JP5405335B2 - 吸収式冷凍機 - Google Patents
吸収式冷凍機 Download PDFInfo
- Publication number
- JP5405335B2 JP5405335B2 JP2010016845A JP2010016845A JP5405335B2 JP 5405335 B2 JP5405335 B2 JP 5405335B2 JP 2010016845 A JP2010016845 A JP 2010016845A JP 2010016845 A JP2010016845 A JP 2010016845A JP 5405335 B2 JP5405335 B2 JP 5405335B2
- Authority
- JP
- Japan
- Prior art keywords
- regenerator
- heat source
- temperature
- hot water
- temperature regenerator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B15/00—Sorption machines, plants or systems, operating continuously, e.g. absorption type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/04—Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
- F25B49/043—Operating continuously
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2315/00—Sorption refrigeration cycles or details thereof
- F25B2315/001—Crystallization prevention
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2519—On-off valves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Sorption Type Refrigeration Machines (AREA)
Description
本発明は、温水等を熱源とする低熱源再生器を備える吸収式冷凍機に関する。
従来、低熱源再生器、低熱源凝縮器、高温再生器、低温再生器、蒸発器、凝縮器、及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環経路をそれぞれ形成した吸収式冷凍機が知られている(例えば、特許文献1参照)。この吸収式冷凍機では、冷媒が吸収液に吸収された稀吸収液は、吸収器から低熱源再生器に供給され、低熱源再生器に接続される熱源発生装置(例えば太陽熱温水器やコージェネレーション装置)の排熱によって加熱濃縮されて稀中間吸収液となる。稀中間吸収液は、高温再生器内の液面高さが低くなると作動する中間吸収液ポンプによって低熱源再生器から高温再生器に供給され、高温再生器が備えるバーナ等の加熱手段によって加熱濃縮されて濃中間吸収液となる。高温再生器での加熱を継続し、高温再生器内の圧力が高くなると、高温再生器と低温再生器との間の圧力差によって、高温再生器内の濃中間吸収液が中間吸収液管を通って低温再生器に流れる。
ところで、熱負荷の負荷が小さく、冷却水温度の変動が激しい場合には、ブラインの出口温度の変動が激しくなる。
上記従来の構成では、加熱手段は、熱負荷(例えば空気調和装置)に供給するブラインの出口温度に応じて制御されるため、ブラインの出口温度の変動が激しい場合には、加熱手段の発停が繰り返される。短時間で加熱手段の発停が繰り返されると、高温再生器内の圧力が高くならず、高温再生器内の濃中間吸収液が低温再生器に流れなくなるので、中間吸収液ポンプが運転されず、稀中間吸収液が高温再生器に十分に供給されなくなる。したがって、高温再生器内の濃中間吸収液が濃縮され続け、その結果、高温再生器や中間吸収液管内の吸収液が結晶するおそれがある。
本発明は、上述した事情に鑑みてなされたものであり、吸収液の結晶化を回避する吸収式冷凍機を提供することを目的とする。
上記従来の構成では、加熱手段は、熱負荷(例えば空気調和装置)に供給するブラインの出口温度に応じて制御されるため、ブラインの出口温度の変動が激しい場合には、加熱手段の発停が繰り返される。短時間で加熱手段の発停が繰り返されると、高温再生器内の圧力が高くならず、高温再生器内の濃中間吸収液が低温再生器に流れなくなるので、中間吸収液ポンプが運転されず、稀中間吸収液が高温再生器に十分に供給されなくなる。したがって、高温再生器内の濃中間吸収液が濃縮され続け、その結果、高温再生器や中間吸収液管内の吸収液が結晶するおそれがある。
本発明は、上述した事情に鑑みてなされたものであり、吸収液の結晶化を回避する吸収式冷凍機を提供することを目的とする。
上記目的を達成するために、本発明は、低熱源再生器、高温再生器、低温再生器、蒸発器、凝縮器、及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環経路をそれぞれ形成し、前記低熱源再生器に供給される温水を熱源として吸収液を加熱する一重効用運転と、当該吸収液を前記高温再生器が備える加熱手段を熱源として加熱する一重二重効用運転もしくは二重効用運転とを可能に構成された吸収式冷凍機において、熱源となる温水を前記低熱源再生器に供給する低熱源供給管に温水制御弁を設け、前記高温再生器の温度が所定温度以下のときに、前記加熱手段が作動した回数を計測し、この計測回数が所定回数に至った場合、前記温水制御弁を全閉する温水制御手段を備えることを特徴とする。
上記構成において、前記温水制御手段は、前記温水制御弁を全閉した後に、前記高温再生器の温度が所定温度以上になったときに、前記温水制御弁の全閉を解除してもよい。
上記構成において、前記温水制御手段は、前記温水制御弁を全閉した後に、前記高温再生器の温度が所定温度以上になったときに、前記温水制御弁の全閉を解除してもよい。
また、本発明は、低熱源再生器、高温再生器、低温再生器、蒸発器、凝縮器、及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環経路をそれぞれ形成し、前記低熱源再生器に供給される温水を熱源として吸収液を加熱する一重効用運転と、当該吸収液を前記高温再生器が備える加熱手段を熱源として加熱する一重二重効用運転もしくは二重効用運転とを可能に構成された吸収式冷凍機において、熱源となる温水を前記低熱源再生器に供給する低熱源供給管に温水制御弁を設け、前記高温再生器の加熱時間が所定時間以下のとき、前記加熱手段が作動した回数を計測し、この計測回数が所定回数に至った場合、前記温水制御弁を全閉する温水制御手段を備えることを特徴とする。
上記構成において、前記温水制御手段は、前記温水制御弁を全閉した後に、前記高温再生器の加熱時間が所定時間以上になる加熱が生じときに、前記温水制御弁の全閉を解除してもよい。
上記構成において、前記温水制御手段は、前記温水制御弁を全閉した後に、前記高温再生器の加熱時間が所定時間以上になる加熱が生じときに、前記温水制御弁の全閉を解除してもよい。
また、本発明は、低熱源再生器、高温再生器、低温再生器、蒸発器、凝縮器、及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環経路をそれぞれ形成し、前記低熱源再生器に供給される温水を熱源として吸収液を加熱する一重効用運転と、当該吸収液を前記高温再生器が備える加熱手段を熱源として加熱する一重二重効用運転もしくは二重効用運転とを可能に構成された吸収式冷凍機において、熱源となる温水を前記低熱源再生器に供給する低熱源供給管に温水制御弁を設け、中間吸収液温度とその中間吸収液結晶温度との差が所定温度差を下回るときに、前記温水制御弁を全閉する温水制御手段を備えることを特徴とする。
上記構成において、前記温水制御手段は、前記温水制御弁を全閉した後に、中間吸収液温度とその中間吸収液結晶温度との差が所定温度差を上回ったときに、前記温水制御弁の全閉を解除してもよい。
上記構成において、前記温水制御手段は、前記温水制御弁を全閉した後に、中間吸収液温度とその中間吸収液結晶温度との差が所定温度差を上回ったときに、前記温水制御弁の全閉を解除してもよい。
本発明によれば、熱源となる温水を低熱源再生器に供給する低熱源供給管に温水制御弁を設け、高温再生器の温度が所定温度以下のときに、加熱手段が作動した回数を計測し、この計測回数が所定回数に至った場合、温水制御弁を全閉する温水制御手段を備えるため、高温再生器での加熱量が増加して高温再生器内の圧力が上昇し、濃中間吸収液が高温再生器から流れて高温再生器の液面が下がるので、稀中間吸収液が高温再生器に供給され、吸収液の結晶化を回避できる。
以下、図面を参照して本発明の実施の形態について説明する。
〔第1の実施の形態〕
図1は、第1の実施の形態に係る吸収式冷温水機(吸収式冷凍機)の概略構成図である。
吸収式冷温水機100は、冷媒に水を、吸収液に臭化リチウム(LiBr)水溶液を使用した一重二重効用型の吸収式冷温水機である。吸収式冷温水機100は、図1に示すように、蒸発器1と、この蒸発器1に並設された吸収器2と、これら蒸発器1及び吸収器2を収納した蒸発器吸収器胴3と、ガスバーナ(加熱手段)4を備えた高温再生器5と、低温再生器6と、この低温再生器6に並設された凝縮器7と、これら低温再生器6及び凝縮器7を収納した低温再生器凝縮器胴8と、他の設備から供給される温水などを熱源とする低熱源再生器9と、この低熱源再生器9に並設された低熱源凝縮器10と、これら低熱源再生器9及び低熱源凝縮器10を収納した低熱源再生器凝縮器胴11と、低温熱交換器12と、高温熱交換器13と、稀吸収液ポンプP1と、中間吸収液ポンプP2と、冷媒ポンプP3とを備え、これらの各機器が吸収液管21〜26及び冷媒管31〜36などを介して配管接続されている。
低温再生器凝縮器胴8は蒸発器吸収器胴3や高温再生器5より高い位置に配置され、低熱源再生器凝縮器胴11は低温再生器凝縮器胴8より高い位置に配置されている。
〔第1の実施の形態〕
図1は、第1の実施の形態に係る吸収式冷温水機(吸収式冷凍機)の概略構成図である。
吸収式冷温水機100は、冷媒に水を、吸収液に臭化リチウム(LiBr)水溶液を使用した一重二重効用型の吸収式冷温水機である。吸収式冷温水機100は、図1に示すように、蒸発器1と、この蒸発器1に並設された吸収器2と、これら蒸発器1及び吸収器2を収納した蒸発器吸収器胴3と、ガスバーナ(加熱手段)4を備えた高温再生器5と、低温再生器6と、この低温再生器6に並設された凝縮器7と、これら低温再生器6及び凝縮器7を収納した低温再生器凝縮器胴8と、他の設備から供給される温水などを熱源とする低熱源再生器9と、この低熱源再生器9に並設された低熱源凝縮器10と、これら低熱源再生器9及び低熱源凝縮器10を収納した低熱源再生器凝縮器胴11と、低温熱交換器12と、高温熱交換器13と、稀吸収液ポンプP1と、中間吸収液ポンプP2と、冷媒ポンプP3とを備え、これらの各機器が吸収液管21〜26及び冷媒管31〜36などを介して配管接続されている。
低温再生器凝縮器胴8は蒸発器吸収器胴3や高温再生器5より高い位置に配置され、低熱源再生器凝縮器胴11は低温再生器凝縮器胴8より高い位置に配置されている。
また、符号14は、蒸発器1内で冷媒と熱交換したブラインを、図示しない熱負荷(例えば空気調和装置)に循環供給するための冷/温水管であり、この冷/温水管14の一部に形成された伝熱管14Aが蒸発器1内に配置されている。また、冷/温水管14の伝熱管14A下流側には、当該冷/温水管14内を流通するブラインの温度を計測する温度センサ61が設けられている。符号15は、吸収器2、凝縮器7及び低熱源凝縮器10に順次冷却水を流通させるための冷却水管であり、この冷却水管15の一部に形成された各伝熱管15A、15B、15Cがそれぞれ吸収器2、凝縮器7及び低熱源凝縮器10内に配置されている。また、符号16は、図示しない熱源発生装置(例えば太陽熱温水器やコージェネレーション装置)で生成された比較的低温(例えば約80℃程度)の温水を、低熱源再生器9に循環供給するための低熱源供給管である。この低熱源供給管16は、低熱源再生器9内に配置される伝熱管16Aと、この伝熱管16Aに並列に接続されるバイパス管16Bと、伝熱管16Aに供給する温水の流量を調整するために切り替えられる三方弁(温水制御弁)28とを備える。符号50は、吸収式冷温水機100全体の制御を司る制御装置(温水制御手段)である。上記温度センサ61は、計測したブラインの温度を制御装置50に出力する。
吸収器2は、蒸発器1で蒸発した冷媒蒸気を吸収液に吸収させ、蒸発器吸収器胴3内の圧力を高真空状態に保つ機能を有する。この吸収器2の下部には、冷媒蒸気を吸収して稀釈された稀吸収液が溜る稀吸収液溜り2Aが形成され、この稀吸収液溜り2Aには、稀吸収液ポンプP1を有する稀吸収液管21の一端が接続され、この稀吸収液管21の他端、すなわち、稀吸収液ポンプP1の下流側は低温熱交換器12を経由した後、低熱源再生器9内の上部に形成された気層部9Aに開口している。
低熱源再生器9の下部には、稀吸収液管21を通じて供給された吸収液が溜る吸収液溜り9Bが形成され、この吸収液溜り9Bには低熱源供給管16の一部に形成された伝熱管16Aが配置されている。この低熱源供給管16に温水を流通させることにより、上記伝熱管16Aを介して、吸収液を加熱再生、すなわち、吸収液中の冷媒を蒸発させてこの吸収液を濃縮することができる。
また、吸収液溜り9Bには、中間吸収液ポンプP2を有する第1中間吸収液管22の一端が接続され、この第1中間吸収液管22の他端、すなわち、中間吸収液ポンプP2の下流側は高温熱交換器13を経由した後、高温再生器5内に形成された熱交換部5Aの上方に位置する気層部5Bに開口している。
また、吸収液溜り9Bには、中間吸収液ポンプP2を有する第1中間吸収液管22の一端が接続され、この第1中間吸収液管22の他端、すなわち、中間吸収液ポンプP2の下流側は高温熱交換器13を経由した後、高温再生器5内に形成された熱交換部5Aの上方に位置する気層部5Bに開口している。
高温再生器5の下部には、例えば都市ガス等の燃料に点火する点火器4Aと、燃料量を制御して熱源量を可変にする燃料制御弁4Bとを備えるガスバーナ4が収容されている。ガスバーナ4は、制御装置50が出力した燃焼信号を受信すると、ガスを燃焼させる。高温再生器5には、ガスバーナ4の上方に当該ガスバーナ4の火炎を熱源として吸収液を加熱再生する熱交換部5Aが形成されている。この熱交換部5Aには、ガスバーナ4で燃焼された排気ガスが流通する排気経路17が接続され、熱交換部5Aの側方には、この熱交換部5Aで加熱再生された後に当該熱交換部5Aから流出した中間吸収液が溜る中間吸収液溜り5Cが形成されている。中間吸収液溜り5Cには、この中間吸収液溜り5Cに溜った吸収液の液面を検知する液面電極(液面検知センサ)51が設けられている。液面電極51は、中間吸収液溜り5C内に貯留された吸収液の液面高さが、液面電極51の下端部よりも高い所定位置になったことを検知すると、その検知結果を制御装置50に出力する。
中間吸収液溜り5Cの下端には、第2中間吸収液管(中間吸収液管)23の一端が接続され、この第2中間吸収液管23の他端は低温再生器6内の上部に形成された気層部6Aに開口している。また、第2中間吸収液管23の中間吸収液溜り5C側には高温熱交換器13が設けられている。この高温熱交換器13は、中間吸収液溜り5Cから流出した高温の中間吸収液の温熱で第1中間吸収液管22を流れる吸収液を加熱するものであり、高温再生器5におけるガスバーナ4の燃料消費量の低減を図っている。また、第2中間吸収液管23の高温熱交換器13上流側と吸収器2とは開閉弁V1が介在する吸収液管24により接続されている。
低温再生器6は、高温再生器5で分離された冷媒蒸気を熱源として、気層部6Aの下方に形成された吸収液溜り6Bに溜った吸収液を加熱再生するものであり、吸収液溜り6Bには、高温再生器5の上端部から凝縮器7の底部への延びる冷媒管31の一部に形成される伝熱管31Aが配置されている。この冷媒管31に冷媒蒸気を流通させることにより、上記伝熱管31Aを介して、冷媒蒸気の温熱が吸収液溜り6Bに溜った吸収液に伝達され、この吸収液が更に濃縮される。
低温再生器6の吸収液溜り6Bの下端には、濃吸収液管25の一端が接続され、この濃吸収液管25の他端には、吸収器2の気層部2B上部に設けられる濃液散布器2Cに接続されている。濃吸収液管25には低温熱交換器12が設けられている。この低温熱交換器12は、低温再生器6の吸収液溜り6Bから流出した濃吸収液の温熱で稀吸収液管21を流れる稀吸収液を加熱するものである。また、濃吸収液管25の低温熱交換器12上流側と、第1中間吸収液管22の中間吸収液ポンプP2上流側とは、バイパス管26により接続されており、この中間吸収液ポンプP2の運転が停止している場合には、低熱源再生器9の吸収液溜り9Bから流出した吸収液は、第1中間吸収液管22、バイパス管26、低温熱交換器12及び濃吸収液管25を通じて、吸収器2内に供給される。
上述のように、高温再生器5の気層部5Bと凝縮器7の底部とは、低温再生器6の吸収液溜り6Bに配管された伝熱管31Aを経由する冷媒管31により接続され、この冷媒管31の伝熱管31A上流側と吸収器2の気層部2Bとは開閉弁V2が介在する冷媒管32により接続されている。
また、凝縮器7の底部と蒸発器1の気層部1AとはUシール部33Aが介在する冷媒管33により接続され、その冷媒管33のUシール部33Aと低熱源凝縮器10の底部側とが冷媒管34により接続されている。また、蒸発器1の下方には、液化した冷媒が溜る冷媒液溜り1Bが形成され、この冷媒液溜り1Bと蒸発器1の気層部1A上部に配置される散布器1Cとは冷媒ポンプP3が介在するに冷媒管35により接続されている。この冷媒管35の冷媒ポンプP3下流側と吸収器2の吸収液溜り2Aとは開閉弁V3が介在する冷媒管36により接続されている。また、冷却水管15の伝熱管15B出口側との冷/温水管14の伝熱管14Aの出口側とは、開閉弁V4が介在する連通管37により接続されている。
また、凝縮器7の底部と蒸発器1の気層部1AとはUシール部33Aが介在する冷媒管33により接続され、その冷媒管33のUシール部33Aと低熱源凝縮器10の底部側とが冷媒管34により接続されている。また、蒸発器1の下方には、液化した冷媒が溜る冷媒液溜り1Bが形成され、この冷媒液溜り1Bと蒸発器1の気層部1A上部に配置される散布器1Cとは冷媒ポンプP3が介在するに冷媒管35により接続されている。この冷媒管35の冷媒ポンプP3下流側と吸収器2の吸収液溜り2Aとは開閉弁V3が介在する冷媒管36により接続されている。また、冷却水管15の伝熱管15B出口側との冷/温水管14の伝熱管14Aの出口側とは、開閉弁V4が介在する連通管37により接続されている。
次に動作について説明する。
冷房等の冷却運転時においては、冷/温水管14を介して図示しない熱負荷に循環供給されるブライン(例えば冷水)の蒸発器1出口側温度(温度センサ61にて計測される温度)が所定の設定温度、例えば7℃になるように吸収式冷温水機100に投入される熱量が制御装置50により制御される。
具体的には、制御装置50は、例えば、熱負荷が大きく、且つ、低熱源供給管16を介して低熱源再生器9に供給する温水の温度が所定温度(例えば85℃)に達している時には、低熱源供給管16から低熱源再生器9に温水を定格量供給すると共に、全てのポンプP1〜P3を起動し、且つ、ガスバーナ4においてガスを燃焼させる一重二重効用運転を行い、温度センサ61が計測する温度が所定の7℃となるようにガスバーナ4の火力を制御する。
冷房等の冷却運転時においては、冷/温水管14を介して図示しない熱負荷に循環供給されるブライン(例えば冷水)の蒸発器1出口側温度(温度センサ61にて計測される温度)が所定の設定温度、例えば7℃になるように吸収式冷温水機100に投入される熱量が制御装置50により制御される。
具体的には、制御装置50は、例えば、熱負荷が大きく、且つ、低熱源供給管16を介して低熱源再生器9に供給する温水の温度が所定温度(例えば85℃)に達している時には、低熱源供給管16から低熱源再生器9に温水を定格量供給すると共に、全てのポンプP1〜P3を起動し、且つ、ガスバーナ4においてガスを燃焼させる一重二重効用運転を行い、温度センサ61が計測する温度が所定の7℃となるようにガスバーナ4の火力を制御する。
この場合、吸収器2から稀吸収液管21を介して稀吸収液ポンプP1により低熱源再生器9に搬送された稀吸収液は、この低熱源再生器9内の吸収液溜り9Bにおいて、低熱源供給管16から供給される温水により伝熱管16Aの管壁を介して加熱されることにより、稀吸収液中の冷媒が蒸発分離される。
冷媒を蒸発分離して吸収液濃度が高くなった稀中間吸収液は、第1中間吸収液管22の中間吸収液ポンプP2により高温熱交換器13を経由して加熱され高温再生器5に送られる。なお、制御装置50は、高温再生器5の中間吸収液溜り5C内に貯留された吸収液の液面高さが、液面電極51の下端部よりも高い所定位置となるまで中間吸収液ポンプP2を運転し、この所定位置に至った時に、中間吸収液ポンプP2の運転を停止する。高温再生器5に搬送された稀中間吸収液は、この高温再生器5でガスバーナ4による火炎および高温の燃焼ガスにより加熱されるため、この稀中間吸収液中の冷媒が蒸発分離する。このとき、高温再生器5内の圧力は加熱によって高くなっているので、高温再生器5で冷媒を蒸発分離して濃度が上昇した濃中間吸収液は、高温再生器5と低温再生器6との間の液面差と圧力差によって定まる流量で、高温熱交換器13を経由して低温再生器6へ送られる。
そして、濃中間吸収液は低温再生器6において、高温再生器5から冷媒管31を介して供給されて伝熱管31Aに流入する高温の冷媒蒸気により加熱され、さらに冷媒が分離して濃度が一段と高くなり、この濃吸収液が低温熱交換器12を経由して吸収器2へ送られ、濃液散布器2Cの上方から散布される。
そして、濃中間吸収液は低温再生器6において、高温再生器5から冷媒管31を介して供給されて伝熱管31Aに流入する高温の冷媒蒸気により加熱され、さらに冷媒が分離して濃度が一段と高くなり、この濃吸収液が低温熱交換器12を経由して吸収器2へ送られ、濃液散布器2Cの上方から散布される。
一方、低熱源再生器9で分離生成した冷媒は低熱源凝縮器10に入って凝縮し、低温再生器6で分離生成した冷媒は凝縮器7に入って凝縮する。そして、凝縮器7で生成された冷媒液は冷媒管33を、低熱源凝縮器10で凝縮生成した冷媒液は冷媒管34を経由して蒸発器1に入り、冷媒ポンプP3の運転により揚液されて散布器1Cから冷/温水管14の伝熱管14Aの上に散布される。
伝熱管14Aの上に散布された冷媒液は、伝熱管14Aの内部を通るブラインから気化熱を奪って蒸発するので、伝熱管14Aの内部を通るブラインは冷却され、こうして温度を下げたブラインが冷/温水管14から熱負荷に供給されて冷房等の冷却運転が行われる。
そして、蒸発器1で蒸発した冷媒は吸収器2へ入り、低温再生器6より供給されて上方から散布される濃吸収液に吸収されて、吸収器2の稀吸収液溜り2Aに溜り、稀吸収液ポンプP1によって低熱源再生器9に搬送される循環を繰り返す。
伝熱管14Aの上に散布された冷媒液は、伝熱管14Aの内部を通るブラインから気化熱を奪って蒸発するので、伝熱管14Aの内部を通るブラインは冷却され、こうして温度を下げたブラインが冷/温水管14から熱負荷に供給されて冷房等の冷却運転が行われる。
そして、蒸発器1で蒸発した冷媒は吸収器2へ入り、低温再生器6より供給されて上方から散布される濃吸収液に吸収されて、吸収器2の稀吸収液溜り2Aに溜り、稀吸収液ポンプP1によって低熱源再生器9に搬送される循環を繰り返す。
一重二重効用運転時においては、温度センサ61が計測する温度が所定の7℃になるように、ガスバーナ4による加熱量、具体的にはガスバーナ4に供給するガス量が制御装置50により制御される。そして、ガスバーナ4による加熱量を最小にしても、温度センサ61が所定の7℃より低い温度を計測すると、制御装置50は、ガスの燃焼を止めてガスバーナ4による加熱を停止して一重効用運転に移行する。
一重効用運転における吸収液は、低熱源供給管16から供給される温水により低熱源再生器9において加熱されて冷媒を蒸発分離する。そして、吸収液濃度が高くなった吸収液は、バイパス管26、低温熱交換器12を経由して吸収器2に戻される。
一方、低熱源再生器9で分離生成した冷媒蒸気は低熱源凝縮器10に入って凝縮し、冷媒管34を経由して蒸発器1に流入する。蒸発器1内に流入した冷媒液は、冷媒ポンプP3の運転により散布器1Cから冷/温水管14の伝熱管14Aの上に散布され、伝熱管14A内を通るブラインから熱を奪って蒸発し、吸収器2に入って上方から散布される吸収液に吸収される循環が行われる。なお、吸収液が冷媒を吸収する際に発生する熱は、吸収器2内に配置される冷却水管15の伝熱管15Aにより冷却される。
一方、低熱源再生器9で分離生成した冷媒蒸気は低熱源凝縮器10に入って凝縮し、冷媒管34を経由して蒸発器1に流入する。蒸発器1内に流入した冷媒液は、冷媒ポンプP3の運転により散布器1Cから冷/温水管14の伝熱管14Aの上に散布され、伝熱管14A内を通るブラインから熱を奪って蒸発し、吸収器2に入って上方から散布される吸収液に吸収される循環が行われる。なお、吸収液が冷媒を吸収する際に発生する熱は、吸収器2内に配置される冷却水管15の伝熱管15Aにより冷却される。
一重効用運転時においては、温度センサ61が計測する温度が所定の7℃になるように、低熱源再生器9における加熱量、具体的には低熱源供給管16から伝熱管16Aに取り込む温水の量、すなわち三方弁28の開度が制御装置50により制御される。
そして、低熱源供給管16を流れる温水の全量が伝熱管16Aに流れるように三方弁28を操作しても、温度センサ61が所定温度の7℃以下の温度を計測しない時には、上記のようにガスバーナ4でガスを燃焼させ、高温再生器5における吸収液の加熱再生と冷媒蒸気の生成とを再開して一重二重効用運転に戻る。
そして、低熱源供給管16を流れる温水の全量が伝熱管16Aに流れるように三方弁28を操作しても、温度センサ61が所定温度の7℃以下の温度を計測しない時には、上記のようにガスバーナ4でガスを燃焼させ、高温再生器5における吸収液の加熱再生と冷媒蒸気の生成とを再開して一重二重効用運転に戻る。
また、一重効用運転時において、熱負荷は大きいが、低熱源供給管16を介して低熱源再生器9に供給する温水の温度が所定の85℃以下に低下した時(例えば、天候不順等により太陽熱温水器から供給される温水温度が安定しない時)には、低熱源供給管16から低熱源再生器9に温水が供給されないように三方弁28を切り替えると共に、全てのポンプP1〜P3を起動し、且つ、ガスバーナ4においてガスを燃焼させる二重効用運転を行う。この場合も、温度センサ61が計測するブラインの温度が所定温度の7℃となるように、ガスバーナ4の火力が制御装置50により制御される。
この二重効用運転では、吸収器2の稀吸収液溜り2Aにある稀吸収液は稀吸収液ポンプP1により低熱源再生器9に搬送されて吸収液溜り9Bに貯留されるが、伝熱管16Aには熱源としての温水は供給されていない。このため、低熱源再生器9に搬送された稀吸収液は、加熱されることなく中間吸収液ポンプP2の運転により高温熱交換器13を経由して高温再生器5に搬送され、その後は一重二重効用運転と同様に循環しながら加熱されて、高温再生器5と低温再生器6とで吸収液の濃縮再生と冷媒の分離生成とがなされる。この二重効用運転時に、低熱源再生器9に供給する温水の温度が所定の85℃に達した時には、冷却負荷の大きさに応じて、一重二重効用運転または一重効用運転が行われる。
吸収式冷温水機100では、熱負荷の負荷が小さく、冷却水温度の変動が激しい場合には、ブラインの出口温度の変動が激しくなる。ガスバーナ4は、温度センサ61が計測するブラインの温度に応じて制御されるため、ブラインの出口温度の変動が激しい場合には、ガスバーナ4の燃焼/消火が繰り返される。短時間でガスバーナ4の燃焼/消火が繰り返されると、高温再生器5内の圧力が高くならず、高温再生器5内の濃中間吸収液が低温再生器6に流れなくなるので、中間吸収液ポンプP2が運転されず、稀中間吸収液が高温再生器5に十分に供給されなくなる。これにより、高温再生器5内の濃中間吸収液が濃縮され続け、その結果、高温再生器5や第2中間吸収液管23内の濃中間吸収液が結晶するおそれがある。
高温再生器5内の圧力と高温再生器5の温度との間には相対関係があるため、本実施の形態では、高温再生器5の温度を計測する温度センサ62が設けられている。この温度センサ62は計測した高温再生器5の温度を制御装置50に出力し、制御装置50は温度センサ62が計測した高温再生器5の温度及びガスバーナ4の燃焼回数(計測回数)に応じて三方弁28を制御する第1結晶回避処理を実行する。
なお、温度センサ61が計測するブラインの温度、及び、低熱源供給管16で供給される温水の温度に応じて三方弁28が制御される処理を通常処理とする。
なお、温度センサ61が計測するブラインの温度、及び、低熱源供給管16で供給される温水の温度に応じて三方弁28が制御される処理を通常処理とする。
以下、図2を参照して、第1結晶回避処理を説明する。
制御装置50は、吸収式冷温水機100の冷房運転を開始すると、第1結晶回避処理を実行する。第1結晶回避処理では、制御装置50は、まず、燃焼回数Nを初期状態の0に設定し(ステップS1)、温度センサ62が計測した高温再生器5の温度(高温再生器温度T)が第1温度(所定温度)T1以下か否か判別する(ステップS2)。第1温度T1は、高温再生器5の圧力が低下し、高温再生器5内の濃中間吸収液が低温再生器6に流れにくくなるときの高温再生器5の温度であり、予め実験等によって取得されている。
制御装置50は、吸収式冷温水機100の冷房運転を開始すると、第1結晶回避処理を実行する。第1結晶回避処理では、制御装置50は、まず、燃焼回数Nを初期状態の0に設定し(ステップS1)、温度センサ62が計測した高温再生器5の温度(高温再生器温度T)が第1温度(所定温度)T1以下か否か判別する(ステップS2)。第1温度T1は、高温再生器5の圧力が低下し、高温再生器5内の濃中間吸収液が低温再生器6に流れにくくなるときの高温再生器5の温度であり、予め実験等によって取得されている。
高温再生器温度Tが第1温度T1以下の場合(ステップS2:YES)、制御装置50は、燃焼信号がONであるか否か判別し(ステップS3)、燃焼信号がOFFの場合(ステップS3:NO)、ステップS2の処理を繰り返す。燃焼信号がONの場合(ステップS3:YES)、制御装置50は、現在の燃焼回数Nに「1」を加えた値(N+1)を新たな燃焼回数Nとして設定し(N=N+1)(ステップS4)、設定した燃焼回数Nが所定回数N1以上か否か判別する(ステップ5)。ここで、所定回数N1は、高温再生器温度Tが第1温度T1以下の状態で、高温再生器5内の濃中間吸収液が低温再生器6に流れなくなる程度まで高温再生器5内の圧力が低下しているときに、高温再生器5や第2中間吸収液管23内の濃中間吸収液が結晶するおそれがあるときの燃焼回数であり、予め実験等によって取得されている。
燃焼回数Nが所定回数N1より少ない場合(ステップS5:NO)、制御装置50は、処理をステップS2に戻す。
一方、燃焼回数Nが所定回数N1以上の場合(ステップS5:YES)、制御装置50は、高温再生器5や第2中間吸収液管23内の吸収液が結晶するおそれがあると判断し、三方弁28を強制的に全閉にする(ステップS6)。これにより、ガスバーナ4でガスを燃焼させる二重効用運転が行われ、高温再生器5内の圧力が上昇するので、高温再生器5と低温再生器6との間の圧力差によって、高温再生器5から濃中間吸収液が低温再生器6に流れる。その結果、中間吸収液ポンプP2が運転されて、高温再生器5に稀中間吸収液が供給されるので、濃中間吸収液が過度に濃縮されるのが防止され、吸収液の結晶が回避される。
一方、燃焼回数Nが所定回数N1以上の場合(ステップS5:YES)、制御装置50は、高温再生器5や第2中間吸収液管23内の吸収液が結晶するおそれがあると判断し、三方弁28を強制的に全閉にする(ステップS6)。これにより、ガスバーナ4でガスを燃焼させる二重効用運転が行われ、高温再生器5内の圧力が上昇するので、高温再生器5と低温再生器6との間の圧力差によって、高温再生器5から濃中間吸収液が低温再生器6に流れる。その結果、中間吸収液ポンプP2が運転されて、高温再生器5に稀中間吸収液が供給されるので、濃中間吸収液が過度に濃縮されるのが防止され、吸収液の結晶が回避される。
そして、制御装置50は、三方弁28を全閉にしたまま、処理をステップS2に戻し、高温再生器温度Tが第1温度T1より高くなるまで(ステップS2:NO)、ステップS2〜S6の処理を繰り返す。
高温再生器温度Tが第1温度T1より高くなると(ステップS2:NO)、制御装置50は、高温再生器温度Tが第2温度(所定温度)T2以上か否か判別する(ステップS7)。第2温度T2は、高温再生器5の加熱が継続して行われ、高温再生器5内の圧力が上昇して、高温再生器5内の濃中間吸収液が低温再生器6に十分に流れるときの高温再生器5の温度であり、予め実験等によって取得されている。なお、第2温度T2は、第1温度T1より高く設定される。
高温再生器温度Tが第1温度T1より高くなると(ステップS2:NO)、制御装置50は、高温再生器温度Tが第2温度(所定温度)T2以上か否か判別する(ステップS7)。第2温度T2は、高温再生器5の加熱が継続して行われ、高温再生器5内の圧力が上昇して、高温再生器5内の濃中間吸収液が低温再生器6に十分に流れるときの高温再生器5の温度であり、予め実験等によって取得されている。なお、第2温度T2は、第1温度T1より高く設定される。
高温再生器温度Tが第2温度T2を下回る場合(ステップS7:NO)、制御装置50は、処理をステップS2に戻す。
一方、高温再生器温度Tが第2温度T2以上の場合(ステップS7:YES)、制御装置50は、高温再生器5や第2中間吸収液管23内の吸収液が結晶するおそれがないと判断し、三方弁28の全閉を解除し、処理をステップS1に戻す(ステップS8)。これにより、三方弁28の制御が通常処理に戻されるので、図示しない熱源発生装置の排熱を有効利用することができる。
このように、第1結晶回避処理では、温度センサ62が計測した高温再生器温度T及びガスバーナ4の燃焼回数Nに応じて三方弁28を制御するため、高温再生器5内の圧力を検出する圧力センサを設ける必要がないので、第1結晶回避処理を実行することによるコストアップを抑えることができる。
一方、高温再生器温度Tが第2温度T2以上の場合(ステップS7:YES)、制御装置50は、高温再生器5や第2中間吸収液管23内の吸収液が結晶するおそれがないと判断し、三方弁28の全閉を解除し、処理をステップS1に戻す(ステップS8)。これにより、三方弁28の制御が通常処理に戻されるので、図示しない熱源発生装置の排熱を有効利用することができる。
このように、第1結晶回避処理では、温度センサ62が計測した高温再生器温度T及びガスバーナ4の燃焼回数Nに応じて三方弁28を制御するため、高温再生器5内の圧力を検出する圧力センサを設ける必要がないので、第1結晶回避処理を実行することによるコストアップを抑えることができる。
以上説明したように、本実施の形態によれば、熱源となる温水を低熱源再生器9に供給する低熱源供給管16に三方弁28を設け、高温再生器温度Tが第1温度T1以下のときに、高温再生器5を加熱するガスバーナ4が作動した回数を計測し、この燃焼回数Nが所定回数N1に至った場合、三方弁28を全閉する制御装置50を備えるため、高温再生器5での加熱量が増加して高温再生器5内の圧力が上昇し、濃中間吸収液が高温再生器5から低温再生器6に流れて高温再生器5の液面が下がるので、稀中間吸収液が高温再生器5に供給され、その結果、濃中間吸収液が過度に濃縮することを防止でき、吸収液の結晶化を回避できる。
また、本実施の形態によれば、制御装置50は、三方弁28を全閉してから高温再生器温度Tが第2温度T2以上になったときに、三方弁28の全閉を解除するため、高温再生器5から濃中間吸収液が低温再生器6に流れる程度まで高温再生器5内の圧力が上昇した場合には、三方弁28の全閉が解除されるので、熱源発生装置の排熱を有効利用することができる。
〔第2の実施の形態〕
図3は、第2の実施の形態に係る吸収式冷温水機(吸収式冷凍機)を示す概略構成図である。本実施の形態の吸収式冷温水機200は、高温再生器5に温度センサ62を設けておらず、ガスバーナ4の燃焼時間(加熱時間)を測定する計時手段52を備える点で上記した吸収式冷温水機100と構成を異にする。その他の構成は吸収式冷温水機100と同一であるため、同一の符号を付して説明を省略する。
計時手段52は、制御装置50の制御によって、ガスバーナ4の燃焼時間を測定し、その測定結果を制御装置50に出力する。
本実施の形態では、制御装置50は、計時手段52が測定した燃焼時間及びガスバーナ4の燃焼回数(計測回数)に応じて三方弁28を制御する第2結晶回避処理を実行する。
図3は、第2の実施の形態に係る吸収式冷温水機(吸収式冷凍機)を示す概略構成図である。本実施の形態の吸収式冷温水機200は、高温再生器5に温度センサ62を設けておらず、ガスバーナ4の燃焼時間(加熱時間)を測定する計時手段52を備える点で上記した吸収式冷温水機100と構成を異にする。その他の構成は吸収式冷温水機100と同一であるため、同一の符号を付して説明を省略する。
計時手段52は、制御装置50の制御によって、ガスバーナ4の燃焼時間を測定し、その測定結果を制御装置50に出力する。
本実施の形態では、制御装置50は、計時手段52が測定した燃焼時間及びガスバーナ4の燃焼回数(計測回数)に応じて三方弁28を制御する第2結晶回避処理を実行する。
以下、図4を参照し、第2結晶回避処理を説明する。
制御装置50は、吸収式冷温水機100の冷房運転を開始すると、第2結晶回避処理を実行する。第2結晶回避処理では、制御装置50は、まず、燃焼回数Nを初期状態の0に設定し(ステップS11)、計時手段52にガスバーナ4の燃焼時間tを測定させる(ステップS12)。ガスバーナ4の燃焼が終了し、計時手段52から燃焼時間tが制御装置50に出力されると、制御装置50は、計時手段52が測定した燃焼時間tが第1時間(所定時間)t1以下か否か判別する(ステップS13)。第1時間t1は、燃焼時間tが比較的短時間であったことを示す時間であり、予め実験等によって取得されている。
制御装置50は、吸収式冷温水機100の冷房運転を開始すると、第2結晶回避処理を実行する。第2結晶回避処理では、制御装置50は、まず、燃焼回数Nを初期状態の0に設定し(ステップS11)、計時手段52にガスバーナ4の燃焼時間tを測定させる(ステップS12)。ガスバーナ4の燃焼が終了し、計時手段52から燃焼時間tが制御装置50に出力されると、制御装置50は、計時手段52が測定した燃焼時間tが第1時間(所定時間)t1以下か否か判別する(ステップS13)。第1時間t1は、燃焼時間tが比較的短時間であったことを示す時間であり、予め実験等によって取得されている。
燃焼時間tが第1時間t1以下の場合(ステップS13:YES)、制御装置50は、現在の燃焼回数Nに「1」を加えた値(N+1)を新たな燃焼回数Nとして設定し(N=N+1)(ステップS14)、設定した燃焼回数Nが所定回数N2以上か否か判別する(ステップ15)。ここで、所定回数N2は、第1時間t1以下の燃焼が連続し、高温再生器5内の濃中間吸収液が低温再生器6に流れなくなる程度まで高温再生器5内の圧力が低下しているときに、高温再生器5や第2中間吸収液管23内の濃中間吸収液が結晶するおそれがある燃焼回数であり、予め実験等によって取得されている。
燃焼回数Nが所定回数N2より少ない場合(ステップS15:NO)、制御装置50は、処理をステップS12に戻す。
一方、燃焼回数Nが所定回数N2以上の場合(ステップS15:YES)、制御装置50は、高温再生器5や第2中間吸収液管23内の吸収液が結晶するおそれがあると判断し、三方弁28を強制的に全閉にする(ステップS16)。これにより、ガスバーナ4でガスを燃焼させる二重効用運転が行われ、高温再生器5内の圧力が上昇するので、高温再生器5と低温再生器6との間の圧力差によって、高温再生器5から濃中間吸収液が低温再生器6に流れる。その結果、中間吸収液ポンプP2が運転されて、高温再生器5に稀中間吸収液が供給されるので、濃中間吸収液が過度に濃縮されるのが防止され、吸収液の結晶が回避される。
一方、燃焼回数Nが所定回数N2以上の場合(ステップS15:YES)、制御装置50は、高温再生器5や第2中間吸収液管23内の吸収液が結晶するおそれがあると判断し、三方弁28を強制的に全閉にする(ステップS16)。これにより、ガスバーナ4でガスを燃焼させる二重効用運転が行われ、高温再生器5内の圧力が上昇するので、高温再生器5と低温再生器6との間の圧力差によって、高温再生器5から濃中間吸収液が低温再生器6に流れる。その結果、中間吸収液ポンプP2が運転されて、高温再生器5に稀中間吸収液が供給されるので、濃中間吸収液が過度に濃縮されるのが防止され、吸収液の結晶が回避される。
そして、制御装置50は、三方弁28を全閉にしたまま、処理をステップS12に戻し、第1時間t1を超える燃焼時間tが生じるまで(ステップS13:NO)、ステップS12〜S16の処理を繰り返す。
第1時間t1を超える燃焼時間tが生じると(ステップS13:NO)、制御装置50は、その燃焼時間tが第2時間(所定時間)t2以上か否か判別する(ステップS17)。第2時間t2は、高温再生器5の加熱が継続して行われ、高温再生器5内の圧力が上昇して、高温再生器5内の濃中間吸収液が低温再生器6に十分に流れるとき時間であり、予め実験等によって取得されている。なお、第2時間t2は、第1時間t1より高く設定される。
第1時間t1を超える燃焼時間tが生じると(ステップS13:NO)、制御装置50は、その燃焼時間tが第2時間(所定時間)t2以上か否か判別する(ステップS17)。第2時間t2は、高温再生器5の加熱が継続して行われ、高温再生器5内の圧力が上昇して、高温再生器5内の濃中間吸収液が低温再生器6に十分に流れるとき時間であり、予め実験等によって取得されている。なお、第2時間t2は、第1時間t1より高く設定される。
燃焼時間tが第2時間t2に達していない場合(ステップS17:NO)、制御装置50は、処理をステップS12に戻す。
一方、燃焼時間tが第2時間t2以上の場合(ステップS17:YES)、制御装置50は、高温再生器5や第2中間吸収液管23内の吸収液が結晶するおそれがないと判断し、三方弁28の全閉を解除し、処理をステップS11に戻す(ステップS18)。これにより、三方弁28の制御が通常処理に戻されるので、図示しない熱源発生装置の排熱を有効利用することができる。
このように、第2結晶回避処理では、ガスバーナ4の燃焼時間t及び燃焼回数Nに応じて三方弁28を制御するため、高温再生器5内の圧力を検出する圧力センサや温度センサを設ける必要がないので、第2結晶回避処理を実行することによるコストアップを抑えることができる。
一方、燃焼時間tが第2時間t2以上の場合(ステップS17:YES)、制御装置50は、高温再生器5や第2中間吸収液管23内の吸収液が結晶するおそれがないと判断し、三方弁28の全閉を解除し、処理をステップS11に戻す(ステップS18)。これにより、三方弁28の制御が通常処理に戻されるので、図示しない熱源発生装置の排熱を有効利用することができる。
このように、第2結晶回避処理では、ガスバーナ4の燃焼時間t及び燃焼回数Nに応じて三方弁28を制御するため、高温再生器5内の圧力を検出する圧力センサや温度センサを設ける必要がないので、第2結晶回避処理を実行することによるコストアップを抑えることができる。
以上説明したように、本実施の形態によれば、熱源となる温水を低熱源再生器9に供給する低熱源供給管16に三方弁28を設け、高温再生器5の加熱時間tが第1時間t1以下のとき、高温再生器5を加熱するガスバーナ4の燃焼回数を計測し、この燃焼回数Nが所定回数N2に至った場合、三方弁28を全閉する制御装置50を備えるため、高温再生器5での加熱量が増加して高温再生器5内の圧力が上昇し、濃中間吸収液が高温再生器5から低温再生器6に流れて高温再生器5の液面が下がるので、稀中間吸収液が高温再生器5に供給され、その結果、濃中間吸収液が過度に濃縮することを防止でき、吸収液の結晶化を回避できる。
また、本実施の形態によれば、制御装置50は、三方弁28を全閉してから高温再生器5の加熱時間tが第2時間t2以上になったときに、三方弁28の全閉を解除するため、高温再生器5から濃中間吸収液が低温再生器6に流れる程度まで高温再生器5内の圧力が上昇した場合には、三方弁28の全閉が解除されるので、熱源発生装置の排熱を有効利用することができる。
〔第3の実施の形態〕
図5は、第3の実施の形態に係る吸収式冷温水機(吸収式冷凍機)を示す概略構成図である。本実施の形態の吸収式冷温水機300は、冷媒管31内の液冷媒の温度を計測する温度センサ63と、第2中間吸収液管23内の濃中間吸収液の温度を計測する温度センサ64と、を備える点で上記した吸収式冷温水機100と構成を異にする。その他の構成は吸収式冷温水機100と同一であるため、同一の符号を付して説明を省略する。
図5は、第3の実施の形態に係る吸収式冷温水機(吸収式冷凍機)を示す概略構成図である。本実施の形態の吸収式冷温水機300は、冷媒管31内の液冷媒の温度を計測する温度センサ63と、第2中間吸収液管23内の濃中間吸収液の温度を計測する温度センサ64と、を備える点で上記した吸収式冷温水機100と構成を異にする。その他の構成は吸収式冷温水機100と同一であるため、同一の符号を付して説明を省略する。
温度センサ63は、冷媒管31の低温再生器6出口側に設けられて液冷媒の温度を計測し、その計測結果を制御装置50に出力する。また、温度センサ64は、第2中間吸収液管23の高温熱交換器13出口側に設けられて濃中間吸収液の温度を計測し、その計測結果を制御装置50に出力する。ここで、濃中間吸収液は、第2中間吸収液管23の高温熱交換器13で熱交換して温度が低下するので、高温熱交換器13の下流側で結晶しやすくなる。
本実施の形態では、制御装置50は、温度センサ62,63が計測した温度に基づいて算出した結晶温度と、温度センサ64が計測した濃中間吸収液の温度との温度差に応じて三方弁28を制御する第3結晶回避処理を実行する。
本実施の形態では、制御装置50は、温度センサ62,63が計測した温度に基づいて算出した結晶温度と、温度センサ64が計測した濃中間吸収液の温度との温度差に応じて三方弁28を制御する第3結晶回避処理を実行する。
以下、図6を参照して、第3結晶回避処理を説明する。
制御装置50は、吸収式冷温水機100の冷房運転を開始すると、第3結晶回避処理を実行する。第3結晶回避処理では、制御装置50は、まず、温度センサ63が計測した液冷媒の温度を予め実験等によって取得された実験式に当てはめて高温再生器5内の圧力を算出し、この高温再生器5内の圧力と、温度センサ62が計測した高温再生器5の温度とを予め記憶してあるデューリング線図に当てはめて、高温再生器5内の濃中間吸収液の濃度(濃中間吸収液濃度X)を算出する(ステップS21)。
制御装置50は、吸収式冷温水機100の冷房運転を開始すると、第3結晶回避処理を実行する。第3結晶回避処理では、制御装置50は、まず、温度センサ63が計測した液冷媒の温度を予め実験等によって取得された実験式に当てはめて高温再生器5内の圧力を算出し、この高温再生器5内の圧力と、温度センサ62が計測した高温再生器5の温度とを予め記憶してあるデューリング線図に当てはめて、高温再生器5内の濃中間吸収液の濃度(濃中間吸収液濃度X)を算出する(ステップS21)。
次いで、制御装置50は、算出した濃中間吸収液濃度Xを予め実験等によって取得された実験式に当てはめて結晶温度T0を算出し(ステップS22)、温度センサ64が計測した濃中間吸収液の高温熱交換器13出口側温度(濃中間吸収液温度TC)と、算出した結晶温度T0との温度差ΔT(ΔT=TC−T0)を算出する(ステップS23)。そして、制御装置50は、算出した温度差ΔTが第1温度差(所定温度差)αより低いか否か判別する(ステップS24)。第1温度差αは、濃中間吸収液が結晶化するおそれがある状態を示す温度であり、予め実験等によって取得されている。
算出した温度差ΔTが第1温度差αより低い場合(ステップS24:YES)、制御装置50は、高温再生器5や第2中間吸収液管23内の吸収液が結晶するおそれがあると判断し、三方弁28を強制的に全閉にする(ステップS25)。これにより、ガスバーナ4でガスを燃焼させる二重効用運転が行われ、高温再生器5内の圧力が上昇するので、高温再生器5と低温再生器6との間の圧力差によって、高温再生器5から濃中間吸収液が低温再生器6に流れる。その結果、中間吸収液ポンプP2が運転されて、高温再生器5に稀中間吸収液が供給されるので、濃中間吸収液が過度に濃縮されるのが防止され、吸収液の結晶が回避される。
そして、制御装置50は、三方弁28を全閉にしたまま、処理をステップS21に戻し、温度差ΔTが第1温度差α以上になるまで(ステップS24:NO)、ステップS21〜S25の処理を繰り返す。
温度差ΔTが第1温度差α以上になると(ステップS24:NO)、制御装置50は、温度差ΔTが第2温度差(所定温度差)βより高いか否か判別する(ステップS26)。第2温度差βは、濃中間吸収液が結晶化するおそれがない状態を示す温度であり、予め実験等によって取得されている。
温度差ΔTが第1温度差α以上になると(ステップS24:NO)、制御装置50は、温度差ΔTが第2温度差(所定温度差)βより高いか否か判別する(ステップS26)。第2温度差βは、濃中間吸収液が結晶化するおそれがない状態を示す温度であり、予め実験等によって取得されている。
温度差ΔTが第2温度差以下の場合(ステップS26:NO)、制御装置50は、処理をステップS21に戻す。
一方、温度差ΔTが第2温度差より高い場合(ステップS26:YES)、制御装置50は、高温再生器5や第2中間吸収液管23内の吸収液が結晶するおそれがないと判断し、三方弁28の全閉を解除し、処理をステップS21に戻す(ステップS27)。これにより、三方弁28の制御が通常処理に戻されるので、図示しない熱源発生装置の排熱を有効利用することができる。
一方、温度差ΔTが第2温度差より高い場合(ステップS26:YES)、制御装置50は、高温再生器5や第2中間吸収液管23内の吸収液が結晶するおそれがないと判断し、三方弁28の全閉を解除し、処理をステップS21に戻す(ステップS27)。これにより、三方弁28の制御が通常処理に戻されるので、図示しない熱源発生装置の排熱を有効利用することができる。
このように、第3結晶回避処理では、温度センサ62〜64が計測した温度に応じて三方弁28を制御するため、高温再生器5内の圧力を検出する圧力センサを設ける必要がないので、第3結晶回避処理を実行することによるコストアップを抑えることができる。また、温度センサ62,63を用いて濃中間吸収液濃度Xを算出するため、濃中間吸収液の濃度を検出する高価な濃度計を設ける必要がないので、第3結晶回避処理を実行することによるコストアップを抑えることができる。
以上説明したように、本実施の形態によれば、熱源となる温水を低熱源再生器9に供給する低熱源供給管16に三方弁28を設け、中間吸収液温度とその中間吸収液結晶温度との差が所定温度差を下回るときに、三方弁28を全閉する制御装置50を備えるため、高温再生器5での加熱量が増加して高温再生器5内の圧力が上昇し、濃中間吸収液が高温再生器5から低温再生器6に流れて高温再生器5の液面が下がるので、稀中間吸収液が高温再生器5に供給され、その結果、濃中間吸収液が過度に濃縮することを防止でき、吸収液の結晶化を回避できる。
また、本実施の形態によれば、制御装置50は、三方弁28を全閉してから中間吸収液温度とその中間吸収液結晶温度との差が所定温度差を上回ったときに、三方弁28の全閉を解除するため、高温再生器5から濃中間吸収液が低温再生器6に流れる程度まで高温再生器5内の圧力が上昇した場合には、三方弁28の全閉が解除されるので、熱源発生装置の排熱を有効利用することができる。
なお、第2中間吸収液管23に濃度計を配置し、この濃度計により濃中間吸収液濃度Xを検出するようにしてもよい。
なお、第2中間吸収液管23に濃度計を配置し、この濃度計により濃中間吸収液濃度Xを検出するようにしてもよい。
但し、上記実施の形態は本発明の一態様であり、本発明の趣旨を逸脱しない範囲において適宜変更可能であるのは勿論である。
例えば、上記実施の形態では、吸収式冷温水機100は、第1〜3結晶回避処理のうち一の結晶回避処理を実行するものとして説明したが、複数の結晶回避処理を同時に実行するように構成されてもよい。この場合、制御装置50は、1つの結晶回避処理において三方弁28を全閉する判断をした場合、強制的に三方弁28を全閉し、全ての処理結晶回避処理において三方弁28の全閉を解除する判断をした場合に、三方弁28の全閉を解除する。
例えば、上記実施の形態では、吸収式冷温水機100は、第1〜3結晶回避処理のうち一の結晶回避処理を実行するものとして説明したが、複数の結晶回避処理を同時に実行するように構成されてもよい。この場合、制御装置50は、1つの結晶回避処理において三方弁28を全閉する判断をした場合、強制的に三方弁28を全閉し、全ての処理結晶回避処理において三方弁28の全閉を解除する判断をした場合に、三方弁28の全閉を解除する。
また、上記実施の形態では、高温再生器5にて吸収液を加熱する加熱手段として燃料ガスを燃焼させて加熱を行うガスバーナ4を備える構成について説明したが、これに限るものではなく、灯油やA重油を燃焼させるバーナを備える構成や、蒸気や排気ガス等の温熱を用いて加熱する構成としてもよい。
1 蒸発器
2 吸収器
4 ガスバーナ(加熱手段)
5 高温再生器
6 低温再生器
7 凝縮器
9 低熱源再生器
16 低熱源供給管
28 三方弁(温水制御弁)
50 制御装置(温水制御手段)
52 計時手段
61〜64 温度センサ
100,200,300 吸収式冷温水機(吸収式冷凍機)
2 吸収器
4 ガスバーナ(加熱手段)
5 高温再生器
6 低温再生器
7 凝縮器
9 低熱源再生器
16 低熱源供給管
28 三方弁(温水制御弁)
50 制御装置(温水制御手段)
52 計時手段
61〜64 温度センサ
100,200,300 吸収式冷温水機(吸収式冷凍機)
Claims (6)
- 低熱源再生器、高温再生器、低温再生器、蒸発器、凝縮器、及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環経路をそれぞれ形成し、前記低熱源再生器に供給される温水を熱源として吸収液を加熱する一重効用運転と、当該吸収液を前記高温再生器が備える加熱手段を熱源として加熱する一重二重効用運転もしくは二重効用運転とを可能に構成された吸収式冷凍機において、
熱源となる温水を前記低熱源再生器に供給する低熱源供給管に温水制御弁を設け、前記高温再生器の温度が所定温度以下のときに、前記加熱手段が作動した回数を計測し、この計測回数が所定回数に至った場合、前記温水制御弁を全閉する温水制御手段を備えることを特徴とする吸収式冷凍機。 - 前記温水制御手段は、前記温水制御弁を全閉した後に、前記高温再生器の温度が所定温度以上になったときに、前記温水制御弁の全閉を解除することを特徴とする請求項1に記載の吸収式冷凍機。
- 低熱源再生器、高温再生器、低温再生器、蒸発器、凝縮器、及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環経路をそれぞれ形成し、前記低熱源再生器に供給される温水を熱源として吸収液を加熱する一重効用運転と、当該吸収液を前記高温再生器が備える加熱手段を熱源として加熱する一重二重効用運転もしくは二重効用運転とを可能に構成された吸収式冷凍機において、
熱源となる温水を前記低熱源再生器に供給する低熱源供給管に温水制御弁を設け、前記高温再生器の加熱時間が所定時間以下のとき、前記加熱手段が作動した回数を計測し、この計測回数が所定回数に至った場合、前記温水制御弁を全閉する温水制御手段を備えることを特徴とする吸収式冷凍機。 - 前記温水制御手段は、前記温水制御弁を全閉した後に、前記高温再生器の加熱時間が所定時間以上になる加熱が生じときに、前記温水制御弁の全閉を解除することを特徴とする請求項3に記載の吸収式冷凍機。
- 低熱源再生器、高温再生器、低温再生器、蒸発器、凝縮器、及び吸収器を備え、これらを配管接続して吸収液及び冷媒の循環経路をそれぞれ形成し、前記低熱源再生器に供給される温水を熱源として吸収液を加熱する一重効用運転と、当該吸収液を前記高温再生器が備える加熱手段を熱源として加熱する一重二重効用運転もしくは二重効用運転とを可能に構成された吸収式冷凍機において、
熱源となる温水を前記低熱源再生器に供給する低熱源供給管に温水制御弁を設け、中間吸収液温度とその中間吸収液結晶温度との差が所定温度差を下回るときに、前記温水制御弁を全閉する温水制御手段を備えることを特徴とする吸収式冷凍機。 - 前記温水制御手段は、前記温水制御弁を全閉した後に、中間吸収液温度とその中間吸収液結晶温度との差が所定温度差を上回ったときに、前記温水制御弁の全閉を解除することを特徴とする請求項5に記載の吸収式冷凍機。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010016845A JP5405335B2 (ja) | 2010-01-28 | 2010-01-28 | 吸収式冷凍機 |
KR1020100100170A KR101171596B1 (ko) | 2010-01-28 | 2010-10-14 | 흡수식 냉동기 |
CN2010105357055A CN102141319B (zh) | 2010-01-28 | 2010-11-04 | 吸收式制冷机 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010016845A JP5405335B2 (ja) | 2010-01-28 | 2010-01-28 | 吸収式冷凍機 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011153795A JP2011153795A (ja) | 2011-08-11 |
JP5405335B2 true JP5405335B2 (ja) | 2014-02-05 |
Family
ID=44409001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010016845A Expired - Fee Related JP5405335B2 (ja) | 2010-01-28 | 2010-01-28 | 吸収式冷凍機 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5405335B2 (ja) |
KR (1) | KR101171596B1 (ja) |
CN (1) | CN102141319B (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102914080A (zh) * | 2012-10-27 | 2013-02-06 | 双良节能系统股份有限公司 | 二段式烟气热水补燃单双效复合型溴化锂吸收式制冷机组 |
CN104567091B (zh) * | 2013-10-25 | 2017-03-01 | 矢崎能源系统公司 | 热水加热吸收式制冷机 |
JP2018105603A (ja) * | 2016-12-28 | 2018-07-05 | 荏原冷熱システム株式会社 | 吸収式冷凍機、制御プログラム及び吸収式冷凍機の制御方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2114117U (zh) * | 1991-12-19 | 1992-08-26 | 清华大学 | 吸收式制冷机机电一体化控制装置 |
JPH05312429A (ja) * | 1992-05-06 | 1993-11-22 | Hitachi Ltd | 吸収冷温水機 |
JP3081472B2 (ja) * | 1994-10-25 | 2000-08-28 | 三洋電機株式会社 | 吸収式冷凍機の制御方法 |
JP2002295917A (ja) * | 2001-03-28 | 2002-10-09 | Sanyo Electric Co Ltd | 吸収式冷凍機の制御方法 |
JP2002357370A (ja) | 2001-05-31 | 2002-12-13 | Sanyo Electric Co Ltd | 吸収冷凍機の制御方法 |
JP4245134B2 (ja) * | 2003-01-30 | 2009-03-25 | パナソニック株式会社 | 実装工程シミュレーション装置および実装工程シミュレーション方法 |
JP4606255B2 (ja) * | 2005-06-09 | 2011-01-05 | 三洋電機株式会社 | 一重二重効用吸収冷凍機の運転方法 |
CN101382355B (zh) * | 2007-09-05 | 2012-03-14 | 陈建平 | 一种吸收式制冷方法 |
JP2009085509A (ja) * | 2007-09-28 | 2009-04-23 | Sanyo Electric Co Ltd | 吸収式冷凍機における低温熱交換器での高濃度吸収液結晶化防止方法 |
-
2010
- 2010-01-28 JP JP2010016845A patent/JP5405335B2/ja not_active Expired - Fee Related
- 2010-10-14 KR KR1020100100170A patent/KR101171596B1/ko not_active IP Right Cessation
- 2010-11-04 CN CN2010105357055A patent/CN102141319B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011153795A (ja) | 2011-08-11 |
KR20110088353A (ko) | 2011-08-03 |
CN102141319B (zh) | 2013-09-25 |
KR101171596B1 (ko) | 2012-08-06 |
CN102141319A (zh) | 2011-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3883838B2 (ja) | 吸収式冷凍機 | |
JP6434730B2 (ja) | 吸収式熱源機 | |
JP2002147885A (ja) | 吸収式冷凍機 | |
JP2003279186A (ja) | 吸収式冷凍機及びその制御方法 | |
JP5405335B2 (ja) | 吸収式冷凍機 | |
JP5575519B2 (ja) | 吸収式冷凍機 | |
JP2012202589A (ja) | 吸収式ヒートポンプ装置 | |
JP6789846B2 (ja) | 吸収式冷凍機 | |
JP2010266170A (ja) | 吸収式冷凍機 | |
JP4315854B2 (ja) | 吸収冷凍機 | |
JP3883894B2 (ja) | 吸収式冷凍機 | |
JP5449862B2 (ja) | 吸収式冷凍装置 | |
JP4090262B2 (ja) | 吸収式冷凍機 | |
JP6264636B2 (ja) | 吸収式冷凍機 | |
JP2010276244A (ja) | 吸収式冷温水機 | |
JP5967407B2 (ja) | 吸収式冷温水機 | |
JP2006125698A (ja) | 吸収・吸着式ヒートポンプ装置 | |
JP6364238B2 (ja) | 吸収式冷温水機 | |
JP3851204B2 (ja) | 吸収式冷凍機 | |
JP2010276252A (ja) | 吸収式冷凍機 | |
JP4632633B2 (ja) | 吸収ヒートポンプ装置 | |
JP2019190709A (ja) | 吸収式冷凍機 | |
JP4326478B2 (ja) | 一重二重効用吸収式冷凍機 | |
JP2006064346A (ja) | 一重二重効用吸収冷凍機およびその運転制御方法 | |
JP6789847B2 (ja) | 吸収式冷凍機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121112 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130906 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131001 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131030 |
|
LAPS | Cancellation because of no payment of annual fees |