JP2011199041A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2011199041A
JP2011199041A JP2010064768A JP2010064768A JP2011199041A JP 2011199041 A JP2011199041 A JP 2011199041A JP 2010064768 A JP2010064768 A JP 2010064768A JP 2010064768 A JP2010064768 A JP 2010064768A JP 2011199041 A JP2011199041 A JP 2011199041A
Authority
JP
Japan
Prior art keywords
type
region
trench
semiconductor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010064768A
Other languages
English (en)
Inventor
Fumio Hirahara
文雄 平原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010064768A priority Critical patent/JP2011199041A/ja
Publication of JP2011199041A publication Critical patent/JP2011199041A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

【課題】電力用半導体素子と一体化された還流ダイオードの応答速度を高速化した半導体装置の提供。
【解決手段】N型ベース層2の表面にP型ベース領域3と、P型ベース領域3の表面に設けられたN型エミッタ領域4と、P型ベース領域3の表面に設けられ、N型エミッタ領域4に隣接したP型コンタクト領域5と、N型ベース層2の表面からP型ベース領域3を超える深さに延在したトレンチ7を介在させて、P型ベース領域3、N型エミッタ領域4およびP型コンタクト領域5と離間してN型ベース層2に設けられたP型アノード領域8と、N型エミッタ領域4とP型コンタクト領域5とに電気的に接続されたエミッタ電極12と、エミッタ電極12とP型アノード領域8とを電気的に接続したトレンチアノード電極13と、N型ベース層2の裏面に電気的に接続されたP型コレクタ層22と、P型コレクタ層22に選択的に設けられたN型カソード領域21を備える。
【選択図】図1

Description

本発明は、半導体装置に関し、例えば、還流ダイオードを備える電力制御用の半導体装置に関する。
家電機器や産業用電力装置のインバータ回路に使用される電力用半導体装置では、ターンオフ時に誘導性負荷からエネルギーを放出させるための還流ダイオード(Free Wheel Diode:FWD)を備えるものがある。例えば、特許文献1には、IGBT(Insulated Gate Bipolar Transistor)とFWDとを一体化した構造を有する半導体装置が開示されおり、インバータ回路の小型化を実現することができる。
一方、インバータ回路を高性能化するためには、電力用半導体装置に一体化されたFWDを高速化する必要がある。しかしながら、電力用半導体素子の性能を損なうことなくFWDを高速化することは容易ではない。例えば、IGBTのラッチアップ対策として導入される不純物濃度の高い領域は、IGBTと一体化して形成されたFWDの応答速度を劣化させる問題があった。
特開2008−103590号公報
本発明の目的は、電力用半導体素子と一体化された還流ダイオードの応答速度を高速化した半導体装置を提供することである。
本発明の一態様によれば、第1導電型の第1半導体層と、前記第1半導体層の表面に選択的に設けられた第2導電型の第1半導体領域と、前記第1半導体領域の表面に選択的に設けられた前記第1導電型の第2半導体領域と、前記第1半導体領域の表面に選択的に設けられ、前記第2半導体領域に隣接した前記第2導電型の第3半導体領域と、前記第1半導体層の表面から前記第1半導体領域を超える深さまで延在した第1トレンチを介在させて、前記第1半導体領域、前記第2半導体領域および前記第3半導体領域と離間して前記半導体層に設けられた前記第2導電型の第4半導体領域と、前記第2半導体領域と前記第3半導体領域とに電気的に接続された第1電極と、前記第1電極と前記第4半導体領域とを電気的に接続した第2電極と、前記第1半導体層の裏面に電気的に接続された前記第2導電型の第2半導体層と、前記第1半導体層の裏面に電気的に接続され、前記第2半導体層を貫通して選択的に設けられた前記第1導電型の第5半導体領域と、を備えたことを特徴とする半導体装置が提供される。
本発明によれば、電力用半導体素子と一体化された還流ダイオードの応答速度を高速化した半導体装置を実現することができる。
第1の実施態様に係る半導体装置の断面を示す模式図である。 第1の実施態様の変形例に係る半導体装置の断面を示す模式図である。 第2の実施態様に係る半導体装置の断面を示す模式図である。 第2の実施態様の変形例に係る半導体装置の断面を示す模式図である。 従来の半導体装置の断面を示す模式図である。
以下、本発明の実施の形態について図面を参照しながら説明する。なお、以下の実施形態では、図面中の同一部分には同一番号を付してその詳しい説明は適宜省略し、異なる部分について適宜説明する。また、第1導電型をN型、第2導電型をP型として説明するが、これに限定される訳ではなく、第1導電型をP型、第2導電型をN型とすることもできる。
[第1の実施形態]
図1は、第1の実施態様に係る半導体装置10の断面を示す模式図である。同図中に示すように半導体装置10は、IGBT構造の中央に還流ダイオード(以下FWD)が一体に設けられた構造を有している。
IGBTの部分には、第1半導体層であるN型ベース層2の表面に、第1半導体領域であるP型ベース領域3が選択的に設けられている。P型ベース領域の表面には、第2半導体領域であるN型エミッタ領域4と、第3半導体領域であるP型コンタクト領域5が選択的に設けられている。さらに、P型コンタクト領域5は、N型エミッタ領域4に隣接して設けられている。
P型ベース領域3とN型エミッタ領域4とは、ゲート電極15が設けられたトレンチ17に隣接して設けられ、トレンチ17の内壁に設けられたゲート絶縁膜18を介して、ゲート電極15に対向している。
一方、図1の中央に配置されたFWDの部分には、第4半導体領域であるP型アノード領域8が、N型ベース層2の表面からP型ベース領域3を超える深さまで延在した第1トレンチであるトレンチ7を介在させて、P型ベース領域3、N型エミッタ領域4およびP型コンタクト領域5と離間してN型ベース層2に選択的に設けられている。
半導体装置10では、N型エミッタ領域4およびP型コンタクト領域5、さらにP型アノード領域8に電気的に接続された第1電極であるエミッタ電極12が設けられている。P型アノード領域8は、トレンチ7の内壁に沿って延在する部分8aを有しており、第2電極であるトレンチアノード電極13が、エミッタ電極12とP型アノード領域8の延在部分8aとを電気的に接続している。エミッタ電極12の内、P型アノード領域8に接する部分は、FWDのアノード電極12aとなる。
一方、N型ベース層2の裏面側では、N型バッファ層9を介してN型ベース層2に電気的に接続された第2半導体層であるP型コレクタ層22が設けられている。P型コレクタ層22において、N型ベース層を挟んでP型アノード領域8と対向する部分に、第5半導体領域であるN型カソード領域21が、P型コレクタ層22を貫通して選択的に設けられている。N型カソード領域21は、N型ベース層2の裏面に電気的に接続されP型アノード領域8との間でFWDを形成している。さらに、P型コレクタ層22に接してコレクタ電極25が設けられている。コレクタ電極25の内、N型カソード領域21に接する部分は、FWDのカソード電極25aとなる。
本実施形態に係る半導体装置10では、N型ベース層2の表面からP型ベース領域3を超える深さに設けられたトレンチ7を介在させて、IGBTとFWDのP型アノード領域8とが離間して設けられる。これにより、FWDのP型アノード領域8のP型不純物の濃度と、IGBTのP型コンタクト領域5のP型不純物濃度と、を独立に設定して、P型アノード領域8およびP型コンタクト領域5を設けることができる。
例えば、図5に示す従来の半導体装置50では、IGBTのP型コンタクト領域とFWDのP型アノード領域とが共通にP型コンタクト領域5として設けられている。IGBTにおけるP型コンタクト領域5は、P型ベース領域3から正孔を排出してラッチアップが起こらないようにするために設けられる。したがって、P型ベース領域3からエミッタ電極12への正孔の排出抵抗が小さくなるように、P型コンタクト領域5にはP型不純物が高濃度にドープされている。
一方、FWDの応答速度を早くするためには、FWDに順方向に電流が流れる時に、P型アノード領域からN型ベース層2に注入される正孔を少なくする必要がある。そこで、アノード領域からN型ベース層2への正孔の注入効率を下げるように、アノード領域のP型不純物の濃度を下げることが望ましい。
すなわち、半導体装置50では、P型コンタクト領域5のP型不純物濃度の設定において、IGBTのラッチアップを防ぐことと、FWDの高速化を図ることが背反するため、IGBTの性能を損なうことなくFWDを高速化することができなかった。
これに対し、本実施形態に係る半導体装置10では、FWDのP型アノード領域8のP型不純物の濃度と、IGBTのP型コンタクト領域5のP型不純物濃度と、を独立に設定することができる。したがって、FWDおよびIGBTのそれぞれに、最適なP型不純物濃度を設定し、IGBTの性能を損なわずにFWDの高速化を図ることができる。これにより、FWDのリカバリー特性を向上させることができる。
次に、半導体装置10の構造の詳細について説明する。半導体装置10は、IGBT構造の中央にFWDが一体に設けられた構造を有しているため、IGBTとFWDとの境界に設けられたトレンチ7は、IGBTのP型コンタクト領域5およびP型ベース領域3と、FWDのP型アノード領域8と、の間に介在し、両者を離間させている。。また、トレンチ7は、例えば、RIE(Reactive Ion Etching)法を用いて、N型ベース層2の表面に形成することができる。IGBTのゲート電極15が設けられているトレンチ17と同時に形成しても良い。
トレンチ7の内部には、トレンチアノード電極13と絶縁膜14とが設けられている。絶縁膜14は、トレンチアノード電極13をIGBTのP型コンタクト領域5およびP型ベース領域3から絶縁し、さらにNベース層2からも絶縁するように設けられている。
トレンチアノード電極13は、トレンチ7のFWD側の側壁に沿って形成されたP型アノード領域8の延在部分8aにコンタクトするように形成されている。これにより、FWDのアノード電極12aと、P型アノード領域8との間のコンタクト抵抗を低減することができる。
トレンチ7の側面に沿って形成されたP型アノード領域8aは、例えば、トレンチ7の深さ方向に対して、P型不純物を斜めにイオン注入することにより形成することができる。また、イオン注入の角度を変えることにより、N型ベース層2の表面から所望の深さにP型アノード領域8を形成することができる。一方、トレンチアノード電極13は、トレンチ7を絶縁膜14で埋め込んだ後に、トレンチアノード電極13となる部材を埋め込む溝を形成し、トレンチアノード電極13となる部材を埋め込むことにより設けることができる。
図2は、第1の実施態様の変形例に係る半導体装置20の断面を示す模式図である。半導体装置20においても、FWDは、IGBT構造の中央に一体に設けられている。
FWDのP型アノード領域31は、第1トレンチであるトレンチ7aの底部に設けられ、トレンチ7aが介在してIGBTのP型ベース領域3およびN型エミッタ領域4、P型コンタクト領域5から離間して設けられている。すなわち、P型アノード領域31は、N型ベース層2の表面からP型ベース領域3を超える深さに延在するトレンチ7aの底部に設けられることにより、P型ベース領域3およびN型エミッタ領域4、P型コンタクト領域5から離間してN型ベース層2の中に設けられている。トレンチ7aの内部には、トレンチアノード電極13aと絶縁膜14aとが形成されている。トレンチアノード電極13aは、エミッタ電極12とP型アノード領域31とを電気的に接続している。また、絶縁膜14は、P型ベース領域3およびN型コンタクト領域5と、トレンチアノード電極13aとを絶縁している。
半導体装置20のFWDの構造は、IGBT構造の中央にトレンチ7aを形成して、トレンチ7aの底部にP型不純物をイオン注入することにより形成することができる。P型不純物がイオン注入されたP型アノード領域31の不純物濃度は、イオン注入のドーズ量により制御することができる。絶縁膜14aは、トレンチ7aの内面を熱酸化して設けることができる。続いて、トレンチ7aの底部に形成される熱酸化膜を選択的に除去した後、トレンチ7aをトレンチアノード電極13aとなる部材で埋め込むことにより、図2に示すFWDのアノード構造を形成することができる。
本変形例に係る半導体装置20では、N型ベース層2の表面からIGBTのP型ベース領域3よりも深い位置に延在して設けられたトレンチ7aの底部にP型アノード領域31を形成することにより、トレンチ7aを挟んで、IGBTのP型ベース領域3およびP型コンタクト領域5と離間したFWDのP型アノード領域31が設けられている。これにより、FWDのP型アノード領域31の不純物濃度と、IGBTのP型コンタクト領域5の不純物濃度を独立に設定することが可能となり、FWDの応答速度を早めてリカバリー特性を向上させることができる。また、トレンチ7の深さを変えることにより、FWDのP型アノード領域31を所望の深さに設けることができ、設計の自由度を向上させることができる。
[第2の実施形態]
図3は、第2の実施態様に係る半導体装置30の断面を示す模式図である。
第1トレンチであるトレンチ7bの内部に設けられ、IGBTのN型ベース層2とN型エミッタ領域4との間を流れる電流を制御する制御電極であるゲート電極15bを備えている。
半導体装置30では、ゲート電極15bが設けられたトレンチ7bに挟まれたN型ベース層2にFWDのP型アノード領域31を形成する。例えば、イオン注入の注入エネルギーを変えて、N型ベース層2の表面から所望の深さにP型不純物をドープすることにより形成することができる。また、N型ベース層2の表面をエッチングしてイオン注入することにより、所望の深さにP型アノード領域31を形成することもできる。
さらに、N型ベース層2の表面からP型アノード領域31に連通するトレンチアノード電極13bにより、P型アノード領域31とアノード電極12aとを電気的に接続する。一方、N型ベース層2の裏面側には、N型バッファ層9を介して、P型コレクタ層22が設けられている。P型コレクタ層22において、P型アノード領域31に対向する部分にN型カソード領域21が選択的に設けられ、IGBTのコレクタ電極25の一部であるFWDのカソード電極25aに電気的に接続されている。
本実施形態に係る半導体装置30では、N型ベース層2の表面からIGBTのP型ベース領域3の深さを超える位置に設けられたトレンチ7bを介在させて、FWDのP型アノード領域31が、IGBTのP型ベース領域3およびN型エミッタ領域4、さらにはP型コンタクト領域5と離間して設けられている。これにより、FWDのP型アノード領域31のP型不純物濃度を独立に設定することができるので、FWDの応答速度を早めリカバリー特性の向上を図ることができる。
なお、FWDのP型アノード領域31とIGBTのP型ベース領域3との間に挟まれたトレンチ7bの内部には、ゲート電極15bとゲート絶縁膜18bが設けられている。また、図3では、IGBTのエミッタ電極12と、FWDのアノード電極12aと、が離間した状態で示されているが、図示しないところで接続された構造とすることもできる。
図4は、第2の実施態様の変形例に係る半導体装置40の断面を示す模式図である。半導体装置40では、FWDのP型アノード領域31は、第1トレンチであるトレンチ7cの底部に設けられ、トレンチ7cの内部に設けられたトレンチアノード電極13cによってアノード電極12aに電気的に接続されている。アノード電極12aは、図示しない部分で、N型エミッタ領域4とP型コンタクト領域5とに接続して設けられたエミッタ電極12に電気的に接続させることができる。
さらに、半導体装置40は、トレンチ7cに隣接して形成された第2トレンチであるトレンチ17cの中に、N型ベース層2とN型エミッタ領域4との間を流れる電流を制御するゲート電極15cをさらに備える。
図4に示すFWDの構造は、例えば、次のように形成することができる。
まず、N型ベース層2の表面からP型ベース領域3よりも深いトレンチ17cを形成する。次に、トレンチ17cの内面を熱酸化してゲート絶縁膜18cを設け、続いて、トレンチ17cの内部を、例えば、導電性のポリシリコンで埋める。
次に、トレンチ17cを埋め込んだポリシリコンの表面から、トレンチ17cの底部よりも深い位置に達するトレンチ7cを形成する。続いて、トレンチ7cの底部にP型不純物をイオン注入してFWDのP型アノード領域31を形成する。
さらに、トレンチ7cの内部を熱酸化して絶縁膜14cを形成する。その後、トレンチ7cの底部の熱酸化膜を選択的に除去してトレンチアノード電極13cを埋め込み、FWDのアノード構造を完成させる。
本変形例に係る半導体装置40では、トレンチ7cの底部に設けられたFWDのP型アノード領域31は、トレンチ7cを介在させて、IGBTのP型ベース領域3およびN型エミッタ領域4、さらにP型コンタクト領域5から離間して設けられている。さらに、トレンチ7cの両側にゲート電極15が設けられたトレンチ17cが設けられている。これにより、FWDのP型アノード領域31は、IGBT側から確実に分離される。したがって、P型アノード領域31のP型不純物濃度を独立に設定することができ、FWDの高速化を図ることができる。これにより、FWDのリカバリー特性を向上させることが可能である。また、トレンチ7cの深さを変えることにより、N型ベース層2の所望の深さ位置にP型アノード領域31を形成することができる。
以上、本発明に係る第1および第2実施形態を参照して本発明を説明したが、本発明はこれらの実施形態に限定されるものではない。第1および第2実施形態では、半導体素子としてIGBTを例とした実施形態を示したが、例えば、コレクタ層をN型のドレイン領域に替えたパワーMOSトランジスタとFWDとを一体とした構成とすることもできる。また、出願時の技術水準に基づいて、当業者がなし得る設計変更や、材料の変更等、本発明と技術的思想を同じとする実施態様も本発明の技術的範囲に含有される。
2 N型ベース層
3 P型ベース領域
4 N型エミッタ領域
5 P型コンタクト領域
7、、7a、7b、7c、17、17c トレンチ
8、8a、31 P型アノード領域
9 N型バッファ層
12 エミッタ電極
12a アノード電極
13、13a、13b、13c トレンチアノード電極
14、14a、14c 絶縁膜
15、15a、15b ゲート電極
18、18b、18c ゲート絶縁膜
21 N型カソード領域
22 P型コレクタ層
25 コレクタ電極
25a カソード電極
10、20、30、40、50 半導体装置

Claims (6)

  1. 第1導電型の第1半導体層と、
    前記第1半導体層の表面に選択的に設けられた第2導電型の第1半導体領域と、
    前記第1半導体領域の表面に選択的に設けられた前記第1導電型の第2半導体領域と、 前記第1半導体領域の表面に選択的に設けられ、前記第2半導体領域に隣接した前記第2導電型の第3半導体領域と、
    前記第1半導体層の表面から前記第1半導体領域を超える深さに延在した第1トレンチを介在させて、前記第1半導体領域、前記第2半導体領域および前記第3半導体領域と離間して前記半導体層に設けられた前記第2導電型の第4半導体領域と、
    前記第2半導体領域と前記第3半導体領域とに電気的に接続された第1電極と、
    前記第1電極と前記第4半導体領域とを電気的に接続した第2電極と、
    前記第1半導体層の裏面に電気的に接続された前記第2導電型の第2半導体層と、
    前記第1半導体層の裏面に電気的に接続され、前記第2半導体層を貫通して選択的に設けられた前記第1導電型の第5半導体領域と、
    を備えたことを特徴とする半導体装置。
  2. 前記第1トレンチの内部に設けられ、前記第1半導体層と前記第2半導体領域との間を流れる電流を制御する制御電極をさらに備えたことを特徴とする請求項1記載の半導体装置。
  3. 前記第4半導体領域は、前記第1トレンチの底部に設けられ、前記第1トレンチの内部に設けられた前記第2電極によって前記第1電極に電気的に接続されたことを特徴とする請求項1記載の半導体装置。
  4. 前記第1トレンチに隣接して形成された第2トレンチの中に、前記第1半導体層と前記第2半導体領域との間を流れる電流を制御する制御電極をさらに備えたことを特徴とする請求項3記載の半導体装置。
  5. 前記第4の半導体領域は、前記第1トレンチの内壁に沿って延在した部分を有し、
    前記第2電極は、前記第1トレンチの中に設けられ前記延在部分に接したことを特徴とする請求項1記載の半導体装置。
  6. 前記第5半導体領域は、前記第1半導体層を挟んで前記第4半導体領域に対向したことを特徴とする請求項1〜5のいずれか1つに記載の半導体装置。
JP2010064768A 2010-03-19 2010-03-19 半導体装置 Pending JP2011199041A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010064768A JP2011199041A (ja) 2010-03-19 2010-03-19 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010064768A JP2011199041A (ja) 2010-03-19 2010-03-19 半導体装置

Publications (1)

Publication Number Publication Date
JP2011199041A true JP2011199041A (ja) 2011-10-06

Family

ID=44876879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010064768A Pending JP2011199041A (ja) 2010-03-19 2010-03-19 半導体装置

Country Status (1)

Country Link
JP (1) JP2011199041A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102394244A (zh) * 2011-11-29 2012-03-28 上海宏力半导体制造有限公司 绝缘栅双极型晶体管及其制造方法
WO2012144271A1 (ja) * 2011-04-19 2012-10-26 日産自動車株式会社 半導体装置およびその製造方法
WO2014178262A1 (ja) * 2013-04-30 2014-11-06 日産自動車株式会社 半導体装置及びその製造方法
JP2015032689A (ja) * 2013-08-02 2015-02-16 トヨタ自動車株式会社 半導体装置
JP2015118966A (ja) * 2013-12-17 2015-06-25 トヨタ自動車株式会社 半導体装置
WO2015155828A1 (ja) * 2014-04-08 2015-10-15 日産自動車株式会社 半導体装置及びその製造方法
CN105097682A (zh) * 2014-05-23 2015-11-25 英飞凌科技股份有限公司 半导体器件
US9224844B2 (en) 2014-03-14 2015-12-29 Kabushiki Kaisha Toshiba Semiconductor device
CN112563321A (zh) * 2019-09-25 2021-03-26 三菱电机株式会社 半导体装置及其制造方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9252261B2 (en) 2011-04-19 2016-02-02 Nissan Motor Co., Ltd. Semiconductor device and manufacturing method of the same
WO2012144271A1 (ja) * 2011-04-19 2012-10-26 日産自動車株式会社 半導体装置およびその製造方法
JP5862660B2 (ja) * 2011-04-19 2016-02-16 日産自動車株式会社 半導体装置およびその製造方法
CN102394244A (zh) * 2011-11-29 2012-03-28 上海宏力半导体制造有限公司 绝缘栅双极型晶体管及其制造方法
WO2014178262A1 (ja) * 2013-04-30 2014-11-06 日産自動車株式会社 半導体装置及びその製造方法
JP5939448B2 (ja) * 2013-04-30 2016-06-22 日産自動車株式会社 半導体装置及びその製造方法
JP2015032689A (ja) * 2013-08-02 2015-02-16 トヨタ自動車株式会社 半導体装置
JP2015118966A (ja) * 2013-12-17 2015-06-25 トヨタ自動車株式会社 半導体装置
US9224844B2 (en) 2014-03-14 2015-12-29 Kabushiki Kaisha Toshiba Semiconductor device
WO2015155828A1 (ja) * 2014-04-08 2015-10-15 日産自動車株式会社 半導体装置及びその製造方法
JPWO2015155828A1 (ja) * 2014-04-08 2017-04-13 日産自動車株式会社 半導体装置及びその製造方法
CN105097682B (zh) * 2014-05-23 2019-04-12 英飞凌科技股份有限公司 半导体器件
US9478655B2 (en) 2014-05-23 2016-10-25 Infineon Technologies Ag Semiconductor device having a lower diode region arranged below a trench
CN105097682A (zh) * 2014-05-23 2015-11-25 英飞凌科技股份有限公司 半导体器件
US9876103B2 (en) 2014-05-23 2018-01-23 Infineon Technologies Ag Semiconductor device and transistor cell having a diode region
US10038087B2 (en) 2014-05-23 2018-07-31 Infineon Technologies Ag Semiconductor device and transistor cell having a diode region
JP2015226060A (ja) * 2014-05-23 2015-12-14 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag 半導体装置
CN110265357A (zh) * 2014-05-23 2019-09-20 英飞凌科技股份有限公司 半导体器件
US10727330B2 (en) 2014-05-23 2020-07-28 Infineon Technologies Ag Semiconductor device with diode region
CN110265357B (zh) * 2014-05-23 2023-07-14 英飞凌科技股份有限公司 半导体器件
CN112563321A (zh) * 2019-09-25 2021-03-26 三菱电机株式会社 半导体装置及其制造方法
JP2021052078A (ja) * 2019-09-25 2021-04-01 三菱電機株式会社 半導体装置及びその製造方法
JP7241656B2 (ja) 2019-09-25 2023-03-17 三菱電機株式会社 半導体装置及びその製造方法

Similar Documents

Publication Publication Date Title
JP2011199041A (ja) 半導体装置
JP5182766B2 (ja) 高耐圧半導体装置
JP5636808B2 (ja) 半導体装置
JP5283326B2 (ja) 半導体装置およびその製造方法
JP2008117881A (ja) 半導体装置及びその製造方法
JP5875680B2 (ja) 絶縁ゲート型バイポーラトランジスタ
JP5606240B2 (ja) 半導体装置
US20150187877A1 (en) Power semiconductor device
JP5537359B2 (ja) 半導体装置
JP2009295641A (ja) 電界効果半導体装置及びその製造方法
JP2006245477A (ja) 半導体装置
JP6089818B2 (ja) 半導体装置及びその製造方法
JP2009188178A (ja) 半導体装置
JP2013115223A (ja) 半導体装置
JP2008047772A (ja) 絶縁ゲート型バイポーラトランジスタ
JP5706275B2 (ja) ダイオード、半導体装置およびmosfet
JP2011204711A (ja) 半導体装置およびその製造方法
JP2009188290A (ja) 電力用半導体装置
JP7241656B2 (ja) 半導体装置及びその製造方法
US20150144989A1 (en) Power semiconductor device and method of manufacturing the same
JP5261893B2 (ja) トレンチ型絶縁ゲートバイポーラトランジスタ
JP6869791B2 (ja) 半導体スイッチング素子及びその製造方法
JP2012059734A (ja) 半導体装置及びその製造方法
JP5645899B2 (ja) 半導体装置およびその製造方法
US20150171198A1 (en) Power semiconductor device