JP2011202923A - 吸収式冷凍機 - Google Patents

吸収式冷凍機 Download PDF

Info

Publication number
JP2011202923A
JP2011202923A JP2010072574A JP2010072574A JP2011202923A JP 2011202923 A JP2011202923 A JP 2011202923A JP 2010072574 A JP2010072574 A JP 2010072574A JP 2010072574 A JP2010072574 A JP 2010072574A JP 2011202923 A JP2011202923 A JP 2011202923A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
cooling water
pipe
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010072574A
Other languages
English (en)
Other versions
JP5575519B2 (ja
Inventor
Shuji Ishizaki
修司 石崎
Takahiro Kobayashi
崇浩 小林
Tetsuya Tokuda
徹哉 徳田
Tsunehito Momose
恒仁 百瀬
Jun Kudo
惇 工藤
Atsushi Ebisawa
篤 海老澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010072574A priority Critical patent/JP5575519B2/ja
Priority to CN2010105687002A priority patent/CN102200357B/zh
Priority to KR1020100120403A priority patent/KR101167800B1/ko
Publication of JP2011202923A publication Critical patent/JP2011202923A/ja
Application granted granted Critical
Publication of JP5575519B2 publication Critical patent/JP5575519B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • F25B49/043Operating continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

【課題】冷却水の温度が低くても安定して運転可能な吸収式冷凍機を提供する。
【解決手段】高温再生器5、低温再生器6、蒸発器1、凝縮器7、及び吸収器2を備え、高温再生器5と凝縮器7とを低温再生器6を経由する冷媒管31で接続し、冷媒管31に、流路抵抗を付与する流路抵抗手段41と、この流路抵抗手段41をバイパスするバイパス管42とを設け、このバイパス管42に開閉弁43を設けた吸収式冷凍機100において、吸収器2及び凝縮器7に順次冷却水を流通させる冷却水管15を設け、冷却水管15の吸収器入口側に冷却水の温度を計測する冷却水温度センサ62を設け、冷却水温度センサ62の計測結果に応じて開閉弁43を制御する弁制御手段50を備える構成とする。
【選択図】図1

Description

本発明は、高温再生器から凝縮器に冷媒を送る冷媒管にダンパを備える吸収式冷凍機に関する。
従来、高温再生器、低温再生器、凝縮器、蒸発器、及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環経路をそれぞれ形成した吸収式冷凍機が知られている(例えば、特許文献1参照)。この吸収式冷凍機では、高温再生器と凝縮器とは、低温再生器の吸収液溜りに配管された伝熱管及び冷媒ドレン熱回収器を経由する冷媒管により接続されている。高温再生器で加熱されて吸収液から分離された冷媒蒸気は冷媒管を流通する過程で凝縮して冷媒液となり、この冷媒液は高温再生器と凝縮器との差圧によって冷媒管内を移動する。冷媒管を流通する冷媒の流速を低下させ、高温再生器からの冷媒蒸気の温熱で低温再生器内の吸収液や吸収器からの稀吸収液を十分に加熱させるため、冷媒管には、冷媒ドレン熱回収器の下流側に、流路抵抗を付与する流量制御弁やオリフィス等の流路抵抗手段が設けられている。
特開2003−287315号公報
ところで、吸収式冷凍機は、この吸収式冷凍機に供給される冷却水の温度(冷却水入口温度)が低下するにしたがい性能(COP:Coefficient of Performance)が向上する。しかしながら、冷却水入口温度が任意温度を下回ると、高温再生器の圧力低下に伴い高温再生器と凝縮器との差圧が小さくなるので、上記従来の吸収式冷凍機のように流路抵抗手段が設けられていると、冷媒の流動性が低下する。冷媒液の流動性が低下すると、冷媒管の低温再生器付近に冷媒液が溜まり、あるいは、冷媒液が冷媒管において低温再生器を行き来する状態が発生し、これにより低温再生器での吸収液の加熱再生が不安定になり、ひいては、熱負荷に供給するブラインの出口側の温度が上下に変動を繰り返すハンチングが発生してしまうおそれがある。
本発明は、上述した事情に鑑みてなされたものであり、冷却水の温度が低くても安定運転が可能な吸収式冷凍機を提供することを目的とする。
上記目的を達成するために、本発明は、高温再生器、低温再生器、蒸発器、凝縮器、及び吸収器を備え、高温再生器と凝縮器とを低温再生器を経由する冷媒管で接続し、この冷媒管に、流路抵抗を付与する流路抵抗手段と、この流路抵抗手段をバイパスするバイパス管とを設け、このバイパス管に開閉弁を設けた吸収式冷凍機において、前記吸収器及び前記凝縮器に順次冷却水を流通させる冷却水管を設け、前記冷却水管の吸収器入口側に冷却水の温度を計測する冷却水温度センサを設け、前記冷却水温度センサの計測結果に応じて前記開閉弁を制御する弁制御手段を備えたことを特徴とする。
上記構成において、前記弁制御手段は、前記冷却水温度センサが計測した温度が第1温度以下の場合に、前記開閉弁を全開にしてもよい。
上記構成において、前記弁制御手段は、前記冷却水温度センサが計測した温度が前記第1温度よりも高い第2温度に至った場合に、前記開閉弁を全閉にしてもよい。
上記構成において、前記高温再生器の入熱量を制御する入熱量制御弁を備え、前記弁制御手段は、前記冷却水温度センサの計測結果と、前記入熱量制御弁の開度とに応じて前記開閉弁を制御してもよい。
上記構成において、前記低温再生器の下流側の前記冷媒管には、当該冷媒管を流通する冷媒と、前記吸収器から延びる稀吸収液管を流通する稀吸収液との間で熱交換を行う冷媒ドレン熱回収器が設けられ、前記高温再生器に当該高温再生器内の圧力を検出する圧力センサを設け、前記冷媒管の冷媒ドレン熱回収器出口側に冷媒の温度を計測する冷媒温度センサを設け、前記弁制御手段は、前記冷却水温度センサの計測結果と、前記圧力センサの検出結果と、前記冷媒温度センサの計測結果とに応じて前記開閉弁を制御してもよい。
本発明によれば、吸収器及び凝縮器に順次冷却水を流通させる冷却水管を設け、冷却水管の吸収器入口側に冷却水の温度を計測する冷却水温度センサを設け、冷却水温度センサの計測結果に応じて開閉弁を制御する弁制御手段を備えたため、例えば、冷却水温度が低い場合に、バイパス管を流通する冷媒量を増加するように、開閉弁を制御することで、冷媒管の冷媒を流れやすくすることができるので、吸収式冷凍機を安定して運転させることができる。
本発明の第1の実施の形態に係る吸収式冷凍機の概略構成図である。 開閉弁の制御を説明する図である。 本発明の第3の実施の形態に係る吸収式冷凍機の概略構成図である。
以下、図面を参照して本発明の実施の形態について説明する。
〔第1の実施の形態〕
図1は、第1の実施の形態に係る吸収式冷凍機の概略構成図である。
吸収式冷凍機100は、冷媒に水を、吸収液に臭化リチウム(LiBr)水溶液を使用した二重効用型の吸収式冷凍機である。吸収式冷凍機100は、図1に示すように、蒸発器1と、この蒸発器1に並設された吸収器2と、これら蒸発器1及び吸収器2を収納した蒸発器吸収器胴3と、ガスバーナ4を備えた高温再生器5と、低温再生器6と、この低温再生器6に並設された凝縮器7と、これら低温再生器6及び凝縮器7を収納した低温再生器凝縮器胴8と、低温熱交換器12と、高温熱交換器13と、冷媒ドレン熱回収器16と、稀吸収液ポンプP1と、濃吸収液ポンプP2と、冷媒ポンプP3とを備え、これらの各機器が吸収液管21〜25及び冷媒管31〜35などを介して配管接続されている。
また、符号14は、蒸発器1内で冷媒と熱交換したブラインを、図示しない熱負荷(例えば空気調和装置)に循環供給するための冷/温水管であり、この冷/温水管14の一部に形成された伝熱管14Aが蒸発器1内に配置されている。冷/温水管14の伝熱管14A下流側には、当該冷/温水管14内を流通するブラインの温度を計測する温度センサ61が設けられている。符号15は、吸収器2及び凝縮器7に順次冷却水を流通させるための冷却水管であり、この冷却水管15の一部に形成された各伝熱管15A、15Bがそれぞれ吸収器2及び凝縮器7内に配置されている。符号50は、吸収式冷凍機100全体の制御を司る制御装置である。上記温度センサ61は、制御装置50の制御によって、計測結果を制御装置50に出力する。
吸収器2は、蒸発器1で蒸発した冷媒蒸気を吸収液に吸収させ、蒸発器吸収器胴3内の圧力を高真空状態に保つ機能を有する。この吸収器2の下部には、冷媒蒸気を吸収して稀釈された稀吸収液が溜る稀吸収液溜り2Aが形成され、この稀吸収液溜り2Aには、インバータ51により周波数可変に制御される稀吸収液ポンプP1が設けられた稀吸収液管21の一端が接続されている。稀吸収液管21は、稀吸収液ポンプP1の下流側で第1稀吸収液管21Aと第2稀吸収液管21Bとに分岐され、第1稀吸収液管21Aは冷媒ドレン熱回収器16を経由し、第2稀吸収液管21Bは低温熱交換器12を経由した後に再び合流する。そして、稀吸収液管21の他端は、第3稀吸収液管21Cと第4稀吸収液管21Dとに分岐され、第3稀吸収液管21Cは高温熱交換器13を経由した後、高温再生器5内に形成された熱交換部5Aの上方に位置する気層部5Bに開口し、第4稀吸収液管21Dは低温再生器6内の上部に形成された気層部6Aに開口している。
高温再生器5の下部には、例えば都市ガス等の燃料に点火する点火器4Aと、燃料量を制御して熱源量を可変にする燃料制御弁(入熱量制御弁)4Bとを備えるガスバーナ4が収容されている。ガスバーナ4は、制御装置50が出力した燃焼信号を受信すると、ガスを燃焼させ、燃料制御弁4Bの開度は、制御装置50により、温度センサ61が計測した温度に応じて制御されている。高温再生器5には、ガスバーナ4の上方に当該ガスバーナ4の火炎を熱源として吸収液を加熱再生する熱交換部5Aが形成されている。この熱交換部5Aには、ガスバーナ4で燃焼された排気ガスが流通する排気経路17が接続され、熱交換部5Aの側方には、この熱交換部5Aで加熱再生された後に当該熱交換部5Aから流出した濃吸収液が溜る濃吸収液溜り5Cが形成されている。この濃吸収液溜り5Cには、濃吸収液溜り5C(高温再生器5内)に溜った吸収液の液面レベルを検知する液面センサ52が設けられている。
濃吸収液溜り5Cの下端には、濃吸収液管22の一端が接続され、この濃吸収液管22の他端は、高温熱交換器13を介して、低温再生器6から延びる中間吸収液管24と合流する。高温熱交換器13は、濃吸収液溜り5Cから流出した高温の吸収液の温熱で第3稀吸収液管21Cを流れる吸収液を加熱するものであり、高温再生器5におけるガスバーナ4の燃料消費量の低減を図っている。また、濃吸収液管22の高温熱交換器13上流側と吸収器2とは開閉弁V1が介在する吸収液管23により接続されている。
低温再生器6は、高温再生器5で分離された冷媒蒸気を熱源として、気層部6Aの下方に形成された吸収液溜り6Bに溜った吸収液を加熱再生するものであり、吸収液溜り6Bには、高温再生器5の上端部から凝縮器7の底部への延びる冷媒管31の一部に形成される伝熱管31Aが配置されている。この冷媒管31に冷媒蒸気を流通させることにより、上記伝熱管31Aを介して、冷媒蒸気の温熱が吸収液溜り6Bに溜った吸収液に伝達され、この吸収液が濃縮される。
低温再生器6の吸収液溜り6Bには、中間吸収液管24の一端が接続され、この中間吸収液管24の他端は、上記濃吸収液管22と合流して濃吸収液管25となる。この濃吸収液管25は、濃吸収液ポンプP2及び低温熱交換器12を介して、吸収器2の気層部2B上部に設けられる濃液散布器2Cに接続されている。低温熱交換器12は、高温再生器5の濃吸収液溜まり5Cから流出した濃吸収液、及び、低温再生器6の吸収液溜り6Bから流出した中間吸収液の温熱で第2稀吸収液管21Bを流れる稀吸収液を加熱するものである。また、濃吸収液ポンプP2の上流側には、この濃吸収液ポンプP2及び低温熱交換器12をバイパスするバイパス管25A,25Bが設けられており、濃吸収液ポンプP2の運転が停止している場合には、高温再生器5の濃吸収液溜まり5Cから流出した濃吸収液、及び、低温再生器6の吸収液溜り6Bから流出した中間吸収液は、バイパス管25A,25B通じて低温熱交換器12を経由することなく吸収器2内に供給される。
上述のように、高温再生器5の気層部5Bと凝縮器7の底部に形成された冷媒液溜り7Aとは、低温再生器6の吸収液溜り6Bに配管された伝熱管31A及び冷媒ドレン熱回収器16を経由する冷媒管31により接続されている。この冷媒管31には、冷媒ドレン熱回収器16の下流に、流路抵抗を付与するダンパ(流路抵抗手段)41が設けられており、このダンパ41によって冷媒管31を流れる冷媒の流速が低下し、冷媒管31の冷媒蒸気と低温再生器6内の吸収液との間で熱交換が十分に行われるとともに、冷媒管31の冷媒蒸気と第1稀吸収液管21A内の稀吸収液との間で熱交換が十分に行われる。
冷媒管31の伝熱管31A上流側と吸収器2の気層部2Bとは開閉弁V2が介在する冷媒管32により接続されている。また、凝縮器7の冷媒液溜り7Aと蒸発器1の気層部1AとはUシール部33Aが介在する冷媒管33により接続されている。また、蒸発器1の下方には、液化した冷媒が溜る冷媒液溜り1Bが形成され、この冷媒液溜り1Bと蒸発器1の気層部1A上部に配置される散布器1Cとは冷媒ポンプP3が介在する冷媒管34により接続されている。この冷媒管34の冷媒ポンプP3下流側と吸収器2の吸収液溜り2Aとは開閉弁V3が介在する冷媒管35により接続されている。また、冷却水管15の伝熱管15B出口側との冷/温水管14の伝熱管14Aの出口側とは、開閉弁V4が介在する連通管36により接続されている。
吸収式冷凍機100は、制御装置50の制御により、冷/温水管14から冷水を取り出す冷房運転が実行される。冷房運転時には、冷/温水管14を介して図示しない熱負荷に循環供給されるブライン(例えば冷水)の蒸発器1出口側温度(温度センサ61にて計測される温度)が所定の設定温度、例えば7℃になるように吸収式冷凍機100に投入される熱量が制御装置50により制御される。具体的には、制御装置50は、すべてのポンプP1〜P3を起動し、且つ、ガスバーナ4においてガスを燃焼させ、温度センサ61が計測するブラインの温度が所定の7℃となるようにガスバーナ4の火力を制御する。なお、冷房運転時には、開閉弁V1〜V4は閉じられる。
吸収器2から稀吸収液管21を介して、稀吸収液ポンプP1により高温再生器5に搬送された稀吸収液は、この高温再生器5でガスバーナ4による火炎および高温の燃焼ガスにより加熱されるため、この稀吸収液中の冷媒が蒸発分離する。高温再生器5で冷媒を蒸発分離して濃度が上昇した濃吸収液は、濃吸収液管22を介して、濃吸収液管25の濃吸収液ポンプP2により高温熱交換器13を経由し、濃吸収液管25に流れる。
吸収器2から稀吸収液管21を介して、稀吸収液ポンプP1により低温再生器6に搬送された稀吸収液は、高温再生器5から冷媒管31を介して供給されて伝熱管31Aに流入する高温の冷媒蒸気により加熱され、この稀吸収液中の冷媒が蒸発分離する。低温再生器6で冷媒を蒸発分離して濃度が上昇した中間吸収液は、中間吸収液管24を流れ、濃吸収液管22を流れる濃吸収液と濃吸収液管25で合流する。合流した濃吸収液は、低温熱交換器12を経由して吸収器2へ送られ、濃液散布器2Cの上方から散布される。
一方、低温再生器6で分離生成した冷媒は凝縮器7に入って凝縮して冷媒液溜り7Aに溜まる。そして、冷媒液溜り7Aに冷媒液が多く溜まると、この冷媒液は冷媒液溜り7Aから流出し、冷媒管33を経由して蒸発器1に入り、冷媒ポンプP3の運転により冷媒管34を介して揚液されて散布器1Cから冷/温水管14の伝熱管14Aの上に散布される。
伝熱管14Aの上に散布された冷媒液は、伝熱管14Aの内部を通るブラインから気化熱を奪って蒸発するので、伝熱管14Aの内部を通るブラインは冷却され、こうして温度を下げたブラインが冷/温水管14から熱負荷に供給されて冷房等の冷却運転が行われる。
そして、蒸発器1で蒸発した冷媒は吸収器2へ入り、高温再生器5及び低温再生器6より供給されて上方から散布される濃吸収液に吸収されて、吸収器2の稀吸収液溜り2Aに溜り、稀吸収液ポンプP1によって高温再生器5に搬送される循環を繰り返す。なお、吸収液が冷媒を吸収する際に発生する熱は、吸収器2内に配置される冷却水管15の伝熱管15Aにより冷却される。
ところで、吸収式冷凍機100では、当該吸収式冷凍機100に供給される冷却水の温度(冷却水入口温度)が低下するにしたがい性能(COP)が向上する。通常、冷却水入口温度は約32℃に設定されており、この冷却水入口温度が任意温度(例えば、17℃)を下回ると、高温再生器5の圧力低下に伴い高温再生器5と凝縮器7との差圧が小さくなる。冷媒管31にはダンパ41が設けられているため、高温再生器5と凝縮器7との差圧が小さくなると、冷媒の流動性が低下する。これにより、冷媒管31の低温再生器6付近に冷媒液が溜まり、あるいは、冷媒液が冷媒管31において低温再生器6を行き来する状態(以下、単に滞留状態と言う。)が発生し、ひいては、熱負荷に供給するブラインの出口温度が上下に変動を繰り返すハンチングが発生してしまうおそれがある。
そこで、本実施の形態では、冷媒管31に設けられたダンパ41をバイパスするバイパス管42と、このバイパス管42に設けられた開閉弁43と、冷却水管15の吸収器2入口側に設けられて冷却水入口温度を計測する冷却水温度センサ62と、冷却水温度センサ62の計測結果に応じて開閉弁43を制御する制御装置(弁制御手段)50とを備える構成としている。上述したように、冷媒の滞留は、高温再生器5と凝縮器7との差圧に起因しており、本実施の形態では、高温再生器5と凝縮器7との差圧を、冷却水入口温度に対応させている。
開閉弁43は、全開及び全閉可能に構成された操作弁であり、制御装置50の制御によって作動する。冷却水温度センサ62は、制御装置50の制御によって、計測結果を制御装置50に出力する。
制御装置50は、図2に示すように、冷却水温度センサ62が計測した温度が第1温度T1以下になると、開閉弁43を全開にする。ここで、第1温度T1は、図1に示す高温再生器5と凝縮器7との差圧が小さくなり、吸収式冷凍機100の運転が不安定になり始める直前の冷却水入口温度であり、予め実験等によって取得され、本実施の形態では15℃に設定されている。これにより、冷却水入口温度が第1温度T1(15℃)以下であり、高温再生器5と凝縮器7との差圧が小さくなっても、冷媒液がダンパ41をバイパスするバイパス管42を流通するので、冷媒の滞留を防止でき、その結果、吸収式冷凍機100を安定して運転させることができる。したがって、低温の冷却水を使用することができるので、吸収式冷凍機100のCOPを向上させることができる。
一方、制御装置50は、図2に示すように、冷却水温度センサ62が計測した温度が第2温度T2以上になると、開閉弁43を全閉にする。ここで、第2温度T2は、図1に示す高温再生器5と凝縮器7との差圧が大きくなり、吸収式冷凍機100の運転が安定するときの冷却水入口温度であり、予め実験等によって取得され、本実施の形態では、第1温度T1より5℃高い20℃に設定されている。これにより、冷却水入口温度が第2温度T2(20℃)以上になり、高温再生器5と凝縮器7との差圧が大きくなると、冷媒液がバイパス管42を流通しないので、ダンパ41によって冷媒管31を流れる冷媒の流速が低下し、高温再生器5からの冷媒蒸気の温熱で低温再生器6内の吸収液及び第1稀吸収液管21A内の稀吸収液を十分に加熱させることができる。
このように、本実施の形態では、ダンパ41を有する吸収式冷凍機100に、ダンパ41をバイパスするバイパス管42を設け、このバイパス管42に開閉弁43を設けるという簡単な構造で、吸収式冷凍機100を低温の冷却水に対応させることができる。また、高温再生器5や凝縮器7内の圧力を検出する比較的高価な圧力検出手段を必要としないので、開閉弁43を制御することによるコストアップを抑制できる。さらに、冷却水温度センサ62は、冷却水管15の吸収器2入口側に設けられているため、例えば、冷却水管15の吸収器2出口側や、凝縮器7出口側に設けられる場合に比べ、図示しない冷却水ポンプのインバータ制御、吸収器2や凝縮器7での熱交換等の影響を受けることがなく安定した温度を計測でき、その結果、開閉弁43をより正確に制御することが可能になる。
以上説明したように、本実施の形態によれば、吸収器2及び凝縮器7に順次冷却水を流通させる冷却水管15を設け、冷却水管15の吸収器入口側に冷却水の温度を計測する冷却水温度センサ62を設け、冷却水温度センサ62の計測結果に応じて開閉弁43を制御する制御装置50を備える構成とした。この構成により、例えば、冷却水入口温度が低い場合に、バイパス管42を流通する冷媒量を増加するように、開閉弁43を制御することで、冷媒管31の冷媒を流れやすくすることができるので、吸収式冷凍機100を安定して運転させることができる。したがって、低温の冷却水を使用することができるので、吸収式冷凍機100のCOPを向上させることができる。
また、本実施の形態によれば、制御装置50は、冷却水温度センサ62の計測した温度が第1温度T1以下の場合に、開閉弁43を全開にする構成とした。この構成により、冷却水入口温度が第1温度T1以下になった場合に、冷媒管31の冷媒を流れやすくすることができるので、吸収式冷凍機100を安定して運転させることができる。したがって、低温の冷却水を使用することができるので、吸収式冷凍機100のCOPを向上させることができる。
また、本実施の形態によれば、制御装置50は、冷却水温度センサ62の計測した温度が第1温度T1よりも高い第2温度T2に至った場合に、開閉弁43を全閉にする構成とした。この構成により、冷却水入口温度が第2温度T2以上になった場合に、冷媒液がバイパス管42を流通しないので、ダンパ41によって冷媒管31を流れる冷媒の流速が低下し、高温再生器5からの冷媒蒸気の温熱で低温再生器6内の吸収液及び第1稀吸収液管21A内の稀吸収液を十分に加熱させることができる。
〔第2の実施の形態〕
第1の実施の形態では、制御装置50は、開閉弁43を冷却水温度センサ62の計測結果に応じて制御していたが、第2の実施の形態では、開閉弁43を冷却水温度センサ62の計測結果と燃料制御弁4Bの開度とに応じて制御している。
冷媒の滞留は、高温再生器5と凝縮器7との差圧に加え、高温再生器5で発生する冷媒蒸気の量に起因しており、燃料制御弁4Bの開度は、高温再生器5で発生する冷媒蒸気の最大発生量に対するその開度時における冷媒蒸気の発生量の割合とほぼ比例の関係がある。そこで、本実施の形態では、高温再生器5と凝縮器7との差圧を、冷却水入口温度に対応させるとともに、冷媒蒸気の発生量を燃料制御弁4Bの開度に対応させている。
制御装置50は、燃料制御弁4Bの開度が所定開度以上の場合において、図2に示すように、冷却水温度センサ62が計測した温度が第1温度T1(15℃)以下になると、バイパス管42の開閉弁43を全開にする。所定開度は、高温再生器5での冷媒蒸気の発生量が比較的多く、高温再生器5と凝縮器7との差圧が小さい場合には、吸収式冷凍機100の運転が不安定になり始める直前の開度であり、予め実験等によって取得され、本実施の形態では、冷媒蒸気の発生量が最大時の50%となる、50%に設定されている。これにより、燃料制御弁4Bの開度が所定開度(50%)以上であり、高温再生器5での冷媒蒸気の発生量が比較的多い状態において、冷却水入口温度が第1温度T1(15℃)以下になり、高温再生器5と凝縮器7との差圧が小さくなっても、冷媒液がダンパ41をバイパスするバイパス管42を流通するので、冷媒の滞留を防止でき、その結果、吸収式冷凍機100を安定して運転させることができる。したがって、低温の冷却水を使用することができるので、吸収式冷凍機100のCOPを向上させることができる。
一方、制御装置50は、燃料制御弁4Bの開度が所定開度(50%)以上の場合において、図2に示すように、冷却水温度センサ62が計測した温度が第2温度T2(20℃)以上になると、開閉弁43を全閉にする。これにより、燃料制御弁4Bの開度が所定開度(50%)以上であり、高温再生器5での冷媒蒸気の発生量が比較的多い状態において、冷却水入口温度が第2温度T2(20℃)以上になり、高温再生器5と凝縮器7との差圧が大きくなると、冷媒液がバイパス管42を流通しないので、ダンパ41によって冷媒管31を流れる冷媒の流速が低下し、高温再生器5からの冷媒蒸気の温熱で低温再生器6内の吸収液及び第1稀吸収液管21A内の稀吸収液を十分に加熱させることができる。
また、制御装置50は、冷却水温度センサ62が計測した温度が第1温度T1(15℃)以下であっても、燃料制御弁4Bの開度が所定開度(50%)未満になると、開閉弁43を全閉にする。すなわち、本実施の形態では、冷却水温度センサ62が計測した温度が第1温度T1(15℃)以下である条件、及び、燃料制御弁4Bの開度が所定開度(50%)以上である条件の両方を満たした場合のみ、開閉弁43が開放される。これにより、冷却水入口温度が第1温度T1(15℃)以下であり、高温再生器5と凝縮器7との差圧が小さくても、燃料制御弁4Bの開度が所定開度(50%)未満になり、高温再生器5での冷媒蒸気の発生量が少なくなると、冷媒液がバイパス管42を流通しないので、ダンパ41によって冷媒管31を流れる冷媒の流速が低下し、高温再生器5からの冷媒蒸気の温熱で低温再生器6内の吸収液を十分に加熱させることができる。
このように、本実施の形態では、高温再生器5と凝縮器7との差圧に加え、高温再生器5で発生する冷媒蒸気の発生量に応じて開閉弁43を制御する構成としたため、高温再生器5と凝縮器7との差圧が小さくても、高温再生器5で発生する冷媒蒸気の発生量が少なく、冷媒の滞留が生じにくい場合には、開閉弁43が開放されるのを防止できるので、吸収式冷凍機100の性能の低下を抑制できる。
以上説明したように、本実施の形態によれば、高温再生器5の入熱量を制御する燃料制御弁4Bを備え、制御装置50は、冷却水温度センサ62の計測結果と、燃料制御弁4Bの開度とに応じて開閉弁43を制御する構成とした。この構成により、例えば、冷却水入口温度が低い場合、かつ、燃料制御弁4Bの開度が大きい場合に、バイパス管42を流通する冷媒量を増加するように、開閉弁43を制御することで、冷媒管31の冷媒を流れやすくすることができるので、吸収式冷凍機100を安定して運転させることができる。したがって、低温の冷却水を使用することができるので、吸収式冷凍機100のCOPを向上させることができる。また、高温再生器5で発生する冷媒蒸気の発生量が少なく、冷媒の滞留が生じにくい場合に、開閉弁43が開放されるのを防止できるので、吸収式冷凍機100のCOPを向上させることができる。
〔第3の実施の形態〕
図3は、第3の実施の形態に係る吸収式冷凍機を示す概略構成図である。本実施の形態の吸収式冷凍機200は、高温再生器5内の圧力を検出する圧力センサ53と、冷媒管31の冷媒ドレン熱回収器16出口側の冷媒の温度を計測する冷媒温度センサ63とを備える点で上記した吸収式冷凍機100と構成を異にする。その他の構成は吸収式冷凍機100と同一であるため、同一の符号を付して説明を省略する。
第1の実施の形態では、制御装置50は、開閉弁43を冷却水温度センサ62の計測結果に応じて制御していたが、本実施の形態では、冷却水温度センサ62の計測結果と、圧力センサ53の検出結果と、冷媒温度センサ63の計測結果とに応じて開閉弁43を制御している。
上述したように、冷媒の滞留は、高温再生器5と凝縮器7との差圧に起因しており、本実施の形態では、高温再生器5と凝縮器7との差圧を、冷却水入口温度と、高温再生器5の圧力とに対応させている。また、冷媒が滞留する際、すなわち、冷媒管31を流通する冷媒の流速が遅くなる際には、低温再生器6及び冷媒ドレン熱回収器16での熱交換量が多くなり、冷媒ドレン熱回収器16出口側の冷媒温度(冷媒出口温度)が低くなるので、この冷媒出口温度によっても、冷媒の滞留を検知できる。そこで、本実施の形態では、冷媒の流速を、冷媒管31の冷媒ドレン熱回収器16出口側での冷媒の温度に対応させている。
圧力センサ53は、制御装置50の制御によって、高温再生器5内の圧力を検出し、その検出結果を制御装置50に出力する。また、冷媒温度センサ63は、制御装置50の制御によって、計測結果を制御装置50に出力する。
制御装置50は、圧力センサ53が検出した圧力が所定圧力未満であり、冷媒温度センサ63が計測した温度が所定温度以下の場合において、図2に示すように、冷却水温度センサ62が計測した温度が第1温度T1(15℃)以下になると、バイパス管42の開閉弁43を全開にする。上記所定圧力は、高温再生器5内の圧力が低く、高温再生器5と凝縮器7との差圧が小さくなり、吸収式冷凍機100の運転が不安定になり始める直前の高温再生器5内の圧力であり、予め実験等によって取得され、本実施の形態では、絶対圧力基準で20kPaに設定されている。なお、通常、高温再生器5内の圧力は、絶対圧力基準で約80kPa程度である。また、上記所定温度は、冷媒管31を流通する冷媒の流速が遅く、低温再生器6及び冷媒ドレン熱回収器16で熱交換を通常以上に行って冷媒の温度が低くなっていることを示す冷媒出口温度であり、予め実験等によって取得され、本実施の形態では、30℃に設定されている。なお、通常、冷媒出口温度は約40℃程度である。
これにより、高温再生器5内の圧力が所定圧力(20kPa)未満であり、冷媒管31の冷媒ドレン熱回収器16出口側の温度が所定温度(30℃)以下の状態において、冷却水入口温度が第1温度T1(15℃)以下になり、高温再生器5と凝縮器7との差圧が小さくなっても、冷媒液がダンパ41をバイパスするバイパス管42を流通するので、冷媒管31において低温再生器6に冷媒液が溜まるのを防止でき、その結果、吸収式冷凍機100を安定して運転させることができる。したがって、低温の冷却水を使用することができるので、吸収式冷凍機100のCOPを向上させることができる。
一方、制御装置50は、圧力センサ53が検出した圧力が所定圧力(20kPa)未満であり、冷媒温度センサ63が計測した温度が所定温度(30℃)以下の場合において、燃料制御弁4Bの開度が所定開度(50%)以上の場合において、図2に示すように、冷却水温度センサ62が計測した温度が第2温度T2(20℃)以上になると、開閉弁43を全閉にする。これにより、高温再生器5内の圧力が所定圧力(20kPa)未満であり、冷媒出口温度が所定温度(30℃)以下の状態において、冷却水入口温度が第2温度T2(20℃)以上になり、高温再生器5と凝縮器7との差圧が大きくなると、冷媒液がバイパス管42を流通しないので、ダンパ41によって冷媒管31を流れる冷媒の流速が低下し、高温再生器5からの冷媒蒸気の温熱で低温再生器6内の吸収液及び第1稀吸収液管21A内の稀吸収液を十分に加熱させることができる。
また、制御装置50は、冷却水温度センサ62が計測した温度が第1温度T1(15℃)以下であっても、圧力センサ53が検出した圧力が所定圧力(20kPa)以上になり、あるいは、冷媒温度センサ63が計測した温度が所定温度(30℃)より高くなると、開閉弁43を全閉にする。すなわち、本実施の形態では、冷却水温度センサ62が計測した温度が第1温度T1(15℃)以下である条件、圧力センサ53が検出した圧力が所定圧力(20kPa)未満である条件、及び、冷媒温度センサ63が計測した温度が所定温度(30℃)未満である条件の全てを満たした場合のみ、開閉弁43が開放される。これにより、冷却水入口温度が第1温度T1(15℃)以下であり、高温再生器5と凝縮器7との差圧が小さくても、高温再生器5内の圧力が所定圧力(20kPa)以上になり、あるいは、冷媒出口温度が所定温度(30℃)より高くなると、冷媒液がバイパス管42を流通しないので、ダンパ41によって冷媒管31を流れる冷媒の流速が低下し、高温再生器5からの冷媒蒸気の温熱で低温再生器6内の吸収液及び第1稀吸収液管21A内の稀吸収液を十分に加熱させることができる。
このように、本実施の形態では、高温再生器5と凝縮器7との差圧を冷温水入口温度及び高温再生器5内の圧力の両方に対応させているため、高温再生器5と凝縮器7との差圧を確実に検知できる。また、高温再生器5と凝縮器7との差圧及び冷媒出口温度に応じて開閉弁43を制御する構成としたため、高温再生器5と凝縮器7との差圧が小さくても、冷媒管31を流通する冷媒の流速が速く、冷媒の滞留が生じにくい場合には、開閉弁43が開放されるのを防止できるので、吸収式冷凍機100の性能の低下を抑制できる。さらに、凝縮器7内の圧力を検出する比較的高価な圧力検出手段を必要としないので、開閉弁43を制御することによるコストアップを抑制できる。
以上説明したように、本実施の形態によれば、低温再生器6の下流側の冷媒管31には、冷媒管31を流通する冷媒と、吸収器2から延びる第1稀吸収液管21Aを流通する稀吸収液との間で熱交換を行う冷媒ドレン熱回収器16が設けられ、高温再生器5に高温再生器5内の圧力を検出する圧力センサ53を設け、冷媒管31の冷媒ドレン熱回収器16出口側に冷媒の温度を計測する冷媒温度センサ63を設け、制御装置50は、冷却水温度センサ62の計測結果と、圧力センサ53の検出結果と、冷媒温度センサ63の計測結果とに応じて開閉弁43を制御する構成とした。この構成により、例えば、冷却水の温度が低い場合、かつ、高温再生器5内の圧力が低い場合、かつ、冷媒の冷媒ドレン熱回収器16出口側の温度が高い場合に、バイパス管42を流通する冷媒量を増加するように、開閉弁43を制御することにより、冷媒管31の冷媒を流れやすくすることができるので、吸収式冷凍機100を安定して運転させることができる。したがって、低温の冷却水を使用することができるので、吸収式冷凍機100のCOPを向上させることができる。また、冷媒管31を流通する冷媒の流速が速く、冷媒の滞留が生じにくい場合に、開閉弁43が開放されるのを防止できるので、吸収式冷凍機100のCOPを向上させることができる。
但し、上記実施の形態は本発明の一態様であり、本発明の趣旨を逸脱しない範囲において適宜変更可能であるのは勿論である。
例えば、上記実施の形態では、高温再生器5にて吸収液を加熱する加熱手段として燃料ガスを燃焼させて加熱を行うガスバーナ4を備える構成について説明したが、これに限るものではなく、灯油やA重油を燃焼させるバーナを備える構成や、蒸気や排気ガス等の温熱を用いて加熱する構成としてもよい。
また、上記実施の形態では、流路抵抗手段をダンパ41として説明したが、流路抵抗手段は、これに限定されず、例えば流量制御弁やオリフィスであってもよい。
また、上記実施の形態では、吸収式冷凍機100は、吸収器2から延びる稀吸収液管21が高温再生器5及び低温再生器6へと2つに分岐するいわゆるパラレルフローサイクルに形成されていたが、これに限定されず、例えば、高温再生器から流出した吸収液を低温再生器に供給するいわゆるシリーズフローサイクルや、低温再生器から流出した吸収液を高温再生器に供給するいわゆるリバースフローサイクルに形成された吸収式冷凍機に本発明を適用してもよい。
また、上記実施の形態では、吸収式冷温水機は二重効用型であるが、一重効用型を始め、一重二重効用型及び三重効用型の吸収式冷温水機及び吸収式ヒートポンプ装置に本発明を適用可能なことは勿論である。
1 蒸発器
2 吸収器
4B 燃料制御弁(入熱量制御弁)
5 高温再生器
6 低温再生器
7 凝縮器
15 冷却水管
16 冷媒ドレン熱回収器
21A 第1稀吸収液管(稀吸収液管)
31 冷媒管
41 ダンパ(流路抵抗手段)
42 バイパス管
43 開閉弁
50 制御装置(弁制御手段)
53 圧力センサ
62 冷却水温度センサ
63 冷媒温度センサ
100 吸収式冷凍機

Claims (5)

  1. 高温再生器、低温再生器、蒸発器、凝縮器、及び吸収器を備え、高温再生器と凝縮器とを低温再生器を経由する冷媒管で接続し、この冷媒管に、流路抵抗を付与する流路抵抗手段と、この流路抵抗手段をバイパスするバイパス管とを設け、このバイパス管に開閉弁を設けた吸収式冷凍機において、
    前記吸収器及び前記凝縮器に順次冷却水を流通させる冷却水管を設け、
    前記冷却水管の吸収器入口側に冷却水の温度を計測する冷却水温度センサを設け、
    前記冷却水温度センサの計測結果に応じて前記開閉弁を制御する弁制御手段を備えたことを特徴とする吸収式冷凍機。
  2. 前記弁制御手段は、前記冷却水温度センサが計測した温度が第1温度以下の場合に、前記開閉弁を全開にすることを特徴とする請求項1に記載の吸収式冷凍機。
  3. 前記弁制御手段は、前記冷却水温度センサが計測した温度が前記第1温度よりも高い第2温度に至った場合に、前記開閉弁を全閉にすることを特徴とする請求項2に記載の吸収式冷凍機。
  4. 前記高温再生器の入熱量を制御する入熱量制御弁を備え、
    前記弁制御手段は、前記冷却水温度センサの計測結果と、前記入熱量制御弁の開度とに応じて前記開閉弁を制御することを特徴とする請求項1に記載の吸収式冷凍機。
  5. 前記低温再生器の下流側の前記冷媒管には、当該冷媒管を流通する冷媒と、前記吸収器から延びる稀吸収液管を流通する稀吸収液との間で熱交換を行う冷媒ドレン熱回収器が設けられ、
    前記高温再生器に当該高温再生器内の圧力を検出する圧力センサを設け、
    前記冷媒管の冷媒ドレン熱回収器出口側に冷媒の温度を計測する冷媒温度センサを設け、
    前記弁制御手段は、前記冷却水温度センサの計測結果と、前記圧力センサの検出結果と、前記冷媒温度センサの計測結果とに応じて前記開閉弁を制御することを特徴とする請求項1に記載の吸収式冷凍機。
JP2010072574A 2010-03-26 2010-03-26 吸収式冷凍機 Active JP5575519B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010072574A JP5575519B2 (ja) 2010-03-26 2010-03-26 吸収式冷凍機
CN2010105687002A CN102200357B (zh) 2010-03-26 2010-11-30 吸收式制冷机
KR1020100120403A KR101167800B1 (ko) 2010-03-26 2010-11-30 흡수식 냉동기

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010072574A JP5575519B2 (ja) 2010-03-26 2010-03-26 吸収式冷凍機

Publications (2)

Publication Number Publication Date
JP2011202923A true JP2011202923A (ja) 2011-10-13
JP5575519B2 JP5575519B2 (ja) 2014-08-20

Family

ID=44661224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010072574A Active JP5575519B2 (ja) 2010-03-26 2010-03-26 吸収式冷凍機

Country Status (3)

Country Link
JP (1) JP5575519B2 (ja)
KR (1) KR101167800B1 (ja)
CN (1) CN102200357B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914081A (zh) * 2012-10-27 2013-02-06 双良节能系统股份有限公司 二段式烟气热水单双效复合型溴化锂吸收式制冷机组

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6765056B2 (ja) * 2016-11-10 2020-10-07 パナソニックIpマネジメント株式会社 吸収式冷凍機
KR102292398B1 (ko) * 2020-01-15 2021-08-20 엘지전자 주식회사 냉동기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54131160A (en) * 1978-03-31 1979-10-12 Sanyo Electric Co Ltd Controller for absorption machines
JPS5986876A (ja) * 1982-11-09 1984-05-19 三洋電機株式会社 二重効用吸収冷凍機の制御装置
JPH07280384A (ja) * 1994-04-11 1995-10-27 Yazaki Corp 二重効用吸収式冷温水機
JP2003287315A (ja) * 2002-03-28 2003-10-10 Sanyo Electric Co Ltd 吸収式冷凍機
JP2006250427A (ja) * 2005-03-10 2006-09-21 Yazaki Corp 吸収式冷凍機

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170090A (ja) 1996-12-11 1998-06-26 Sanyo Electric Co Ltd 吸収式冷凍装置
CN1211710A (zh) * 1997-09-12 1999-03-24 华中理工大学 一种吸收式制冷循环
JPH11230631A (ja) 1998-02-18 1999-08-27 Sanyo Electric Co Ltd 吸収式冷凍機
EP0978694A4 (en) * 1998-01-29 2000-11-08 Sanyo Electric Co ABSORPTION REFRIGERATOR
JP4166037B2 (ja) * 2002-05-24 2008-10-15 三洋電機株式会社 吸収冷温水機
JP2005300126A (ja) * 2004-03-15 2005-10-27 Sanyo Electric Co Ltd 吸収式冷凍機
JP2005282968A (ja) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd 吸収式冷凍機
JP4390267B2 (ja) * 2004-08-30 2009-12-24 東京瓦斯株式会社 一重二重効用吸収冷凍機およびその運転制御方法
JP2009085509A (ja) * 2007-09-28 2009-04-23 Sanyo Electric Co Ltd 吸収式冷凍機における低温熱交換器での高濃度吸収液結晶化防止方法
CN101619907B (zh) * 2009-07-24 2011-04-13 大连三洋制冷有限公司 一种高效率蒸汽双效溴化锂吸收式制冷机组

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54131160A (en) * 1978-03-31 1979-10-12 Sanyo Electric Co Ltd Controller for absorption machines
JPS5986876A (ja) * 1982-11-09 1984-05-19 三洋電機株式会社 二重効用吸収冷凍機の制御装置
JPH07280384A (ja) * 1994-04-11 1995-10-27 Yazaki Corp 二重効用吸収式冷温水機
JP2003287315A (ja) * 2002-03-28 2003-10-10 Sanyo Electric Co Ltd 吸収式冷凍機
JP2006250427A (ja) * 2005-03-10 2006-09-21 Yazaki Corp 吸収式冷凍機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914081A (zh) * 2012-10-27 2013-02-06 双良节能系统股份有限公司 二段式烟气热水单双效复合型溴化锂吸收式制冷机组

Also Published As

Publication number Publication date
KR20110108235A (ko) 2011-10-05
KR101167800B1 (ko) 2012-07-25
CN102200357B (zh) 2013-07-17
CN102200357A (zh) 2011-09-28
JP5575519B2 (ja) 2014-08-20

Similar Documents

Publication Publication Date Title
JP3883838B2 (ja) 吸収式冷凍機
JP5575519B2 (ja) 吸収式冷凍機
JP2005009754A (ja) 一重二重効用吸収冷凍機およびその運転制御方法
JP7213476B2 (ja) 吸収式冷凍機
CN107388615B (zh) 吸收式制冷机
JP2012202589A (ja) 吸収式ヒートポンプ装置
JP5405335B2 (ja) 吸収式冷凍機
JP2016176604A (ja) 吸収式冷凍機及びその制御方法
JP2018169075A (ja) 吸収式冷凍機
JP5449862B2 (ja) 吸収式冷凍装置
JP4090262B2 (ja) 吸収式冷凍機
JP7054855B2 (ja) 吸収式冷凍機
JP7573200B2 (ja) 吸収式冷凍機および吸収式冷凍機の制御方法
JP5967407B2 (ja) 吸収式冷温水機
JP5456368B2 (ja) 吸収式冷凍機
JP3851204B2 (ja) 吸収式冷凍機
JP6364238B2 (ja) 吸収式冷温水機
JP4326478B2 (ja) 一重二重効用吸収式冷凍機
JP6264636B2 (ja) 吸収式冷凍機
JP2010276244A (ja) 吸収式冷温水機
JP2011094910A (ja) 吸収式冷凍機
JP2010266170A (ja) 吸収式冷凍機
JP6765056B2 (ja) 吸収式冷凍機
JP4971929B2 (ja) 吸収式冷凍機の吸収液循環量制御方法
JP2017125653A (ja) 吸収式冷凍機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140702

R150 Certificate of patent or registration of utility model

Ref document number: 5575519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150