JP2011181690A - 発光装置およびそれを用いた光装置 - Google Patents

発光装置およびそれを用いた光装置 Download PDF

Info

Publication number
JP2011181690A
JP2011181690A JP2010044558A JP2010044558A JP2011181690A JP 2011181690 A JP2011181690 A JP 2011181690A JP 2010044558 A JP2010044558 A JP 2010044558A JP 2010044558 A JP2010044558 A JP 2010044558A JP 2011181690 A JP2011181690 A JP 2011181690A
Authority
JP
Japan
Prior art keywords
light emitting
layer
emitting element
substrate
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010044558A
Other languages
English (en)
Other versions
JP5633670B2 (ja
Inventor
Kazunari Saito
一成 斎藤
Noriyuki Tomono
紀之 伴野
Kota Tokuda
耕太 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2010044558A priority Critical patent/JP5633670B2/ja
Priority to US12/929,657 priority patent/US8509278B2/en
Priority to CN201110044656XA priority patent/CN102195235A/zh
Publication of JP2011181690A publication Critical patent/JP2011181690A/ja
Application granted granted Critical
Publication of JP5633670B2 publication Critical patent/JP5633670B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • G11B7/1275Two or more lasers having different wavelengths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4043Edge-emitting structures with vertically stacked active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/18Semiconductor lasers with special structural design for influencing the near- or far-field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02461Structure or details of the laser chip to manipulate the heat flow, e.g. passive layers in the chip with a low heat conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2214Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers based on oxides or nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • H01S5/3432Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs the whole junction comprising only (AI)GaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34326Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on InGa(Al)P, e.g. red laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34333Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Geometry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】放熱性を高めることが可能な発光装置およびそれを用いた光装置を提供する。
【解決手段】GaAsよりなる第2の基板31にAlGaAs系半導体層よりなるレーザ発振部60と、AlGaInP系半導体層よりなるレーザ発振部70とを設ける。第2の基板31のレーザ発振部60,70以外の周辺部90のn型クラッド層71ないしエッチングストップ層74を削除する。周辺部90には、n型クラッド層71ないしエッチングストップ層74よりも熱伝導率の高い材料よりなる埋込層91を設ける。第1の発光素子20で発生した熱は、熱伝導率の高い埋込層91を介して支持基体11に伝わり、放熱性が良くなる。
【選択図】図1

Description

本発明は、複数の発光素子を備えた発光装置およびそれを用いた光装置に関する。
近年、発光装置の分野においては、同一基板(または基体)上に発光波長が異なる複数の発光部が形成されてなる半導体レーザ(LD;laser diode )(以下、多波長レーザという。)が活発に開発されている。このような多波長レーザの一例としては、例えば、1チップ内に発光波長が異なる複数の発光部を作り込んだもの(いわゆる、モノリシック型の多波長レーザ)がある。この多波長レーザは、例えば、気相成長法を用いてAlGaAs系の半導体材料を成長させることにより形成された第1のレーザ発振部と、AlGaInP系の半導体材料を成長させることにより形成された第2のレーザ発振部とが、分離溝を介してGaAs(ガリウムヒ素)よりなる基板の一面側に並列配置されたものである。この場合、第1のレーザ発振部の発振波長は700nm帯(例えば、780nm)であり、第2のレーザ発振部の発振波長は600nm帯(例えば、650nm)である。
また、例えば、配設用の基体の上に、発光波長が異なる複数の半導体レーザが並列に実装されたもの(いわゆる、ハイブリッド型の多波長レーザ)も提案されている。しかし、上述したいわゆるモノリシック型のものの方が、発光点間隔を高精度に制御することができる点で有効である。
これらの多波長レーザは、例えば光ディスク装置のレーザ光源として用いられる。現在、一般に光ディスク装置では、700nm帯の半導体レーザ光がCD(Compact Disk)の再生に用いられると共に、CD−R(CD recordable ),CD−RW(CD Rewritable )あるいはMD(Mini Disk )などの記録可能な光ディスクの記録・再生に用いられている。また、600nm帯の半導体レーザ光がDVD(Digital Versatile Disk)の記録・再生に用いられている。従って、上述したような多波長レーザを光ディスク装置に搭載することにより、既存の複数種類の光ディスクのいずれに関しても、記録または再生が可能となる。しかも、第1および第2のレーザ発振部は、同一基板上(いわゆるハイブリッド型の各半導体レーザにおいては同一の配設用基体上)に並列に配置されているので、レーザ光源用のパッケージが1つで済み、種々の光ディスクを記録・再生するための対物レンズやビームスプリッタなどの光学系の部品点数を減らして光学系の構成を簡素化し、光ディスク装置の小型化および低コスト化を実現することができる。
ところで、近年、更に短波長の光を発する半導体レーザを用いて更に光ディスクの高密度化を図ることが要請されている。このような要請に応える半導体レーザの構成材料としては、GaN,AlGaN混晶およびGaInN混晶に代表される窒化物系III−V族化合物半導体(以下、GaN系の半導体ともいう。)が知られている。このGaN系の半導体を用いた半導体レーザは、既存の光学系を使用して記録・再生が可能な光ディスクの限界波長とされている400nm前後の発振波長が得られることから、次世代の光ディスク用の記録・再生装置の光源として大いに注目されている。また、RGB三原色を用いたフルカラーのディスプレイの光源としても期待されている。そこで、GaN系のレーザ発振部を備えた多波長レーザの開発が望まれている。
従来、GaN系のレーザ発振部を有する多波長レーザとしては、例えば、GaN系のレーザ発振部を有する第1の発光素子と、AlGaAs系の第1のレーザ発振部およびAlGaInP系の第2のレーザ発振部を基板の一面側に並列配置したモノリシック型の第2の発光素子とを、支持基体上にこの順に積層した多波長レーザが提案されている(例えば、特許文献1参照。)。
特開2001−230502号公報
このような従来の多波長レーザでは、低コスト化の観点から、GaAsよりなる基板を用いた第2の発光素子を土台として、その上にGaN系のレーザ発振部を有する第1の発光素子を積み重ねることが望ましい。なぜなら、土台となる半導体レーザチップは、電極配線などを形成するためにより広い面積を必要とし、寸法を大きくする必要があるので、安価なGaAsよりなる基板を土台のチップとして用いるほうが低コスト化に有利となるからである。しかしながら、その場合には、第2の発光素子の熱伝導率の低いAlGaAs系およびAlGaInP系の半導体層により、GaN系のレーザ発振部で発生した熱が支持基体に伝わる際の放熱経路が妨げられることになり、なお改善の余地があった。
本発明はかかる問題点に鑑みてなされたもので、その目的は、放熱性を高めることが可能な発光装置およびそれを用いた光装置を提供することにある。
本発明による発光装置は、以下の(A)〜(C)の構成要素を備えたものである。
(A)支持基体
(B)支持基体の一面側に設けられ、第1の基板を有する第1の発光素子
(C)第1の発光素子および支持基体の間に設けられると共に第2の基板を有し、第2の基板の第1の発光素子側に半導体層よりなる発光部および発光部以外の周辺部を有し、周辺部に半導体層よりも熱伝導率の高い材料よりなる埋込層を有する第2の発光素子
本発明による光装置は、上記本発明による発光装置を備えたものである。
本発明による発光装置、または本発明による光装置では、第2の基板の発光部以外の周辺部に、半導体層よりも熱伝導率の高い材料よりなる埋込層が設けられているので、第1の発光素子で発生した熱は、熱伝導率の高い埋込層を介して支持基体に伝わる。よって、放熱性が良くなる。
本発明の発光装置、または本発明の光装置によれば、第2の基板の発光部以外の周辺部に、半導体層よりも熱伝導率の高い材料よりなる埋込層を設けるようにしたので、放熱性を高めることが可能となる。特に、複数の発光素子のうち熱伝導率の低いものを土台とした場合に好適である。
本発明の一実施の形態に係る発光装置の構成を表す断面図である。 図1に示した第2の発光素子の構成を表す平面図である。 図2のIII−III線における断面図である。 図2に示した第2の発光素子の発光部を拡大して表す断面図である。 FFPの、埋込層の端の位置に対する依存性を表す図である。 図1に示した発光装置の製造方法を説明するための断面図である。 図6に続く製造工程を説明するための断面図である。 図7に続く製造工程を説明するための断面図である。 図8に続く製造工程を説明するための断面図である。 図9に続く製造工程を説明するための断面図である。 図10に続く製造工程を説明するための断面図である。 図11に続く製造工程を説明するための断面図である。 図12に続く製造工程を説明するための断面図である。 図1に示した発光装置の作用を説明するための断面図である。 従来の発光装置の作用を説明するための断面図である。 図1に示した発光装置を用いた光ディスク記録再生装置を表す構成図である。 図1に示した発光装置の変形例を表す断面図である。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.実施の形態
2.適用例(光ディスク記録再生装置)
図1は、本発明の一実施の形態に係る発光装置10Aの断面構造を概略的に表すものである。この発光装置10Aは、光ディスク記録再生装置などに用いられるものであり、支持基体11に、第2の発光素子30および第1の発光素子20を順に重ねて配設したものである。第1の発光素子20と第2の発光素子30とは溶着層40により接合されている。
支持基体11は、ヒートシンク12とサブマウント13とを接着層14を間にして接合した構成を有している。第2の発光素子30は接着層15によりサブマウント13に接合されている。
ヒートシンク12は、第1の発光素子20および第2の発光素子30において発生した熱を放散する放熱部材としての機能を有しており、銅(Cu)などの金属により構成されている。このヒートシンク12は、また、図示しない外部電源に対して電気的に接続されており、第2の発光素子30を外部電源に対して電気的に接続する役割も有している。
サブマウント13は、ヒートシンク12への熱伝導性を確保して駆動時のチップ温度上昇を防ぎ、長寿命を得るためのものであり、例えばシリコン(Si)により構成されているが、より放熱性能を高めるためAlNにより構成されていてもよい。
サブマウント13の上面および下面には、接着層14,15との接合のための導電性接着層13A,13Bが設けられている。導電性接着層13A,13Bは、例えばはんだにより構成されていることが好ましい。熱伝導性を高めることができるからである。具体的には、スズ(Sn),金(Au)とスズ(Sn)との合金,スズ(Sn)と亜鉛(Zn)との合金または銀(Ag)と(Sn)との合金が挙げられる。また、導電性接着層13A,13Bは、例えば銀(Ag)ペーストにより構成されていてもよい。
接着層14,15は、放熱性を確保できる材料により構成されていることが好ましく、例えば銀(Ag)ペーストまたははんだにより構成されていることが好ましい。特に、銀ペーストは製造能力を高めることができ、はんだは熱伝導性が良くなるという利点がある。例えば再生用の光ディスク装置には、駆動電流が低いために発熱量も小さいので、銀ペーストが好ましい。
第1の発光素子20は、例えば、400nm前後の波長の光を出射可能な半導体レーザである。この第1の発光素子20は、例えば窒化物系III−V族化合物半導体よりなる第1の基板21の支持基体11側に、例えば窒化物系III−V族化合物半導体よりなるn型クラッド層22,活性層23,劣化防止層24,p型クラッド層25およびp側コンタクト層26が第1の基板21の側からこの順に積層されたレーザ発振部を有している。ここにおいて、窒化物系III−V族化合物半導体とは、短周期型周期率表における3B族元素群のうちの少なくとも1種と、短周期型周期率表における5B族元素のうちの少なくとも窒素(N)とを含むもののことを指す。
具体的には、第1の基板21は、例えば、n型不純物としてケイ素(Si)が添加されたn型GaNにより構成されており、その積層方向における厚さ(以下、単に厚さという。)は例えば80〜100μmである。
n型クラッド層22は、例えば、厚さが1μmであり、n型不純物としてケイ素が添加されたn型AlGaN(例えば、Al0.08Ga0.92N)混晶により構成されている。活性層23は、例えば、厚さが30nmであり、組成の異なるGax In1−x N(但し、x≧0)混晶によりそれぞれ形成された井戸層とバリア層との多重量子井戸構造を有している。なお、この活性層23は発光層として機能するものである。
劣化防止層24は、例えば、厚さが20nmであり、p型不純物としてマグネシウム(Mg)が添加されたp型AlGaN(例えば、Al0.2 Ga0.8 N)混晶により構成されている。p型クラッド層25は、例えば、厚さが0.7μmであり、p型不純物としてマグネシウムが添加されたp型AlGaN(例えば、Al0.08Ga0.92N)混晶により構成されている。p側コンタクト層26は、例えば、厚さが0.1μmであり、p型不純物としてマグネシウムが添加されたp型GaNにより構成されている。
p型クラッド層25の一部およびp側コンタクト層26は、共振器方向(図1においては紙面に対して垂直な方向)に延長された細い帯状の突条部20Aとされており、いわゆるレーザストライプを構成することにより電流狭窄を行うようになっている。p側コンタクト層26に対応する活性層23の領域が発光領域となっている。p側コンタクト層26の側面およびp型クラッド層25の下面は二酸化ケイ素(SiO2 )などよりなる絶縁層27により覆われている。
p側コンタクト層26の下面および絶縁層27の下面には、p側電極28が形成されている。このp側電極28は、例えば、p側コンタクト層26の側からパラジウム(Pd),白金(Pt)および金(Au)を順次積層したものであり、p側コンタクト層26と電気的に接続されている。このp側電極28は、また、溶着層40を介して第2の発光素子30上の第1配線層51および第1パッド51Aと電気的に接続されている。溶着層40は、例えば、金(Au)とスズ(Sn)との合金あるいはスズにより構成されている。
また、第1の基板21の上面には、n側電極29が設けられている。n側電極29は、例えば、第1の基板21の側から、チタン(Ti)およびアルミニウムを順次積層して熱処理によりを合金化したものであり、第1の基板21と電気的に接続されている。
更に、第1の発光素子20は共振器方向の端部に位置する一対の側面が共振器端面となっており、この一対の共振器端面には図示しない一対の反射鏡膜がそれぞれ形成されている。これら一対の反射鏡膜のうち、一方は活性層23において発生した光を高い反射率で反射するように設定され、他の一方はこれよりも低い反射率で反射するように設定されており、他の一方の側から光が出射するようになっている。
図2および図3は、第2の発光素子30の平面構成および断面構成をそれぞれ表したものである。第2の発光素子30は、例えば、第2の基板31を有している。第2の基板31の第1の発光素子20側には、700nm帯(例えば780nm)の光を出射可能なレーザ発振部60と、600nm帯(例えば650nm)の光を出射可能なレーザ発振部70とが設けられている。第2の基板31は、例えば、厚さが100μm程度であり、n型不純物としてケイ素が添加されたn型GaAsにより構成されている。レーザ発振部60およびレーザ発振部70は、例えば200μm程度以下の間を隔て、共振器方向を第1の発光素子20と揃えて、レーザ発振部70の上方(例えば図1では直上)に第1の発光素子20のp側コンタクト層26が位置するように配置されている。具体的には、レーザ発振部60の後述する発光領域とレーザ発振部70の後述する発光領域との間隔は約120μmとなっており、レーザ発振部70の後述する発光領域のちょうど真上に第1の発光素子20の発光領域が位置している。
レーザ発振部60は、例えば、短周期型周期表における3B族元素のうちの少なくともガリウム(Ga)と短周期型周期表における5B族元素のうちの少なくともヒ素(As)とを含むIII−V族化合物半導体よりそれぞれなるn型クラッド層61,活性層62,p型下部クラッド層63,エッチングストップ層64,p型上部クラッド層65およびp側コンタクト層66が第2の基板31の側からこの順に積層された構成を有している。
具体的には、n型クラッド層61は、例えば、厚さが1.5μmであり、n型不純物としてケイ素が添加されたn型AlGaAs混晶により構成されている。活性層62は、例えば、厚さが40nmであり、組成の異なるAlx Ga1−x As(但し、x≧0)混晶によりそれぞれ形成された井戸層とバリア層との多重量子井戸構造を有している。なお、この活性層62は、発光層として機能するものであり、その発光波長は例えば700nm帯である。p型下部クラッド層63およびp型上部クラッド層65は、例えば、合計厚さが1.5μmであり、p型不純物として亜鉛が添加されたp型AlGaAs混晶により構成されている。エッチングストップ層64は、例えば、厚さが30nm程度であり、p型AlGaAs混晶により構成されている。p側コンタクト層66は、例えば、厚さが0.5μmであり、p型不純物として亜鉛が添加されたp型GaAsにより構成されている。
p型上部クラッド層65およびp側コンタクト層66は、共振器方向に延長された細い帯状の突条部60Aとされており、電流狭窄をするようになっている。p側コンタクト層66に対応する活性層62の領域が発光領域となっている。p側コンタクト層66の側面,p型上部クラッド層65の側面およびエッチングストップ層64の上面には、絶縁層81が設けられている。この絶縁層81は、エッチングストップ層64ないしn型クラッド層61の側面を覆い、更に、レーザ発振部70およびそれ以外の領域の第2の基板31の表面とを覆っている。絶縁層81は、例えば、厚みが100nm程度であり、酸化シリコン(SiO2)等により構成されている。
p側コンタクト層66の上には、p側電極67が形成されている。このp側電極67は、例えば、p側コンタクト層66の側から、厚み50nmのチタン層,厚み100nmの白金層および厚み300nmの金層を順次積層して熱処理により合金化したものであり、p側コンタクト層66と電気的に接続されている。このp側電極67には、第2配線層52および第2パッド52Aが連続して設けられている。
レーザ発振部70は、例えば、n型クラッド層71,活性層72,p型下部クラッド層73,エッチングストップ層74,p型上部クラッド層75およびp側コンタクト層76が第2の基板31の側からこの順に積層された構成を有している。これらの各層は、例えば、短周期型周期表における3B族元素のうちの少なくともインジウム(In)と短周期型周期表における5B族元素のうちの少なくともリン(P)とを含むIII−V族化合物半導体によりそれぞれ構成されている。
具体的には、n型クラッド層71は、例えば、厚さが1.5μmであり、n型不純物としてケイ素が添加されたn型AlGaInP混晶により構成されている。活性層72は、例えば、例えば、厚さが35nmであり、組成の異なるAlx Gay In1−x−y P(但し、x≧0かつy≧0)混晶によりそれぞれ形成された井戸層とバリア層との多重量子井戸構造を有している。なお、この活性層72は、発光層として機能するものである。p型下部クラッド層73およびp型上部クラッド層75は、例えば、厚さが1.0μmであり、p型不純物として亜鉛が添加されたp型AlGaInP混晶により構成されている。エッチングストップ層74は、例えば、厚さが20nm程度であり、p型GaInP混晶により構成されている。p側コンタクト層76は、例えば、厚さが0.5μmであり、p型不純物として亜鉛が添加されたp型GaAsにより構成されている。
p型上部クラッド層75およびp側コンタクト層76は、共振器方向に延長された細い帯状の突条部70Aとされており、電流狭窄をするようになっている。p側コンタクト層76に対応する活性層72の領域が発光領域となっている。p側コンタクト層76ないしn型クラッド層71の側面には、レーザ発振部60と共通の絶縁層81が設けられている。
p側コンタクト層76の上には、p側コンタクト層76と電気的に接続され、例えばp側電極67と同様の構成を有するp側電極77が設けられている。このp側電極77は、また、第3配線層53および第3パッド53(図1,図3には図示せず、図2参照。)と連続して設けられている。
また、第2の基板31の下面(支持基体11側)には、レーザ発振部60,70のn側電極32が形成されている。このn側電極32は、例えば、第2の基板31の側から金とゲルマニウム(Ge)との合金,ニッケルおよび金を順次積層して熱処理により合金化したものである。
更に、第2の発光素子30は、共振器方向の端部に位置する一対の側面がそれぞれ共振器端面となっており、各レーザ発振部60,70それぞれにおいてこの一対の共振器端面に図示しない一対の反射鏡膜がそれぞれ形成されている。これら一対の反射鏡膜では、反射率の高低が第1の発光素子20に設けられた図示しない一対の反射鏡膜と対応するようにそれぞれ設定されており、第1の発光素子20および第2の発光素子30のレーザ発振部60,70は、それぞれ同一の側から光が出射するようになっている。
レーザ発振部70のn型クラッド層71ないしエッチングストップ層74は、突条部70A近傍、つまり発光に寄与する領域のみに設けられており、レーザ発振部60,70以外の周辺部90では削除されている。この周辺部90には、n型クラッド層71ないしエッチングストップ層74よりも熱伝導率の高い材料、例えば金(Au)よりなる埋込層91(放熱層)が設けられている。これにより、この発光装置10Aでは、放熱性を高めることが可能となっている。
埋込層91が金(Au)により構成されている場合には、埋込層91は、例えば、p側電極77および第3配線層53の上に設けられている。埋込層91の厚みは、n型クラッド層71ないしエッチングストップ層74の合計厚さと同等、例えば1μmないし3μm程度であることが望ましい。
更に、埋込層91は、n型クラッド層71ないしエッチングストップ層74よりも熱伝導率の高いことに加えて、熱膨張率(線膨張係数)がn型クラッド層71ないしエッチングストップ層74に近い、ヤング率が低いことが好ましい。これにより、レーザ発振部70のn型クラッド層71ないしエッチングストップ層74への応力の影響を小さくすることが可能となる。
埋込層91は、また、溶着層40と共に、第1の発光素子20の支持土台としての機能も有している。そのため、埋込層91の幅(共振器方向に直交する方向の寸法)および長さ(共振器方向の寸法)は、第1の発光素子20の寸法に合わせて適宜設定することが望ましい。なお、埋込層91の寸法を大きくするほど放熱性を高めることが可能となる。
埋込層91の上には、絶縁層82を間にして、第1配線層51および溶着層40が設けられている。絶縁層82は、例えば、厚みが300nm程度であり、窒化ケイ素(SiN)により構成されている。第1配線層51は、例えば、埋込層91の側から、厚み50nmのチタン層,厚み100nmの白金層および厚み100nmの金層を順次積層して熱処理により合金化したものであり、溶着層40と電気的に接続されている。この第1配線層51には、第1パッド51Aが設けられている。
溶着層40は、例えば、第1の発光素子20の突条部20Aを回避して、埋込層91と第1の発光素子20との間に設けられているが、第1の発光素子20の突条部20Aを含む全面に設けられていてもよい。第1配線層51は、第1パッド51Aおよび溶着層40が設けられている部分を除いて、絶縁層83により覆われている。絶縁層83は、例えば、厚みが100nm程度であり、窒化ケイ素(SiN)により構成されている。が、第1の発光素子20の突条部20Aを含む全面に設けられていてもよい。
埋込層91の突条部70A側の端91Aは、突条部70Aの端70B(図5参照)から2μm以上30μm未満の範囲に位置していることが好ましい。2μm未満の場合には、レーザ光の光分布、放射形状(FFP)、光吸収ロスなどの影響が生じるおそれがあるからである。また、30μm以上の場合には、埋込層91がレーザ発振部70から離れすぎて放熱性を高める効果が十分に得られないからである。
図4は、レーザ発振部70のFFPの、n型クラッド層71ないしエッチングストップ層74の削除寸法に対する依存性を調べたシミュレーション結果を表したものである。ここで、削除寸法は、図5に示したように、突条部70Aの端70Bと、レーザ発振部70の端70C(n型クラッド層71ないしエッチングストップ層74の削除位置、すなわち埋込層91の端91Aの位置)との距離である。図4から分かるように、削除寸法が2μm未満になると、半値全幅(FWHM)すなわちビーム拡がり角度が増大する。すなわち、n型クラッド層71ないしエッチングストップ層74の削除寸法が2μm以上であれば、FFPに対する影響を抑えることが可能となることが分かる。
また、埋込層91は、突条部70Aの端70Bから30μm以内の範囲に設けられていることが好ましい。埋込層91が突条部70Aまたはレーザ発振部70から離れすぎると放熱性を高める効果が十分に得られなくなるからである。
この発光装置10Aは、例えば、次のようにして製造することができる。
図6ないし図13は、発光装置10Aの製造方法を工程順に表したものである。なお、第1の発光素子20の製造工程については図1を参照して説明する。
まず、図1に示した第1の発光素子20を形成する。すなわち、例えば、厚さ400μm程度のn型GaNよりなる第1の基板21を用意し、この第1の基板21の表面に、MOCVD法により、n型AlGaN混晶よりなるn型クラッド層22,InGaN混晶よりなる活性層23,p型AlGaN混晶よりなる劣化防止層24,p型AlGaN混晶よりなるp型クラッド層25およびp型GaNよりなるp側コンタクト層26を順次成長させる。なお、これらの各層を成長させる際には、第1の基板21の温度を例えば750℃〜1100℃にそれぞれ調節する。
次いで、p側コンタクト層26の上に図示しないマスクを形成し、p側コンタクト層26およびp型クラッド層25の上層部を選択的にエッチングしてこれらを細い帯状の突条部20Aとし、p型クラッド層25を表面に露出させる。続いて、p側コンタクト層26上の図示しないマスクを利用して、p型クラッド層25の表面およびp側コンタクト層26の側面を覆うように絶縁層27を形成する。
絶縁層27を形成したのち、p側コンタクト層26の表面およびその近傍に、例えば、パラジウム,白金および金を順次蒸着し、p側電極28を形成する。更に、後述する工程において第1の基板21の劈開を容易に行うために、第1の基板21の裏面側を例えばラッピングおよびポリッシングして第1の基板21の厚さを例えば100μm程度とする。
続いて、第1の基板21の裏面側に、例えばチタンおよびアルミニウムを順次蒸着し、n側電極29を形成する。n側電極29を形成したのち、加熱処理を行い、n側電極29を合金化する。そののち、ここでは図示しないが、第1の基板21を例えばp側電極28の長さ方向に対して垂直に所定の幅で劈開し、その劈開面に一対の反射鏡膜を形成する。これにより、図1に示した第1の発光素子20が作製される。
また一方、例えば、厚さ350μm程度のn型GaAsよりなる第2の基板31を用意し、この第2の基板31の表面にMOCVD法により、n型AlGaAs混晶よりなるn型クラッド層61,Alx Ga1−x As(但し、x≧0)混晶よりなる活性層62,p型AlGaAs混晶よりなるp型下部クラッド層63,p型AlGaAs混晶よりなるエッチングストップ層64,p型AlGaAs混晶よりなるp型上部クラッド層65およびp型GaAsよりなるp側コンタクト層66を順次成長させる。なお、これらの各層を成長させる際には、第2の基板31の温度を例えば750℃〜800℃にそれぞれ調節する。
次いで、p型キャップ層44の上にレーザ発振部60の形成予定領域に対応してレジスト膜(図示せず)を形成する。そののち、このレジスト膜(図示せず)をマスクとして、例えば、硫酸系のエッチング液を用いてp側コンタクト層66を選択的に除去し、フッ酸系のエッチング液を用いてp側コンタクト層66,p型上部クラッド層65,エッチングストップ層64,p型下部クラッド層63,活性層63およびn型クラッド層61のレジスト膜(図示せず)に覆われていない部分をそれぞれ選択的に除去する。そののち、レジスト膜(図示せず)を除去する。
続いて、例えばMOCVD法により、n型AlGaInP混晶よりなるn型クラッド層71,Alx Gay In1−x−y P(但し、x≧0かつy≧0)混晶よりなる活性層72,p型AlGaInP混晶よりなるp型下部クラッド層73,p型GaInP混晶よりなるエッチングストップ層74,p型AlGaInP混晶よりなるp型上部クラッド層75およびp型GaAsよりなるp側コンタクト層76を順次成長させる。なお、これらの各層を成長させる際には、第2の基板31の温度を例えば680℃程度にそれぞれ調節する。
そののち、p側コンタクト層76の上にレーザ発振部70の形成予定領域に対応してレジスト膜(図示せず)を形成する。続いて、このレジスト膜(図示せず)をマスクとして、例えば、硫酸系のエッチング液を用いてp側コンタクト層76を選択的に除去し、リン酸系および塩酸系のエッチング液を用いてp型上部クラッド層75,エッチングストップ層74,p型下部クラッド層73,活性層72およびn型クラッド層71をそれぞれ選択的に除去する。そののち、レジスト膜(図示せず)を除去する。
レジスト膜(図示せず)を除去したのち、図6(A)に示したように、例えば、p側コンタクト層76,66の上に図示しない細い帯状のマスクを形成し、p側コンタクト層66,76およびp型上部クラッド層65,75をエッチングストップ層64,74に達するまで選択的に除去し、突条部60A,70Aを形成する。突条部60A,70A間の間隔は、例えば110μm程度とする。
突条部60A,70Aを形成したのち、第2の基板31の全面に絶縁膜(図示せず)を形成し、この絶縁膜(図示せず)をフォトリソグラフィおよびエッチングにより選択的に除去する。これにより、図6(B)に示したように、突条部60A,70Aの上面および側面にマスクM60,M70を形成する。マスクM60,M70は、例えば窒化ケイ素(SiN)などの絶縁膜により構成することが好ましい。
マスクM60,M70を形成したのち、図7(A)に示したように、例えばアンモニアおよび過酸化水素水をエッチング液として用いたウェットエッチングにより、突条部60A,70A以外のp側コンタクト層66,76を選択的に除去する。これにより、p側コンタクト層66,76は突条部60A,70Aのみに残存し、p側コンタクト層66,76を介した電流リークが抑制される。アンモニアと過酸化水素水との混合比としては、例えば、4℃でアンモニア:過酸化水素水=1:30とする。
続いて、図7(B)に示したように、例えば塩酸および水をエッチング液として用いたウェットエッチングにより、n型クラッド層71ないしエッチングストップ層74のマスクMで覆われていない領域を選択的に除去して、レーザ発振部70を形成する。このとき、n型クラッド層61ないしp側コンタクト層66よりなるレーザ発振部60は除去されない。これにより、レーザ発振部60,70以外の領域に、n型クラッド層71ないしエッチングストップ層74が削除された周辺部90が形成される。
このように、マスクM70は、突条部70A近傍以外のn型クラッド層71ないしエッチングストップ層74を除去して周辺部90を形成するためのマスクとしても用いるものである。そのため、マスクM70の幅W70は、レーザ発振部70の出来上がり幅を考慮して適切な寸法に設定することが望ましい。
周辺部90を形成したのち、図8(A)に示したように、マスクM60,M70を除去する。
マスクM60,M70を除去したのち、図8(B)に示したように、第2の基板31の全面に、SiO2等よりなる絶縁膜81を、例えば100nmの厚みで形成する。続いて、図9(A)に示したように、例えばフォトリソグラフィおよびエッチングにより、絶縁膜81を選択的に除去し、絶縁膜81に、突条部60A,70Aの上面に開口を設ける。
絶縁膜81に開口を設けたのち、図9(B)に示したように、絶縁膜81上に、例えばフォトリソグラフィにより、フォトレジストよりなるマスクR1を形成する。このマスクR1は、p側電極67,77を形成するためのものであり、レーザ発振部60,70の境界となるn型クラッド層61ないしp型上部クラッド層65の側面およびその近傍に形成する。
マスクR1を形成したのち、第2の基板31の全面に、例えば蒸着法により、p側コンタクト層66,76の側から、厚み50nmのチタン層,厚み100nmの白金層および厚み300nmの金層を順次積層する。そののち、図10(A)に示したように、マスクR1を用いたリフトオフ法により、レーザ発振部60,70の上にp側電極67,77を形成すると共に、p側電極67に連続して第2配線層52を設け、p側電極77に連続して第3配線層53を設ける。
p側電極67,77等を形成したのち、図10(B)に示したように、レーザ発振部60,70および第3配線層53上に、例えばフォトリソグラフィにより、埋込層91を形成するためのフォトレジストよりなるマスクR2を形成する。
マスクR2を形成したのち、第2の基板31の全面に、例えば電気めっき、蒸着またはスパッタ法により、金(Au)層を、例えば3μmの厚さで形成する。そののち、図11(A)に示したように、マスクR2を用いたリフトオフ法により、周辺部90に埋込層91を形成する。なお、金層の成膜方法により埋込層91の応力を調整することが可能である。特に電気めっき法は応力を小さくすることが可能である。
埋込層91を形成したのち、図11(B)に示したように、第2の基板31の全面に、SiN等よりなる絶縁膜82を、例えば300nmの厚みで形成する。絶縁膜82は、例えばスパッタ法により形成することが好ましい。埋込層91の側面の段差を絶縁膜82により確実に被覆することが可能となるので、第1配線層51が埋込層91の側面で途切れてしまうおそれが小さくなるからである。
絶縁膜82を形成したのち、図12(A)に示したように、絶縁膜82上に、例えばフォトリソグラフィにより、フォトレジストよりなるマスクR3を形成する。このマスクR3は、第1配線層51を形成するためのものであり、レーザ発振部60,70の表面に形成する。
マスクR3を形成したのち、第2の基板31の全面に、例えば蒸着法により、埋込層91の側から、厚み50nmのチタン層,厚み100nmの白金層および厚み100nmの金層を順次積層する。そののち、図12(B)にしたように、マスクR3を用いたリフトオフ法により、埋込層91上およびその近傍に第1配線層51を形成する。
第1配線層51を形成したのち、第2の基板31の全面に、上述した厚みおよび材料よりなる絶縁層83を形成する。続いて、例えばフォトリソグラフィおよびエッチングにより、絶縁層83を選択的に除去し、図13(A)に示したように、埋込層91の上面に開口を設けると共に、第1配線層51に第1パッド51Aを設ける。更に、絶縁層82を選択的に除去することにより、第2配線層52に第2パッド52A,52Bを設けると共に、第3配線層53に第3パッド53Aを設ける。
絶縁層83に開口を設けたのち、図13(B)に示したように、絶縁膜83の開口内に、上述した材料よりなる溶着層40を形成する。
更に、第2の基板31の裏面側を例えばラッピングおよびポリッシングすることにより、第2の基板31の厚さを例えば100μm程度とする。続いて、この第2の基板31の裏面側に、例えば、金とゲルマニウムとの合金,ニッケルおよび金を順次蒸着し、各レーザ発振部60,70に共通のn側電極32を形成する。そののち、加熱処理を行い、p側電極67,77およびn側電極32をそれぞれ合金化する。更に、ここでは図示しないが、第2の基板31を例えばp側電極67,77の長さ方向に対して垂直に所定の幅で劈開し、その劈開面に一対の反射鏡膜を形成する。これにより、第2の発光素子30が作製される。
このようにして第1の発光素子20および第2の発光素子30をそれぞれ作製したのち、
、ヒートシンク12の上面に接着層14を形成する一方、サブマウント13の上面および下面に導電性接着層13A,13Bをそれぞれ形成する。続いて、ヒートシンク12およびサブマウント12を、接着層14および導電性接着層13Bを用いて接合し、支持基体11を形成する。
支持基体11を形成したのち、例えば接着層15および導電性接着層13Aにより第2の発光素子30のn側電極32と支持基体11とを接着する。また、例えば溶着層40により第1配線層51と第1の発光素子20のp側電極28とを接着する。これにより、図1に示した発光装置10Aが完成する。
この発光装置10Aでは、第1の発光素子20のn側電極29とp側電極28との間に電圧が印加されると、活性層23に電流が注入され、電子−正孔再結合により発光が起こり、第1の発光素子20から400nm前後の波長の光が出射される。また、第2の発光素子30のn側電極32とp側電極67との間に所定の電圧が印加されると、活性層62に電流が注入され、電子−正孔再結合により発光が起こり、レーザ発振部60から700nm帯の波長の光が出射される。更に、第2の発光素子30のn側電極32とp側電極77との間に所定の電圧が印加されると、活性層72に電流が注入され、電子−正孔再結合により発光が起こり、レーザ発振部70から600nm帯の波長の光が出射される。
なお、発光の際には熱も発生するが、ここでは、第2の基板31のレーザ発振部60,70以外の周辺部90のn型クラッド層71ないしエッチングストップ層74が削除されており、その周辺部90に、n型クラッド層71ないしエッチングストップ層74よりも熱伝導率の高い材料よりなる埋込層91が設けられているので、第1の発光素子20で発生した熱は、図14に示したように、熱伝導率の高い埋込層91を介して支持基体11に伝わる。よって、放熱性が良くなる。一方、レーザ発振部60またはレーザ発振部70において発生した熱は、支持基体11を介して放散される。
これに対して、埋込層91を設けない場合には、第1の発光素子20で発生した熱は、図15に示したように、熱伝導率の低いAlGaAs系化合物半導体よりなるn型クラッド層71ないしエッチングストップ層74により、放熱経路が遮られ、放熱性が低下する。
このように本実施の形態では、第2の基板31のレーザ発振部60,70以外の周辺部90に、n型クラッド層71ないしエッチングストップ層74よりも熱伝導率の高い材料よりなる埋込層91を設けるようにしたので、放熱性を高めることが可能となる。よって、発光装置10Aの高温信頼性、長期信頼性を向上させることが可能となる。また、熱伝導率の低いGaAsよりなる第2の基板31を有する第2の発光素子30を、より広い面積を必要とする土台のチップとして用いることが可能となり、多波長レーザのコスト削減に極めて有利である。
(適用例)
この発光装置10Aは、例えば光装置としての光ディスク記録再生装置に用いられる。図16は、その光ディスク記録再生装置の構成を模式的に表すものである。この光ディスク記録再生装置は、波長の異なる光を用いて光ディスクに記録されている情報をそれぞれ再生し、また光ディスクに情報を記録するためのものである。この光ディスク記録再生装置は、本実施の形態に係る発光装置10A、および制御部111の制御に基づき発光装置10Aから出射させた所定の発光波長の出射光Lout を光ディスクDへ導くと共に、光ディスクDからの信号光(反射光Lref )読み取るための光学系、すなわち、ビームスプリッタ112,コリメータレンズ113,ミラー114,開口制限アパーチャ115,対物レンズ116,信号光検出用レンズ117,信号光検出用受光素子118および信号光再生回路119を備えている。
この光ディスク記録再生装置では、発光装置10から出射した例えば強度の大きい出射光Lout は、ビームスプリッタ132で反射し、コリメータレンズ133で平行光にされ、ミラー134で反射する。このミラー134で反射した出射光Lout は、開口制限アパーチャ115を通過したのち、対物レンズ116により集光されて光ディスクDに入射する。これにより、光ディスクDに情報が書き込まれる。また、発光装置10から出射した例えば微弱な出射光Lout は、上述したように各光学系を経て光ディスクDに入射したのち、光ディスクDで反射する。この反射光Lref は、対物レンズ116,開口制限アパーチャ115,ミラー114,コリメータレンズ113およびビームスプリッタ112を経て、信号光検出用レンズ117を通過し、信号光検出用受光素子118に入射し、ここで電気信号に変換された後、信号光再生回路119において光ディスクDに書き込まれた情報の再生が行われる。
なお、本実施の形態に係る発光装置10Aは、1つのパッケージ内に収納され得ると共に、間隔が精確に規定された複数の発光領域から出射光Lout を発するようになっている。よって、この発光装置10Aを用いれば、波長の異なる複数の出射光Lout を共通の光学系を利用して所定の箇所に導くことができる。よって、光ディスク記録再生装置の簡略化,小型化および低コスト化を実現することができる。また発光点間隔の誤差が極めて小さいので、受光部(信号光検出用受光素子118)に結像する反射光Lref の位置が各光ディスク記録再生装置によって異なってしまうことを防止できる。すなわち、光学系の設計を容易に行うことができ、かつ光ディスク記録再生装置の歩留まりを向上させることができる。
また、本実施の形態の発光装置10Aは、400nm前後,600nm帯および700nm帯の3波長の発光を得ることができるので、CD−ROM(Read Onry Memory),CD−R,CD−RW,MD,DVD−ROMなどの既存の各種光ディスクは勿論のこと、現在書き換え可能な大容量ディスクとして提唱されているいわゆるDVD−RAM(Random Access Memory),DVD+RWあるいはDVD−R/RWなどのほか、更に高い面記録密度(例えば20Gバイト以上)を有する次世代の記録可能な光ディスク(例えば、次世代の光ディスク装置として提唱されているDVR(Digital Video Recorder)またはVDR(Video Disk Recorder )に用いる光ディスク)についても、記録・再生を行うことが可能となる。このような次世代の記録可能な大容量ディスクを利用することができれば、映像データを録画することができると共に、録画したデータ(画像)を良好な画質で操作性よく再生することができる。
なお、ここでは、発光装置10Aを光ディスク記録再生装置に適用した例について説明したが、光ディスク再生装置,光ディスク記録装置,光磁気ディスク (MO;Magneto-optical disk)などの記録・再生を行うための光磁気ディスク装置あるいは光通信装置などの光装置全般に適用できることは勿論、高温で動作する必要のある車載用の半導体レーザ装置を備えた機器などにも適用可能である。
以上、実施の形態を挙げて本発明を説明したが、本発明は上記実施の形態に限定されるものではなく、種々変形可能である。例えば、上記実施の形態では、周辺部90のn型クラッド層71ないしエッチングストップ層74を削除した場合について説明したが、n型クラッド層71ないしエッチングストップ層74を削除すると共に第2の基板31の厚み方向の一部を削除し、第2の基板31に凹部を形成するようにしてもよい。第2の基板31の凹部の深さは、例えば100nm程度とすることができる。
また、例えば、上記実施の形態では、埋込層91および溶着層40を第2の発光素子30側に設けた場合について説明したが、埋込層91および溶着層40は、第1の発光素子20側に設けることも可能である。
更に、例えば、上記実施の形態では、支持基体11,第1の発光素子20および第2の発光素子30について、具体的な積層構造の一例を挙げて説明したが、本発明は支持基体11,第1の発光素子20または第2の発光素子30が他の構造を有している場合についても同様に適用することができる。例えば、支持基体11はサブマウント13を有さず、ヒートシンク12のみを有していてもよい。
加えて、上記実施の形態では、第1の発光素子20と第2の発光素子30とが互いに異なる波長の光を出射するように構成した場合について説明したが、支持基体11の一面側に第1の発光素子20を複数積層することも可能である。更に、特性あるいは構造が異なる複数の発光素子を積層することも可能である。その場合、発光波長は同一であってもよいし、異なっていてもよい。特性が異なる複数の発光素子を積層する場合には、例えば低出力のものと高出力のものとを混載することができる。
更にまた、上記実施の形態では、第1の発光素子20の発光部が1つである場合について説明したが、第1の発光素子20は複数の発光部を有していてもよい。具体的には、第2の発光素子30と同様に複数のレーザ発振部を有するように構成してもよい。その場合には、各レーザ発振部の発光波長は同一であってもよいし、異なっていてもよい。また、特性あるいは構造についても同一であってもよいし、異なっていてもよい。
加えてまた、上記実施の形態では、第2の発光素子30が2つのレーザ発振部を有する場合を例に挙げて説明したが、第2の発光素子のレーザ発振部の数は、1つであってもよいし、3つ以上であってもよい。例えば図17に示したように、発光装置10Aは、第2の発光素子30がレーザ発振部70のみを有する2波長レーザであってもよい。これらの各レーザ発振部の発光波長,特性および構造については、同一であってもよいし、異なっていてもよい。
更にまた、上記実施の形態では、第2の発光素子30がいわゆるモノリシック型の多波長レーザよりなる場合について説明したが、本発明は、第2の発光素子がいわゆるハイブリッド型の多波長レーザである場合にも適用することができる。
加えてまた、上記実施の形態では、支持基体11を構成する材料について具体例を挙げて説明したが、他の材料により構成するようにしてもよい。但し、高い熱伝導性を有する材料であることが好ましい。例えば上記実施の形態では、金属によりヒートシンク12を構成するようにしたが、絶縁性を有する材料によりヒートシンク12を構成し、その上に配線を設けるようにしてもよい。
更にまた、上記実施の形態では、発光素子として半導体レーザを具体例に挙げて説明したが、本発明は、発光ダイオード(light emitting diode;LED)などの他の発光素子を備えた発光装置についても適用することができる。
10A…発光装置、11…支持基体、12…ヒートシンク、13…サブマウント、13A,13B…導電性接着層、14,15…接着層、20…第1の発光素子、21…第1の基板、22,61,71…n型クラッド層、23,62,72…活性層、24…劣化防止層、25…p型クラッド層、26,66,76…p側コンタクト層、27,81〜83…絶縁層、28,67,77…p側電極、29,32…n側電極、30…第2の発光素子、31…第2の基板、32…n側電極、40…溶着層、51…第1配線層、51A…第1パッド、52…第2配線層、52A…第2パッド、53…第3配線層、53A…第3パッド、60,70…レーザ発振部、63,73…p型下部クラッド層、64,74…エッチングストップ層、65,75…p型上部クラッド層、66,76…p側コンタクト層、90…周辺部、91…埋込層

Claims (13)

  1. 支持基体と、
    前記支持基体の一面側に設けられ、第1の基板を有する第1の発光素子と、
    前記第1の発光素子および前記支持基体の間に設けられると共に第2の基板を有し、前記第2の基板の前記第1の発光素子側に半導体層よりなる発光部および前記発光部以外の周辺部を有し、前記周辺部に前記半導体層よりも熱伝導率の高い材料よりなる埋込層を有する第2の発光素子と
    を備えた発光装置。
  2. 前記発光部は突条部を有し、
    前記埋込層の端が、前記突条部の端から2μm以上30μm未満の範囲に位置している
    請求項1記載の発光装置。
  3. 前記埋込層は、前記突条部の端から30μm以内の範囲に設けられている
    請求項2記載の発光装置。
  4. 前記第1の発光素子と前記第2の発光素子とを接合する溶着層を有し、前記溶着層は前記埋込層と前記第1の発光素子との間に設けられている
    請求項3記載の発光装置。
  5. 前記第1の発光素子と前記第2の発光素子とは、互いに波長が異なる光を出射可能である
    請求項1記載の発光装置。
  6. 前記第1の発光素子は、3B族元素のうちの少なくとも1種と5B族元素のうちの少なくとも窒素(N)とを含む半導体層を有する
    請求項1記載の発光装置。
  7. 前記第1の基板は、3B族元素のうちの少なくとも1種と5B族元素のうちの少なくとも窒素(N)とを含む窒化物系III−V族化合物半導体よりなる
    請求項6記載の発光装置。
  8. 前記第1の発光素子は、前記第1の基板の前記支持基体側に発光部を有する
    請求項1記載の発光装置。
  9. 前記第2の発光素子は、互いに発光波長が異なる複数の発光部を有する
    請求項1記載の発光装置。
  10. 前記第2の基板は、ガリウムヒ素(GaAs)よりなる
    請求項1記載の発光装置。
  11. 前記第2の発光素子は、3B族元素のうちの少なくともガリウム(Ga)と5B族元素のうちの少なくともヒ素(As)とを含む半導体層を有する
    請求項1記載の発光装置。
  12. 前記第2の発光素子は、3B族元素のうちの少なくともインジウム(In)と5B族元素のうちの少なくともリン(P)とを含む半導体層を有する
    請求項1記載の発光装置。
  13. 発光装置を有し、前記発光装置は、
    支持基体と、
    前記支持基体の一面側に設けられ、第1の基板を有する第1の発光素子と、
    前記第1の発光素子および前記支持基体の間に設けられると共に第2の基板を有し、前記第2の基板の前記第1の発光素子側に半導体層よりなる発光部および前記発光部以外の周辺部を有し、前記周辺部に前記半導体層よりも熱伝導率の高い材料よりなる埋込層を有する第2の発光素子と
    を備えた光装置。
JP2010044558A 2010-03-01 2010-03-01 発光装置およびそれを用いた光装置 Expired - Fee Related JP5633670B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010044558A JP5633670B2 (ja) 2010-03-01 2010-03-01 発光装置およびそれを用いた光装置
US12/929,657 US8509278B2 (en) 2010-03-01 2011-02-07 Light emitting device and optical apparatus using the same
CN201110044656XA CN102195235A (zh) 2010-03-01 2011-02-22 发光装置以及采用该发光装置的光学设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010044558A JP5633670B2 (ja) 2010-03-01 2010-03-01 発光装置およびそれを用いた光装置

Publications (2)

Publication Number Publication Date
JP2011181690A true JP2011181690A (ja) 2011-09-15
JP5633670B2 JP5633670B2 (ja) 2014-12-03

Family

ID=44505247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010044558A Expired - Fee Related JP5633670B2 (ja) 2010-03-01 2010-03-01 発光装置およびそれを用いた光装置

Country Status (3)

Country Link
US (1) US8509278B2 (ja)
JP (1) JP5633670B2 (ja)
CN (1) CN102195235A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6928199B1 (ja) * 2020-10-01 2021-09-01 三菱電機株式会社 半導体レーザ装置
WO2021210348A1 (ja) * 2020-04-15 2021-10-21 日亜化学工業株式会社 光源装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4930322B2 (ja) 2006-11-10 2012-05-16 ソニー株式会社 半導体発光素子、光ピックアップ装置および情報記録再生装置
US10193301B2 (en) * 2017-03-31 2019-01-29 Nichia Corporation Method of manufacturing light emitting device and light emitting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340587A (ja) * 1998-05-06 1999-12-10 Xerox Corp フリップチップ接合で製作した多重波長レ―ザアレ―
JP2005317896A (ja) * 2004-03-30 2005-11-10 Sanyo Electric Co Ltd 半導体レーザ装置
JP2007048909A (ja) * 2005-08-09 2007-02-22 Sanyo Electric Co Ltd 半導体レーザ装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3486900B2 (ja) * 2000-02-15 2004-01-13 ソニー株式会社 発光装置およびそれを用いた光装置
JP2004103839A (ja) * 2002-09-10 2004-04-02 Canon Inc 半導体マルチビームレーザ装置及び画像形成装置
JP2004207480A (ja) * 2002-12-25 2004-07-22 Pioneer Electronic Corp 半導体レーザ装置及びその製造方法
JP3916584B2 (ja) * 2003-04-24 2007-05-16 シャープ株式会社 窒化物半導体レーザ装置
JP4930322B2 (ja) * 2006-11-10 2012-05-16 ソニー株式会社 半導体発光素子、光ピックアップ装置および情報記録再生装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340587A (ja) * 1998-05-06 1999-12-10 Xerox Corp フリップチップ接合で製作した多重波長レ―ザアレ―
JP2005317896A (ja) * 2004-03-30 2005-11-10 Sanyo Electric Co Ltd 半導体レーザ装置
JP2007048909A (ja) * 2005-08-09 2007-02-22 Sanyo Electric Co Ltd 半導体レーザ装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210348A1 (ja) * 2020-04-15 2021-10-21 日亜化学工業株式会社 光源装置
US12000567B2 (en) 2020-04-15 2024-06-04 Nichia Corporation Light source device including first substrate supporting first and second laser diodes and second substrate supporting third laser diode
JP6928199B1 (ja) * 2020-10-01 2021-09-01 三菱電機株式会社 半導体レーザ装置
WO2022070388A1 (ja) * 2020-10-01 2022-04-07 三菱電機株式会社 半導体レーザ装置

Also Published As

Publication number Publication date
JP5633670B2 (ja) 2014-12-03
US8509278B2 (en) 2013-08-13
US20110211610A1 (en) 2011-09-01
CN102195235A (zh) 2011-09-21

Similar Documents

Publication Publication Date Title
JP3486900B2 (ja) 発光装置およびそれを用いた光装置
JP4466503B2 (ja) 半導体レーザ
US8243769B2 (en) Semiconductor light emitting device, optical pickup unit and information recording/reproduction apparatus
JP4288620B2 (ja) 半導体発光素子およびその製造方法
JP5521611B2 (ja) 光装置および光機器
JP2000244060A (ja) 半導体発光装置およびその製造方法
JP2004022717A (ja) 多波長レーザ装置
JP3928583B2 (ja) 発光装置の製造方法
JP5633670B2 (ja) 発光装置およびそれを用いた光装置
JP4844791B2 (ja) 半導体発光装置およびそれを用いた光装置
JP2007035854A (ja) 半導体レーザアレイ及び半導体レーザ装置
JP4952000B2 (ja) 光装置およびその製造方法、並びに光機器
JPWO2003071642A1 (ja) 半導体発光装置およびそれを用いた光ディスク装置
JP4701832B2 (ja) 半導体レーザ素子
JP2006080307A (ja) 半導体レーザアレイ及びその製造方法、多波長半導体レーザ装置
JP4219147B2 (ja) 多波長レーザ装置
JP2002232077A (ja) 半導体発光装置およびその製造方法
JP4561381B2 (ja) 発光装置の製造方法
JP2001267687A (ja) 多波長半導体発光装置
JP4770002B2 (ja) 半導体発光装置およびその製造方法
JP4595929B2 (ja) 発光装置の製造方法
JP4821829B2 (ja) 半導体発光装置の製造方法
JP2006060105A (ja) 半導体発光装置およびそれを用いた光装置
JP2001308446A (ja) 半導体発光素子および半導体発光装置
JP2001244573A (ja) 半導体発光装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140930

LAPS Cancellation because of no payment of annual fees