn…半導体パイプピラー、 SP1〜SP4…第1〜第4半導体パイプピラー、 SPf…半導体パイプピラー膜、 TH…貫通ホール、 USG…上部選択ゲート電極、 USGI…上部選択ゲート絶縁膜、 V00…基準電圧、 V01〜V06…第1〜第6電圧、 VA1、VA2…コンタクト電極、 VBG…バックゲート電圧、 VBL…ビット線電圧、 VSG…選択ゲート電圧、 VSL…ソース線電圧、 VWL…ワード線電圧、 VWLN…非選択ワード線電圧、 VWLS…選択ワード線電圧、 Vera…消去電圧、 Vpass…パス電圧、 VpassG…選択ゲートパス電圧、 Vpgm…書き込み電圧、 WR1〜WR3…第1〜第3配線、 t…時間、 t11〜t18…第1〜第8時刻
Claims (10)
- 第1方向に積層された複数の第1電極膜と、前記複数の第1電極膜どうしの間に設けられた第1電極間絶縁膜と、を有する第1積層構造体と、
前記第1積層構造体を前記第1方向に貫通する第1導電芯ピラーと、
前記第1導電芯ピラーと前記第1電極膜との間に設けられ、前記第1導電芯ピラーの側面を取り囲む第1ピラー部芯絶縁膜と、
前記第1ピラー部芯絶縁膜と前記第1電極膜との間に設けられ、前記第1積層構造体を前記第1方向に沿って貫通し、前記第1ピラー部芯絶縁膜の側面を取り囲む第1半導体パイプピラーと、
前記第1半導体パイプピラーと前記第1電極膜との間に設けられ、前記第1半導体パイプピラーの側面を取り囲む第1ピラー部内側絶縁膜と、
前記第1ピラー部内側絶縁膜と前記第1電極膜との間に設けられ、前記第1ピラー部内側絶縁膜の側面を取り囲む第1ピラー部記憶層と、
前記第1ピラー部記憶層と前記第1電極膜との間に設けられ、前記第1ピラー部記憶層の側面を取り囲む第1ピラー部外側絶縁膜と、
を備えたことを特徴とする不揮発性半導体記憶装置。 - 前記複数の第1電極膜と前記第1導電芯ピラーとに電気的に接続され、前記第1ピラー部記憶層に蓄積される電荷の状態を制御する制御部をさらに備え、
前記制御部は、前記第1ピラー部記憶層への正孔の注入、及び、前記第1ピラー部記憶層からの電子の引き抜き、の少なくともいずれかを行う動作の際に、
前記第1電極膜に印加される電圧よりも高い電圧を前記第1導電芯ピラーに印加することを特徴とする請求項1記載の不揮発性半導体記憶装置。 - 前記第1積層構造体と前記第1方向において積層され、前記第1半導体パイプピラーに貫通された第1選択ゲート電極と、
前記第1積層構造体の前記第1選択ゲート電極とは反対の側において前記第1積層構造体と積層され、前記第1半導体パイプピラーに貫通された第2選択ゲート電極と、
をさらに備えたことを特徴とする請求項1または2に記載の不揮発性半導体記憶装置。 - 前記第1方向に対して垂直な第2方向において前記第1積層構造体と並び、前記第1方向に積層された複数の第2電極膜と、前記複数の第2電極膜どうしの間に設けられた第2電極間絶縁膜と、を有する第2積層構造体と、
前記第2積層構造体を前記第1方向に貫通する第2導電芯ピラーと、
前記第2導電芯ピラーと前記第2電極膜との間に設けられ、前記第2導電芯ピラーの側面を取り囲む第2ピラー部芯絶縁膜と、
前記第2ピラー部芯絶縁膜と前記第2電極膜との間に設けられ、前記第2積層構造体を前記第1方向に貫通し、前記第2ピラー部芯絶縁膜の側面を取り囲む第2半導体パイプピラーと、
前記第2半導体パイプピラーと前記第2電極膜との間に設けられ、前記第2半導体パイプピラーの側面を取り囲む第2ピラー部内側絶縁膜と、
前記第2ピラー部内側絶縁膜と前記第2電極膜との間に設けられ、前記第2ピラー部内側絶縁膜の側面を取り囲む第2ピラー部記憶層と、
前記第2ピラー部記憶層と前記第2電極膜との間に設けられ、前記第2ピラー部記憶層の側面を取り囲む第2ピラー部外側絶縁膜と、
前記第1半導体パイプピラーの一端と前記第2半導体パイプピラーの一端とを電気的に接続する半導体接続部と、
をさらに備えたことを特徴とする請求項1または2に記載の不揮発性半導体記憶装置。 - 前記第1積層構造体と前記第1方向において積層され、前記第1半導体パイプピラーに貫通された第1選択ゲート電極と、
前記第2積層構造体と前記第1方向において積層され、前記第2半導体パイプピラーに貫通された第2選択ゲート電極と、
前記第1半導体パイプピラーの他端に電気的に接続された第1配線と、
前記第2半導体パイプピラーの他端に電気的に接続された第2配線と、
前記第1導電芯ピラーの一端及び前記第2導電芯ピラーの一端の少なくともいずれかに電気的に接続された第3配線と、
をさらに備えたことを特徴とする請求項4記載の不揮発性半導体記憶装置。 - 前記第1電極膜及び前記第2電極膜は、前記第1方向と前記第2方向とに対して垂直な第3方向に延在する部分を有し、
前記第1配線は前記第2方向に沿って延在する部分を有し、
前記第2配線は前記第3方向に沿って延在する部分を有することを特徴とする請求項5記載の不揮発性半導体記憶装置。 - 前記第1方向に対して垂直な第2方向において前記第1積層構造体と並び、前記第1方向に積層された複数の第2電極膜と、前記複数の第2電極膜どうしの間に設けられた第2電極間絶縁膜と、を有する第2積層構造体と、
前記第2積層構造体を前記第1方向に貫通する第2導電芯ピラーと、
前記第2導電芯ピラーと前記第2電極膜との間に設けられ、前記第2導電芯ピラーの側面を取り囲む第2ピラー部芯絶縁膜と、
前記第2ピラー部芯絶縁膜と前記第2電極膜との間に設けられ、前記第2積層構造体を前記第1方向に貫通し、前記第2ピラー部芯絶縁膜の側面を取り囲む第2半導体パイプピラーと、
前記第2半導体パイプピラーと前記第2電極膜との間に設けられ、前記第2半導体パイプピラーの側面を取り囲む第2ピラー部内側絶縁膜と、
前記第2ピラー部内側絶縁膜と前記第2電極膜との間に設けられ、前記第2ピラー部内側絶縁膜の側面を取り囲む第2ピラー部記憶層と、
前記第2ピラー部記憶層と前記第2電極膜との間に設けられ、前記第2ピラー部記憶層の側面を取り囲む第2ピラー部外側絶縁膜と、
前記第1半導体パイプピラーの一端と前記第2半導体パイプピラーの一端とを電気的に接続する半導体接続部と、
前記第1積層構造体と前記第1方向において積層され、前記第1半導体パイプピラーに貫通された第1選択ゲート電極と、
前記第2積層構造体と前記第1方向において積層され、前記第2半導体パイプピラーに貫通された第2選択ゲート電極と、
前記第1半導体パイプピラーの他端に電気的に接続された第1配線と、
前記第2半導体パイプピラーの他端に電気的に接続された第2配線と、
前記第1導電芯ピラーの一端及び前記第2導電芯ピラーの一端の少なくともいずれかに電気的に接続された第3配線と、
をさらに備え、
前記第1電極膜、前記第2電極膜、前記第1選択ゲート電極及び前記第2選択ゲート電極は、前記第1方向と前記第2方向とに対して垂直な第3方向に延在する部分を有し、
前記第1配線及び前記第2配線は、前記第2方向に沿って延在する部分を有し、
前記半導体接続部は、前記第2方向及び前記第3方向に対して斜め方向に延在することを特徴とする請求項1または2に記載の不揮発性半導体記憶装置。 - 前記第1導電芯ピラーの他端と前記第2導電芯ピラーの他端とを電気的に接続する芯接続部と、
前記半導体接続部と前記芯接続部との間に設けられた接続部芯絶縁膜と、
をさらに備えたことを特徴とする請求項4〜7のいずれか1つに記載の不揮発性半導体記憶装置。 - 前記第3配線は、前記第1配線の前記第1積層構造体とは反対の側に設けられ、
前記第1導電芯ピラーは、前記第1配線を前記第1方向に沿って貫通することを特徴とする請求項1〜8のいずれか1つに記載の不揮発性半導体記憶装置。 - 第1方向に積層された複数の電極膜と、前記複数の電極膜どうしの間に設けられた電極間絶縁膜と、を有する積層構造体と、前記積層構造体と積層された層間絶縁膜と、を前記第1方向に沿って貫通する貫通ホールを形成し、
前記貫通ホールの内壁に、ピラー部外側絶縁膜となる膜と、ピラー部記憶層となる膜と、ピラー部内側絶縁膜となる膜と、半導体パイプピラーとなる膜と、ピラー部芯絶縁膜となる膜と、導電芯ピラーとなる膜と、の積層膜を順次堆積し、
前記層間絶縁膜の少なくとも一部をエッチバックして、前記ピラー部外側絶縁膜となる前記膜を露出させ、
前記露出した前記ピラー部外側絶縁膜となる前記膜、前記ピラー部記憶層となる前記膜、及び、前記ピラー部内側絶縁膜となる前記膜を除去して、前記半導体パイプピラーとなる前記膜の側面を露出し、
前記露出した前記半導体パイプピラーとなる前記膜の前記側面に電気的に接続されるように配線となる膜を形成することを特徴とする不揮発性半導体記憶装置の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010141924A JP2012009512A (ja) | 2010-06-22 | 2010-06-22 | 不揮発性半導体記憶装置及びその製造方法 |
US12/980,856 US8455941B2 (en) | 2010-06-22 | 2010-12-29 | Nonvolatile semiconductor memory device and method for manufacturing the same |
KR1020110060257A KR20110139147A (ko) | 2010-06-22 | 2011-06-21 | 불휘발성 반도체 기억 장치 및 그 제조 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010141924A JP2012009512A (ja) | 2010-06-22 | 2010-06-22 | 不揮発性半導体記憶装置及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012009512A true JP2012009512A (ja) | 2012-01-12 |
Family
ID=45327896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010141924A Pending JP2012009512A (ja) | 2010-06-22 | 2010-06-22 | 不揮発性半導体記憶装置及びその製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8455941B2 (ja) |
JP (1) | JP2012009512A (ja) |
KR (1) | KR20110139147A (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016225614A (ja) * | 2015-05-26 | 2016-12-28 | 株式会社半導体エネルギー研究所 | 半導体装置 |
JP2019024087A (ja) * | 2017-07-21 | 2019-02-14 | 株式会社半導体エネルギー研究所 | 半導体装置、半導体ウェハ、記憶装置、及び電子機器 |
JP2020155691A (ja) * | 2019-03-22 | 2020-09-24 | キオクシア株式会社 | 半導体記憶装置 |
JP2020191470A (ja) * | 2012-02-29 | 2020-11-26 | 株式会社半導体エネルギー研究所 | 半導体装置 |
CN114175255A (zh) * | 2019-09-13 | 2022-03-11 | 铠侠股份有限公司 | 半导体存储装置及其制造方法 |
JP2022075991A (ja) * | 2020-04-16 | 2022-05-18 | 株式会社半導体エネルギー研究所 | 半導体装置 |
WO2022244207A1 (ja) * | 2021-05-20 | 2022-11-24 | キオクシア株式会社 | メモリデバイス |
JP7532587B2 (ja) | 2022-03-25 | 2024-08-13 | 株式会社半導体エネルギー研究所 | 半導体装置 |
Families Citing this family (170)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5380190B2 (ja) * | 2009-07-21 | 2014-01-08 | 株式会社東芝 | 不揮発性半導体記憶装置及びその製造方法 |
JP2011061159A (ja) * | 2009-09-14 | 2011-03-24 | Toshiba Corp | 不揮発性半導体記憶装置 |
US11984445B2 (en) | 2009-10-12 | 2024-05-14 | Monolithic 3D Inc. | 3D semiconductor devices and structures with metal layers |
US10910364B2 (en) | 2009-10-12 | 2021-02-02 | Monolitaic 3D Inc. | 3D semiconductor device |
US10388863B2 (en) | 2009-10-12 | 2019-08-20 | Monolithic 3D Inc. | 3D memory device and structure |
US11018133B2 (en) | 2009-10-12 | 2021-05-25 | Monolithic 3D Inc. | 3D integrated circuit |
US10354995B2 (en) | 2009-10-12 | 2019-07-16 | Monolithic 3D Inc. | Semiconductor memory device and structure |
US11374118B2 (en) | 2009-10-12 | 2022-06-28 | Monolithic 3D Inc. | Method to form a 3D integrated circuit |
US12027518B1 (en) | 2009-10-12 | 2024-07-02 | Monolithic 3D Inc. | 3D semiconductor devices and structures with metal layers |
US10497713B2 (en) | 2010-11-18 | 2019-12-03 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US11482440B2 (en) | 2010-12-16 | 2022-10-25 | Monolithic 3D Inc. | 3D semiconductor device and structure with a built-in test circuit for repairing faulty circuits |
US11158674B2 (en) | 2010-10-11 | 2021-10-26 | Monolithic 3D Inc. | Method to produce a 3D semiconductor device and structure |
US11018191B1 (en) | 2010-10-11 | 2021-05-25 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11227897B2 (en) | 2010-10-11 | 2022-01-18 | Monolithic 3D Inc. | Method for producing a 3D semiconductor memory device and structure |
US11600667B1 (en) | 2010-10-11 | 2023-03-07 | Monolithic 3D Inc. | Method to produce 3D semiconductor devices and structures with memory |
US10896931B1 (en) | 2010-10-11 | 2021-01-19 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11024673B1 (en) | 2010-10-11 | 2021-06-01 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11315980B1 (en) | 2010-10-11 | 2022-04-26 | Monolithic 3D Inc. | 3D semiconductor device and structure with transistors |
US11469271B2 (en) | 2010-10-11 | 2022-10-11 | Monolithic 3D Inc. | Method to produce 3D semiconductor devices and structures with memory |
US11257867B1 (en) | 2010-10-11 | 2022-02-22 | Monolithic 3D Inc. | 3D semiconductor device and structure with oxide bonds |
US11855114B2 (en) | 2010-10-13 | 2023-12-26 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US11605663B2 (en) | 2010-10-13 | 2023-03-14 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US11869915B2 (en) | 2010-10-13 | 2024-01-09 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US11404466B2 (en) | 2010-10-13 | 2022-08-02 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors |
US11929372B2 (en) | 2010-10-13 | 2024-03-12 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US11043523B1 (en) | 2010-10-13 | 2021-06-22 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors |
US11855100B2 (en) | 2010-10-13 | 2023-12-26 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with oxide bonding |
US11163112B2 (en) | 2010-10-13 | 2021-11-02 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with electromagnetic modulators |
US11694922B2 (en) | 2010-10-13 | 2023-07-04 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with oxide bonding |
US12094892B2 (en) | 2010-10-13 | 2024-09-17 | Monolithic 3D Inc. | 3D micro display device and structure |
US11063071B1 (en) | 2010-10-13 | 2021-07-13 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with waveguides |
US11437368B2 (en) | 2010-10-13 | 2022-09-06 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with oxide bonding |
US10943934B2 (en) | 2010-10-13 | 2021-03-09 | Monolithic 3D Inc. | Multilevel semiconductor device and structure |
US11327227B2 (en) | 2010-10-13 | 2022-05-10 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with electromagnetic modulators |
US12080743B2 (en) | 2010-10-13 | 2024-09-03 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors and wafer bonding |
US10978501B1 (en) | 2010-10-13 | 2021-04-13 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with waveguides |
US10833108B2 (en) | 2010-10-13 | 2020-11-10 | Monolithic 3D Inc. | 3D microdisplay device and structure |
US11984438B2 (en) | 2010-10-13 | 2024-05-14 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with oxide bonding |
US11133344B2 (en) | 2010-10-13 | 2021-09-28 | Monolithic 3D Inc. | Multilevel semiconductor device and structure with image sensors |
US10998374B1 (en) | 2010-10-13 | 2021-05-04 | Monolithic 3D Inc. | Multilevel semiconductor device and structure |
US10679977B2 (en) | 2010-10-13 | 2020-06-09 | Monolithic 3D Inc. | 3D microdisplay device and structure |
US11164898B2 (en) | 2010-10-13 | 2021-11-02 | Monolithic 3D Inc. | Multilevel semiconductor device and structure |
US11094576B1 (en) | 2010-11-18 | 2021-08-17 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor memory device and structure |
US11862503B2 (en) | 2010-11-18 | 2024-01-02 | Monolithic 3D Inc. | Method for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US11018042B1 (en) | 2010-11-18 | 2021-05-25 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US11610802B2 (en) | 2010-11-18 | 2023-03-21 | Monolithic 3D Inc. | Method for producing a 3D semiconductor device and structure with single crystal transistors and metal gate electrodes |
US11854857B1 (en) | 2010-11-18 | 2023-12-26 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US11211279B2 (en) | 2010-11-18 | 2021-12-28 | Monolithic 3D Inc. | Method for processing a 3D integrated circuit and structure |
US11443971B2 (en) | 2010-11-18 | 2022-09-13 | Monolithic 3D Inc. | 3D semiconductor device and structure with memory |
US12033884B2 (en) | 2010-11-18 | 2024-07-09 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US11901210B2 (en) | 2010-11-18 | 2024-02-13 | Monolithic 3D Inc. | 3D semiconductor device and structure with memory |
US11107721B2 (en) | 2010-11-18 | 2021-08-31 | Monolithic 3D Inc. | 3D semiconductor device and structure with NAND logic |
US11355380B2 (en) | 2010-11-18 | 2022-06-07 | Monolithic 3D Inc. | Methods for producing 3D semiconductor memory device and structure utilizing alignment marks |
US11031275B2 (en) | 2010-11-18 | 2021-06-08 | Monolithic 3D Inc. | 3D semiconductor device and structure with memory |
US11508605B2 (en) | 2010-11-18 | 2022-11-22 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US11355381B2 (en) | 2010-11-18 | 2022-06-07 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US11521888B2 (en) | 2010-11-18 | 2022-12-06 | Monolithic 3D Inc. | 3D semiconductor device and structure with high-k metal gate transistors |
US11164770B1 (en) | 2010-11-18 | 2021-11-02 | Monolithic 3D Inc. | Method for producing a 3D semiconductor memory device and structure |
US11735462B2 (en) | 2010-11-18 | 2023-08-22 | Monolithic 3D Inc. | 3D semiconductor device and structure with single-crystal layers |
US11784082B2 (en) | 2010-11-18 | 2023-10-10 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding |
US11482439B2 (en) | 2010-11-18 | 2022-10-25 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor memory device comprising charge trap junction-less transistors |
US11121021B2 (en) | 2010-11-18 | 2021-09-14 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11004719B1 (en) | 2010-11-18 | 2021-05-11 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor memory device and structure |
US11923230B1 (en) | 2010-11-18 | 2024-03-05 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding |
US11569117B2 (en) | 2010-11-18 | 2023-01-31 | Monolithic 3D Inc. | 3D semiconductor device and structure with single-crystal layers |
US11482438B2 (en) | 2010-11-18 | 2022-10-25 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor memory device and structure |
US11615977B2 (en) | 2010-11-18 | 2023-03-28 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US11804396B2 (en) | 2010-11-18 | 2023-10-31 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US12100611B2 (en) | 2010-11-18 | 2024-09-24 | Monolithic 3D Inc. | Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers |
US12068187B2 (en) | 2010-11-18 | 2024-08-20 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding and DRAM memory cells |
US11495484B2 (en) | 2010-11-18 | 2022-11-08 | Monolithic 3D Inc. | 3D semiconductor devices and structures with at least two single-crystal layers |
US10388568B2 (en) | 2011-06-28 | 2019-08-20 | Monolithic 3D Inc. | 3D semiconductor device and system |
KR101865566B1 (ko) * | 2011-09-08 | 2018-06-11 | 삼성전자주식회사 | 수직형 메모리 장치의 제조 방법 |
US11881443B2 (en) | 2012-04-09 | 2024-01-23 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US11694944B1 (en) | 2012-04-09 | 2023-07-04 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US11410912B2 (en) | 2012-04-09 | 2022-08-09 | Monolithic 3D Inc. | 3D semiconductor device with vias and isolation layers |
US10600888B2 (en) | 2012-04-09 | 2020-03-24 | Monolithic 3D Inc. | 3D semiconductor device |
US11594473B2 (en) | 2012-04-09 | 2023-02-28 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US11088050B2 (en) | 2012-04-09 | 2021-08-10 | Monolithic 3D Inc. | 3D semiconductor device with isolation layers |
US11735501B1 (en) | 2012-04-09 | 2023-08-22 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US11476181B1 (en) | 2012-04-09 | 2022-10-18 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11616004B1 (en) | 2012-04-09 | 2023-03-28 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and a connective path |
US11164811B2 (en) | 2012-04-09 | 2021-11-02 | Monolithic 3D Inc. | 3D semiconductor device with isolation layers and oxide-to-oxide bonding |
US11018116B2 (en) | 2012-12-22 | 2021-05-25 | Monolithic 3D Inc. | Method to form a 3D semiconductor device and structure |
US11784169B2 (en) | 2012-12-22 | 2023-10-10 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11309292B2 (en) | 2012-12-22 | 2022-04-19 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US12051674B2 (en) | 2012-12-22 | 2024-07-30 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11967583B2 (en) | 2012-12-22 | 2024-04-23 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11961827B1 (en) | 2012-12-22 | 2024-04-16 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11063024B1 (en) | 2012-12-22 | 2021-07-13 | Monlithic 3D Inc. | Method to form a 3D semiconductor device and structure |
US11916045B2 (en) | 2012-12-22 | 2024-02-27 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11217565B2 (en) | 2012-12-22 | 2022-01-04 | Monolithic 3D Inc. | Method to form a 3D semiconductor device and structure |
US10903089B1 (en) | 2012-12-29 | 2021-01-26 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10600657B2 (en) | 2012-12-29 | 2020-03-24 | Monolithic 3D Inc | 3D semiconductor device and structure |
US10651054B2 (en) | 2012-12-29 | 2020-05-12 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11430667B2 (en) | 2012-12-29 | 2022-08-30 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding |
US11177140B2 (en) | 2012-12-29 | 2021-11-16 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11004694B1 (en) | 2012-12-29 | 2021-05-11 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11430668B2 (en) | 2012-12-29 | 2022-08-30 | Monolithic 3D Inc. | 3D semiconductor device and structure with bonding |
US10892169B2 (en) | 2012-12-29 | 2021-01-12 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11087995B1 (en) | 2012-12-29 | 2021-08-10 | Monolithic 3D Inc. | 3D semiconductor device and structure |
KR102045288B1 (ko) | 2013-01-17 | 2019-11-15 | 삼성전자주식회사 | 수직형 반도체 소자 |
US8902663B1 (en) | 2013-03-11 | 2014-12-02 | Monolithic 3D Inc. | Method of maintaining a memory state |
US11935949B1 (en) | 2013-03-11 | 2024-03-19 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and memory cells |
US10325651B2 (en) | 2013-03-11 | 2019-06-18 | Monolithic 3D Inc. | 3D semiconductor device with stacked memory |
US11869965B2 (en) | 2013-03-11 | 2024-01-09 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and memory cells |
US12094965B2 (en) | 2013-03-11 | 2024-09-17 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers and memory cells |
US11398569B2 (en) | 2013-03-12 | 2022-07-26 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US12100646B2 (en) | 2013-03-12 | 2024-09-24 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US10840239B2 (en) | 2014-08-26 | 2020-11-17 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11923374B2 (en) | 2013-03-12 | 2024-03-05 | Monolithic 3D Inc. | 3D semiconductor device and structure with metal layers |
US11088130B2 (en) | 2014-01-28 | 2021-08-10 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10224279B2 (en) | 2013-03-15 | 2019-03-05 | Monolithic 3D Inc. | Semiconductor device and structure |
US11341309B1 (en) | 2013-04-15 | 2022-05-24 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US11270055B1 (en) | 2013-04-15 | 2022-03-08 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US11030371B2 (en) | 2013-04-15 | 2021-06-08 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US11487928B2 (en) | 2013-04-15 | 2022-11-01 | Monolithic 3D Inc. | Automation for monolithic 3D devices |
US11574109B1 (en) | 2013-04-15 | 2023-02-07 | Monolithic 3D Inc | Automation methods for 3D integrated circuits and devices |
US11720736B2 (en) | 2013-04-15 | 2023-08-08 | Monolithic 3D Inc. | Automation methods for 3D integrated circuits and devices |
KR102128469B1 (ko) | 2013-11-08 | 2020-06-30 | 삼성전자주식회사 | 반도체 장치 |
US11107808B1 (en) | 2014-01-28 | 2021-08-31 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11031394B1 (en) | 2014-01-28 | 2021-06-08 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US12094829B2 (en) | 2014-01-28 | 2024-09-17 | Monolithic 3D Inc. | 3D semiconductor device and structure |
JP2015149413A (ja) * | 2014-02-06 | 2015-08-20 | 株式会社東芝 | 半導体記憶装置及びその製造方法 |
KR102192539B1 (ko) | 2014-05-21 | 2020-12-18 | 삼성전자주식회사 | 반도체 장치 및 이의 프로그램 방법 |
US9431419B2 (en) | 2014-09-12 | 2016-08-30 | Kabushiki Kaisha Toshiba | Semiconductor memory device and method for manufacturing same |
US9576971B2 (en) * | 2014-12-09 | 2017-02-21 | Sandisk Technologies Llc | Three-dimensional memory structure having a back gate electrode |
US9355727B1 (en) | 2014-12-09 | 2016-05-31 | Sandisk Technologies Inc. | Three-dimensional memory structure having a back gate electrode |
KR101946179B1 (ko) * | 2014-12-09 | 2019-02-08 | 샌디스크 테크놀로지스 엘엘씨 | 백 게이트 전극을 갖는 3차원 메모리 구조 |
US20160268269A1 (en) * | 2015-03-12 | 2016-09-15 | Kabushiki Kaisha Toshiba | Nonvolatile semiconductor memory device and method of manufacturing the same |
US10825779B2 (en) | 2015-04-19 | 2020-11-03 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10381328B2 (en) | 2015-04-19 | 2019-08-13 | Monolithic 3D Inc. | Semiconductor device and structure |
US11056468B1 (en) | 2015-04-19 | 2021-07-06 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US11011507B1 (en) | 2015-04-19 | 2021-05-18 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US10103162B2 (en) * | 2015-07-30 | 2018-10-16 | Snu R&Db Foundation | Vertical neuromorphic devices stacked structure and array of the structure |
US11956952B2 (en) | 2015-08-23 | 2024-04-09 | Monolithic 3D Inc. | Semiconductor memory device and structure |
US11978731B2 (en) | 2015-09-21 | 2024-05-07 | Monolithic 3D Inc. | Method to produce a multi-level semiconductor memory device and structure |
US11114427B2 (en) | 2015-11-07 | 2021-09-07 | Monolithic 3D Inc. | 3D semiconductor processor and memory device and structure |
US12100658B2 (en) | 2015-09-21 | 2024-09-24 | Monolithic 3D Inc. | Method to produce a 3D multilayer semiconductor device and structure |
DE112016004265T5 (de) | 2015-09-21 | 2018-06-07 | Monolithic 3D Inc. | 3d halbleitervorrichtung und -struktur |
US11937422B2 (en) | 2015-11-07 | 2024-03-19 | Monolithic 3D Inc. | Semiconductor memory device and structure |
US10522225B1 (en) | 2015-10-02 | 2019-12-31 | Monolithic 3D Inc. | Semiconductor device with non-volatile memory |
US11991884B1 (en) | 2015-10-24 | 2024-05-21 | Monolithic 3D Inc. | 3D semiconductor device and structure with logic and memory |
US10847540B2 (en) | 2015-10-24 | 2020-11-24 | Monolithic 3D Inc. | 3D semiconductor memory device and structure |
US11114464B2 (en) | 2015-10-24 | 2021-09-07 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US12120880B1 (en) | 2015-10-24 | 2024-10-15 | Monolithic 3D Inc. | 3D semiconductor device and structure with logic and memory |
US12035531B2 (en) | 2015-10-24 | 2024-07-09 | Monolithic 3D Inc. | 3D semiconductor device and structure with logic and memory |
US10418369B2 (en) | 2015-10-24 | 2019-09-17 | Monolithic 3D Inc. | Multi-level semiconductor memory device and structure |
US12016181B2 (en) | 2015-10-24 | 2024-06-18 | Monolithic 3D Inc. | 3D semiconductor device and structure with logic and memory |
US11296115B1 (en) | 2015-10-24 | 2022-04-05 | Monolithic 3D Inc. | 3D semiconductor device and structure |
US9935124B2 (en) | 2015-11-25 | 2018-04-03 | Sandisk Technologies Llc | Split memory cells with unsplit select gates in a three-dimensional memory device |
US9812463B2 (en) | 2016-03-25 | 2017-11-07 | Sandisk Technologies Llc | Three-dimensional memory device containing vertically isolated charge storage regions and method of making thereof |
KR20170131121A (ko) * | 2016-05-20 | 2017-11-29 | 삼성전자주식회사 | 반도체 소자 |
US11930648B1 (en) | 2016-10-10 | 2024-03-12 | Monolithic 3D Inc. | 3D memory devices and structures with metal layers |
US11251149B2 (en) | 2016-10-10 | 2022-02-15 | Monolithic 3D Inc. | 3D memory device and structure |
US11812620B2 (en) | 2016-10-10 | 2023-11-07 | Monolithic 3D Inc. | 3D DRAM memory devices and structures with control circuits |
US11869591B2 (en) | 2016-10-10 | 2024-01-09 | Monolithic 3D Inc. | 3D memory devices and structures with control circuits |
US11711928B2 (en) | 2016-10-10 | 2023-07-25 | Monolithic 3D Inc. | 3D memory devices and structures with control circuits |
US11329059B1 (en) | 2016-10-10 | 2022-05-10 | Monolithic 3D Inc. | 3D memory devices and structures with thinned single crystal substrates |
US9991277B1 (en) | 2016-11-28 | 2018-06-05 | Sandisk Technologies Llc | Three-dimensional memory device with discrete self-aligned charge storage elements and method of making thereof |
US9960180B1 (en) | 2017-03-27 | 2018-05-01 | Sandisk Technologies Llc | Three-dimensional memory device with partially discrete charge storage regions and method of making thereof |
US10283452B2 (en) | 2017-09-15 | 2019-05-07 | Yangtze Memory Technology Co., Ltd. | Three-dimensional memory devices having a plurality of NAND strings |
JP2019165135A (ja) * | 2018-03-20 | 2019-09-26 | 東芝メモリ株式会社 | 半導体記憶装置 |
KR20200112013A (ko) * | 2019-03-20 | 2020-10-05 | 삼성전자주식회사 | 수직형 반도체 소자 |
US11296106B2 (en) | 2019-04-08 | 2022-04-05 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures |
US11763864B2 (en) | 2019-04-08 | 2023-09-19 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures with bit-line pillars |
US10892016B1 (en) | 2019-04-08 | 2021-01-12 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures |
US11018156B2 (en) | 2019-04-08 | 2021-05-25 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures |
US11158652B1 (en) | 2019-04-08 | 2021-10-26 | Monolithic 3D Inc. | 3D memory semiconductor devices and structures |
US11495618B2 (en) * | 2020-07-30 | 2022-11-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | Three-dimensional memory device and method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4468433B2 (ja) | 2007-11-30 | 2010-05-26 | 株式会社東芝 | 不揮発性半導体記憶装置 |
JP5142692B2 (ja) | 2007-12-11 | 2013-02-13 | 株式会社東芝 | 不揮発性半導体記憶装置 |
KR100956985B1 (ko) | 2008-06-03 | 2010-05-11 | 경북대학교 산학협력단 | 고집적 수직형 플래시 메모리 셀 스트링, 셀 소자, 및 그제조 방법 |
JP5288936B2 (ja) | 2008-08-12 | 2013-09-11 | 株式会社東芝 | 不揮発性半導体記憶装置 |
JP2010118580A (ja) | 2008-11-14 | 2010-05-27 | Toshiba Corp | 不揮発性半導体記憶装置 |
JP4897009B2 (ja) * | 2009-03-24 | 2012-03-14 | 株式会社東芝 | 不揮発性半導体記憶装置の製造方法 |
-
2010
- 2010-06-22 JP JP2010141924A patent/JP2012009512A/ja active Pending
- 2010-12-29 US US12/980,856 patent/US8455941B2/en active Active
-
2011
- 2011-06-21 KR KR1020110060257A patent/KR20110139147A/ko active IP Right Grant
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11133330B2 (en) | 2012-02-29 | 2021-09-28 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US11923372B2 (en) | 2012-02-29 | 2024-03-05 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
JP2020191470A (ja) * | 2012-02-29 | 2020-11-26 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US11963360B2 (en) | 2015-05-26 | 2024-04-16 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
JP2016225614A (ja) * | 2015-05-26 | 2016-12-28 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US11678490B2 (en) | 2017-07-21 | 2023-06-13 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, semiconductor wafer, memory device, and electronic device |
JP7224124B2 (ja) | 2017-07-21 | 2023-02-17 | 株式会社半導体エネルギー研究所 | 半導体装置、半導体ウェハ、記憶装置、及び電子機器 |
US11985828B2 (en) | 2017-07-21 | 2024-05-14 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, semiconductor wafer, memory device, and electronic device |
JP2019024087A (ja) * | 2017-07-21 | 2019-02-14 | 株式会社半導体エネルギー研究所 | 半導体装置、半導体ウェハ、記憶装置、及び電子機器 |
JP2020155691A (ja) * | 2019-03-22 | 2020-09-24 | キオクシア株式会社 | 半導体記憶装置 |
CN111725226A (zh) * | 2019-03-22 | 2020-09-29 | 东芝存储器株式会社 | 半导体存储装置 |
CN111725226B (zh) * | 2019-03-22 | 2023-09-05 | 铠侠股份有限公司 | 半导体存储装置 |
JP7086883B2 (ja) | 2019-03-22 | 2022-06-20 | キオクシア株式会社 | 半導体記憶装置 |
CN114175255A (zh) * | 2019-09-13 | 2022-03-11 | 铠侠股份有限公司 | 半导体存储装置及其制造方法 |
JP7266728B2 (ja) | 2020-04-16 | 2023-04-28 | 株式会社半導体エネルギー研究所 | 半導体装置 |
JP2022075991A (ja) * | 2020-04-16 | 2022-05-18 | 株式会社半導体エネルギー研究所 | 半導体装置 |
WO2022244207A1 (ja) * | 2021-05-20 | 2022-11-24 | キオクシア株式会社 | メモリデバイス |
TWI834083B (zh) * | 2021-05-20 | 2024-03-01 | 日商鎧俠股份有限公司 | 記憶體元件 |
JP7532587B2 (ja) | 2022-03-25 | 2024-08-13 | 株式会社半導体エネルギー研究所 | 半導体装置 |
Also Published As
Publication number | Publication date |
---|---|
KR20110139147A (ko) | 2011-12-28 |
US8455941B2 (en) | 2013-06-04 |
US20110309432A1 (en) | 2011-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012009512A (ja) | 不揮発性半導体記憶装置及びその製造方法 | |
USRE46957E1 (en) | Nonvolatile semiconductor memory device | |
US8654586B2 (en) | Nonvolatile semiconductor memory device | |
TWI475669B (zh) | Nonvolatile semiconductor memory device | |
JP5504053B2 (ja) | 半導体装置及びその製造方法 | |
US9853048B2 (en) | Memory device and method of manufacturing the same | |
US8351277B2 (en) | Method for operating semiconductor memory device | |
CN107958869B (zh) | 使用蚀刻停止层的存储器装置 | |
US8289766B2 (en) | Nonvolatile semiconductor memory device and method for driving same | |
US8687425B2 (en) | Nonvolatile memory device, method for operating the same, and method for fabricating the same | |
JP2011029234A (ja) | 不揮発性半導体記憶装置 | |
JP2009094214A (ja) | 不揮発性半導体記憶装置、及びその製造方法 | |
US20120032249A1 (en) | Nonvolatile semiconductor memory device and method for manufacturing nonvolatile semiconductor memory device | |
US20210296340A1 (en) | Semiconductor memory device including an asymmetrical memory core region | |
CN110858592A (zh) | 半导体存储器及半导体存储器的制造方法 | |
TW202006933A (zh) | 半導體記憶體及其製造方法 | |
JP2020035977A (ja) | 半導体記憶装置 | |
CN112530970B (zh) | 半导体存储装置 | |
CN112530967A (zh) | 存储器器件 | |
TWI821718B (zh) | 半導體記憶裝置 | |
CN112310093B (zh) | 半导体存储装置 | |
JP2023036377A (ja) | 半導体記憶装置およびその製造方法 | |
TW202046324A (zh) | 半導體記憶裝置 |