JP2010536170A - 半導体構造および製造方法 - Google Patents

半導体構造および製造方法 Download PDF

Info

Publication number
JP2010536170A
JP2010536170A JP2010519893A JP2010519893A JP2010536170A JP 2010536170 A JP2010536170 A JP 2010536170A JP 2010519893 A JP2010519893 A JP 2010519893A JP 2010519893 A JP2010519893 A JP 2010519893A JP 2010536170 A JP2010536170 A JP 2010536170A
Authority
JP
Japan
Prior art keywords
layer
germanium
silicon
semiconductor structure
degrees celsius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010519893A
Other languages
English (en)
Inventor
ロー、テル−ヘー
グエン、ホアイ−ソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agency for Science Technology and Research Singapore
Original Assignee
Agency for Science Technology and Research Singapore
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency for Science Technology and Research Singapore filed Critical Agency for Science Technology and Research Singapore
Publication of JP2010536170A publication Critical patent/JP2010536170A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0922Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

半導体構造を製造する方法を開示する。方法は、誘電体層に少なくとも1つのトレンチを形成して、半導体基板の一部を露呈させる工程と、少なくとも1つのトレンチの少なくとも底部に、シリコンゲルマニウムバッファ層を形成する工程と、シリコンゲルマニウムバッファ層の上にゲルマニウムシード層を形成する工程と、ゲルマニウムシード層の上にゲルマニウム層を形成する工程とを備える。さらに半導体構造を開示する。半導体構造は、半導体基板と、半導体基板の上に形成される誘電体層と、誘電体層に形成されて、半導体基板の一部を露呈させる少なくとも1つのトレンチと、少なくとも1つのトレンチの少なくとも底部に形成されるシリコンゲルマニウムバッファ層と、シリコンゲルマニウムバッファ層の上に形成されるゲルマニウムシード層と、ゲルマニウムシード層の上に形成されるゲルマニウム層とを備える。
【選択図】 図1

Description

本発明の実施形態は、半導体構造の分野に係る。例えば、本発明の実施形態は、Geの選択的エピタキシャル成長(SEG)前の、Geシード層を有する低温シリコンゲルマニウム(SiGe)のエピタキシャル構造、およびその製造方法に係る。
フロントエンドのシリコン(Si)ベースのCMOS(complementary metal-oxide-semiconductor)エレクトロニクスデバイス処理は、摂氏900度を超える処理温度の熱サイクルを利用する場合が多い。一方で、ゲルマニウムシリコン(Ge/Si)ベースのエレクトロニクスおよびオプトエレクトロニクスデバイスにおいては、Geの存在により、例えば摂氏700度未満程度の比較的低温プロセスが可能である。この熱予算に関して互換性がないことが、SiベースのCMOSエレクトロニクスを、Ge/Siベースのデバイスとモノリシック集積する際の主要な課題となっている。
SiベースのCMOSエレクトロニクスとGe/Siベースのデバイスとのモノリシック集積を実現するために、この課題に対しては今までにも幾らか解決の努力が行われてきた。そのうち一つの方法では、GeをSiの上で、組成的に傾斜したSiGeバッファを介してUHVCVD(ultra-high vacuum chemical vapor deposition)成長させる。R. M. Sieg等による、Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structuresの1998年、5月、第16巻、第3号における「Toward device-quality GaAs growth by molecular beam epitaxy on offcut Ge/Si1-xGex/Si substrates」なる名称の記事の1471-1474ページには、ガリウム砒素(GaAs)をSi基板上で、Ge/傾斜Si1-xGex/Siバッファ層を利用してエピタキシャル成長させて、GaAsベースのオプトエレクトロニクスをSiマイクロエレクトロニクスとともにモノリシック集積させる方法が開示されている。
他には、SiへのGeの成長を、Geシード層を約摂氏350度から摂氏450度の低温で堆積させて、次に、Geエピタキシーを約摂氏500度から摂氏850度の高温で堆積させる、という2段階で行う方法もある。Silvia Fama等による、Applied Physics Lettersの2002年7月号、第81巻、第4号における「High performance germanium-on-silicon detectors for optical communications」なる名称の記事の586-588ページには、大きな格子不整合に伴う転位を最小限に抑えるために、薄く弛緩した低温のGeバッファを摂氏350度で10sccmのGeHでSi上に堆積させている。バッファ層は、転位を、島成長ではなくて、ひずみの弛緩メカニズムとして挿入することを促進する意図を持つ。反応炉の温度は、摂氏600度というより高温に上げられ、約4μmのGeがSi上に堆積された。
Hsin-Chiao Luan等による、Applied Physics Lettersの第75巻、第19号における「High-quality Ge epilayers on Si with low threading-dislocation densities」なる名称の記事の2909-2911ページにも同様の方法が開示されている。この記事は、低貫通転位密度のSi上への高品質のGeエピ層の堆積を、2段階UHVCVDプロセスの後に周期的熱アニーリング(cyclic thermal annealing)を行うことにより行う方法を開示している。GeのSi上のヘテロエピタキシーは、摂氏350度で、10sccmの流速のGeHを用いて開始されている。30nmのGeがSi上に堆積されたところで、炉の温度を摂氏600度に上昇させ、1μmのGeをSi上に堆積させた。そして、ウェハを高いアニーリング温度および低いアニーリング温度の間で、周期的にアニーリングした。
近年には、低温Geシード層を成長させる前に、数ナノメートルのオーダの非常に薄い低温Si1-xGexバッファを利用して、その後で高温Geエピタキシーを行う方法が、Junko Nakatsuru によるMaterials Research Societyの秋号、EE7.24、2005年における「Growth of high quality Ge epitaxial layer on Si (100) substrate using ultra thin Si0.5Ge0.5 buffer」なる名称の記事に記載されている。この記事は、Si基板を希釈したフッ化水素酸(DHF)溶液で洗浄して、エピタキシャル成長させる前に真空において摂氏750度でアニーリングする、と開示している。2−20nmのSi1-xGexバッファ層を摂氏450度から摂氏520度で成長させる。その後、2段階の成長プロセスを利用して、Geエピタキシャル層をバッファ層の上に形成する。先ず、約30nmのGeシード層を、摂氏350度から摂氏400度で成長させてから、これより厚い約1μmのGe層を摂氏550度から摂氏600度で成長させる。この結果生じる構造に対して、厚みのあるGeエピタキシャル層が成長した後に、インサイチューに約摂氏800度で約15分間のアニーリング処理を行う。
さらに、「Growth of high quality Ge epitaxial layer on Si (100) substrate using ultra thin Si0.5Ge0.5 buffer」なる名称の記事に開示されている方法を利用して、周期的アニーリングを行わずに、別の記事である、Ter-Hoe Loh等による、Applied Physics Lettersの第90巻、092108、2007年における「Ultrathin low temperature SiGe buffer for the growth of high quality Ge epilayers on Si (100) by ultrahigh vacuum chemical vapor deposition」なる名称の記事では、6 X 106 cm-2のエッチピット密度(EPD)を、Si上の成長ブランケットGe(as-grown blanket Ge)に形成することができることを開示している。アニーリングを行わずに106 cm-2のオーダのGeエピタキシーのEPDを得ることにより、低熱予算処理が可能となり、Si内における過度のドーパント拡散、ひいてはGeがSiと混合してしまうことが抑制される。GeとSiとの混合の抑制は、フォトダイオード応答スペクトルを決定するバンドギャップ特性を維持するために重要である。
しかし、先行技術のなかには、高品質のひずんだ、またはひずみの弛緩したGeエピタキシーをパターニングされたSi基板上に選択的に成長させる方法を開示したものがない。用途のなかには、Ge/Siを光検出器として利用するCMOS処理によるオプトエレクトロニクス集積回路(OEIC)の実現がある。SiベースのOEICチップの特定領域に対する選択的なGeのエピタキシャル成長(SEG)によりGe/Se光検出器を形成する処理は、フロントエンドのCMOS処理の完了後に行うことができる。こうすることで、プロセス集積が促進され、メサ形成用にGeエッチングを行う必要がなくなるのみならず、ウェハ全体のブランケットGeエピタキシーと比較してGeの結晶品質が良好になるというさらなる利点もある。これは、転位の相互作用、粒子および貫通転位(TD)、およびTDのシンクとして機能するメサ側壁の存在等の、領域に依存する界面欠陥核生成源の抑制によっており、これはSEGエピタキシーのエッジへと、より容易に伝播しうる。
本発明の一実施形態では、半導体構造を製造する方法を開示する。方法は、誘電体層に少なくとも1つのトレンチを形成して、半導体基板の一部を露呈させる工程と、少なくとも1つのトレンチの少なくとも底部に、シリコンゲルマニウムバッファ層を形成する工程と、シリコンゲルマニウムバッファ層の上にゲルマニウムシード層を形成する工程と、ゲルマニウムシード層の上にゲルマニウム層を形成する工程とを備える。
本発明の一実施形態では、さらに半導体構造を開示する。半導体構造は、半導体基板と、半導体基板の上に形成される誘電体層と、誘電体層に形成されて、半導体基板の一部を露呈させる少なくとも1つのトレンチと、少なくとも1つのトレンチの少なくとも底部に形成されるシリコンゲルマニウムバッファ層と、シリコンゲルマニウムバッファ層の上に形成されるゲルマニウムシード層と、ゲルマニウムシード層の上に形成されるゲルマニウム層とを備える。
図面では、同様の参照符号は概して異なる図面間でも同じ部材を表す。図面は、必ずしも実寸に即して描かれておらず、概して本発明の原理を例示することに重きが置かれることが多い。以下の記載においては、本発明の様々な実施形態を、以下の図面を参照して記載する。
本発明の一実施形態による半導体構造の断面図である。
本発明の一実施形態による半導体構造の製造プロセスを示す断面図である。 本発明の一実施形態による半導体構造の製造プロセスを示す断面図である。 本発明の一実施形態による半導体構造の製造プロセスを示す断面図である。 本発明の一実施形態による半導体構造の製造プロセスを示す断面図である。 本発明の一実施形態による半導体構造の製造プロセスを示す断面図である。 本発明の一実施形態による半導体構造の製造プロセスを示す断面図である。 本発明の一実施形態による半導体構造の製造プロセスを示す断面図である。 本発明の一実施形態による半導体構造の製造プロセスを示す断面図である。 本発明の一実施形態による半導体構造の製造プロセスを示す断面図である。 本発明の一実施形態による半導体構造の製造プロセスを示す断面図である。 本発明の一実施形態による半導体構造の製造プロセスを示す断面図である。
本発明の一実施形態による半導体構造の製造方法を示すフロー図である。
本発明の一実施形態によるトレンチにおける選択的なエピタキシャル成長における、温度と、ジシラン(またはシラン)および希釈されたゲルマンの流れとを経時的に示すプロットである。
エピタキシャル成長システムの概略図である。
SiO定義されたSi窓の開口に堆積したSEG Geを有する100×100μmの隅の走査電子顕微鏡写真(SEM)の画像を示す。
SEG Geのエッジの断面透過電子顕微鏡写真(XTEM)画像である。
SEG Geの0.6μm×20μmのストライプのSEM画像を示す。
SEG Geの2×2μmの正方形パッドのSEM画像を示す。
SiOを誘電体として有するSEG Geの0.35μm×20μmのストライプのXTEM画像を示す。
Ge表面処理(ウェットエッチング)をCrO/HF溶液により行った後の、100×100μmのSEG GeエピタキシーのエッジのエッチングされたピットのSEM画像を示す。
Ge表面処理(ウェットエッチング)をCrO/HF溶液により行った後の、100×100μmのSEG Geエピタキシーの中央のエッチングされたピットのSEM画像を示す。
Ge表面処理(ウェットエッチング)を沃素(I2/CHCOOH/HNO3/HF)溶液により行った後の、100×100μmのSEG Geエピタキシーの表面のSEM画像(グローバルな図)を示す。
Ge表面処理(ウェットエッチング)を沃素溶液により行った後の、100×100μmのSEG Geエピタキシーの表面のSEM画像(ローカルな図)を示す。
CrO/HFおよび沃素溶液両方による表面処理により計測されたエッチングピット密度(EPD)の、SEG Geの寸法の関数としてのプロットである。
ウェハの様々なサイトにおける100×100μmのSEG Geの中央のマイクロラマンスペクトルを示す。
垂直入射フォトダイオード構造の断面図を示す。
正の電圧を逆バイアスとして有する4つのデバイスのサンプルのI−V曲線を示す。
導波路フォトダイオードの断面図を示す。
導波路フォトダイオードの斜視図を示す。
誘電体上に核生成されたGeを有する導波路フォトダイオードの斜視図を示す。
本発明の実施形態を、特定の実施形態との関連で特に示し記載するが、当業者であれば添付請求項が定義する本発明の精神および範囲から逸脱せずに形態および詳細について様々な変形例を想到するであろうことを理解されたい。従って本発明の範囲は添付請求項により示され、請求項の均等物の主旨および範囲内の全ての変形例を含むことを意図している。
図1は、本発明の一実施形態による半導体構造100の断面図である。半導体構造100は、出発半導体基板102を含む。半導体基板102は、通常はバルクシリコン(Si)基板(またはウェハ)またはシリコンオンインシュレータ(SOI)基板である。しかし、半導体基板102には他の適切な半導体材料を用いることもできる。誘電体層104は、半導体基板102上に堆積される。誘電体層104は、例えば酸化シリコン(SiO)または酸化物と窒化物との組み合わせ(例えば窒化シリコン)であってよい。しかし、誘電体層104には他の適切な誘電材料を利用することもできる。半導体構造100はさらに、誘電体層104内に少なくとも1つのトレンチ106を含み、半導体基板102の一部を露呈させている。シリコンゲルマニウム(SiGe)バッファ層108がトレンチ106の少なくとも底面に配置されており、SiGeバッファ層108は半導体基板102に接触して設けられている。ゲルマニウム(Ge)シード層110が、SiGeバッファ層108の上に、Geシード層110がSiGeバッファ層108の3つのエッジを囲うように設けられている。Geエピタキシャル層112が、Geシード層110の上に設けられている。最後に、Ge保護層またはキャップ層114が、Geエピタキシャル層112の上に設けられている。Ge保護層114は通常はSiから形成される。
図2A−2Kは、本発明の一実施形態による半導体構造の製造プロセスを示す断面図である。
図2Aは、出発半導体基板102を示す。半導体基板102は、通常はバルクSi基板またはSOI基板である。バルクSi基板は、約6から9Ωcmの範囲の抵抗を有する、8インチのp型Si(100)ウェハであってよく、SOI基板は、約12Ωcmの抵抗を有するp型のウェハであってよい。しかし、半導体基板102には他の適切な半導体材料を利用することもできる。堆積する前に、先ず出発半導体基板102を、水酸化アンモニウム(NH4OH)、過酸化水素(H2O2)、DI(de-ionized)を1:2:10の割合で混合した中で、次に、フッ化水素酸(HF)とDIを1:200の割合で混合した中で、約2分間洗浄してよい。この後に超音波乾燥する。
図2Bは、洗浄の後に半導体基板102の上に堆積された誘電体層104を示す。誘電体層104は、酸化物であっても、先ず酸化物そして次に窒化物を組み合わせた混合物であってもよい。本発明の一実施形態では、酸化物はSiOであり、窒化物は窒化シリコン(Si)であるが、これらに限定されない。本発明の一実施形態では、SiOはPECVD(plasma-enhanced chemical vapour deposition)により堆積される。しかし、SiOの堆積には他の適切な堆積プロセスを利用することもできる。SiOの厚みは通常、約100nmであるが、これに限定されない。本発明の別の実施形態では、SiOは、半導体基板102上で熱成長され、この後で、SiをPECVD堆積させる。しかし、SiOおよびSiの堆積には他の適切な堆積プロセスを利用することもできる。熱成長されたSiOの厚みは通常は約120nmであるが、これに限定されない。Siの厚みは約50nmである。
図2Cは、誘電体層104上に堆積されたフォトレジスト層116を示す。
図2Dは、次にフォトレジスト層116が従来のフォトリソグラフィー法でパターニングされることを示す。そして、パターニングされたフォトレジスト層116をマスクとして利用して、誘電体層104のマスクが覆っていない部分を異方性エッチングプロセス(例えばRIE(反応性イオンエッチング))により部分的にエッチングにより除去して、約100オングストロームの誘電体層104を、半導体基板102の誘電体開口118内に形成する。
図2Eは、フォトレジスト層116を除去した後に、誘電体開口118に残っている誘電体層104に対してウェットエッチングを行い、トレンチ106を形成して、半導体基板102の一部を露呈させる処理を示す。ウェットエッチングは、希釈フッ化水素酸(DHF)とDIを1:25の割合で混合した中で行われる。続いて、部分的に形成された半導体構造100を先ずNHOH、H、DIを1:2:10の割合で混合した中で、約摂氏60度で約5分間洗浄してから、DHFおよびDIを1:200の割合で混合した中で約2分間洗浄する。これをさらにDI水ですすぎ、窒素(N)内で乾燥させる。
洗浄の後で、トレンチ106内の選択的エピタキシャル成長(SEG)が始まる。部分的に形成された半導体構造100が、エピタキシャル成長システムのチャンバ内に載置され、N内の約摂氏750度〜摂氏800度というインサイチューの高温洗浄によるエピタキシーが始まる。続いて、SiNまたはSiがチャンバに投入され、薄いSi層(不図示)が、約摂氏570度および摂氏600度の間の温度で、トレンチ106内であって半導体基板102の上に成長する。薄いSi層の厚みは約30nmであるが、これに限定されない。しかし、薄いSi層の成長はオプションである。薄いSi層は、ドーピング用のイオン注入により半導体基板120がアモルファスである(amorphized)場合にのみ必要となる。
純粋な、または希釈されたGeHガスの流入前に温度を約摂氏750度から摂氏350度へと下げる約600sの中断時間が設けられる。図2FはGeエピタキシーの開始を示す。SiNまたはSiおよび純粋な、または希釈されたGeHガスを、半導体基板102上に流すと、SiGeバッファ層108がトレンチ106内であって半導体基板102の上に堆積される。SiGeバッファ層108の厚みは、約13nmから30nmであり、通常は約13nmである。SiGeバッファ層108の最小厚みは、約7nmから約10nmである。
図2Gは、約摂氏350度〜摂氏400度の温度におけるSiGeバッファ層108上へのGeシード層110の成長を示す。GeHガスをSiGeバッファ層108の上に流した際と同様に、GeHのSiGeバッファ108の表面で熱分解が生じ、結果としてGeおよびHが生じる。本発明の一実施形態では、Geシード層110の厚みは約30nmから50nmであり、通常は約30nmである。本発明の一実施形態では、Geシード層110の最小厚みは、約20nmである。
そして、温度を約2000s間安定維持し、ここで温度を約摂氏550度〜摂氏600度へ上昇させてもよい。図2Hは、リソグラフィー法により画定された誘電体窓開口118またはトレンチ106におけるGeエピタキシー層112の選択的成長、および、誘電体層104上への核生成されたGe120の形成を示す。Geエピタキシー層112は、高温(摂氏550度から摂氏600度)で成長したGeである。Geエピタキシー層112の最小厚みは約30nmである。通常のGeの全厚み(Geエピタキシー層112とGeシード層110を含む)は約60nmである。本発明の一実施形態では、Geエピタキ層112の厚みは約30nmから500nmであり、例えば約400nmから約500nmである。
SiまたはGeHを、誘電体層104上に流すと、SiまたはGeHが分解して、誘電体層104上にそれぞれSiおよびGe核生成シード120が堆積する。これらSiまたはGe120の核生成シードが、誘電体層104上のSiまたはGeの核生成の中央を形成するには時間がかかり、最終的にポリSiまたはGeの層(poly-Si or Ge)が形成される。このポリSiまたはGeの層が、誘電体層104上の均一な層として、誘電体層104全体を被膜するのにかかる時間は核生成時間として知られている。インキュベーション時間は、構成ガスが誘電体層104の上を流れ始める時点から、核生成SiまたはGe120が最初に誘電体層104上に現れる時点までの期間として定義される。構成ガスは、ジシラン(またはシラン)および希釈されたゲルマン(または一般的には純粋なゲルマン)である。
SiGeバッファ108の低温成長中に、SiまたはGeHを流す時間を、約摂氏350度から摂氏400度の低温でのインキュベーション時間より短くなるように短縮する。これにより、種の核生成についての制約がなくなり、且つ、SiGeバッファ層108を、格子不整合および不整合応力(misfit stress)による転位を吸収することができる程度の厚みにまで成長させることができる。
しかし、Geエピタキシー層112の選択的な成長中に、単結晶のGe112の厚みが、誘電体SEG窓開口118中で成長し、誘電体層104中でGeの核生成が始まる。誘電体層104上でGeの粒子のサイズが大きくなると、これらは、構成ガスと競合するようになり、これによりSEG窓118においてGe112の単結晶の種が枯渇する。この結果、SEG窓開口118上のGeエピタキシャル層112の厚みが限界に達する。誘電体104上に核生成されたGe120は、性質上多結晶なので、単結晶Ge112は、SEG窓118のエッジ以上、自身の限界を超えることができない。本発明の一実施形態では、このプロセスにおけるGeエピタキシャル層112の最大厚みは、約400nmから500nmである。さらに、Ge層の低温SiGeバッファ108への2段階形成中に、Ge層(Geエピタキシャル層112およびGeシード層110)とSiGeバッファ層108との間の界面に転位が生じる。転位は、Ge/SiGe界面へループバックする。転位ループの程度は、Geシード層110の高さまたは厚みに略等しいことが推定される。故に、本発明の一実施形態では、Geエピタキシー112の最小厚みを約30nmとすることで、Geエピタキシーの表面112を転位ループの範囲より約30nm上にあるようにすべきである。
図2Iは、摂氏550度から摂氏600度の温度におけるGeエピタキシー層112の上の保護キャップ層114の成長を示す。キャップ層114は通常Siであるが、それに限定されない。本発明の一実施形態では、キャップ層114の厚みは約3nmから10nmであり、通常は約4nmである。キャップ層114またはGe保護層の成長は、Geエピタキシャル層112の保護を目的としているが、オプションでよい。
図2Jは、キャップ層114の上へのフォトレジスト層134の堆積を示す。逆マスクフォトリソグラフィーを利用して、保護フォトレジスト層134をキャップ層114の上に形成する。
図2Kは、誘電体104上に核生成されたGe120が、インサイチューまたはエックスサイチューで、例えば塩素(Cl)またはCl/臭化水素(HBr)等の適切なエッチング溶液においてドライエッチングにより除去された後の最終半導体構造100を示す。エッチング溶液が流れる期間は、約180sであってよい。フォトレジスト層134は、核生成されたGe120のエッチングの完了後に除去される。
図3は、本発明の一実施形態による半導体構造100の製造方法を示すフロー図である。方法300は、302で出発半導体基板102により始まる。次に304で、誘電体層104を半導体基板102上に堆積させる。さらに306で、フォトレジスト層116を誘電体層104上に堆積させる。フォトレジスト層116はフォトリソグラフィー法によりパターニングされる。そして308で、パターニングされたフォトレジスト層116をマスクとして利用して、誘電体層104のマスクが覆っていない部分を異方性エッチングプロセス(例えばRIE)により部分的にエッチングにより除去して、約100オングストロームの誘電体層104を、半導体基板102の誘電体開口118内に形成する。310で、フォトレジスト層116を除去した後に、誘電体開口118に残っている誘電体層104に対してウェットエッチングを行い、トレンチ106を形成して、半導体基板102の一部を露呈させる。部分的に形成された半導体構造100を洗浄して、成長チャンバに載置し、インサイチューの高温洗浄にかける。312で、温度を約摂氏350度〜摂氏400度に下げて、SiGeバッファ層108を、トレンチ106内の半導体基板102の露呈した部分に成長させる。314で、Geシード層110を、SiGeバッファ層108を成長させたのと略同じ温度で、SiGeバッファ層108上に成長させる。そして316で、温度を約摂氏550〜摂氏600度に上げる。温度を安定維持した後で、Geエピタキシャル層112がGeシード層110の上で成長する。次に318で、キャップ層114をGeエピタキシー層112の上に成長させる。そして320で、フォトレジスト層134を、キャップ層114を被膜する逆マスクにより形成する。最後に322で、ClまたはCl/HBrを成長チャンバに投入して、核生成されたGe120を除去する。フォトレジスト層134を、核生成されたGe120のエッチングの完了後に除去する。
図4は、本発明の一実施形態によるトレンチにおける選択的なエピタキシャル成長における、温度と、ジシラン(またはシラン)および希釈されたゲルマンの流れとを経時的に示すプロットである。SEGプロセスは、約摂氏750度から摂氏800度におけるN内でのインサイチュー高温洗浄から始められる。次に、SiHまたはSiを約20sの間、チャンバに投入する。薄いSi層が、約摂氏570度から摂氏600度の温度において、トレンチ106内の半導体基板102上で成長する。薄いSi層の厚みは約30nmであるが、これに限定されない。純粋な、または希釈されたゲルマン(10%GeH:Ar)の流入前に温度を約摂氏750度から摂氏350度へと下げる約600sの中断時間が設けられる。温度を約摂氏350度〜摂氏400度に下げて、SiHまたはSiおよび、純粋な、または希釈されたゲルマンガス(10%GeH:Ar)をUHVCVD成長システムの成長チャンバに約460sの間投入させ、トレンチ106内にSiGeバッファ層108を成長させる。Geシード層110を成長させるべく、温度を約摂氏350度から摂氏400度の同じ範囲に維持する。純粋な、または希釈されたゲルマンガスのみを、成長チャンバに、約1000sから約3000sの間投入させる。純粋な、または希釈されたゲルマンガスは、SiGeバッファ層108の成長中の純粋な、または希釈されたゲルマンガスよりも大量に流入させられる。続いて、約2000sの温度の安定維持期間を設けて、温度を約摂氏350度〜摂氏400度の範囲から、約摂氏550度〜600度のより高温の範囲に上げ、次に安定期間(settling time)を設ける。均一温度の期間を充分に設けて、成長した膜の厚みおよび成分を確実に均一にする。この温度の安定維持期間にはいかなるガスも投入しない。さらに、Geエピタキシー層112をさせるべく、温度を約摂氏550度から摂氏600度の範囲に維持する。次に、純粋な、または希釈されたゲルマンガスを約2000sから3000sの期間流入させ、このときの流速はGeシード層110の成長時との流速に匹敵するものとする。純粋な、または希釈されたゲルマンガスを流す期間は、対象となるGeエピタキシー層112の厚みにより決定される。そして、温度を約摂氏550度から600度の同じ範囲に維持して、SiNまたはSiのみを約100sから150sの間流入させて、Siキャップ層114を成長させる。
図5は、エピタキシャル成長システムの概略図を示す。エピタキシャル成長システム144は、例えばキャノン製のANELVA1−2100SRE等の、単一のウェハ低温壁UHVCVDシステムである。UHVCVDシステム144は、2つのターボ分子ポンプ122、水冷式低温壁チャンバ124、熱電対(thermo couple)126、パイロメータ128、サセプタ130、ヒータアセンブリ132および2つのガス入り口146を含む。2つのガス入り口146とは、詳しくは一方が予め混合されたエピ成長ガス用であり(例えばゲルマン、ジシラン(ドーピング用のホスフィン、ジボラン)用)、他方が塩素ガス用である。こうする理由は、塩素がエッチング液であり、残りのガスがエピタキシャル成長用であるからである。半導体基板またはウェハ102は、サセプタ130上に搭載され、これは通常シリコンカーバイドを被膜されたグラファイトのディスクであり、半導体基板102表面に均一に材料を堆積させる。サセプタ130は、材料の均一な堆積をさらに促進するべく堆積中にモータにより回転させられてもよい。チャンバの典型的な処理圧力は、約10−3Paから約1Paの間である。CVD(化学蒸着)成長システムでは殆どの場合、エピタキシャル成長は、気相反応とウェハ表面の反応の両方から生じる。気相反応については、前駆体ガスがマニホルドで予め混合されており、ガス混合物がウェハまたは半導体基板102上で高温領域の近傍に達すると、ガス反応および分解が起こり、エピタキシー層を堆積させる。ウェハの表面反応は、ウェハまたは半導体基板102の表面に構成前駆体ガスが達し、高温に曝され、分解により中間反応物の吸収および半導体基板表面からの種の脱離(desorption)が生じることで行われる。半導体基板102の表面への正味の吸収率により、薄膜が成長する。
本発明の一実施形態によると、特定の圧力範囲では、気相反応は最小限に抑えられ、ウェハ表面反応が優勢となる。成長率は、ウェハ表面温度に依存する。UHVCVD成長システム144のチャンバの究極的な圧力は、約10−6Paのオーダである。100%のジシラン(Si)ガスおよび希釈されたゲルマン(10%GeH:Ar)ガスが例えば、チャンバ壁124のガス入り口146のいずれかから導入される。半導体基板102は、裏面から加熱される。成長チャンバ壁124およびヒータチャンバ124の側板(成長チャンバの内層)は、水冷式とされることで、ガス分解を半導体基板102の表面に留めている。代替的なSi原料ガスはシラン(SiH)およびジクロロシラン(SiHCl)であり、代替的なGe原料ガスは、純粋なゲルマン(GeH)である。超高真空(UHV)範囲のガス圧を利用することで、デバイスグレードのエピタキシーを、約摂氏550度から約摂氏600度の低温範囲で成長させることができる。
ウェハ表面反応においては、SiまたはGeの成長は、SiH、Si、またはGeHが、SiまたはGeおよび水素(H)にそれぞれ不均一分解されることで行われる。Si成長を例にとると、SiHのウェハ表面上の熱分解は、2段階の吸収または脱離および不均一反応メカニズムにより生じる。化学式は以下の通りとなる。
Figure 2010536170
Figure 2010536170
ここで、*は、自由表面サイトを示し、SiH*は、吸着されたシランを示す。Hガスも、自由表面サイト上で解離吸着を経る。
Figure 2010536170
ここで、2*は2つの自由表面サイトを示す。H*は、1つの表面サイトを占有するので、H*は、シラン吸着を阻害することが知られている。
Siについては、化学反応は以下のようになる。
Figure 2010536170
Figure 2010536170
Ge成長については、化学式は以下のようになる。
Figure 2010536170
Figure 2010536170
SiGe成長をSi基板上のSiおよびGeHガスを用いて説明する典型的なウェハの表面の化学反応式は以下のようになる。
Figure 2010536170
実験結果
図6Aは、SiO定義されたSi窓の開口に堆積したSEG Ge158を有する100×100μmの隅の走査電子顕微鏡写真(SEM)の画像を示す。SEG Geは、SiGeバッファ層108、Geシード層110、および、Geエピタキシャル層112を含む。正方形の開口のエッジは、(100)方向に配列されている。
図6Bは、SEG Ge158のエッジの断面透過電子顕微鏡写真(XTEM)画像である。Geエピタキシー112およびSiGeバッファ108の計測された厚みは、それぞれ約114.2nmおよび14.8nmであった。(111)および(311)ファセットからなる二重のファセット(double facet)が、SiのSEGにとっても、典型的である。ファセットの進化では、(311)ファセットが先ず成長して、次に(111)ファセットが形成される。各ファセットの平面(faceting plane)の成長は、低分圧成長条件下の(100)面と他のファセットの面との間で成長率が異なることに起因する。100×100μmの開口のエッジは、(100)方向に沿って配列する。図6Bで、SEG Ge158は、SiGeバッファ108のエッジの横方向に配列する。つまり、Si0.8Ge0.2バッファ108が先ず選択的に成長して、次に、Geシード層110がSi0.8Ge0.2エピタキシー108のエッジを取り囲む。Geエピタキシー112の非選択性は、Geエピタキシャルの厚みが約300nmを超えると起こり始める(set in)。これはさらに、核生成されたGeの粒子が、このSEG Ge158の厚みの後に誘電体層104上に形成されることも意味している。核生成されたGeの粒子は、Clガスフローによるインサイチューエッチングにより選択的に除去することができる。
SEG Ge158は、さらに、PECVD SiN4パターニングされた窓の開口にも行われる。ファセットの形成は、誘電体の性質には依存しないことが観察により分かる。転位が引き起こすXTEMのコントラストは、表面の転位の伝播を示さない。表面粗さは、原子間力顕微鏡(AFM)により計測された。10×10μmの走査領域の自乗平均(rms)粗さは、SEG Ge158およびパターニングされていない基板上のブランケットGeについて、それぞれ1.14nmおよび1.45nmであった。SEGエピタキシーの粗さは低減された。Si(100)基板102上の二分子層SiGeバッファ108のGeエピタキシー112の1μmあたりの3.2nmのrms粗さと比較すると向上が見られた。
図6Cは、SEG Ge158の0.6μm×20μmのストライプのSEM画像を示し、図6Dは、SEG Ge158の2×2μmの正方形パッドのSEM画像を示す。図6Cおよび図6Dで、誘電体104はSiOである。SEG Ge158について計測された幅は、0.6μmの開口の上に過度に成長したGeのせいで、約0.7μmとなっている。図6Eは、SiOを誘電体104として有するSEG Ge158の0.35μm×20μmのストライプのXTEM画像を示す。
図7Aおよび図7Bは、Ge表面処理(ウェットエッチング)を二酸化クロム(CrO2)およびフッ化水素酸(HF)溶液により行った後の、それぞれ100×100μmのSEG Geエピタキシー158のエッジおよび中央のエッチングされたピットのSEM画像を示す。エッチングピッチ密度(EPD)を計測するボックスは、12μm×15μmの寸法を有する。100×100μmのSEG Geでは、エッチングされたピットは、エッジに集中する傾向にある。領域によっては、EPが同じ観察領域の100×100μmのSEG Geの中央には全く観察されない場合もある。100×100μmの平均EPDは、約2.8×10cm−2から5.6×10cm−2と計測された。
図7Cは、Ge表面処理(ウェットエッチング)を沃素(I2/CHCOOH/HNO3/HF)溶液により、またはI溶液により行った後の、100×100μmのSEG Geエピタキシー158の表面のSEM画像(グローバルな図)を示す。図7Dは、Ge表面処理(ウェットエッチング)を沃素溶液により行った後の、100×100μmのSEG Geエピタキシーの表面のSEM画像(ローカルな図)を示す。図7Cおよび図7Dは、I溶液によるエッチングピッチを示す。エッチングピッチの特徴的な特性が図面自体に示されている。観察対象のサンプル表面から放出された二次電子からSEM画像が生じている。観察対象の領域がピットの場合には、この領域からは二次電子がほんの僅かだけ放出される、もしくは全く放出されないので、画像の暗い領域として見える。
本願を他と区別する主要な点は、周期的アニーリングを利用しないで、低減された成長領域における、より低いEPDの取得を促進することであり、これにより、低温Si1−xGeバッファの薄膜層を利用することによって主要なCMOSプロセスへ集積を行うプロセス工程を簡略化できる。GeをSiのうえで成長させる上で一番難しい課題が、格子定数および熱膨張(縮小)係数の不整合である。約摂氏550度から摂氏600度でGeをSi上で成長させた後で、冷却期において2つの材料の格子不整合から転位が生じ、GeおよびSiの熱係数の不整合により界面応力が生じる。この界面応力は、SEG−Geエピタキシャルの寸法が小さくなるにつれて低減する。故に、或る点よりも寸法が小さくなると、界面応力は、転位およびEPを生じさせる因子としては無視できるものとなる。
図7Eは、CrO/HFおよび沃素溶液両方による表面処理により計測されたEPDの、SEG Geエピタキシー158の寸法の関数としてのプロットである。CrO/HFおよびI溶液による処理後のEPDがそれぞれ示されている。図7Eは、EPD対SEG領域の低減の一般的な傾向を示す。50×90μmのSEG−Ge領域においては、CrO/HFについて計測されたEPDが、I溶液によるものより低いのは、統計的偏差に過ぎない。EPDは、二次元ボックスのSEM画像におけるEPの数を計測することにより得られている。ボックスの典型的なサイズは、15×20μmである。重要な情報は、SEG領域とともにEPDが低減するという一般的な傾向である。比較目的から、および結果をより信用できるものとするために、2種類のエッチング溶液を利用した。
100×100μmのSEG Ge158は、全ウェハのGeエピタキシーに近いEPDを有しているが、EPDは成長領域の縮小とともに低減している。EPDは、50μm×90μmのパッドについては約10cm−2に減少している。SEG Geの2×2μmおよび0.6μm×20μmのストライプにはEPDは全く観察されなかった。これら小さい領域は、50μm×90μmのパッドと同じダイの上にあった。成長領域とともにEPDが低減するのは、領域に依存する不整合転位ソースの抑制、および、エッジのTDのシンクとしての近接性(nearness of edges as sinks for TD)により、理論的に予期されることである。このような領域によりEPDが低減することは、Hsin-Chiao Luan等による、Applied Physics Lettersの1999年11月発行の第75巻、第19号、における「High-quality Ge epilayers on Si with low threading-dislocation densities」なる名称の記事、および米国特許第 6635110号等に記載の他の方法でも報告されているが、本願との主要な違いは、本願では、低温Si0.8Ge0.2バッファを不整合転位用のシンクとして用いて、同じ成長領域でより低いEPDを達成するという点である。
図8は、ウェハの様々なサイトにおける(点1から5)100×100μmのSEG Geの中央のマイクロラマンスペクトルを示す。比較対象として、非常に薄いSi0.8Ge0.2バッファを有するSi(100)基板上およびバルクGe基板上のブランケットGeエピタキシーのスペクトルもそれぞれ示されている。Ar+レーザ励起の波長は約514nmであった。全ウェハから100×100μmのSEG Geエピタキシーまでラマンフォノンピークのシフトは、機器エラーの範囲で検出されなかった。バルクGe基板はGe−Ge光学フォノンピークが約301.4cm−1であった。ブランケットGeおよび100×100μmのSEG Ge両方のエピタキシーピークからの光学フォノン信号は約300cm−1であり、この僅かなシフトは、両方の場合におけるGeエピタキシーの残留引っ張り歪み(residual tensile strain)を示している。残留引っ張り歪みは、約0.29%から0.36%の範囲で変化して、これは、SiおよびGe間で線形の熱膨張係数が異なることに起因して生じることが知られている。レーザビームがGeエピタキシーに貫通する深さは約15nmである。フォノンピーク間でFWHM(半値全幅)に大差はなかったので、ブランケットおよび100×100μmのSEGの場合のGe膜両方に光学品質の主要な差異はないことが分かる。
Ge/Si材料が光検出器として利用に耐えられるかを査定するべく、約114.2nmの厚みの100×100μmのSEG Ge158をフォトダイオード内に作製した。図9は、垂直入射フォトダイオード構造152の断面図を示す。例えばP型の基板である半導体基板102、内因性SEG Ge158(SiGeバッファ層108、Geシード層110、およびGeエピタキシャル層112)、およびGeエピタキシャル層112へのN+の浅い注入砒素ドーピングによりP−i−N接合が形成され、Ge/SiGe/Si界面が空乏領域内に生成されている。上部カソード138は、N+Ge136に接触するアルミニウム(Al)電極からなる(接触面積は25μm×100μmである)。N+接合136の深さは約30nmと推定される。Al電極はリフトオフプロセスで形成される。通常Alである底面基板接触により、接地に接触するアノード140が形成される。核生成されたGe120は、誘電体104上にあり、この核生成されたGe120を取り除く必要はない。核生成されたGe120はさらに、通常はSiOである誘電体層142で被覆される。
フォトレシーバの感度を高める暗電流を調べた。図10は、正の電圧を逆バイアスとして有する4つのデバイスのサンプルの電流−電圧(I−V)曲線を示す。室温(RT)で約1Vのバイアスにおける、最小暗電流密度は、約8.6mA/cmであり、平均暗電流密度は約10mA/cmであった。最小暗電流密度は、約2Vにおいては、約11mA/cmに上昇した。これらは低暗電流密度として考えられる、というのも、Ge/SiGeへテロ界面の上のGeの厚みが114.2nm程度しかないからである。これと比較すると、2段階Ge成長を周期的アニーリングと組み合わせて準備したGeの暗電流密度は、通常約20mA/cmである。本願は、Ge/Si光検出器で利用するのに適した同様の性能を有し、SEGであり、高温周期アニーリングを利用しないという利点を有するので、主要なCMOSプロセスへ集積する際の利用にも適している。
darkの温度関係により、式(9)が導かれる、というのもnが3ではなくて3/2に等しいからである。Eaは、リーク電流の活性エネルギーを表し、Vaは、加わるバイアス電圧を表し、kはボルツマン定数を表し、Tは温度を表す。図10の挿入図は、逆バイアス0.5V、1V、および2Vに対するIn(Idark/T3/2)対1/kTのプロットをそれぞれ示している。プロットの傾きから抽出されたEaの平均値は0.3eVであり、これは室温(RT)におけるGeのバンドギャップ(0.66eV)の略半分である。これは、このダイオードのリーク電流の効果よりも、空乏領域におけるトラップに助けられた電子空孔生成の効果のほうが圧倒的に上回っていることを示しており、これはショックレーホールリードプロセスとしても知られている。
Figure 2010536170
Cは任意の定数
トレンチ106へのGeまたはSiGeの選択的エピタキシャル成長プロセス中にGeがアイソレーション誘電体104上で核生成され、Siを露呈させる。図9に示す垂直入射フォトダイオードにおいては、光パワーはGeエピタキシー112へ、上部から入射するので、ウェハのインプレーン方向へは光が伝播せず、アイソレーション誘電体104上に核生成されたGe粒子120があろうとなかろうと、デバイスの動作における光の側面には影響はない。しかし、隣接する平面エレクトロニクス同士が垂直入射フォトダイオード等の同じダイ上にモノリシックに存在する場合には、核生成されたGe120は、隣接するエレクトロニクスデバイスへの電気リークパスを形成して、核生成されたGe120を除去しないと、デバイスのエレクトロニクスが正常に動作しない場合もある。
図11は、導波路フォトダイオードの断面図を示す。導波路フォトダイオード154は、通常リブ型の導波路構造を有するSi/SiO導波路である。導波路フォトダイオード154は、埋め込み酸化物148および埋め込み酸化物148上に載置された半導体基板102(例えばp型SOI基板)を含む。突起150が、SOI基板102のSi層の上に形成されている。SiO等の誘電体層104が、SOI基板102上に成膜されている。導波路フォトダイオード154は、さらに、突起150の上の誘電体層104に少なくとも1つのトレンチ106を含み、SOI基板102の一部を露呈させている。SiGeバッファ層108がトレンチ106の少なくとも底面に配置されており、SiGeバッファ層108はSOI基板102に接触して設けられている。Geシード層110が、SiGeバッファ層108の上に、Geシード層110がSiGeバッファ層108の3つのエッジを囲うように設けられている。Geエピタキシャル層112が、Geシード層110の上に設けられている。Geエピタキシャル層112は、n型ドーパントでドーピングされて、n型となる。カソードとして機能する金属コンタクト138が、Geエピタキシャル層112の上に成膜されて、SOI基板102上のアノード140として機能する別の金属コンタクトと接触する。コンタクト138および140は、通常はAl製である。
導波路フォトダイオード154の作製プロセスは、以下の通りである。先ず、SOI102の上のSiを部分的にドライエッチングして、突起150を形成する(例えば、中央が厚いSiリブであり、その脇がこれより薄いSiで出来ており、底面がSiO製である)。光波がリブ型導波路構造の下方へと伝播する際に、光パワーをリブの中央に閉じ込める目的からこのような構造とされている。Siをドライエッチングしてリブの形成が完了すると、SiO114(またはSiより小さい屈折率を有する誘電体)を成膜する。誘電体の開口118は、SiO104の開口リソグラフィー(open lithography)、部分的ドライエッチングを行い、残っている誘電体をエッチングしてSi面を露呈させ、次にSEG−Ge158を成長させることにより形成された。
GeまたはSiの導波路フォトダイオード154においては、光パワーはSi/SiO導波路上を導かれるので、これは、光パワーが上部からげエピタキシー層112に入射する垂直入射フォトダイオード152と違う。導波路フォトダイオード154においては、Siが光パワーを流すチャネルとして機能し、SiO104が導波路のクラッディングとして機能する。核生成されたGe120は誘電体層104には全く残留しない。
図12は、導波路フォトダイオード154の斜視図を示す。光波がSi/SiO導波路102へ導かれると、光パワーは、選択的エピタキシーによりSi/SiO導波路102上にエピタキシー成長したGeまたはSi吸収ブロック156へエバネセントに結合される。
図13は、誘電体104上に核生成されたGe120を有する導波路フォトダイオード154の斜視図を示す。図11には誘電体層104が示されているが、図13には示されていない。誘電体層104は示されていないが、通常、SOIリブ型導波路の壁には薄い層が形成される。核生成されたGe120の粒子は、誘電体層104の表面にある。核生成されたGe120は、露呈しているSi基板表面へのGeの選択的エピタキシャル成長中に形成される。作製プロセスによっては、核生成されたGe120が、構造上へのさらなる誘電体層形成中に除去されない場合には、これらGe粒子120は誘電体層内に埋め込まれることもありうる。SEG Geは、核生成されたGeを誘電体層に形成するのと同時に形成される。SiまたはGe導波路フォトダイオードの動作における光の側面においては、アイソレーション誘電体層104上の核生成されたGe120は、Si/SiO導波路102沿いに方向付けられる光波の光散乱中心(optical scattering center)を形成する、というのも、Geの屈折率は4.2であり、Siの屈折率は3.55であるからである。高い屈折率の材料(Ge等)は、光波がSi/SiO導波路102沿いに伝播する際の光パワーを自身に結合する傾向がある。このようなGe粒子120は、光波分散および光損失を引き起こし、導波路フォトダイオード154の外部量子効率を低下させる。

Claims (40)

  1. 半導体構造を製造する方法であって、
    誘電体層に少なくとも1つのトレンチを形成して、半導体基板の一部を露呈させる工程と、
    前記少なくとも1つのトレンチの少なくとも底部に、シリコンゲルマニウムバッファ層を形成する工程と、
    前記シリコンゲルマニウムバッファ層の上にゲルマニウムシード層を形成する工程と、
    前記ゲルマニウムシード層の上にゲルマニウム層を形成する工程とを備える方法。
  2. 前記半導体基板はシリコン基板である請求項1に記載の方法。
  3. 前記シリコン基板はバルクシリコン基板またはシリコンオンインシュレータ基板である請求項2に記載の方法。
  4. 前記シリコンゲルマニウムバッファ層は、低温プロセスにより形成される請求項1に記載の方法。
  5. 前記シリコンゲルマニウムバッファ層は、蒸着プロセスにより形成される請求項1に記載の方法。
  6. 前記シリコンゲルマニウムバッファ層は、約摂氏350度から摂氏400度の温度範囲で行われる低温プロセスにより形成される請求項4に記載の方法。
  7. 前記低温プロセス中に温度が約摂氏750度から約摂氏350度へと降下させられる請求項4に記載の方法。
  8. 前記シリコンゲルマニウムバッファ層は、約7nmから約30nmの範囲の層の厚みで形成される請求項1に記載の方法。
  9. 前記蒸着プロセスにおいて、ジシランガス成分およびゲルマンガス成分を加える請求項5に記載の方法。
  10. 前記温度降下の終了において、加えられる前記ジシランガス成分および加えられる前記ゲルマンガス成分が低減されるように、前記蒸着プロセスが制御される請求項7および9に記載の方法。
  11. 前記ゲルマニウムシード層は、低温プロセスにより形成される請求項1に記載の方法。
  12. 前記ゲルマニウムシード層は、蒸着プロセスにより形成される請求項11に記載の方法。
  13. 前記ゲルマニウムシード層は、約摂氏350度から摂氏400度の温度範囲で行われる低温プロセスにより形成される請求項11に記載の方法。
  14. 前記ゲルマニウムシード層は、約20nmから約50nmの範囲の層の厚みで形成される請求項1に記載の方法。
  15. 前記ゲルマニウム層は、エピタキシャル成長プロセスにより形成される請求項1に記載の方法。
  16. 前記ゲルマニウム層は、高温プロセスにより形成される請求項1に記載の方法。
  17. 前記ゲルマニウム層は、蒸着プロセスにより形成される請求項1に記載の方法。
  18. 前記ゲルマニウム層は、約摂氏500度から摂氏650度の温度範囲で行われる高温プロセスにより形成される請求項1に記載の方法。
  19. 前記ゲルマニウム層は、約30nmから約500nmの範囲の層の厚みで形成される請求項1に記載の方法。
  20. 前記誘電体層を前記半導体基板の上に形成する工程をさらに備える請求項1に記載の方法。
  21. 前記誘電体層は、酸化物、窒化物、またはこれらの組み合わせを含む請求項1に記載の方法。
  22. 前記誘電体層は、酸化シリコンまたは窒化シリコンを含む請求項21に記載の方法。
  23. 前記ゲルマニウム層の上にゲルマニウム保護層を形成する工程をさらに備える請求項1に記載の方法。
  24. 前記ゲルマニウム保護層は、シリコンまたはフォトレジスト材料から形成される請求項23に記載の方法。
  25. 前記誘電体層の上面に成膜されたゲルマニウム材料を除去する工程をさらに備える請求項1に記載の方法。
  26. 前記ゲルマニウム材料はドライエッチングプロセスにより除去される請求項25に記載の方法。
  27. 前記ゲルマニウム材料は、塩素または臭化水素を用いたドライエッチングプロセスにより除去される請求項25に記載の方法。
  28. 半導体基板と、
    前記半導体基板の上に形成される誘電体層と、
    前記誘電体層に形成されて、前記半導体基板の一部を露呈させる少なくとも1つのトレンチと、
    前記少なくとも1つのトレンチの少なくとも底部の上に形成されるシリコンゲルマニウムバッファ層と、
    前記シリコンゲルマニウムバッファ層の上に形成されるゲルマニウムシード層と、
    前記ゲルマニウムシード層の上に形成されるゲルマニウム層とを備える半導体構造。
  29. 前記半導体基板はシリコン基板である請求項28に記載の半導体構造。
  30. 前記シリコン基板はバルクシリコン基板またはシリコンオンインシュレータ基板である請求項29に記載の半導体構造。
  31. 前記シリコンゲルマニウムバッファ層は、約8nmから約30nmの範囲の層の厚みである請求項28に記載の半導体構造。
  32. 前記ゲルマニウムシード層は、約20nmから約50nmの範囲の層の厚みである請求項28に記載の半導体構造。
  33. 前記ゲルマニウム層は、エピタキシャル成長したゲルマニウム層である請求項28に記載の半導体構造。
  34. 前記ゲルマニウム層は、約30nmから約500nmの範囲の層の厚みである請求項28に記載の半導体構造。
  35. 前記誘電体層は、酸化物、窒化物、またはこれらの組み合わせを有する請求項28に記載の半導体構造。
  36. 前記誘電体層は、酸化シリコンまたは窒化シリコンを有する請求項35に記載の半導体構造。
  37. 前記ゲルマニウム層の上に形成されたゲルマニウム保護層をさらに備える請求項28に記載の半導体構造。
  38. 前記ゲルマニウム保護層は、シリコンまたはフォトレジスト材料から形成される請求項37に記載の半導体構造。
  39. 請求項28に記載の半導体構造を備える光学部品。
  40. 導波路またはフォトダイオードとして構成される請求項39に記載の光学部品。
JP2010519893A 2007-08-08 2007-08-08 半導体構造および製造方法 Pending JP2010536170A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SG2007/000244 WO2009020433A1 (en) 2007-08-08 2007-08-08 A semiconductor arrangement and a method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010536170A true JP2010536170A (ja) 2010-11-25

Family

ID=40341539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010519893A Pending JP2010536170A (ja) 2007-08-08 2007-08-08 半導体構造および製造方法

Country Status (4)

Country Link
US (1) US20110084308A1 (ja)
JP (1) JP2010536170A (ja)
CN (1) CN101836295A (ja)
WO (1) WO2009020433A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183195A (ja) * 2013-03-19 2014-09-29 Hitachi Ltd 半導体装置とその製造方法
KR20150041798A (ko) * 2012-08-21 2015-04-17 마이크론 테크놀로지, 인크 광검출기 내의 신호 손실을 줄이기 위한 방법 및 장치
JP2015162571A (ja) * 2014-02-27 2015-09-07 富士通株式会社 Ge系半導体装置、その製造方法及び光インターコネクトシステム
JP2015220290A (ja) * 2014-05-15 2015-12-07 富士通株式会社 Ge系半導体装置、その製造方法及び光インターコネクトシステム
KR20160089519A (ko) * 2013-12-20 2016-07-27 후아웨이 테크놀러지 컴퍼니 리미티드 반도체 디바이스 및 반도체 디바이스 제조 방법
JP2017032680A (ja) * 2015-07-30 2017-02-09 ルネサスエレクトロニクス株式会社 半導体装置
JP2017032708A (ja) * 2015-07-30 2017-02-09 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP2017201649A (ja) * 2016-05-02 2017-11-09 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP2017534182A (ja) * 2014-11-13 2017-11-16 アーティラックス インコーポレイテッドArtilux Inc. 光吸収装置
US10074677B2 (en) 2014-11-13 2018-09-11 Artilux Inc. Light absorption apparatus

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100006961A1 (en) * 2008-07-09 2010-01-14 Analog Devices, Inc. Recessed Germanium (Ge) Diode
TWI379430B (en) * 2009-04-16 2012-12-11 Atomic Energy Council A method of fabricating a thin interface for internal light reflection and impurities isolation
JP2011199268A (ja) * 2010-02-26 2011-10-06 Sumitomo Chemical Co Ltd 半導体基板、半導体デバイスおよび半導体基板の製造方法
KR101865752B1 (ko) * 2011-12-07 2018-06-12 한국전자통신연구원 광 검출기의 형성 방법
US20130334571A1 (en) * 2012-06-19 2013-12-19 International Business Machines Corporation Epitaxial growth of smooth and highly strained germanium
US8883616B2 (en) 2012-07-31 2014-11-11 Hewlett-Packard Development Company, L.P. Germanium on insulator apparatus
DE102013201644A1 (de) 2012-09-19 2014-03-20 Ihp Gmbh - Innovations For High Performance Microelectronics / Leibniz-Institut Für Innovative Mikroelektronik Germanium PIN-Fotodiode für die Integration in eine CMOS- oder BiCMOS-Technologie
US9231131B2 (en) * 2014-01-07 2016-01-05 International Business Machines Corporation Integrated photodetector waveguide structure with alignment tolerance
CN104900482A (zh) * 2014-03-06 2015-09-09 中国科学院微电子研究所 一种纯锗外延生长的方法
CN105019019B (zh) * 2014-04-30 2019-04-19 应用材料公司 用于选择性外延硅沟槽填充的方法
EP2978016B1 (en) 2014-07-25 2018-06-13 IMEC vzw A method for providing an nMOS device and a pMOS device on a silicon substrate and silicon substrate comprising an nMOS device and a pMOS device
US9627575B2 (en) 2014-09-11 2017-04-18 International Business Machines Corporation Photodiode structures
US9852902B2 (en) 2014-10-03 2017-12-26 Applied Materials, Inc. Material deposition for high aspect ratio structures
EP3460849A1 (en) * 2014-11-24 2019-03-27 Artilux Inc. Monolithic integration techniques for fabricating photodetectors with transistors on same substrate
CN104465369B (zh) * 2014-12-30 2017-10-10 上海华虹宏力半导体制造有限公司 锗的刻蚀方法
CN104993025B (zh) * 2015-07-01 2018-06-19 西安电子科技大学 氮化硅膜致应变的锗锡中红外led器件及其制备方法
JP2017022175A (ja) * 2015-07-07 2017-01-26 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
DE102016103346A1 (de) 2016-02-25 2017-08-31 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines strahlungsemittierenden Halbleiterchips und strahlungsemittierender Halbleiterchip
JP6584348B2 (ja) * 2016-03-07 2019-10-02 東京エレクトロン株式会社 凹部の埋め込み方法および処理装置
CN108063168B (zh) * 2017-12-14 2020-03-06 中国科学院微电子研究所 基于应变调控的Ge光电探测器及其制作方法
JP6777624B2 (ja) 2017-12-28 2020-10-28 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
US11680340B2 (en) * 2018-12-13 2023-06-20 Axt, Inc. Low etch pit density 6 inch semi-insulating gallium arsenide wafers
US11791159B2 (en) * 2019-01-17 2023-10-17 Ramesh kumar Harjivan Kakkad Method of fabricating thin, crystalline silicon film and thin film transistors
US11749762B2 (en) * 2019-10-31 2023-09-05 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device comprising a photodetector with reduced dark current
CN112750847B (zh) * 2019-10-31 2024-10-18 台湾积体电路制造股份有限公司 半导体装置及其形成方法
US11018230B1 (en) * 2019-12-20 2021-05-25 Nxp B.V. Semiconductor devices with a mixed crystal region
CN111077607B (zh) * 2019-12-30 2022-01-11 中国科学院微电子研究所 硅基光波导器件的制造方法
CN111509079A (zh) * 2020-01-20 2020-08-07 中国科学院微电子研究所 一种锗探测器及其制作方法
CN111509080A (zh) * 2020-01-20 2020-08-07 中国科学院微电子研究所 一种探测器及其制作方法
US20210375669A1 (en) * 2020-05-29 2021-12-02 Taiwan Semiconductor Manufacturing Co., Ltd. Surface uniformity control in pixel structures of image sensors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007014294A2 (en) * 2005-07-26 2007-02-01 Amberwave Systems Corporation Solutions integrated circuit integration of alternative active area materials
JP2007533119A (ja) * 2003-11-19 2007-11-15 インターナショナル・ビジネス・マシーンズ・コーポレーション Si:C−OIおよびSGOI上のシリコン・デバイスならびに製造方法
JP2009514252A (ja) * 2005-11-01 2009-04-02 マサチューセッツ・インスティテュート・オブ・テクノロジー モノリシックに集積化された半導体材料およびデバイス
JP2009514247A (ja) * 2005-10-31 2009-04-02 フリースケール セミコンダクター インコーポレイテッド 半導体構造物の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10290023A (ja) * 1997-04-15 1998-10-27 Nec Corp 半導体光検出器
EP1036412A1 (en) * 1997-09-16 2000-09-20 Massachusetts Institute Of Technology CO-PLANAR Si AND Ge COMPOSITE SUBSTRATE AND METHOD OF PRODUCING SAME
US6204168B1 (en) * 1998-02-02 2001-03-20 Applied Materials, Inc. Damascene structure fabricated using a layer of silicon-based photoresist material
EP1192646B1 (en) * 1999-06-25 2008-08-13 Massachusetts Institute Of Technology Cyclic thermal anneal for dislocation reduction
KR100767762B1 (ko) * 2000-01-18 2007-10-17 에이에스엠 저펜 가부시기가이샤 자가 세정을 위한 원격 플라즈마 소스를 구비한 cvd 반도체 공정장치
US7045836B2 (en) * 2003-07-31 2006-05-16 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor structure having a strained region and a method of fabricating same
US7238985B2 (en) * 2003-08-13 2007-07-03 International Rectifier Corporation Trench type mosgated device with strained layer on trench sidewall
US7358585B2 (en) * 2003-11-20 2008-04-15 Sioptical, Inc. Silicon-based Schottky barrier infrared optical detector
JP2009054429A (ja) * 2007-08-27 2009-03-12 Panasonic Electric Works Co Ltd 照明器具カバー及びそれを用いた照明器具
US8269303B2 (en) * 2008-03-07 2012-09-18 Nec Corporation SiGe photodiode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007533119A (ja) * 2003-11-19 2007-11-15 インターナショナル・ビジネス・マシーンズ・コーポレーション Si:C−OIおよびSGOI上のシリコン・デバイスならびに製造方法
WO2007014294A2 (en) * 2005-07-26 2007-02-01 Amberwave Systems Corporation Solutions integrated circuit integration of alternative active area materials
JP2009514247A (ja) * 2005-10-31 2009-04-02 フリースケール セミコンダクター インコーポレイテッド 半導体構造物の製造方法
JP2009514252A (ja) * 2005-11-01 2009-04-02 マサチューセッツ・インスティテュート・オブ・テクノロジー モノリシックに集積化された半導体材料およびデバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7012004717; T. H. Loh: 'Ultrathin low temperature SiGe buffer for the growth of high quality Ge epilayer on Si(100) by ultra' Applied Physics Letters Volume 90 Issue 9, 20070228, 092108, American Institute of Physics *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101721343B1 (ko) * 2012-08-21 2017-03-29 마이크론 테크놀로지, 인크 광검출기 내의 신호 손실을 줄이기 위한 방법 및 장치
KR20150041798A (ko) * 2012-08-21 2015-04-17 마이크론 테크놀로지, 인크 광검출기 내의 신호 손실을 줄이기 위한 방법 및 장치
JP2015532003A (ja) * 2012-08-21 2015-11-05 マイクロン テクノロジー, インク. 光検出器の信号損失を低減するための方法および装置
JP2014183195A (ja) * 2013-03-19 2014-09-29 Hitachi Ltd 半導体装置とその製造方法
KR20160089519A (ko) * 2013-12-20 2016-07-27 후아웨이 테크놀러지 컴퍼니 리미티드 반도체 디바이스 및 반도체 디바이스 제조 방법
US10234629B2 (en) 2013-12-20 2019-03-19 Huawei Technologies Co., Ltd. Method for reducing threading dislocation of semiconductor device
JP2017511596A (ja) * 2013-12-20 2017-04-20 華為技術有限公司Huawei Technologies Co.,Ltd. 半導体デバイスおよび半導体デバイスの製造方法
JP2015162571A (ja) * 2014-02-27 2015-09-07 富士通株式会社 Ge系半導体装置、その製造方法及び光インターコネクトシステム
JP2015220290A (ja) * 2014-05-15 2015-12-07 富士通株式会社 Ge系半導体装置、その製造方法及び光インターコネクトシステム
JP2017534182A (ja) * 2014-11-13 2017-11-16 アーティラックス インコーポレイテッドArtilux Inc. 光吸収装置
US10074677B2 (en) 2014-11-13 2018-09-11 Artilux Inc. Light absorption apparatus
US10128303B2 (en) 2014-11-13 2018-11-13 Artilux Inc. Light absorption apparatus
US10861884B2 (en) 2014-11-13 2020-12-08 Artilux, Inc. Light absorption apparatus
CN106405970A (zh) * 2015-07-30 2017-02-15 瑞萨电子株式会社 半导体器件及其制造方法
JP2017032708A (ja) * 2015-07-30 2017-02-09 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP2017032680A (ja) * 2015-07-30 2017-02-09 ルネサスエレクトロニクス株式会社 半導体装置
US10466415B2 (en) 2015-07-30 2019-11-05 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
CN106405970B (zh) * 2015-07-30 2021-04-30 瑞萨电子株式会社 半导体器件及其制造方法
JP2017201649A (ja) * 2016-05-02 2017-11-09 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法

Also Published As

Publication number Publication date
CN101836295A (zh) 2010-09-15
US20110084308A1 (en) 2011-04-14
WO2009020433A1 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
JP2010536170A (ja) 半導体構造および製造方法
EP1631980B1 (en) Methods of incorporating germanium within cmos process
US8698271B2 (en) Germanium photodetector and method of fabricating the same
US8829531B2 (en) Photonic systems and methods of forming photonic systems
US7297564B1 (en) Fabrication of vertical sidewalls on (110) silicon substrates for use in Si/SiGe photodetectors
Roucka et al. High-performance near-IR photodiodes: a novel chemistry-based approach to Ge and Ge–Sn devices integrated on silicon
US8183667B2 (en) Epitaxial growth of crystalline material
Cicek et al. AlxGa1− xN-based solar-blind ultraviolet photodetector based on lateral epitaxial overgrowth of AlN on Si substrate
CN101866834B (zh) 高Ge组分SiGe材料的方法
US20100133585A1 (en) Growth of germanium epitaxial thin film with negative photoconductance characteristics and photodiode using the same
JP2008504715A (ja) 窒化ガリウム材料及び方法
JP2011063502A (ja) 半導体デバイスおよび半導体構造の製造方法
US9748098B2 (en) Controlled confined lateral III-V epitaxy
JP6091273B2 (ja) 半導体装置とその製造方法
JP2006511096A (ja) Cmosプロセス中に歪み半導基板層を保護する方法
JP2701754B2 (ja) シリコン受光素子の製造方法
US11508870B2 (en) Process for fabricating at least one tensilely strained planar photodiode
JP3024584B2 (ja) 半導体装置の製造方法
KR101213228B1 (ko) 네가티브 광전도 특성을 갖는 게르마늄 단결정 박막의 성장법 및 이를 이용한 광검출기
TWI792157B (zh) 半導體結構及其製造方法
JP2024117750A (ja) ゲルマニウム半導体装置及びその製造方法
US20190296181A1 (en) Aluminum gallium arsenide and indium gallium phosphide power converter on silicon
CN111354820A (zh) 一种Si基改性Ge单片同层结构
Cammilleri et al. Lateral growth of monocrystalline Ge on silicon oxide by ultrahigh vacuum chemical vapor deposition

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130416