JP2010276244A - 吸収式冷温水機 - Google Patents

吸収式冷温水機 Download PDF

Info

Publication number
JP2010276244A
JP2010276244A JP2009127796A JP2009127796A JP2010276244A JP 2010276244 A JP2010276244 A JP 2010276244A JP 2009127796 A JP2009127796 A JP 2009127796A JP 2009127796 A JP2009127796 A JP 2009127796A JP 2010276244 A JP2010276244 A JP 2010276244A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
regenerator
hot water
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009127796A
Other languages
English (en)
Inventor
Shinichi Uekago
伸一 上篭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2009127796A priority Critical patent/JP2010276244A/ja
Priority to CN2010101594193A priority patent/CN101900456A/zh
Publication of JP2010276244A publication Critical patent/JP2010276244A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

【課題】小型化を図りつつ、冷媒ポンプのキャビテーションを防止可能な吸収式冷温水機を提供する。
【解決手段】高温再生器1、低温再生器2、凝縮器3、蒸発器4、及び吸収器5を備え、これらを配管接続して吸収液及び冷媒の循環サイクルをそれぞれ形成した吸収式冷温水機100において、蒸発器4の冷媒溜まり4Bから蒸発器4の散布器4Aへと冷媒を循環させる冷媒ポンプ14と、吸収器5の入口側の冷却水温度を検出する冷却水入口温度センサ52と、吸収器5の上流側の吸収液温度を検出する吸収液温度センサ53と、冷却水入口温度センサ52が検出した温度及び吸収液温度センサ53が検出した温度から求められるインバータ周波数に基づいて冷媒ポンプ14を運転させるインバータ制御手段60とを備える構成とする。
【選択図】図1

Description

本発明は、冷媒ポンプをインバータ制御する吸収式冷温水機に関する。
従来、高温再生器、低温再生器、凝縮器、蒸発器、及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環サイクルをそれぞれ形成した吸収式冷温水機が知られている。この蒸発器には、凝縮器から流入した冷媒が溜まる冷媒溜まりが設けられており、この冷媒溜まりには、蒸発器の上部に設けられた散布器へと液冷媒を循環させる冷媒ポンプを備えた冷媒管が接続されている(例えば、特許文献1参照)。
特許第3203555号公報
ところで、吸収式冷温水機では、温度の低い冷却水が用いられると、蒸発器で圧力が低下し、蒸発器で冷媒が過度に蒸発して冷媒溜まりに溜まる冷媒が少なくなる。また、冷房負荷が小さい場合には、高温再生器に投入される熱源量が抑えられ、高温再生器から蒸発器に供給される冷媒蒸気量が少なくなることにより、冷媒溜まりに溜まる冷媒が少なくなる。冷媒溜まりに溜まる冷媒が少なくなると、冷媒ポンプがキャビテーションを起こすおそれがある。
上記従来の構成では、冷媒の機内充填量を多くすることで、冷却水温度が低い場合や冷房負荷が小さい場合でも冷媒溜まりの冷媒の不足を回避できるものの、蒸発器の冷媒溜まり及び吸収器の稀液溜まりを大きくする必要があり、吸収式冷温水機の外形が大きくなってしまう。
本発明は、上述した事情に鑑みてなされたものであり、小型化を図りつつ、冷媒ポンプのキャビテーションを防止可能な吸収式冷温水機を提供することを目的とする。
上記課題を解決するため、本発明は、高温再生器、低温再生器、凝縮器、蒸発器、及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環サイクルをそれぞれ形成した吸収式冷温水機において、前記蒸発器の冷媒溜まりから該蒸発器の散布器へと冷媒を循環させる冷媒ポンプと、前記吸収器の入口側の冷却水温度を検出する冷却水入口温度センサと、前記吸収器の上流側の吸収液温度を検出する吸収液温度センサと、前記冷却水入口温度センサが検出した温度及び前記吸収液温度センサが検出した温度から求められるインバータ周波数に基づいて前記冷媒ポンプを運転させるインバータ制御手段とを備えたことを特徴とする。
上記構成によれば、冷却水入口温度センサが検出した温度及び吸収液温度センサが検出した温度から求められるインバータ周波数に基づいて冷媒ポンプを運転させるインバータ制御手段を備えたため、冷却水入口温度と、冷房負荷に対応する吸収器上流側の吸収液温度とに基づいて蒸発器で蒸発する冷媒量が制御されるので、冷媒溜まりの冷媒不足を抑制し、冷媒ポンプのキャビテーションを防止できる。また、冷却水入口温度センサ、吸収液温度センサ、及びインバータ制御手段を追加するだけでよいので、吸収式冷温水機の大型化を防止できる。
上記構成において、前記吸収液温度センサは、前記高温再生器の温度を検出する高温再生器温度センサであってもよい。
上記構成によれば、温度変化の大きい高温再生器温度に基づいて冷媒ポンプがインバータ制御されるので、より正確に冷房負荷の変動に対応させて蒸発器で蒸発する冷媒量を制御できる。
上記構成において、熱源温水再生器と、この熱源温水再生器の温度を検出する熱源温水再生器温度センサとを備え、前記インバータ制御手段は、前記高温再生器の熱源が投入される場合には、前記冷却水入口温度センサが検出した温度及び前記高温再生器温度センサが検出した温度から求められるインバータ周波数に基づいて前記冷媒ポンプを運転させ、前記高温再生器の熱源が投入されない場合には、前記冷却水入口温度センサが検出した温度及び前記熱源温水再生器温度センサが検出した温度から求められるインバータ周波数に基づいて前記冷媒ポンプを運転させてもよい。
上記構成によれば、インバータ制御手段は、高温再生器の熱源が投入される場合には、冷却水入口温度センサが検出した温度及び高温再生器温度センサが検出した温度から求められるインバータ周波数に基づいて冷媒ポンプを運転させ、高温再生器の熱源が投入されない場合には、冷却水入口温度センサが検出した温度及び熱源温水再生器温度センサが検出した温度から求められるインバータ周波数に基づいて冷媒ポンプを運転させるため、冷却水入口温度と、冷房負荷に対応する高温再生器温度又は熱源温水再生器温度とに基づいて蒸発器で蒸発する冷媒量が制御されるので、冷媒溜まりの冷媒不足を抑制し、冷媒ポンプのキャビテーションを防止できる。また、冷却水入口温度センサ、高温再生器温度センサ、熱源温水再生器温度センサ、及びインバータ制御手段を追加するだけでよいので、吸収式冷温水機の大型化を防止できる。
本発明によれば、冷却水入口温度センサが検出した温度及び高温再生器温度センサが検出した温度から求められるインバータ周波数に基づいて冷媒ポンプを運転させるインバータ制御手段を備えたため、冷却水入口温度と、冷房負荷に対応する吸収器上流側の吸収液温度とに基づいて蒸発器で蒸発する冷媒量が制御されるので、冷媒溜まりの冷媒不足を抑制し、冷媒ポンプのキャビテーションを防止できる。また、冷却水入口温度センサ、吸収液温度センサ、及びインバータ制御手段を追加するだけでよいので、吸収式冷温水機の大型化を防止できる。
以下、図面を参照して本発明の好適な実施の形態について説明する。
〔第一の実施の形態〕
図1は、本発明の第一の実施の形態に係る吸収式冷温水機を示す回路図である。
吸収式冷温水機100は、例えば、冷媒に水、吸収液に臭化リチウム(LiBr)溶液を用いた二重効用吸収式冷温水機である。この吸収式冷温水機100は、高温再生器1、低温再生器2、凝縮器3、蒸発器4、吸収器5、高温熱交換器6、及び低温熱交換器7等が配管接続され、吸収液及び冷媒の循環サイクルが構成されている。
高温再生器1には、インバータ8Aにより周波数可変に制御される第1吸収液ポンプ8により、冷媒が吸収液に吸収された稀釈吸収液(以下、稀液と言う。)を吸収器5から導く稀液管20が接続されている。高温再生器1内には、第1吸収液ポンプ8によって吸収器5から稀液管20を介して導かれた稀液が収容されており、この稀液の液面を検知する液面検知器1Aが設けられている。この稀液は、例えば都市ガスを燃料とするバーナ10によって加熱されるようになっている。バーナ10は、燃料に点火する点火器10Aと、燃料量を制御して熱源量を可変にする燃料制御弁10Bとを備えて構成されている。高温再生器1には、排ガスを排気する排気管11が設けられている。
また、高温再生器1には、稀液が加熱されることで生じた冷媒蒸気を凝縮器3へと導く冷媒蒸気管21と、冷媒蒸気が分離されて濃度が高くなった中間液を低温再生器2へと導く吸収液管22とが接続されている。冷媒蒸気管21は、第1冷媒蒸気管21Aと第2冷媒蒸気管21Bとに分岐され、第1冷媒蒸気管21Aは、低温再生器2を伝熱管として経由し、凝縮器3に接続されている。第2冷媒蒸気管21Bは、開閉弁31を備え、吸収器5に接続されている。吸収液管22は、第1吸収液管22Aと第2吸収液管22Bとに分岐され、第1吸収液管22Aには高温熱交換器6が設けられ、第2吸収液管22Bは開閉弁32を備え、吸収器5に接続されている。
低温再生器2には、第1冷媒蒸気管23Aを流通する冷媒蒸気によって中間液が加熱されることで生じた冷媒蒸気を凝縮器3へと流入させるエリミネータ12が仕切壁の上部に設けられている。また、低温再生器2には、冷媒蒸気が分離された濃縮吸収液(以下、濃液と言う。)を吸収器5へと導く吸収液管23が接続されている。この吸収液管23は、低温熱交換器7を備え、吸収器5内の上部に設けられた散布器5Aに接続されている。
凝縮器3には、この凝縮器3の下部から蒸発器4へ、途中にU字部を備えた冷媒管25が接続され、重力の作用により冷媒管25を介して流下する凝縮器3内の液冷媒が蒸発器4内に流入するようになっている。また、凝縮器3内には、冷却水が流通する冷却水管26が伝熱管として配置されている。
蒸発器4には、凝縮器3から流入した冷媒が溜まる冷媒溜まり4Bが形成され、この冷媒溜まり4Bから上部に設けられた散布器4Aへと液冷媒を循環させる冷媒ポンプ14を備えた冷媒管27が接続されている。冷媒ポンプ14は、インバータ14Aにより周波数可変に制御されるよう構成されている。蒸発器4内には、冷温水管28が伝熱管として配置され、この冷温水管28を介して、ブライン(例えば、冷水又は温水)が図示しない熱負荷(例えば空気調和装置)に循環供給される。冷温水管28と冷却水管26とは、開閉弁33が設けられた接続管29によって接続されている。
蒸発器4及び吸収器5の内部は高真空に保持されている。蒸発器4と吸収器5との間は仕切壁15Aで仕切られており、仕切壁15Aの上部には、蒸発器4において散布器4Aから冷温水管28に散布されて蒸発した冷媒蒸気が吸収器5へと流入するエリミネータ15Bが設けられている。
吸収器5の下部には、蒸発器4からの冷媒蒸気が散布器5Aから散布された濃液に吸収された稀液が溜まる稀液溜まり5Bが形成されている。この稀液溜まり5Bには、冷温水管28から分岐して開閉弁34が設けられた分岐管30と、上記稀液管20とが接続されている。吸収器5内には、冷却水が流通する冷却水管26が伝熱管として配置されている。この冷却水管26は、この吸収器5内を経由して上記凝縮器3内を経由するように配設されている。
吸収式冷温水機100には、冷温水管28の蒸発器4出口側に設けられて冷温水出口温度を検出する冷温水出口温度センサ51と、冷却水管26の吸収器5入口側に設けられて冷却水入口温度を検出する冷却水入口温度センサ52と、高温再生器1に設けられて吸収液の温度を検出する高温再生器温度センサ(吸収液温度センサ)53とが設けられている。
また、吸収式冷温水機100には、吸収式冷温水機100の運転の開始/停止を指示するための図示しない運転/停止スイッチと、吸収式冷温水機100の制御を行う制御装置(インバータ制御手段)60とが設けられている。この制御装置60は、図示しない計時手段を備えている。制御装置60は、液面検知器1Aにより検出される高温再生器1における吸収液の液面の高さ、温度センサ51〜53により検出される冷温水、冷却水、及び吸収液の温度等を取得する。そして、制御装置60は、取得した値に基づいて、点火器10Aの点火制御、燃料制御弁10Bの開閉及び開度制御、インバータ8A,14Aのインバータ制御等を実行する。
吸収式冷温水機100は、制御装置60の制御により、冷温水管28から冷水を取り出す冷房運転と、冷温水管28から温水を取り出す暖房運転とに運転モードが切り替えられる。
冷房運転時には、冷温水管28を介して熱負荷に循環供給されるブライン(例えば冷水)の蒸発器4出口側温度が所定の設定温度、例えば7℃になるように吸収式冷温水機100に投入される熱量が制御装置60により制御される。具体的には、制御装置60は、ポンプ8,14を起動し、冷却水管26に冷却水を流し、バーナ10で燃料を燃焼させ、冷温水出口温度センサ51が検出するブラインの温度が所定の7℃となるようにバーナ10の火力を制御する。なお、冷房運転時には、開閉弁31〜34は閉じられる。
この場合、高温再生器1内の吸収液は、バーナ10により加熱され、濃縮して中間液と冷媒蒸気とに分離する。この中間液は、吸収液管22,22Aを流通して高温熱交換器6を経由し、吸収器5から流出する稀液によって冷却された後、低温再生器2に入る。高温再生器1で発生した冷媒蒸気は、冷媒蒸気管21,21Aを流通して低温再生器2を経由し、低温再生器2に供給された中間液を加熱して、凝縮して液冷媒となって凝縮器3に入る。高温再生器1からの冷媒蒸気によって加熱された低温再生器2の中間液は、濃縮して濃液と冷媒蒸気とに分離する。この冷媒蒸気は、エリミネータ12を通って凝縮器3に入る。
低温再生器2から凝縮器3に入った冷媒蒸気は、冷却水管26内を流通する冷却水によって冷却されて液冷媒となる。この液冷媒及び高温再生器1からの液冷媒は、冷媒管25を流通して蒸発器4に入り、一部蒸発しながらも冷媒溜まり4Bに溜まる。冷媒溜まり4Bに溜まった液冷媒は、冷媒ポンプ14によって冷媒管27を流通して蒸発器4内の散布器4Aに供給され、散布器4Aから冷温水管28の表面に散布される。このとき、冷媒は気化熱により、冷温水管28内を流通する温水の熱を奪い取り、温水が冷却されて冷水となる。この冷水は、熱負荷に供給されて冷房等の冷却運転が行われる。蒸発器4で蒸発した冷媒蒸気は、エリミネータ15Bを通って吸収器5に入る。
一方で、低温再生器2で濃縮された濃液は、吸収液管23を流通して低温熱交換器7を経由し、第1吸収液ポンプ8によって吸収器5から流出した稀液によって冷却された後、吸収器5内の散布器5Aに供給され、散布器5Aから冷却水管26の表面に散布される。吸収器5では、蒸発器4で発生した冷媒蒸気が濃液に吸収され、濃度の低下した稀液となって稀液溜まり5Bに溜まる。なお、冷媒蒸気が濃液に吸収される際に発生する熱は、冷却水管26内を流通する冷却水により冷却される。
吸収器5の稀液溜まり5Bに溜まった稀液は、第1吸収液ポンプ8によって稀液管20から流出される。この稀液は、稀液管20を流通して低温熱交換器7を経由し、吸収液管23を流通する濃液によって加熱された後、高温熱交換器6を経由し、第1吸収液管22Aを流通する中間液によって加熱され、高温再生器1に入る。
暖房運転時には、冷温水管28を介して熱負荷に循環供給されるブライン(例えば温水)の蒸発器4出口側温度が所定の設定温度、例えば55℃になるように吸収式冷温水機100に投入される熱量が制御装置60により制御される。具体的には、制御装置60は、第1吸収液ポンプ8だけを起動し、冷却水管26に冷却水を流さないで、バーナ10で燃料を燃焼させ、冷温水出口温度センサ51が計測するブラインの温度が所定の55℃となるようにバーナ10の火力を制御する。なお、暖房運転時には、開閉弁31〜33は開かれ、開閉弁34は閉じられる。
この場合、高温再生器1内の吸収液は、バーナ10により加熱され、濃縮して中間液と冷媒蒸気とに分離する。この中間液は、吸収液管22,22Bを流通して吸収器5に入って稀液溜まり5Bに溜まり、冷媒蒸気は、冷媒蒸気管21を流通し、主に流路抵抗の小さい第2冷媒蒸気管21Bを流通して吸収器5に入る。吸収器5に入った冷媒蒸気は、エリミネータ15Bを通って蒸発器4に入り、冷温水管28を流通する冷水により冷却されて液冷媒となって冷媒溜まり5Bに溜まる。このとき、冷温水管28を流通する冷水は、蒸発器4に入った冷媒蒸気によって加熱されて温水となる。この温水は、熱負荷に供給されて暖房等の暖房運転が行われる。冷媒溜まり4Bに溜まった冷媒は、冷媒管27及び分岐管30を流通して吸収器5に入って稀液溜まり5Bに溜まる。稀液溜まり5Bでは、冷媒が中間液に吸収されて濃度の低下した稀液となり、この稀液は、第1吸収液ポンプ8によって稀液管20を流通して高温再生器1に供給される。
なお、本実施の形態の吸収式冷温水機100は、蒸発器4で凝縮した冷媒が冷媒管27、分岐管30を流通して吸収器5に入るように構成されているが、開閉弁34を閉じ、蒸発器4で凝縮して冷媒溜まり4Bに溜まった冷媒を冷媒溜まり4Bからオーバーフローさせて吸収器5に入るように構成することもできる。
この吸収式冷温水機100では、冷房運転時において温度の低い冷却水が用いられた場合に、吸収器5及び蒸発器4内で圧力が低下し、蒸発器4で冷媒が過度に蒸発することにより、蒸発器4の冷媒溜まり4Bに溜まる冷媒が少なくなる可能性がある。また、冷房負荷が小さい場合には、高温再生器1に投入される熱源量が抑えられ、高温再生器1から蒸発器4に供給される冷媒蒸気量が少なくなることにより、蒸発器4の冷媒溜まり4Bに溜まる冷媒が少なくなる。冷媒溜まり4Bの冷媒が少なくなると、冷媒ポンプ14がキャビテーションを起こすおそれがある。
そこで、制御装置60は、冷却水入口温度及び冷房負荷(例えば、高温再生器温度)に基づいて、冷媒ポンプ14のインバータ周波数を制御する冷媒ポンプ制御を実行し、蒸発器4で蒸発させる冷媒量を制御することにより、冷媒ポンプ14のキャビテーションを防止する。
制御装置60は、冷却水入口温度及び高温再生器温度と、これら冷却水入口温度及び高温再生器温度に対応する最適な冷媒ポンプ14のインバータ周波数との関係を示す情報を予め実験等によって取得しており、この情報を用いて、冷媒ポンプ制御を実行する。
図2は、冷却水入口温度及び高温再生器温度と、これら冷却水入口温度及び高温再生器温度に対応する最適な冷媒ポンプ14のインバータ周波数との関係を示す図である。なお、図2は、横軸に高温再生器温度を示し、縦軸に冷媒ポンプ14のインバータ周波数を示している。
図2に示すM1〜M4は、冷却水入口温度毎の高温再生器温度とインバータ周波数との関係を示す。これらM1〜M4は、この順で冷却水入口温度が高くなっており、M1では冷却水入口温度が比較的低く、M4では冷却水入口温度が比較的高い。
図2に示すように、一定の高温再生器温度において、冷却水入口温度が低くなる程、最適となる冷媒ポンプ14のインバータ周波数は小さくなっている。
詳述すると、冷却水入口温度が低くなる程、吸収器5及び蒸発器4内で圧力が低下し、蒸発器4で冷媒が蒸発しやすくなって冷媒溜まり4B内の冷媒量が不足する。したがって、冷却水入口温度が低い程、冷媒ポンプ14のインバータ周波数を小さくし、冷媒溜まり4Bから散布器4Aへと供給する液冷媒の量を減らすことで、蒸発器4で蒸発させる冷媒量を削減し、冷媒溜まり4Bの冷媒不足を抑制できる。
一方、一定の冷却水入口温度において、高温再生器温度が低くなる程、最適となる冷媒ポンプ14のインバータ周波数は小さくなっている。
詳述すると、高温再生器温度が低くなる程、高温再生器1で蒸発する冷媒量が減少し、蒸発器4に供給される冷媒量が減少して冷媒溜まり4B内の冷媒量が不足する。したがって、高温再生器温度が低い程、冷媒ポンプ14のインバータ周波数を小さくし、冷媒溜まり4Bから散布器4Aへと供給する液冷媒の量を減らすことで、蒸発器4で蒸発させる冷媒量を削減し、冷媒溜まり4Bの冷媒不足を抑制できる。
次に、図3を参照して、吸収式冷温水機100の冷媒ポンプ制御手順を説明する。
制御装置60は、吸収式冷温水機100が起動された場合、あるいは、運転モードの切り替えが行われた場合には、吸収式冷温水機100の運転モードが冷房運転か否か判別する(ステップS1)。
吸収式冷温水機100の運転モードが冷房運転の場合(ステップS1:Yes)、制御装置60は、冷却水入口温度センサ52から冷却水入口温度を取得し、高温再生器温度センサ53から高温再生器温度を取得する。そして、制御装置60は、予め実験等によって取得された、冷却水入口温度及び高温再生器温度と、これら冷却水入口温度及び高温再生器温度に対応する最適な冷媒ポンプ14のインバータ周波数との関係を示す情報に基づいて、取得した冷却水入口温度及び高温再生器温度に対応するインバータ周波数を算出し、算出したインバータ周波数で冷媒ポンプ14を運転する(ステップS2)。
次いで、制御装置60は、冷温水出口温度センサ51から冷水出口温度を取得し、この冷水出口温度に基づき冷媒ポンプ14を運転又は停止する(ステップS3)。具体的には、制御装置60は、冷水出口温度が所定温度、例えば5℃未満になった場合には、冷媒ポンプ14を停止し、その後、冷水出口温度が所定温度、例えば5.5℃以上になった場合には、冷媒ポンプ14を運転する制御を行う。
そして、制御装置60は、吸収式冷温水機100の停止スイッチがONにされたか否か判別する(ステップS4)。停止スイッチがONにされていない場合(ステップS4:No)、制御装置60は、処理をステップS1に移行する。
停止スイッチがONにされた場合(ステップS4:Yes)、制御装置60は、停止スイッチがONにされてからの時間を計時手段によってカウントし、所定の時間Tが経過するまで(ステップS5:No)、ステップS1からステップS5の処理を繰り返す。
停止スイッチがONにされてからの時間が時間Tを経過した場合(ステップS5:Yes)、制御装置60は、冷媒ポンプ14を停止し、冷媒ポンプ制御の処理を終了する。
一方、吸収式冷温水機100の運転モードが暖房運転の場合(ステップS1:No)、制御装置60は、処理をステップS6に移行し、冷媒ポンプ制御の処理を終了する。
以上説明したように、本実施の形態によれば、冷却水入口温度センサ52が検出した冷却水入口温度及び高温再生器温度センサ53が検出した高温再生器温度から求められるインバータ周波数に基づいて冷媒ポンプ14を運転させる制御装置60を備えたため、冷却水入口温度と、冷房負荷に対応する高温再生器温度とに基づいて蒸発器4で蒸発する冷媒量が制御されるので、冷媒溜まり4Bの冷媒不足を抑制し、冷媒ポンプ14のキャビテーションを防止できる。また、冷却水入口温度センサ52、高温再生器温度センサ53、及び制御装置60を追加するだけでよいので、吸収式冷温水機100の大型化を防止できる。
また、冷媒ポンプ14は、冷却水入口温度と、高温再生器温度とに基づいてインバータ制御されるので、冷却水温度が低い場合や冷房負荷が小さい場合にも、蒸発器4で蒸発する冷媒を確保でき、例えば、冷媒溜まりの冷媒の液面高さを検知して冷媒ポンプを運転/停止する場合に比べ、冷水を安定した温度で供給できるとともに、構成を簡略化できる。
さらに、冷房負荷を高温再生器1の温度で判断することで、例えば、冷水の入口温度、出口温度、及び流量から冷房負荷を算出する場合に比べ、構成を簡素化できる。
これに加え、温度変化が大きい高温再生器温度に基づいて冷媒ポンプ14がインバータ制御されるので、高温再生器1の下流側であって吸収器5の上流側、例えば、吸収液管22,22A,23や低温再生器2の吸収液温度を検出する場合に比べ、より正確に冷房負荷の変動に対応させて蒸発器4で蒸発する冷媒量を制御できる。
〔第二の実施の形態〕
図4は、本発明の第二の実施の形態に係る吸収式冷温水機200を示す回路図である。なお図4では、図1に示す吸収式冷温水機100と同一部分には同一の符号を付して説明を省略する。
吸収式冷温水機200は、例えば、冷媒に水、吸収液に臭化リチウム(LiBr)溶液を用いた一重二重効用吸収式冷温水機である。この吸収式冷温水機200は、熱源温水再生器201、熱源温水凝縮器202、高温再生器1、低温再生器2、凝縮器3、蒸発器4、吸収器5、高温熱交換器6、及び低温熱交換器7等が配管接続され、吸収液及び冷媒の循環サイクルが構成されている。
熱源温水再生器201には、第1吸収液ポンプ8により、稀液を吸収器5から導く稀液管203が接続されている。熱源温水再生器201内には、図示しない熱源発生装置(例えば太陽熱温水器やコージェネレーション装置)で生成された比較的低温(例えば約80℃程度)の排温水が流通する排温水管204が伝熱管として配置されている。排温水管204は、排温水管204の熱源温水再生器201入口側と熱源温水再生器201出口側とを結ぶバイパス管204Aと、熱源温水再生器201に供給する排温水の流量を調整するために切り替えられる三方弁204Bとを備えている。
熱源温水再生器201には、排温水管204を流通する排温水によって稀液が加熱されることで生じた冷媒蒸気を熱源温水凝縮器202へと流入させるエリミネータ205が仕切壁の上部に設けられている。また、熱源温水再生器201には、冷媒蒸気が分離された稀中間液を高温再生器1へと導く吸収液管206が接続されている。この吸収液管206は、第2吸収液ポンプ207を備えており、第2吸収液ポンプ207上流側は、バイパス管208を介して吸収液管23に接続されている。
熱源温水凝縮器202内には、冷却水が流通する冷却水管26が伝熱管として配置されている。熱源温水凝縮器202の下部には、冷却水管26を流通する冷却水によって冷却されることで冷媒蒸気が凝縮した液冷媒を蒸発器4に導く冷媒管209が接続されている。冷媒管209は、冷媒管25のU字部に接続されている。
吸収式冷温水機200には、冷温水管28の蒸発器4出口側に設けられて冷温水出口温度を検出する冷温水出口温度センサ51と、冷却水管26の吸収器5入口側に設けられて冷却水入口温度を検出する冷却水入口温度センサ52と、高温再生器1に設けられて吸収液の温度を検出する高温再生器温度センサ53と、吸収液管206の熱源温水再生器201出口側に設けられて吸収液の温度を検出する熱源温水再生器温度センサ54とが設けられている。
また、吸収式冷温水機200には、吸収式冷温水機200の運転の開始/停止を指示するための図示しない運転/停止スイッチと、吸収式冷温水機200の制御を行う制御装置(インバータ制御手段)60とが設けられている。この制御装置60は、図示しない計時手段を備えている。制御装置60は、液面検知器1Aにより検出される高温再生器1における吸収液の液面の高さ、温度センサ51〜54により検出される冷温水、冷却水、及び吸収液の温度等を取得する。そして、制御装置60は、取得した値に基づいて、点火器10Aの点火制御、燃料制御弁10Bの開閉及び開度制御、インバータ8A,14Aのインバータ制御、第2吸収液ポンプ207の運転/停止制御、三方弁204Bの切り替え制御等を実行する。
吸収式冷温水機200は、制御装置60の制御により、冷温水管28から冷水を取り出す冷房運転と、冷温水管28から温水を取り出す暖房運転とに運転モードが切り替えられる。また、吸収式冷温水機200は、制御装置60の制御により、熱源温水再生器201に供給される温水を熱源として吸収液を加熱再生する温水単独運転(一重効用運転)と、高温再生器1のバーナ10を熱源として吸収液を加熱再生するガス加熱運転(一重二重効用運転、二重効用運転)とに運転モードが切り替えられる。
冷房運転時において、熱負荷が大きく、且つ、排温水管204を介して熱源温水再生器201に供給する排温水の温度が所定温度(例えば85℃)に達している時には、冷温水管28を介して熱負荷に循環供給されるブライン(例えば冷水)の蒸発器4出口側温度が所定の設定温度、例えば7℃になるように吸収式冷温水機200に投入される熱量が制御装置60により制御される。具体的には、制御装置60は、全てのポンプ8,14,207を起動し、冷却水管26に冷却水を流し、バーナ10で燃料を燃焼させるとともに、熱源温水再生器201に温水を定格量供給する一重二重効用運転(ガス加熱運転)を行い、冷温水出口温度センサ51が検出するブラインの温度が所定の7℃となるようにバーナ10の火力を制御する。なお、冷房運転時には、開閉弁31〜34は閉じられる。
この場合、熱源温水再生器201内の吸収液は、排温水管204を流通する排温水により加熱され、濃縮して稀中間液と冷媒蒸気とに分離する。この稀中間液は、第2吸収液ポンプ207によって吸収液管206を流通して高温熱交換器6を経由し、高温再生器1に供給される。熱源温水再生器201で発生した冷媒蒸気は、エリミネータ205を通って熱源温水凝縮器202に入る。熱源温水再生器201から熱源温水凝縮器202に入った冷媒蒸気は、冷却水管26内を流通する冷却水によって冷却されて液冷媒となる。この液冷媒は、冷媒管209を介して熱源温水凝縮器202から流出する。
高温再生器1に供給された稀中間液は、バーナ10により加熱され、さらに濃縮して濃中間液と冷媒蒸気とに分離する。この濃中間液は、吸収液管22,22Aを流通して高温熱交換器6を経由し、熱源温水再生器201から流出する稀中間液によって冷却された後、低温再生器2に入る。高温再生器1で発生した冷媒蒸気は、冷媒蒸気管21,21Aを流通して低温再生器2を経由し、低温再生器2に供給された濃中間液を加熱して、凝縮して液冷媒となって凝縮器3に入る。高温再生器1からの冷媒蒸気によって加熱された低温再生器2の濃中間液は、濃縮して濃液と冷媒蒸気とに分離する。この冷媒蒸気は、エリミネータ12を通って凝縮器3に入る。
低温再生器2から凝縮器3に入った冷媒蒸気は、冷却水管26内を流通する冷却水によって冷却されて液冷媒となる。この液冷媒及び高温再生器1からの液冷媒は、冷媒管25を流通し、冷媒管209を流通する液冷媒と合流して蒸発器4に入り、一部蒸発しながらも冷媒溜まり4Bに溜まる。冷媒溜まり4Bに溜まった液冷媒は、冷媒ポンプ14によって冷媒管27を流通して蒸発器4内の散布器4Aに供給され、散布器4Aから冷温水管28の表面に散布される。このとき、冷媒は気化熱により、冷温水管28内を流通する温水の熱を奪い取り、温水が冷却されて冷水となる。この冷水は、熱負荷に供給されて冷房等の冷却運転が行われる。蒸発器4で蒸発した冷媒蒸気は、エリミネータ15Bを通って吸収器5に入る。
一方で、低温再生器2で濃縮された濃液は、吸収液管23を流通して低温熱交換器7を経由し、第1吸収液ポンプ8によって吸収器5から流出した稀液によって冷却された後、吸収器5内の散布器5Aに供給され、散布器5Aから冷却水管26の表面に散布される。吸収器5では、蒸発器4で発生した冷媒蒸気が濃液に吸収され、濃度の低下した稀液となって稀液溜まり5Bに溜まる。なお、冷媒蒸気が濃液に吸収される際に発生する熱は、冷却水管26内を流通する冷却水により冷却される。
吸収器5の稀液溜まり5Bに溜まった稀液は、第1吸収液ポンプ8によって稀液管203を流通して低温熱交換器7を経由し、吸収液管23を流通する濃液によって加熱された後、熱源温水再生器201に供給される。
一重二重効用運転時においては、冷温水出口温度センサ51が計測する温度が所定の7℃になるように、バーナ10による加熱量、具体的にはバーナ10に供給する燃料量が制御装置60により制御される。そして、バーナ10による加熱量を最小にしても、冷温水出口温度センサ51が所定の7℃より低い温度を検出すると、制御装置60は、バーナ10による加熱を停止して一重効用運転(温水単独運転)に移行する。この場合、制御装置60は、高温再生器1内に貯留された吸収液の液面の高さが、液面検知器1Aの下端部よりも高い所定位置となるまで第2吸収液ポンプ207を運転し、この所定位置に至った時に、第2吸収液ポンプ207の運転を停止する。
一重効用運転における吸収液は、排温水管204を流通する排温水により熱源温水再生器201においてだけ加熱され、冷媒を蒸発分離して濃液となる。この濃液は、吸収液管206、バイパス管208、吸収液管23を流通し、低温熱交換器7を経由して吸収器5に入る。
一方、熱源温水再生器201で発生した冷媒蒸気は、エリミネータ205を通って熱源温水凝縮器202に入り、冷却水管26内を流通する冷却水によって冷却されて液冷媒となる。この液冷媒は、冷媒管209を介して蒸発器4に入り、一部蒸発しながらも冷媒溜まり4Bに溜まる。冷媒溜まり4Bに溜まった液冷媒は、冷媒ポンプ14によって冷媒管27を介して蒸発器4内の散布器4Aに供給され、散布器4Aから冷温水管28の表面に散布される。このとき、冷媒は気化熱により、冷温水管28内を流通する温水の熱を奪い取り、温水が冷却されて冷水となる。なお、冷媒蒸気が濃液に吸収される際に発生する熱は、冷却水管26内を流通する冷却水により冷却される。
一重効用運転時においては、冷温水出口温度センサ51が計測する温度が所定の7℃になるように、熱源温水再生器201における加熱量、具体的には排温水管204を介して熱源温水再生器201に供給する排温水の量、すなわち三方弁204Bの開度が制御装置60により制御される。
そして、排温水管204を流れる排温水の全量が熱源温水再生器201に流れるように三方弁204Bを操作しても、冷温水出口温度センサ51が所定温度の7℃以下の温度を計測しない時には、上記のようにバーナ10で燃料を燃焼させ、高温再生器1における吸収液の加熱再生と冷媒蒸気の生成とを再開して一重二重効用運転に戻る。
また、一重効用運転時において、熱負荷は大きいが、排温水管204を介して熱源温水再生器201に供給する排温水の温度が所定の85℃以下に低下した時(例えば、天候不順等により太陽熱温水器から供給される温水温度が安定しない時)には、熱源温水再生器201に温水が供給されないように三方弁204Bを切り替えると共に、ポンプ8,14,207を起動し、且つ、バーナ10において燃料を燃焼させる二重効用運転(ガス加熱運転)を行う。この場合も、冷温水出口温度センサ51が計測するブラインの温度が所定温度の7℃となるように、バーナ10の火力が制御装置60により制御される。
この二重効用運転では、吸収器5の稀液溜まり5Aにある稀液は第1吸収液ポンプ8により熱源温水再生器201に供給されるが、熱源温水再生器201には熱源としての排温水は供給されていない。このため、熱源温水再生器201に供給された稀液は、加熱されることなく、第2吸収液ポンプ207により吸収液管206を流通し、高温熱交換器6を経由して高温再生器1に供給され、その後は一重二重効用運転と同様に循環しながら加熱されて、高温再生器1と低温再生器2とで吸収液の濃縮再生と冷媒の分離生成とがなされる。この二重効用運転時に、熱源温水再生器201に供給する温水の温度が所定の85℃に達した時には、冷房負荷の大きさに応じて、一重二重効用運転または一重効用運転が行われる。
暖房運転時には、冷温水管28を介して熱負荷に循環供給されるブライン(例えば温水)の蒸発器4出口側温度が所定の設定温度、例えば55℃になるように吸収式冷温水機200に投入される熱量が制御装置60により制御される。具体的には、制御装置60は、ポンプ8,207だけを起動し、冷却水管26に冷却水を流さないで、バーナ10で燃料を燃焼させるとともに、熱源温水再生器201に排温水が供給されないように三方弁204Bを切り替え、冷温水出口温度センサ51が検出するブラインの温度が所定の55℃となるようにバーナ10の火力を制御する。なお、暖房運転時には、開閉弁31〜33は開かれ、開閉弁34は閉じられる。
本実施の形態における暖房時の吸収液及び冷媒は、第一の実施の形態における暖房時の吸収液及び冷媒と同様に作用するため、ここでは説明を省略する。
この吸収式冷温水機200では、冷房運転時において温度の低い冷却水が用いられた場合に、吸収器5及び蒸発器4内で圧力が低下し、蒸発器4で冷媒が過度に蒸発することにより、蒸発器4の冷媒溜まり4Bに溜まる冷媒が少なくなる可能性がある。また、バーナ10を熱源とするガス加熱運転時に冷房負荷が小さい場合には、高温再生器1に投入される熱源量が抑えられ、高温再生器1から蒸発器4に供給される冷媒蒸気量が少なくなることにより、蒸発器4の冷媒溜まり4Bに溜まる冷媒が少なくなる。さらに、排温水を熱源とする温水単独運転時に冷房負荷が小さい場合には、熱源温水再生器201に供給される排温水量が抑えられ、熱源温水再生器201から蒸発器4に供給される冷媒蒸気量が少なくなることにより、蒸発器4の冷媒溜まり4Bに溜まる冷媒が少なくなる。冷媒溜まり4Bの冷媒が少なくなると、冷媒ポンプ14がキャビテーションを起こすおそれがある。
そこで、制御装置60は、ガス加熱運転の場合には、冷却水入口温度及び冷房負荷(例えば、高温再生器温度)に基づいて、冷媒ポンプ14のインバータ周波数を制御し、温水単独運転の場合には、冷却水入口温度及び冷房負荷(例えば、熱源温水再生器温度)に基づいて、冷媒ポンプ14のインバータ周波数を制御する冷媒ポンプ制御を実行し、蒸発器4で蒸発させる冷媒量を制御することにより、冷媒ポンプ14のキャビテーションを防止する。
制御装置60は、ガス加熱運転時における冷却水入口温度及び高温再生器温度と、これら冷却水入口温度及び高温再生器温度に対応する最適な冷媒ポンプ14のインバータ周波数との関係を示す情報、及び、温水単独運転時における冷却水入口温度及び熱源温水再生器温度と、これら冷却水入口温度及び熱源温水再生器温度に対応する最適な冷媒ポンプ14のインバータ周波数との関係を示す情報を予め実験等によって取得しており、この情報を用いて、冷媒ポンプ制御を実行する。
なお、ガス加熱運転時において、冷却水入口温度及び高温再生器温度と、これら冷却水入口温度及び高温再生器温度に対応する最適な冷媒ポンプ14のインバータ周波数との関係は、図2に示す吸収式冷温水機100における関係と略同等のため、ここでは説明を省略する。
図5は、冷却水入口温度及び熱源温水再生器温度と、これら冷却水入口温度及び熱源温水再生器温度に対応する最適な冷媒ポンプ14のインバータ周波数との関係を示す図である。なお、図5は、横軸に熱源温水再生器温度を示し、縦軸に冷媒ポンプ14のインバータ周波数を示している。
図5に示すN1〜N4は、冷却水入口温度毎の熱源温水再生器温度とインバータ周波数との関係を示す。これらN1〜N4は、この順で冷却水入口温度が高くなっており、N1では冷却水入口温度が比較的低く、N4では冷却水入口温度が比較的高い。
図5に示すように、一定の熱源温水再生器温度において、冷却水入口温度が低くなる程、最適となる冷媒ポンプ14のインバータ周波数は小さくなっている。
詳述すると、冷却水入口温度が低くなる程、吸収器5及び蒸発器4内で圧力が低下し、蒸発器4で冷媒が蒸発しやすくなって冷媒溜まり4B内の冷媒量が不足する。したがって、冷却水入口温度が低い程、冷媒ポンプ14のインバータ周波数を小さくし、冷媒溜まり4Bから散布器4Aへと供給する液冷媒の量を減らすことで、蒸発器4で蒸発させる冷媒量を削減し、冷媒溜まり4Bの冷媒不足を抑制できる。
一方、一定の冷却水入口温度において、熱源温水再生器温度が低くなる程、最適となる冷媒ポンプ14のインバータ周波数は小さくなっている。
詳述すると、熱源温水再生器温度が低くなる程、熱源温水再生器201で蒸発する冷媒量が減少し、蒸発器4に供給される冷媒量が減少して冷媒溜まり4B内の冷媒量が不足する。したがって、熱源温水再生器温度が低い程、冷媒ポンプ14のインバータ周波数を小さくし、冷媒溜まり4Bから散布器4Aへと供給する液冷媒の量を減らすことで、蒸発器4で蒸発させる冷媒量を削減し、冷媒溜まり4Bの冷媒不足を抑制できる。
次に、図6を参照して、吸収式冷温水機200の冷媒ポンプ制御手順を説明する。
制御装置60は、吸収式冷温水機200が起動された場合、あるいは、運転モードの切り替えが行われた場合には、吸収式冷温水機200の運転モードが冷房運転か否か判別する(ステップS11)。
吸収式冷温水機200の運転モードが冷房運転の場合(ステップS11:Yes)、制御装置60は、バーナ10が燃焼中か否か判別する(ステップS12)。すなわち、制御装置60は、高温再生器1に熱源が投入されているか否か判別する。
バーナ10が燃焼中の場合(ステップS12:Yes)、制御装置60は、冷却水入口温度センサ52から冷却水入口温度を取得し、高温再生器温度センサ53から高温再生器温度を取得する。そして、制御装置60は、予め実験等によって取得された、冷却水入口温度及び高温再生器温度と、これら冷却水入口温度及び高温再生器温度に対応する最適な冷媒ポンプ14のインバータ周波数との関係を示す情報に基づいて、取得した冷却水入口温度及び高温再生器温度に対応するインバータ周波数を算出し、算出したインバータ周波数で冷媒ポンプ14を運転する(ステップS13)。
バーナ10が燃焼中でない場合(ステップS12:No)、制御装置60は、冷却水入口温度センサ52から冷却水入口温度を取得し、熱源温水再生器温度センサ54から熱源温水再生器温度を取得する。そして、制御装置60は、予め実験等によって取得された、冷却水入口温度及び熱源温水再生器温度と、これら冷却水入口温度及び熱源温水再生器温度に対応する最適な冷媒ポンプ14のインバータ周波数との関係を示す情報に基づいて、取得した冷却水入口温度及び熱源温水再生器温度に対応するインバータ周波数を算出し、算出したインバータ周波数で冷媒ポンプ14を運転する(ステップS14)。
次いで、制御装置60は、冷温水出口温度センサ51から冷水出口温度を取得し、この冷水出口温度に基づき冷媒ポンプ14を運転又は停止する(ステップS15)。具体的には、制御装置60は、冷水出口温度が所定温度、例えば5℃未満になった場合には、冷媒ポンプ14を停止し、その後、冷水出口温度が所定温度、例えば5.5℃以上になった場合には、冷媒ポンプ14を運転する制御を行う。
そして、制御装置60は、吸収式冷温水機200の停止スイッチがONにされたか否か判別する(ステップS16)。停止スイッチがONにされていない場合(ステップS16:No)、制御装置60は、処理をステップS11に移行する。
停止スイッチがONにされた場合(ステップS16:Yes)、制御装置60は、停止スイッチがONにされてからの時間を計時手段によってカウントし、所定の時間Tが経過するまで(ステップS17:No)、ステップS1からステップS5の処理を繰り返す。
停止スイッチがONにされてからの時間が時間Tを経過した場合(ステップS17:Yes)、制御装置60は、冷媒ポンプ14を停止し、冷媒ポンプ制御の処理を終了する。
一方、吸収式冷温水機200の運転モードが暖房運転の場合(ステップS11:No)、制御装置60は、処理をステップS18に移行し、冷媒ポンプ制御の処理を終了する。
以上説明したように、本実施の形態によれば、制御装置60は、高温再生器1の熱源が投入される場合には、冷却水入口温度センサ52が検出した冷却水入口温度及び高温再生器温度センサ53が検出した高温再生器温度から求められるインバータ周波数に基づいて冷媒ポンプ14を運転させ、高温再生器1の熱源が投入されない場合には、冷却水入口温度センサ52が検出した冷却水入口温度及び熱源温水再生器温度センサ54が検出した熱源温水再生器温度から求められるインバータ周波数に基づいて冷媒ポンプ14を運転させる。このため、冷却水入口温度と、冷房負荷に対応する高温再生器温度又は熱源温水再生器温度とに基づいて蒸発器4で蒸発する冷媒量が制御されるので、冷媒溜まり4Bの冷媒不足を抑制し、冷媒ポンプ14のキャビテーションを防止できる。また、冷却水入口温度センサ52、高温再生器温度センサ53、熱源温水再生器温度センサ54、及び制御装置60を追加するだけでよいので、吸収式冷温水機200の大型化を防止できる。
また、冷媒ポンプ14は、冷却水入口温度と、高温再生器温度又は熱源温水再生器温度とに基づいてインバータ制御されるので、冷却水温度が低い場合や冷房負荷が小さい場合にも、蒸発器4で蒸発する冷媒を確保でき、例えば、冷媒溜まりの冷媒の液面高さを検知して冷媒ポンプを運転/停止する場合に比べ、冷水を安定した温度で供給できるとともに、構成を簡略化できる。
但し、上記実施の形態は本発明の一態様であり、本発明の趣旨を逸脱しない範囲において適宜変更可能であるのは勿論である。
例えば、上記実施の形態では、高温再生器1の熱源としてバーナ10が用いられていたが、高温再生器1の熱源は、蒸気や排ガス等であってもよい。
また、上記実施の形態では、冷房負荷を判断するための温度センサ(高温再生器温度センサ53)を高温再生器1に設けたが、高温再生器1の下流側であって吸収器5の上流側、例えば、吸収液管22,22A,23や低温再生器2に設けても良い。
本発明の実施の形態に係る吸収式冷温水機の一例を示す回路図である。 冷却水入口温度及び高温再生器温度と、これら冷却水入口温度及び高温再生器温度に対応する最適な冷媒ポンプのインバータ周波数との関係を示す図である。 冷媒ポンプ制御を示すフローチャートである。 第二の実施の形態に係る吸収式冷温水機を示す回路図である。 冷却水入口温度及び熱源温水再生器温度と、これら冷却水入口温度及び熱源温水再生器温度に対応する最適な冷媒ポンプのインバータ周波数との関係を示す図である。 冷媒ポンプ制御を示すフローチャートである。
1 高温再生器
2 低温再生器
3 凝縮器
4 蒸発器
4A 散布器
4B 冷媒溜まり
5 吸収器
14 冷媒ポンプ
52 冷却水入口温度センサ
53 高温再生器温度センサ(吸収液温度センサ)
55 熱源温水再生器温度センサ
60 制御装置(インバータ制御手段)
100,200 吸収式冷温水機
201 熱源温水再生器

Claims (3)

  1. 高温再生器、低温再生器、凝縮器、蒸発器、及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環サイクルをそれぞれ形成した吸収式冷温水機において、
    前記蒸発器の冷媒溜まりから該蒸発器の散布器へと冷媒を循環させる冷媒ポンプと、前記吸収器の入口側の冷却水温度を検出する冷却水入口温度センサと、前記吸収器の上流側の吸収液温度を検出する吸収液温度センサと、前記冷却水入口温度センサが検出した温度及び前記吸収液温度センサが検出した温度から求められるインバータ周波数に基づいて前記冷媒ポンプを運転させるインバータ制御手段とを備えたことを特徴とする吸収式冷温水機。
  2. 前記吸収液温度センサは、前記高温再生器の温度を検出する高温再生器温度センサであることを特徴とする請求項1に記載の吸収式冷温水機。
  3. 熱源温水再生器と、この熱源温水再生器の温度を検出する熱源温水再生器温度センサとを備え、
    前記インバータ制御手段は、前記高温再生器の熱源が投入される場合には、前記冷却水入口温度センサが検出した温度及び前記高温再生器温度センサが検出した温度から求められるインバータ周波数に基づいて前記冷媒ポンプを運転させ、前記高温再生器の熱源が投入されない場合には、前記冷却水入口温度センサが検出した温度及び前記熱源温水再生器温度センサが検出した温度から求められるインバータ周波数に基づいて前記冷媒ポンプを運転させることを特徴とする請求項2に記載の吸収式冷温水機。
JP2009127796A 2009-05-27 2009-05-27 吸収式冷温水機 Pending JP2010276244A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009127796A JP2010276244A (ja) 2009-05-27 2009-05-27 吸収式冷温水機
CN2010101594193A CN101900456A (zh) 2009-05-27 2010-03-31 吸收式冷热水机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009127796A JP2010276244A (ja) 2009-05-27 2009-05-27 吸収式冷温水機

Publications (1)

Publication Number Publication Date
JP2010276244A true JP2010276244A (ja) 2010-12-09

Family

ID=43226216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009127796A Pending JP2010276244A (ja) 2009-05-27 2009-05-27 吸収式冷温水機

Country Status (2)

Country Link
JP (1) JP2010276244A (ja)
CN (1) CN101900456A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112378035A (zh) * 2020-10-29 2021-02-19 四川虹美智能科技有限公司 空调温度传感器的采样值处理方法及装置
CN114061164A (zh) * 2021-11-23 2022-02-18 南京久鼎环境科技股份有限公司 一种高效型跨临界二氧化碳制冷系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4274264A (en) * 1980-02-01 1981-06-23 Owens Service Corporation Chiller control
JPS6454179A (en) * 1987-08-26 1989-03-01 Sanyo Electric Co Absorption water chiller and heater
JP3732893B2 (ja) * 1996-05-31 2006-01-11 三洋電機株式会社 吸収冷温水機の制御方法
JP2003279186A (ja) * 2002-03-26 2003-10-02 Sanyo Electric Co Ltd 吸収式冷凍機及びその制御方法
JP4227476B2 (ja) * 2003-07-14 2009-02-18 川崎重工業株式会社 吸収冷温水機の制御方法及び装置
JP4308076B2 (ja) * 2004-05-14 2009-08-05 三洋電機株式会社 吸収冷凍機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112378035A (zh) * 2020-10-29 2021-02-19 四川虹美智能科技有限公司 空调温度传感器的采样值处理方法及装置
CN114061164A (zh) * 2021-11-23 2022-02-18 南京久鼎环境科技股份有限公司 一种高效型跨临界二氧化碳制冷系统

Also Published As

Publication number Publication date
CN101900456A (zh) 2010-12-01

Similar Documents

Publication Publication Date Title
JP3883838B2 (ja) 吸収式冷凍機
JP2002147885A (ja) 吸収式冷凍機
JP6434730B2 (ja) 吸収式熱源機
KR101046059B1 (ko) 일중 이중 효용 흡수 냉동기 및 그 운전 제어 방법
JP6486159B2 (ja) 吸収式冷凍機及びその制御方法
JP2010276244A (ja) 吸収式冷温水機
KR101171596B1 (ko) 흡수식 냉동기
JP5575519B2 (ja) 吸収式冷凍機
JP5449862B2 (ja) 吸収式冷凍装置
JP4090262B2 (ja) 吸収式冷凍機
JP6364238B2 (ja) 吸収式冷温水機
JP2010266170A (ja) 吸収式冷凍機
JP6264636B2 (ja) 吸収式冷凍機
JP2011094910A (ja) 吸収式冷凍機
JP2003287314A (ja) 吸収式冷凍機
KR100493598B1 (ko) 흡수식 냉동기
JP5967407B2 (ja) 吸収式冷温水機
JP5456368B2 (ja) 吸収式冷凍機
JP5484784B2 (ja) 吸収式冷凍機
JP2005282968A (ja) 吸収式冷凍機
JP2010276252A (ja) 吸収式冷凍機
JP6765056B2 (ja) 吸収式冷凍機
JP6078898B2 (ja) 吸収式システム
JP2011094911A (ja) 吸収式冷凍機
JP2005326088A (ja) 吸収冷凍機