JP2010187025A - 露光装置及びデバイス製造方法 - Google Patents

露光装置及びデバイス製造方法 Download PDF

Info

Publication number
JP2010187025A
JP2010187025A JP2010114261A JP2010114261A JP2010187025A JP 2010187025 A JP2010187025 A JP 2010187025A JP 2010114261 A JP2010114261 A JP 2010114261A JP 2010114261 A JP2010114261 A JP 2010114261A JP 2010187025 A JP2010187025 A JP 2010187025A
Authority
JP
Japan
Prior art keywords
substrate
liquid
barrier member
projection system
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010114261A
Other languages
English (en)
Other versions
JP5008750B2 (ja
Inventor
Leenders Martinus H Antonius
ヘンドリクス アントニウス レーンダース マルティヌス
Joost Jeroen Ottens
ジェローン オッテンス ヨースト
Nicolaas R Kemper
ルドルフ ケンパー ニコラース
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/404,091 external-priority patent/US7864292B2/en
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Publication of JP2010187025A publication Critical patent/JP2010187025A/ja
Application granted granted Critical
Publication of JP5008750B2 publication Critical patent/JP5008750B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】液浸リソグラフィにおいてスループットを向上させる。
【解決手段】液浸露光装置が開示される。投影系と基板との間に液体を供給する液体供給システムの少なくとも一部が走査中に基板上面に実質的に平行な面内に移動可能である。この一部は、この一部と基板との間の相対速度を低減させるよう運動する。これにより投影系に対する基板の速度を増加させることができる。
【選択図】図6

Description

本発明は、露光装置及びデバイス製造方法に関する。
露光装置は、所望のパターンを基板、通常は基板のターゲット部分に転写する機械である。露光装置は例えば集積回路(IC)の製造に用いられる。この場合、例えばマスクまたはレチクルと称されるパターニング用デバイスが、集積回路の各層に対応した回路パターンを形成するために使用され得る。このパターンが基板(例えばシリコンウエハ)の(例えばダイの一部、あるいは1つまたは複数のダイからなる)ターゲット部分に転写されることになる。パターンの転写は典型的には、基板に塗布された照射感応材料(レジスト)層への像形成により行われる。一般に一枚の基板にはネットワーク状に隣接する一群のターゲット部分が含まれ、これらは連続的にパターン形成される。公知の露光装置にはいわゆるステッパとスキャナとがある。ステッパにおいては、ターゲット部分にパターン全体が一度に露光されるようにして各ターゲット部分は照射を受ける。スキャナにおいては、所与の方向(スキャン方向)に放射ビームによりパターンを走査するとともに基板をスキャン方向に平行または逆平行に走査するようにして各ターゲット部分は照射を受ける。また、パターンを基板にインプリントすることにより、パターニング用デバイスから基板にパターンを転写することも可能である。
露光装置内の基板を比較的屈折率の高い例えば水などの液体に浸け、投影光学系の末端の要素と基板との間を当該液体で満たすようにすることが提案されている。この提案のポイントは、当該液体中で露光光の波長がより短くなって、より小さいパターンを結像させることができるということである(この液体の効果は光学系のNAを実効的に増大させるものとも、あるいは焦点深度を増大させるものともみなすこともできる)。固体粒子(例えば石英)を浮遊状態で含む水などの他の液浸露光用の液体も提案されている。
しかし、基板あるいは基板及び基板テーブルの双方を液体槽に浸ける場合には(例えば米国特許第4509852号明細書を参照)、スキャン露光中に大量の液体が加速されなければならないことになる。そのためにはモータを追加したり、あるいはより強力なモータに取り替えたりすることが必要になる。また、液体に生じる乱流が不都合あるいは不測の影響をもたらすおそれがある。
提案されている1つの解決法は、液体を封じ込めるシステムを使用して投影光学系の末端の要素と基板との間において基板の局所的領域にしか液体を供給しない液体供給システムを用いることである(一般に投影系の末端要素よりも基板のほうが大面積である)。このような構成の一例が例えば国際公開第99/49504号パンフレットに開示されている。図2及び図3に示されるように、液体が基板に少なくとも1つの供給口INによって好ましくは末端要素に対する基板の移動方向に沿って供給され、投影光学系の下を通過した後は少なくとも1つの排出口OUTによって取り除かれる。つまり基板が末端要素の下方で−X方向に走査される場合には、液体は末端要素の+X側から供給されて−X側で回収される。図2には、供給口INから液体が供給され、排出口OUTにより末端要素の他方の側で液体が回収されるという構成が模式的に示されている。排出口OUTは低圧源に接続されている。図2においては末端要素に対する基板移動方向に沿って液体が供給されているが、これは必須ではない。さまざまな向き及び数の供給口及び排出口を末端要素の周囲に配置することが可能である。一例としては図3に示されるように、隣接する供給口及び排出口が末端要素の周囲に規則的に4組配置されていてもよい。
局所的に液体を供給するシステムを有する他の液浸露光法が図4に示されている。投影光学系PLの側部に設けられている2つの溝状のインレットINから液体が供給され、インレットINから放射方向外側に分散して配置されている複数のアウトレットOUTによって取り除かれる。インレットIN及びアウトレットOUTは中心部に開口を有するプレートに形成されており、この開口を通じて投影ブームが投影される。液体は、投影光学系PLの一方の側部の1つの溝状のインレットINから供給され、投影光学系PLの他方の側部に分離する複数のアウトレットOUTによって除去される。これにより、投影光学系PLと基板Wとの間に薄層状の液体の流れが形成される。どのインレットINとアウトレットOUTとを組み合わせて使用すべきかということは基板移動方向に依存する(インレットINとアウトレットOUTとの組合せによっては有効に機能しない)。
局所的液体供給システムを有する他の液浸露光法も提案されており、このシステムは投影光学系の末端要素と基板テーブルとの間の空間の辺縁部の少なくとも一部に沿って延在するバリア部材を備える。この方式の一例が図5に示されている。バリア部材はXY面内では投影光学系に対して実質的に静止しているが、Z軸方向(光軸方向)にはある程度相対移動が可能である。一実施例では、バリア部材と基板表面との間にシールが形成される。このシールはガスシールのような非接触のシールであってもよい。
バリア部材12は、投影光学系PLの末端要素と基板Wとの間の空間11に液体を少なくとも部分的に収容する。基板に対する非接触シール16が投影系の結像領域の周囲に形成されていてもよい。その結果、投影系の末端要素と基板表面との間の空間に液体が封じ込められる。この空間の少なくとも一部は、投影系PLの末端要素の下方及び周囲に配置されるバリア部材12によって形成される。液体供給口13により投影系下方かつバリア部材12内部の空間に液体が供給され、液体排出口13により除去されてもよい。バリア部材12は投影系末端要素の若干上方にまで延びていてもよい。これにより液位が末端要素よりも上方に上昇したときに液体のバッファーが形成される。一実施例ではバリア部材12は上端部において内周形状が投影系またはその末端要素の形状に近似していてもよく、例えば円周状であってもよい。底部においては内周形状が結像領域の形状例えば長方形に近似していてもよいが、これは必須ではない。
液体はガスシール16によって空間11に保持されている。このガスシール16は、使用時にバリア部材12の底部と基板Wの表面との間に形成される。ガスシールは例えば空気や合成空気などの気体により形成されるが、一実施例ではN2や他の不活性ガスでもよい。ガスシールは、バリア部材12と基板との間隙に吹出口15から所定圧を供給するとともに吸入口14で吸引することにより形成される。ガス吹出口15での過度の圧力、吸入口14での真空レベル、及び間隙の幾何形状は、液体を封じ込める高速なガス流れを中心方向に生じさせるように構成される。これらの吹出口及び吸入口は空間11を取り囲む環状の溝であってもよく、ガス16の流れは空間11に液体を保持するのに有効なものとされる。このようなシステムは米国特許出願公開第2004/0207824号明細書に開示されており、その全体をここに引用する。
欧州特許出願公開第1420300号明細書及び米国特許出願公開第2004/0136494号明細書の全体をここに引用する。これらの文献にはツインステージまたはデュアルステージの液浸露光装置が開示されている。これらの装置には基板を支持するための2つのテーブルが設けられている。第1位置にあるテーブルで液浸用の液体が無い状態でレベリング測定が実行され、第2位置にあるテーブルで液浸用の液体が存在する状態で露光が実行される。これに代えて、露光装置は1つのテーブルしか有していなくてもよい。
液浸露光では液体を取り扱うことから、スループットが低下する可能性がある。
例えば、液浸露光技術を用いる露光装置及びデバイス製造方法においてはスループットを向上するための対策が取られることが望ましい。
本発明の一側面によれば、
投影系と、
前記投影系により像が形成される基板を保持するテーブルと、
前記投影系と基板との間の空間に液体を供給する液体供給システムと、を備え、
前記液体供給システムの少なくとも一部は、前記投影系及び基板に独立して前記投影系及び基板に対して基板上面に実質的に平行な少なくとも1つの方向に移動可能である露光装置が提供される。
本発明の一側面によれば、
投影系と、
前記投影系により像が形成される基板を保持するテーブルと、
前記投影系を取り巻き、前記投影系と基板との間の空間を含む容積に液体を少なくとも部分的に保持するバリア部材を備える液体供給システムと、を備え、
前記バリア部材は、基板上面に実質的に平行な面内で第1の方向に基板に独立して移動可能であり、
前記バリア部材は、露光装置のスリット長さに等しい距離を前記第1の方向に少なくとも移動可能であるような大きさ及び形状とされている露光装置が提供される。
本発明の一側面によれば、
投影系と、
前記投影系により像が形成される基板を保持するテーブルと、
前記投影系と基板との間の空間に液体を供給する液体供給システムと、
使用時には液体中において前記投影系の周囲に位置しており、前記液体供給システムから液体を通じての前記投影系への力の伝達を少なくとも低減する力分離部材と、を備える露光装置が提供される。
本発明の一側面によれば、
液体供給システムの一部と基板との間にシールを形成する液体供給システムを用いて投影系と基板との間に液体を供給し、
パターンが付与された放射ビームを基板に投影する投影系を使用し、
前記投影系の下方で基板を移動し、
基板の移動中に、基板と液体供給システムの一部との相対速度を低減させるような速度及び方向に液体供給システムの当該一部を移動するデバイス製造方法が提供される。
本発明の一実施形態に係る露光装置を示す図である。 露光装置で用いられる液体供給システムを示す図である。 露光装置で用いられる液体供給システムを示す図である。 露光装置で用いられる他の液体供給システムを示す図である。 液体供給システムと基板との間に形成されるガスシールを有するバリア部材の断面を示す図である。 本発明の一実施形態に係る更なる液体供給システムの断面を示す図である。 図6の液体供給システムを示す図である。 投影系下方での基板及び液体供給システムの一部の動きを模式的に示す図である。 投影系下方での基板及び液体供給システムの一部の動きを模式的に示す図である。
図1は、本発明の一実施形態に係る露光装置を模式的に示す図である。この装置は以下のものを備える。
放射ビームB(例えばUV放射またはDUV放射)を調整するよう構成されている照明光学系(照明器)IL。
パターニング用デバイス(例えばマスク)MAを支持するよう構成され、所定のパラメータに従ってパターニング用デバイスを正確に位置決めするよう構成されている第1の位置決め装置PMに接続されている支持構造(例えばマスクテーブル)MT。
基板(例えばレジストでコーティングされたウエハ)Wを保持するよう構成され、所定のパラメータに従って基板を正確に位置決めするよう構成されている第2の位置決め装置PWに接続されている基板テーブル(例えばウエハテーブル)WT。
パターニング用デバイスMAにより放射ビームBに付与されたパターンを基板Wの(例えば1つ以上のダイからなる)ターゲット部分Cに投影するよう構成されている投影系(例えば屈折投影レンズ系)PS。
照明系は、放射の方向や形状の調整またはその他の制御用に、各種の光学素子例えば屈折光学素子、反射光学素子、磁気的光学素子、電磁気的光学素子、静電的光学素子または他の各種光学部品を含んでもよく、あるいはこれらの任意の組み合わせを含んでもよい。
支持構造はパターニング用デバイスを支持する。つまり支持構造はパターニング用デバイスの荷重を支える。支持構造は、パターニング用デバイスの向きや露光装置の構成、あるいはパターニング用デバイスが真空環境下で保持されるか否かなどの他の条件に応じた方式でパターニング用デバイスを保持する。支持構造においてはパターニング用デバイスを保持するために、機械的固定、真空固定、静電固定、または他の固定用技術が用いられる。支持構造は例えばフレームまたはテーブルであってよく、必要に応じて固定されていてもよいし移動可能であってもよい。支持構造は、パターニング用デバイスを例えば投影系に対して所望の位置に位置決めできるようにしてもよい。本明細書では「レチクル」または「マスク」という用語を用いた場合には、より一般的な用語である「パターニング用デバイス」に同義であるとみなされるものとする。
本明細書では「パターニング用デバイス」という用語は、例えば基板のターゲット部分にパターンを形成すべく放射ビームの断面にパターンを付与するために使用され得るいかなるデバイスをも指し示すよう広く解釈されるべきである。放射ビームに与えられるパターンは、例えば仮に放射ビームのパターンが位相シフトフィーチャあるいはいわゆるアシストフィーチャを含む場合には、基板のターゲット部分に所望されるパターンと厳密に対応していなくてもよい。一般に、放射ビームに付与されるパターンは、ターゲット部分に形成される集積回路などのデバイスの特定の機能層に対応する。
パターニング用デバイスは透過型であっても反射型であってもよい。パターニング用デバイスの例としては、例えばマスクやプログラマブルミラーアレイ、プログラマブルLCDパネルなどがある。マスクはリソグラフィーの分野では周知であり、バイナリマスクやレベンソン型位相シフトマスク、ハーフトーン型位相シフトマスク、更に各種のハイブリッド型マスクが含まれる。プログラマブルミラーアレイの一例としては、小型のミラーがマトリックス状に配列され、各ミラーが入射してくる放射ビームを異なる方向に反射するように個別に傾斜されるというものがある。これらの傾斜ミラーにより、マトリックス状ミラーで反射された放射ビームにパターンが付与されることになる。
本明細書では「投影系」という用語は、使用される露光光あるいは液浸や真空の利用などの他の要因に関して適切とされるいかなる投影系をも包含するよう広く解釈されるべきである。投影系には例えば屈折光学系、反射光学系、反射屈折光学系、磁気的光学系、電磁気的光学系、静電的光学系、またはこれらの任意の組み合わせなどが含まれる。以下では「投影レンズ」という用語は、より一般的な用語である「投影系」と同義に用いられ得る。
ここに説明されるのは、(例えば透過型マスクを用いる)透過型の露光装置である。これに代えて、(例えば上述のようなプログラマブルミラーアレイや反射型マスクなどを用いる)反射型の露光装置を用いることもできる。
露光装置は2つ以上(2つの場合にはデュアルステージと呼ばれる)の基板テーブル(及び/または2つ以上の支持構造)を備えてもよい。このような多重ステージ型の装置においては追加されたテーブルは並行して使用されるか、あるいは1以上のテーブルで露光が行われている間に他の1以上のテーブルで準備工程を実行するようにしてもよい。
図1に示されるように照明器ILは放射源SOから放射ビームを受け取る。例えば光源がエキシマレーザである場合には、光源と露光装置とは別体であってもよい。この場合、光源は露光装置の一部を構成しているとはみなされなく、放射ビームは光源SOから照明器ILへとビーム搬送系BDを介して受け渡される。ビーム搬送系BDは例えば適当な方向変更用のミラー及び/またはビームエキスパンダを含んで構成される。あるいは光源が例えば水銀ランプである場合には、光源は露光装置に一体に構成されていてもよい。光源SOと照明器ILとは、またビーム搬送系BDが必要とされる場合にはこれも合わせて、放射系と総称される。
照明器ILは放射ビームの角強度分布を調整するためのアジャスタADを備えてもよい。一般にはアジャスタADにより、照明器ILの瞳面における強度分布の少なくとも半径方向外周部及び/または内周部での量(通常それぞれ「シグマ−アウタ(σ−outer)」、「シグマ−インナ(σ−inner)」と呼ばれる)が調整される。加えて照明器ILは、インテグレータIN及びコンデンサCOなどの他の要素を備えてもよい。照明器はビーム断面における所望の均一性及び強度分布を得るべく放射ビームを調整するために用いられる。
放射ビームBは、支持構造(例えばマスクテーブル)MTに保持されるパターニング用デバイス(例えばマスク)MAに入射して、当該パターニング用デバイスによりパターンが付与される。マスクMAを通過した放射ビームBは投影系PSに進入する。投影系PSはビームを基板Wのターゲット部分Cに投影する。第2の位置決め装置PWと位置センサIF(例えば、干渉計、リニアエンコーダ、静電容量センサなど)により基板テーブルWTを正確に移動させることができる。基板テーブルWTは例えば放射ビームBの経路に異なるターゲット部分Cを位置決めするように移動される。同様に、第1の位置決め装置PMと他の位置センサ(図1には明示せず)とにより放射ビームBの経路に対してパターニング用デバイスMAを正確に位置決めすることができる。この位置決めは例えばマスクライブラリからのマスクの機械的交換後や露光走査中に行われる。一般に支持構造MTの移動は、第1の位置決め装置PMの一部を構成するロングストロークモジュール(粗い位置決め用)及びショートストロークモジュール(精細な位置決め用)により実現される。同様に基板テーブルWTの移動は、第2の位置決め装置PWの一部を構成するロングストロークモジュール及びショートストロークモジュールにより実現される。ステッパでは(スキャナとは逆に)、支持構造MTはショートストロークのアクチュエータにのみ接続されているか、あるいは固定されていてもよい。パターニング用デバイスMAと基板Wとは、パターニング用デバイスのアライメントマークM1、M2及び基板アライメントマークP1、P2を用いてアライメントされてもよい。図においては基板アライメントマークが専用のターゲット部分を占拠しているが、アライメントマークはターゲット部分間のスペースに配置されてもよい(これはスクライブライン・アライメントマークとして公知である)。同様に、パターニング用デバイスMAに1つ以上のダイがある場合にはパターニング用デバイスのアライメントマークをダイの間に配置してもよい。
図示の装置は例えば次のうちの1つ以上のモードで使用することができる。
1.ステップモードにおいては、放射ビームに付与されたパターンの全体が1回の照射(すなわち単一静的露光)でターゲット部分Cに投影される間、支持構造MT及び基板テーブルWTは実質的に静止状態とされる。そして基板テーブルがX及び/またはY方向に移動されて、異なるターゲット部分Cが露光される。ステップモードでは露光領域の最大サイズが単一静的露光で転写されるターゲット部分Cのサイズを制限することになる。
2.スキャンモードにおいては、放射ビームに付与されたパターンがターゲット部分Cに投影される間(すなわち単一動的露光の間)、支持構造MT及び基板テーブルWTは同期して走査される。支持構造MTに対する基板テーブルWTの速度及び方向は、投影系PSの拡大(縮小)特性及び像反転特性により定められる。スキャンモードでは露光領域の最大サイズが単一動的露光でのターゲット部分の(非走査方向の)幅を制限し、スキャン移動距離がターゲット部分の(走査方向の)長さを決定する。
3.更に他のモードにおいては、支持構造MTはプログラム可能なパターニング用デバイスを保持して実質的に静止状態とされ、基板テーブルWTは、放射ビームに付与されたパターンがターゲット部分Cに投影されている間、移動されるか走査される。このモードにおいては、一般にパルス放射源が用いられ、プログラム可能なパターニング用デバイスは、基板テーブルWTの各移動後にあるいは走査中の連続するパルス照射の間に必要に応じてパターンが更新される。このモードは、例えば上述のプログラマブルミラーアレイなどのプログラム可能なパターニング用デバイスを使用するマスクレス(マスクを使わない)リソグラフィーに適用し得る。
上記で記載したモードを組み合わせて動作させてもよいし、各モードに変更を加えて動作させてもよいし、さらに全く別のモードで使用してもよい。
本発明の実施形態は、液体を充分に保持し得ないような速度をもつあらゆる液体供給システムに適用可能である。特に、基板上方の容積に液体を保持するシステムであって、その容積から液体が確実に逃げないようにするために例えば毛管力及び/または低圧及び/またはガス圧及び/または動圧及び/または液体と基板との間の摩擦などを少なくとも部分的に利用するシステムに適用可能である。この液体供給システムの例が図2から図6に示されており、本発明の実施形態は他の液体供給システムにも適用可能である。例えば図5に示されるように液体を保持するのにガスナイフを用いるシステムにも本発明の実施形態を用い得る。本発明の一実施形態は、バリア部材12を備える図6に示される液体供給システムに関して説明される。しかし、この実施形態及び他の実施形態は他のタイプの液体供給システム、特に基板の局所的領域に液体を供給しかつ基板への結像中に基板が該システムに対して移動する液体供給システムにも適用可能であるものと理解されたい。
各種の液体供給システムでは、該システムの一部と基板との間にシールを形成することが試みられている。液体供給システムの当該一部に対して基板が移動すれば、シールが破られて液体が漏れてしまうおそれがある。本発明の一実施形態においては、結像中に液体供給システムの当該一部と基板Wとの間の相対速度を低減するために複数の対策がとられている。これにより、シールが破られてしまうであろう基板Wの走査速度が増加される。よって、投影光学系下方での基板Wの移動を高速化してスループットを向上させることが可能となる。
図6には、液体供給システムの一部であるバリア部材12が示されている。バリア部材12は投影系PLの末端要素の周縁部を取り巻いて延在しており、このバリア部材(シール部材と呼ぶこともある)は全体の形状が例えば実質的に環状である。投影系PLは円形状でなくてもよく、またバリア部材12の内周端及び/または外周端は円形状でなくてもよい。バリア部材はリング状の形状である必要はなく、投影ビームが通過する開口部を中央に有する限り(図7に示されるように)他の形状であってもよい。投影ビームは、投影系PLの末端要素から出て当該開口部に保持されている液体を通過し、基板Wに入射する。
図7に示されるように、バリア部材12は例えば実質的に長方形であってもよく、(図6において線300で示される)バリア部材12の高さにおいて投影系PLの末端要素と同一の形状である必要はない。図7で重要な点は以下でさらに詳細に説明される。
バリア部材12の機能は、投影系PLと基板Wとの間の空間に液体を少なくとも部分的に保持し又は閉じ込めて、投影ビームがその液体を通過するようにすることである。液体の上面は単純にバリア部材の存在により保たれ、当該空間における液位はバリア部材12の上部を越えてあふれ出ることのないように保たれる。一実施例ではバリア部材12の底部と基板Wとの間にシールが形成される。図6では、このシールは非接触シールであり、いくつかの部材から構成されている。投影系PLの光軸から半径方向外側で機能するように(任意的な)フロープレート50が形成されている。このフロープレート50は、投影系PLと基板Wとの間の空間に向けて延びているが、投影ビームの経路にまでは延びていない。フロープレート50は、この空間にアウトレット20から出る液浸用液体の実質的に平行な流れを維持するのに役立つ。このフロー制御プレートは、投影系PL及び/または基板Wに対するバリア部材12の光軸方向への移動抵抗を低減するための貫通孔55を有する。バリア部材12の底部に沿って半径方向外側には、光軸に実質的に平行な方向に基板に向かう流れを生成するアウトレット60が形成されている。この液体の流れは、基板を支持する基板テーブルWTと基板Wの端部との間隙を満たすのに役立つ。この間隙が液体で満たされていなければ、基板Wの端部がシール部を通過するときに投影系PLと基板Wとの間の空間にある液体に気泡が入ってしまう可能性がある。これは、結像品質を低下させ得るため望ましくない。
アウトレット60の半径方向外側には、バリア部材12と基板Wとの間から液体を引き出すように構成されている吸引アセンブリ70がもうけられている。吸引部70は以下で詳細に説明されるが、バリア部材12と基板Wとの間に形成される非接触シールがその一部を形成するように構成されている。
吸引アセンブリの半径方向外側には、インレット82を通じて外部に接続されアウトレット84を介して低圧源に接続されているリセス80が設けられている。リセス80の半径方向外側にはガスナイフ90が設けられている。吸引部、リセス、及びガスナイフの構成は2005年1月14日に出願された米国特許出願60/643626号に詳細に開示されており、その全体をここに引用する。しかし、その出願では吸引アセンブリの構成が異なっている。
吸引アセンブリ70は、米国特許出願公開第2006/0038968号明細書(その全体をここに引用する)に開示されているような液体取出装置または吸引部またはインレット100を備える。あらゆるタイプの液体吸引部を用いることが可能である。一実施例では、液体取出装置100は、液体から気体を分離して気体が含まれていない液体を抽出することができる多孔質材料110で覆われたインレットを備える。多孔質材料110の下流側の区画120は若干低圧に保持されかつ液体で満たされている。区画120の圧は、多孔質材料の孔に形成されるメニスカスが液体取出装置100の区画120に周囲の気体を引き込まない程度のものである。しかし、多孔質表面110が液体に接触しているときには流れを制限するメニスカスは無く、液体取出装置100の区画120に自由に液体が流れることができる。多孔質表面110はバリア部材12に沿って半径方向内側に延びており(投影系末端要素と基板との間の空間を取り巻いており)、多孔質材料110がどの程度液体に覆われているかによって液体を引き出す割合が変化する。
バリア部材12と基板Wとの間の液体のメニスカスの制御が重要である。基板Wの走査中に(基板Wがバリア部材12及び投影系PLの下方を移動しているときに)、移動する基板Wにより作用する抵抗力によって光軸に向かって又は光軸から離れるようにメニスカスは引きずられるであろう。これにより液体が蒸発して失われる。その結果、基板が冷却されて基板の縮小や重ね合わせ誤差が生じうる。また、液滴とレジストとの間の光化学的な相互作用により液体の跡が残されるおそれがある。更に、投影系PLと基板Wとの間の空間に気体が含まれていると、メニスカスがその空間に引きずり込まれるときに気泡が生じて投影像の品質を低下させるおそれがある。
一実施例では、プレート200が液体取出装置100と基板Wとの間に設けられている。このプレート200により、液体の吸引機能とメニスカスの制御機能とが互いに分離され、バリア部材12はそれぞれに対して最適化され得る。
プレート200は分離器である。あるいはプレート200は液体取出装置100と基板Wとの間の空間を上部チャンネル220と下部チャンネル230とに分離する機能を有する要素である。上部チャンネル220はプレート200の上面と液体取出装置100との間であり、下部チャンネル230はプレート200の下面と基板Wとの間である。各チャンネルは半径方向最内端で投影系末端要素と基板との間の空間に開放されている。プレートの厚さは重要ではない。図6に示される上部チャンネル220は水平に延びているが、これは必須ではない。図6において上部チャンネル220が水平に延びているのは、各部材の構造的な配置を理由とするものである。上部チャンネル220は垂直方向や、水平方向と垂直方向の間のいかなる方向に延びていてもよい。上部チャンネル220において重力に起因する液圧は低いが、必要があれば対向する圧を作用させてもよい。例えば液体取出装置100または後述の呼吸孔250のような他の経路を通じて圧を作用させてもよい。
一実施形態においては、液体取出装置100とプレート200との間の上部チャンネル220は、プレート200と基板Wとの間の下部チャンネル230よりも狭い。一実施例では、下部チャンネルの高さは、設計条件(流れのパターンによる粘性抵抗の大きさ)や流体の性質(粘性係数、密度、表面張力)、表面特性(表面と液体との結合エネルギ及び液体表面張力により生じる接触角)に依存して設定されるものであり、250μmから50μmの間、あるいは100から60μmの間である。上部チャンネル220は、例えば下部チャンネルの1/2から1/3に狭くすることにより、より強力な毛管作用を有する。これに代えてまたはこれに加えて、上部チャンネル220は下部チャンネル230よりも親液体性の表面で形成されていてもよい。上部チャンネル220は下部チャンネル230よりも広くてもよい。もし上部チャンネル220が狭すぎれば、そのチャンネルでの摩擦抵抗が大きすぎかつそのチャンネルでのメニスカスに動的流体力が作用して、そのチャンネルに液体が流れないかもしれない。よって、おそらく60μmとされ得る下部チャンネル230よりも上部チャンネル220が例えば150μm程度とより広く形成されていれば、このような問題は克服され得る。チャンネルの幅が250μmよりも大きい場合には毛管作用が低減される。毛管作用を促進するためには、上部チャンネル220を親液体性に形成するか、あるいは半径方向外側よりも半径方向内側でより広くなるように上部チャンネル220でのメニスカスの近くに段差を設けてもよい。
上部チャンネル220を呼吸孔250例えば貫通孔250を通じて大気に開放しておくというよりも、上部チャンネル220を低圧にしてもよい。これにより、上部チャンネル220をより広くすることができる。
このようにして2つのメニスカス310、320ができる。第1のメニスカス310はプレート200の上方に位置し、多孔質表面110とプレート200の上面との間に延びている。第2のメニスカス320は、プレート200の下方に位置し、プレート200と基板Wとの間に延びている。このようにして吸引アセンブリ70は液体の引出を最適化するために第1のメニスカス310の制御を最適化するとともに、第2のメニスカス320による粘性抵抗が低減されるよう第2のメニスカス320の位置制御を最適化することができる。特に、プレート200などの特性は、第2のメニスカス320がプレート200に付着したままでバリア部材10下方での基板Wの走査速度を増加することができるようにエネルギ的に適切に最適化される。第2のメニスカスに作用する毛管力の向きは半径方向外側を向いており、そのメニスカス近傍の液体圧と釣り合ってメニスカスが維持される。例えば抵抗力や慣性力によってメニスカスに高い荷重がかかった場合には、面に対するメニスカスの接触角は小さくなる。
図6では、基本的な吸引アセンブリ70が図示されている。呼吸孔250はプレート200の半径方向最外端に設けられており、第1のメニスカス310は多孔質材料110の下を内側及び外側に自由に移動する。その結果、液体取出装置100の吸引速度は、多孔質材料110がどの程度液体で覆われているかによって変化する。図6に示されるように第2のメニスカス320はプレート200の下面の最内端部に付着している。
図6ではプレート200の下面の最内端部は、第2のメニスカスをその位置に実質的に束縛するように尖って形成されている。一実施例においては、この端部の半径は0.1mmよりも小さくてもよく、あるいは50μmよりも小さくても、20μmより小さくても、または10μm程度であってもよい。
第2のメニスカスを定位置に維持するための変形例としては、第2のメニスカス320が付着する部位のプレート200の表面特性を異ならせるというものがある。例えば、プレート200上で半径方向外側方向に向けて親液体性の表面から疎液体性の表面に変化させると、メニスカス320はその変化箇所で実質的に固定されることになろう。なぜなら親液体性の表面から疎液体性の表面へとメニスカスが移動するにはその形状を逆転させる必要があるからである。メニスカスを固定する他の変形例は、プレート200の表面を粗表面から滑表面に変えるというものである。完全に濡れている粗表面はメニスカスに対するトラップとして作用する。表面が完全には濡れていない状態で液体が粗表面の凹凸の頂部にのみある場合には、いわゆるロータス効果により粗表面は疎液体性となる。また、メニスカスを局所的に捕らえておくためにエレクトロウェッティング技術が用いられてもよい。この場合、オンとオフとの切替が可能であるという点が利点である。
図6には力分離部材500(例えばリング)も図示されている。この力分離部材500は、液体中で投影系PLの末端要素を取り巻いている。力分離部材500の目的は、投影系PLに対して移動する液体供給システムの一部から液体を通じて末端要素に力が実質的に伝達されないようにすることである(以下参照)。このため力分離部材500は、基板Wを支持するベースフレームBFまたは投影系PLが取り付けられている計測フレームRFのいずれかに取り付けられている。よって、力分離部材500は投影系PLから動的に分離されている。
図6には具体的には示されていないが、液体供給システムは、液体の液位の変動を処理する手段を有する。これは、投影系PLとバリア部材12との間で液体が集結してこぼれ出ないように処理するためのものである。このような液体の集結は、後述の投影系PLに対するバリア部材12の相対移動の間に起こりうる。このような液体の処理の一方法は、非常に大きなバリア部材12を設け、投影系PLに対するバリア部材12の相対移動の間におけるバリア部材12の周縁部での圧力勾配がほとんど生じないようにすることである。代替のまたは追加の構成としては、例えば吸引器110に類似の吸引器を使用してバリア部材12の頂部から液体を除去するようにしてもよい。
一実施例では、投影系PLに対するバリア部材12の相対移動方向に応じて、投影系PLの末端要素と基板Wとの間の空間への液体供給を例えばアウトレット20を通じて調節することが可能である。この空間への液体供給システムによる液体供給の能動制御は、投影系PLに対するバリア部材12の動きに応じて行われる。よって、例えば、バリア部材12が投影系PLに向かって第1の側部から第2の側部へと移動しているときには、液体供給システムの能動制御は、第1の側部に近いバリア部材の部位よりも第2の側部に近いバリア部材の部位からより多く液体を供給するであろう。この能動制御は、例えば圧電駆動されるインレットノズルにより実現される。または、互いに移動可能であって、外側リングの内周と内側リングの外周との間に流体経路を有する同軸の2つのリングなどによっても実現される。
図7には、基板Wと液体供給システムのバリア部材12との間の相対速度をどのように低減して投影系の下方での基板移動速度を増加させることが可能であるかが示されている。これは、液体供給システムのバリア部材12が投影系PLに相対的にかつ基板Wから独立に移動し得るような大きさにバリア部材12を形成することにより実現される。このために、バリア部材12の形状及び大きさは、投影系PLの末端要素のバリア部材12と同じ高さ(図6での線300)での設計上の大きさよりも設計上大きな内部容積を画定するように形成される。末端要素は図5及び図6に示されるように円すい状の形状であってもよく、バリア部材12の上方ではバリア部材内部容積よりも設計上大きくてもよい。
図7に示されるように、一実施例においては、バリア部材の大きさ及び形状は、基板上面に実質的に平行な面内の少なくとも1つの方向(走査方向)に移動可能に形成される。バリア部材は、感知できる程度に性能を向上させるような距離だけ少なくとも移動可能とすべきである。例えば、露光装置のスリット長さと少なくとも同様の距離を第1の方向に移動可能にバリア部材の大きさ及び形状が定められれば適切であろう。装置のスリットの大きさは設計上、投影ビームPBが通過する開口の大きさである。一般にスリットは10mm程度の長さ及び25mm程度の幅を有する。走査中にこのスリット幅が走査され、走査長さは32mm程度である。走査移動中に基板テーブルWTが安定した速度に到達するまでにおよそ20mmの間加速される。それから定速でおよそ32mmの走査が行われて、およそ20mmのテーブルの減速が行われる。よって、走査動作中の基板テーブルの総移動距離は70から80mm程度となる。バリア部材12がその距離の20%を走査方向に移動できるようにすることにより、スループットを顕著に増大させることができる。移動量を増加させれば基板Wとバリア部材12との間の相対速度を低減できるのは明らかであり、装置の最大走査距離の少なくとも30%、40%または50%の距離を第1の方向(走査方向)に移動可能としてもよい。この場合移動距離に対応してフットプリントがより大きくなる。
ステップ方向の移動に関しては、少なくともスリット長さまたはスリット幅と同程度の距離をその方向に移動可能とするのが適切であろう。約25mm幅のステップ移動、及びその前に基板テーブルを安定化するのに典型的に約26mmの加速移動、及びステップ移動後に典型的に約26mmの減速移動が必要である。第2の方向(ステップ方向)への移動可能量は、移動距離の合理的な割合とすべきであり、例えばステップ移動距離の20%、30%、40%または50%としてもよい。
バリア部材12は(例えばばね力に対抗して)受動的に動かされてもよいし、アクチュエータ1000及び第2アクチュエータ2000により能動的に移動されてもよい。アクチュエータ1000は第1方向(走査方向)への移動用であり、第2アクチュエータ2000は走査方向に直交する方向への移動用である。
基板Wが図6で右側に移動するときには、バリア部材12も基板Wの速度の2倍またはそれ以下で右側に移動する。これらの移動はいずれも投影系PLに対するものである。この相対速度の範囲で基板Wとバリア部材12(特にプレート200)との速度差は低減される。例えば、バリア部材12が基板Wの半分の速度で移動すれば、基板とプレートとの間の相対速度が半分に減少するから下側のメニスカス320が破壊される最大走査速度が2倍に増加する。上側のメニスカス310には移動の影響がほとんどないか、まったくない。基板移動速度を境界としてバリア部材12の移動速度が基板移動速度より低速でも高速(基板速度の2倍以内の速度)でも同様の効果を得られるが、バリア部材12の速度を基板の移動速度以下にするほうが、より実施が容易である。
実際にはバリア部材は、プレート200のシール面と基板Wとの間の相対速度を低減するいかなる速度または方向に移動してもよい。ある方向への重畳的な移動を防ぐためにバリア部材は走査中の基板Wの高速移動中にのみ移動され、低速移動または停止中にゆっくりと中央位置に戻されるようにしてもよい。よって、Y方向の走査中はバリア部材12は単純に上下に動くだけで、曲線移動及びX方向ステップ移動中に基板とともにバリア部材が移動してもよい。X方向の累積的移動を防ぐためにY方向走査中にバリア部材12は初期位置に戻ってもよい。
バリア部材12の移動は能動的であってもよいし受動的であってもよい。バリア部材12が能動的である場合には、制御系は、バリア部材12の移動と基板Wの移動とを調整すべく露光装置全体の制御部との間でデータをやりとりする。バリア部材12は、例えば圧電アクチュエータやリニアモータなどにより駆動される。バリア部材12が受動的に移動される一実施例では、バリア部材12はベースフレームBF、参照フレームRFまたは投影系PLにX−Y方向に位置決めするための1つ以上のバネで取り付けられてもよい。移動可能プレート200と基板Wとの間の液体を通じての摩擦力は、基板Wと同じ方向にバリア部材12を移動させるのに十分な力である。プレート200の端部に疎液体性コーティングを付加することにより、基板Wにより液体を通じてプレートに与えられる力は増大される。バネの強さはステップ移動が高速であるときだけバリア部材12が移動するように設定される。
バリア部材は、図6及び図7の実施形態の説明では長方形であるように記述され、また放射状の構造であるかのように説明されている(すなわち、光軸から半径方向に外側または内側というように)。これらの表現は、円形形状のように光軸から離れる及び光軸に向かうという移動が一般的である形状だけでなく、厳密には光軸を通過しないような方向への移動を要する形状にも当てはめるよう一般的に解釈されるべきである。
図8及び図9は、バリア部材12が能動的に移動される場合、つまりアクチュエータ1000及び2000により移動される場合における2つの実際的な例を示す。図8aは投影系PLの下での基板Wの移動の様子を示し、図8bは静止している投影系PLの下でのバリア部材12の移動の様子を示す。基板は投影系PLの下で位置1から位置2に走査される(図8a)。図中の影付き正方形はマスクが走査される様子を示す。この走査中にバリア部材12は位置1から位置2へと対角線状の経路を(ゆっくりと)追従する(図8b)。ステップ動作の間は(図中の2〜3〜4)、バリア部材12と基板Wとの間の相対速度を低減させるようバリア部材12は図8bに示されるように左から右へと移動する(2〜3〜4)。4〜5の走査の間、バリア部材12はもう1つの対角線状経路をゆっくりと移動する。その後、X方向のステップ動作の間、バリア部材12はバリア部材12と基板Wとの間の相対速度を低減させるよう走査終了時の位置から再度X方向に移動する。図8cには、基板及びバリア部材の絶対速度と、基板とバリア部材との相対速度とが示されている。この図から、移動可能とされたバリア部材12によって基板Wとバリア部材12との相対速度がいかに低減されているかを容易に理解することができる。これにより、メニスカスを壊さないようにして基板Wの速度を増加させ、スループットを向上させることも容易に理解されよう。
図9aから図9cは、二重露光を許容する長距離の走査であるという点を除いて図8aから図8cと同様の原理を示すものである。
小さいフィールド(例えば長さ10mm)では、走査方向の速度はステップ方向の速度よりも普通小さい。露光装置の使用態様によるものの、ストロークについてもこれは同様である。
モジュール性を向上させるために、バリア部材12の走査方向及びステップ方向の移動に同一のアクチュエータを採用し、両者が同一のストロークを有するものであってもよい。
代替例では、プレート200は省略されてもよい。つまり、本発明の実施形態では他の構成のバリア部材であっても機能する。
各実施形態において、制御部は、露光中の基板移動に関するデータを保有しているのでシール面に必要となる動きを予測してもよい。制御部は、投影系に対する基板の高速移動に備えてバリア部材が利用可能な移動量を増大または最大化すべく、投影系に対する基板の動きが低速である間にバリア部材を最遠の移動可能位置近傍にまで移動させてもよい(あるいは中央位置に復帰させてもよい)。
一実施例においては、プレート200は基板Wに実質的に平行な面内でバリア部材に対して運動可能とされる。この実施例では、バリア部材自体は基板走査中に投影系PLに対して実質的に移動しないが、プレート200が移動する。プレート200は、メニスカス320が付着しているプレート200と基板Wとの間の相対速度を低減するように移動する(例えば図8及び図9に示されるように)。
図6に示される右方向に基板が移動するときには、プレート200も同様に右側に基板Wの速度の2倍以下の速度で移動される。これらの動きは投影系PL及びバリア部材12に対するものである。この速度範囲で基板Wとプレート200との速度差が低減される。例えば、プレート200が基板Wの速度の半分で移動すれば、下側のメニスカス320が破壊される最大走査速度は2倍に増加する。なぜなら基板とプレート200との相対速度が半分に減るからである。上側のメニスカス310はプレート200の移動の影響を受けるだけである。呼吸孔250と等価の呼吸孔をプレート200よりもバリア部材の側壁に設ける必要があるかもしれない。基板移動速度を境界としてプレート200の移動速度が基板移動速度より低速でも高速(基板速度の2倍以内の速度)でも同様の効果を得られるが、プレート200の速度を基板の移動速度以下にするほうが、より実施が容易である。
実際にはプレートは、プレート200のシール面と基板Wとの間の相対速度を低減するいかなる速度で移動してもよい。走査中にはある方向への重畳的な移動を防ぐためにプレートは基板Wの高速移動中にのみ移動され、低速移動または停止中にゆっくりと中央位置に戻されるようにしてもよい。よって、Y方向の走査中はプレートが単純に上下に動くだけで、曲線移動及びX方向ステップ移動中に基板とともにプレートが移動してもよい。X方向の累積的移動を防ぐためにY方向走査中にプレートが初期位置に戻ってもよい。
プレートの移動は能動的であってもよいし受動的であってもよい。プレートが能動的である場合には、制御系は、プレート200の移動と基板Wの移動とを調整すべく露光装置全体の制御部との間でデータをやりとりする。プレート200は、例えば圧電アクチュエータやリニアモータなどにより駆動される。プレートが受動的に移動される一実施例では、プレートはバリア部材12にX−Y方向に位置決めするバネで取り付けられてもよい。移動可能プレート200と基板Wとの間の液体を通じての摩擦力は、基板Wと同じ方向にプレート200を移動させるのに十分な力である。プレート200の端部に疎液体性コーティングを付加することにより、液体を通じて基板Wによりプレートに与えられる力は増大される。バネの強さはステップ移動が高速であるときだけプレートが移動するように設定される。
よって、基板の高速移動中に基板と同じ方向に基板とは独立に投影系に対して液体供給システムの一部を移動させることにより、液体供給システムから液体が漏れないように基板移動速度を増加させることができる。特に、移動される液体供給システムの一部は、基板Wと液体供給システムとの間にあるメニスカス320が付着している一部である。よって、本発明の実施形態がバリア部材12またはプレート200の全体を移動させるように説明されているとしても、液体供給システムの他の一部または部材を投影系PLに対して動かして上述と同様の効果を実現する他の設計も可能である。上述のように、本発明の実施形態は2種類のバリア部材の液体供給システムで説明している。本発明の実施形態としては他の液体供給システムも可能であり、例えばプレート200を省き、液体を保持するガスナイフを備えるバリア部材を採用することもできる。
本明細書ではICの製造における露光装置の使用を例として説明しているが、露光装置は他の用途にも適用することが可能であるものと理解されたい。他の用途としては、光集積回路システム、磁区メモリ用ガイダンスおよび検出パターン、フラットパネルディスプレイ、液晶ディスプレイ(LCD)、薄膜磁気ヘッドなどがある。当業者であればこれらの他の適用に際して、本明細書における「ウエハ」あるいは「ダイ」という用語がそれぞれ「基板」あるいは「ターゲット部分」という、より一般的な用語と同義であるとみなされると理解することができるであろう。基板は露光前または露光後においてトラック(典型的にはレジスト層を基板に塗布し、露光後のレジストを現像する装置)、計測装置、及び/または検査装置により処理されてもよい。適用可能であれば、本明細書の開示はこれらのまたは他の基板処理装置にも適用され得る。また、基板は例えば多層ICを製造するために複数回処理されてもよく、その場合には本明細書における基板という用語は既に処理されている多数の処理層を含む基板をも意味する。
ここでは特に光学的なリソグラフィーを本発明に係る実施形態に適用したものを例として説明しているが、本発明は他にも適用な可能であり、例えばインプリントリソグラフィーなど文脈が許す限り光学的なリソグラフィーに限られるものではない。インプリントリソグラフィーでは、パターニング用デバイスの局所的な凹凸(トポグラフィー)が 基板に生成されるパターンを決める。パターニング用デバイスのトポグラフィーが基板に塗布されているレジスト層に押し付けられ、電磁放射や熱、圧力、あるいはこれらの組み合わせによってレジストが硬化される。レジストが硬化されてから、パターニング用デバイスは、パターンが生成されたレジストから外部に移動される。
本明細書において「放射」及び「ビーム」という用語は、紫外(UV)放射(例えば約365nm、248nm、193nm、157nm、または126nmの波長を有する)を含むあらゆる種類の電磁放射を示す。
「レンズ」という用語は、文脈が許す限り、1つまたは各種の光学要素の組み合わせを指し示すものであってもよい。ここでの光学要素は、例えば屈折、反射、磁気的、電磁気的、及び静電的光学要素のいずれかを含むものであってもよい。
本発明の具体的な実施形態が上述のように説明されたが、本発明は上述の形式以外の形式でも実施可能であると理解されたい。例えば本発明は、上述の方法が記述された機械で読み取り可能な1以上の一連の指示を含むコンピュータプログラムの形式、またはこのようなコンピュータプログラムが記録された(半導体メモリや磁気・光ディスクなどの)データ記録媒体の形式をとってもよい。
本発明の1つ以上の実施形態はいかなる液浸露光装置にも適用可能であり、特に上述の形式のものには限られない。液浸用の液体が液体槽の方式で供給されるものにも基板上の局所領域にだけ供給されるものにも適用可能である。本明細書にいう液体供給システムは広く解釈されるべきである。ある実施形態では、液体供給システムは投影系と基板及び/または基板テーブルとの間の空間に液体を供給する構造の組合せまたは機構であってもよい。液体供給システムは1つ以上の構造部材の組合せ、空間に液体を供給するための1つ以上の液体流入口、1つ以上の気体流入口、1つ以上の気体流出口、及び/または1つ以上の液体流出口を備えてもよい。一実施例では、液体が供給される空間の一表面が基板及び/または基板テーブルの一部分であってもよい。あるいはその空間の一表面が基板及び/または基板テーブルの表面を完全に覆ってもよい。またはその空間は基板及び/または基板テーブルを包含してもよい。液体供給システムは、液体の位置、量、質、形状、流速または他の特性を制御するための1つ以上の要素を更に含んでもよい。
使用される露光光の望ましい特性及び波長に応じて露光装置の液浸用液体も異なる組成を有していてもよい。193nmの波長の露光では、超純水または水分中心の組成が用いられる。このため液浸用液体はときに水と呼ばれ、親水性、疎水性、湿度などの水に関連する用語が用いられる。
本発明の種々の実施例を上に記載したが、それらはあくまでも例示であって、それらに限定されるものではない。本発明の請求項の範囲から逸脱することなく種々に変更することができるということは、関連技術の当業者には明らかなことである。
12 バリア部材、 110 多孔質材料、 200 プレート、 220 上部チャンネル、 230 下部チャンネル、 310 第1のメニスカス、 320 第2のメニスカス、 500 力分離部材、 PL 投影系、 W 基板。

Claims (5)

  1. 投影系と、
    前記投影系により像が形成される基板を保持するテーブルと、
    前記投影系と基板との間の空間に液体を供給する液体供給システムと、
    使用時には液体中において前記投影系の周囲に位置しており、前記液体供給システムから液体を通じての前記投影系への力の伝達を少なくとも低減する力分離部材と、を備えることを特徴とする露光装置。
  2. 前記力分離部材はリング形状を有することを特徴とする請求項1に記載の露光装置。
  3. 基板または前記投影系を支持するフレームをさらに備え、前記力分離部材は前記フレームに取り付けられていることを特徴とする請求項1または2に記載の露光装置。
  4. 前記力分離部材は前記投影系から動的に分離されていることを特徴とする請求項1から3のいずれかに記載の露光装置。
  5. 前記液体供給システムは、前記空間を取り巻いており、かつ露光装置の光軸から半径方向外側に向けて前記空間から液体が漏れ出すのに対して物理的な障壁を形成するバリア部材を含むことを特徴とする請求項1から4のいずれかに記載の露光装置。
JP2010114261A 2005-11-16 2010-05-18 露光装置 Active JP5008750B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11/274,888 2005-11-16
US11/274,888 US7656501B2 (en) 2005-11-16 2005-11-16 Lithographic apparatus
US11/404,091 2006-04-14
US11/404,091 US7864292B2 (en) 2005-11-16 2006-04-14 Lithographic apparatus and device manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006310702A Division JP4567651B2 (ja) 2005-11-16 2006-11-16 露光装置及びデバイス製造方法

Publications (2)

Publication Number Publication Date
JP2010187025A true JP2010187025A (ja) 2010-08-26
JP5008750B2 JP5008750B2 (ja) 2012-08-22

Family

ID=38040426

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2008163625A Active JP4870726B2 (ja) 2005-11-16 2008-06-23 リソグラフィ装置
JP2010114261A Active JP5008750B2 (ja) 2005-11-16 2010-05-18 露光装置
JP2011124242A Expired - Fee Related JP5180347B2 (ja) 2005-11-16 2011-06-02 リソグラフィ装置及びデバイス製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008163625A Active JP4870726B2 (ja) 2005-11-16 2008-06-23 リソグラフィ装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2011124242A Expired - Fee Related JP5180347B2 (ja) 2005-11-16 2011-06-02 リソグラフィ装置及びデバイス製造方法

Country Status (3)

Country Link
US (1) US7656501B2 (ja)
JP (3) JP4870726B2 (ja)
CN (1) CN101361024B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014150264A (ja) * 2009-08-25 2014-08-21 Nikon Corp 露光装置及び露光方法、並びにデバイス製造方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7804577B2 (en) 2005-11-16 2010-09-28 Asml Netherlands B.V. Lithographic apparatus
US7864292B2 (en) * 2005-11-16 2011-01-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7656502B2 (en) * 2006-06-22 2010-02-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2008227007A (ja) * 2007-03-09 2008-09-25 Toshiba Corp 液浸露光方法及び液浸露光装置
US8068209B2 (en) * 2007-03-23 2011-11-29 Nikon Corporation Nozzle to help reduce the escape of immersion liquid from an immersion lithography tool
US8134685B2 (en) * 2007-03-23 2012-03-13 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method
US20080231823A1 (en) * 2007-03-23 2008-09-25 Nikon Corporation Apparatus and methods for reducing the escape of immersion liquid from immersion lithography apparatus
US8681308B2 (en) * 2007-09-13 2014-03-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2009094145A (ja) * 2007-10-04 2009-04-30 Canon Inc 露光装置、露光方法およびデバイス製造方法
US8610873B2 (en) * 2008-03-17 2013-12-17 Nikon Corporation Immersion lithography apparatus and method having movable liquid diverter between immersion liquid confinement member and substrate
US20100196832A1 (en) * 2009-01-30 2010-08-05 Nikon Corporation Exposure apparatus, exposing method, liquid immersion member and device fabricating method
US20100294742A1 (en) * 2009-05-22 2010-11-25 Enrico Magni Modifications to Surface Topography of Proximity Head
US20110084372A1 (en) * 2009-10-14 2011-04-14 Advanced Semiconductor Engineering, Inc. Package carrier, semiconductor package, and process for fabricating same
TWI542952B (zh) 2010-12-02 2016-07-21 Asml控股公司 圖案化裝置支撐件
US20120162619A1 (en) * 2010-12-27 2012-06-28 Nikon Corporation Liquid immersion member, immersion exposure apparatus, exposing method, device fabricating method, program, and storage medium
WO2013100114A1 (ja) * 2011-12-28 2013-07-04 株式会社ニコン 露光装置、露光方法、デバイス製造方法、液体回収方法、プログラム、及び記録媒体
US9268231B2 (en) 2012-04-10 2016-02-23 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method for manufacturing device, program, and recording medium
US9323160B2 (en) 2012-04-10 2016-04-26 Nikon Corporation Liquid immersion member, exposure apparatus, exposure method, device fabricating method, program, and recording medium
US9823580B2 (en) 2012-07-20 2017-11-21 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method for manufacturing device, program, and recording medium
US9568828B2 (en) 2012-10-12 2017-02-14 Nikon Corporation Exposure apparatus, exposing method, device manufacturing method, program, and recording medium
US9720331B2 (en) * 2012-12-27 2017-08-01 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method of manufacturing device, program, and recording medium
US9651873B2 (en) 2012-12-27 2017-05-16 Nikon Corporation Liquid immersion member, exposure apparatus, exposing method, method of manufacturing device, program, and recording medium
JP6212884B2 (ja) * 2013-03-15 2017-10-18 株式会社ニコン 露光装置、露光方法、及びデバイス製造方法
JP6369472B2 (ja) 2013-10-08 2018-08-08 株式会社ニコン 液浸部材、露光装置及び露光方法、並びにデバイス製造方法
US10261422B2 (en) 2014-08-07 2019-04-16 Asml Netherlands B.V. Lithography apparatus and method of manufacturing a device
KR102288916B1 (ko) * 2014-12-19 2021-08-12 에이에스엠엘 네델란즈 비.브이. 유체 핸들링 구조체, 리소그래피 장치 및 디바이스 제조 방법
NL2019453A (en) 2016-09-12 2018-03-15 Asml Netherlands Bv Fluid handling structure for lithographic apparatus
JP7237277B2 (ja) 2019-04-24 2023-03-13 三和機材株式会社 掘削機に使用するスイベル装置の補修時期推定方法及びその装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10303114A (ja) * 1997-04-23 1998-11-13 Nikon Corp 液浸型露光装置
JP2004172621A (ja) * 2002-11-18 2004-06-17 Asml Netherlands Bv リソグラフ装置およびデバイス製造方法
JP2005166997A (ja) * 2003-12-03 2005-06-23 Nikon Corp 露光装置及び露光方法、デバイス製造方法
JP2006019720A (ja) * 2004-06-04 2006-01-19 Nikon Corp 露光装置、露光方法及びデバイス製造方法
JP2006024915A (ja) * 2004-06-10 2006-01-26 Nikon Corp 露光装置及び露光方法、並びにデバイス製造方法

Family Cites Families (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE221563C (ja)
DE242880C (ja)
DE224448C (ja)
DE206607C (ja)
GB1242527A (en) * 1967-10-20 1971-08-11 Kodak Ltd Optical instruments
US3573975A (en) * 1968-07-10 1971-04-06 Ibm Photochemical fabrication process
EP0023231B1 (de) 1979-07-27 1982-08-11 Tabarelli, Werner, Dr. Optisches Lithographieverfahren und Einrichtung zum Kopieren eines Musters auf eine Halbleiterscheibe
FR2474708B1 (fr) 1980-01-24 1987-02-20 Dme Procede de microphotolithographie a haute resolution de traits
JPS5754317A (en) * 1980-09-19 1982-03-31 Hitachi Ltd Method and device for forming pattern
US4346164A (en) * 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
US4509852A (en) * 1980-10-06 1985-04-09 Werner Tabarelli Apparatus for the photolithographic manufacture of integrated circuit elements
US4390273A (en) * 1981-02-17 1983-06-28 Censor Patent-Und Versuchsanstalt Projection mask as well as a method and apparatus for the embedding thereof and projection printing system
JPS57153433A (en) * 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
JPS58202448A (ja) 1982-05-21 1983-11-25 Hitachi Ltd 露光装置
JPS6265326A (ja) 1985-09-18 1987-03-24 Hitachi Ltd 露光装置
JPS62121417A (ja) 1985-11-22 1987-06-02 Hitachi Ltd 液浸対物レンズ装置
JPS63157419A (ja) 1986-12-22 1988-06-30 Toshiba Corp 微細パタ−ン転写装置
US5040020A (en) * 1988-03-31 1991-08-13 Cornell Research Foundation, Inc. Self-aligned, high resolution resonant dielectric lithography
JPH03209479A (ja) 1989-09-06 1991-09-12 Sanee Giken Kk 露光方法
US5121256A (en) * 1991-03-14 1992-06-09 The Board Of Trustees Of The Leland Stanford Junior University Lithography system employing a solid immersion lens
JPH04305915A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
JPH04305917A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
JPH06124873A (ja) 1992-10-09 1994-05-06 Canon Inc 液浸式投影露光装置
JP2753930B2 (ja) * 1992-11-27 1998-05-20 キヤノン株式会社 液浸式投影露光装置
JP2520833B2 (ja) 1992-12-21 1996-07-31 東京エレクトロン株式会社 浸漬式の液処理装置
JPH07220990A (ja) 1994-01-28 1995-08-18 Hitachi Ltd パターン形成方法及びその露光装置
US6104687A (en) * 1996-08-26 2000-08-15 Digital Papyrus Corporation Method and apparatus for coupling an optical lens to a disk through a coupling medium having a relatively high index of refraction
US5825043A (en) * 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
JP3612920B2 (ja) 1997-02-14 2005-01-26 ソニー株式会社 光学記録媒体の原盤作製用露光装置
JPH10255319A (ja) 1997-03-12 1998-09-25 Hitachi Maxell Ltd 原盤露光装置及び方法
JP3817836B2 (ja) 1997-06-10 2006-09-06 株式会社ニコン 露光装置及びその製造方法並びに露光方法及びデバイス製造方法
US5900354A (en) * 1997-07-03 1999-05-04 Batchelder; John Samuel Method for optical inspection and lithography
JPH11176727A (ja) 1997-12-11 1999-07-02 Nikon Corp 投影露光装置
EP1039511A4 (en) 1997-12-12 2005-03-02 Nikon Corp PROJECTION EXPOSURE PROCESSING METHOD AND PROJECTION APPARATUS
AU2747999A (en) 1998-03-26 1999-10-18 Nikon Corporation Projection exposure method and system
JP2000058436A (ja) 1998-08-11 2000-02-25 Nikon Corp 投影露光装置及び露光方法
TWI242111B (en) * 1999-04-19 2005-10-21 Asml Netherlands Bv Gas bearings for use in vacuum chambers and their application in lithographic projection apparatus
JP4504479B2 (ja) 1999-09-21 2010-07-14 オリンパス株式会社 顕微鏡用液浸対物レンズ
TW591653B (en) * 2000-08-08 2004-06-11 Koninkl Philips Electronics Nv Method of manufacturing an optically scannable information carrier
US20020163629A1 (en) * 2001-05-07 2002-11-07 Michael Switkes Methods and apparatus employing an index matching medium
US6600547B2 (en) * 2001-09-24 2003-07-29 Nikon Corporation Sliding seal
KR20050044371A (ko) * 2001-11-07 2005-05-12 어플라이드 머티어리얼스, 인코포레이티드 광학 스폿 그리드 어레이 프린터
DE10229818A1 (de) * 2002-06-28 2004-01-15 Carl Zeiss Smt Ag Verfahren zur Fokusdetektion und Abbildungssystem mit Fokusdetektionssystem
US6788477B2 (en) * 2002-10-22 2004-09-07 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus for method for immersion lithography
CN100568101C (zh) * 2002-11-12 2009-12-09 Asml荷兰有限公司 光刻装置和器件制造方法
CN101424881B (zh) * 2002-11-12 2011-11-30 Asml荷兰有限公司 光刻投射装置
SG121818A1 (en) * 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
EP1420300B1 (en) 2002-11-12 2015-07-29 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
DE60335595D1 (de) * 2002-11-12 2011-02-17 Asml Netherlands Bv Lithographischer Apparat mit Immersion und Verfahren zur Herstellung einer Vorrichtung
SG121822A1 (en) * 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
TW200421444A (en) 2002-12-10 2004-10-16 Nippon Kogaku Kk Optical device and projecting exposure apparatus using such optical device
KR20050062665A (ko) 2002-12-10 2005-06-23 가부시키가이샤 니콘 노광장치 및 디바이스 제조방법
WO2004053957A1 (ja) 2002-12-10 2004-06-24 Nikon Corporation 面位置検出装置、露光方法、及びデバイス製造方法
KR101036114B1 (ko) 2002-12-10 2011-05-23 가부시키가이샤 니콘 노광장치 및 노광방법, 디바이스 제조방법
JP4232449B2 (ja) 2002-12-10 2009-03-04 株式会社ニコン 露光方法、露光装置、及びデバイス製造方法
US7242455B2 (en) * 2002-12-10 2007-07-10 Nikon Corporation Exposure apparatus and method for producing device
KR20050085236A (ko) 2002-12-10 2005-08-29 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
WO2004053951A1 (ja) 2002-12-10 2004-06-24 Nikon Corporation 露光方法及び露光装置並びにデバイス製造方法
SG171468A1 (en) 2002-12-10 2011-06-29 Nikon Corp Exposure apparatus and method for producing device
DE10257766A1 (de) 2002-12-10 2004-07-15 Carl Zeiss Smt Ag Verfahren zur Einstellung einer gewünschten optischen Eigenschaft eines Projektionsobjektivs sowie mikrolithografische Projektionsbelichtungsanlage
JP4362867B2 (ja) 2002-12-10 2009-11-11 株式会社ニコン 露光装置及びデバイス製造方法
JP4352874B2 (ja) 2002-12-10 2009-10-28 株式会社ニコン 露光装置及びデバイス製造方法
CN100429748C (zh) 2002-12-10 2008-10-29 株式会社尼康 曝光装置和器件制造方法
JP4184346B2 (ja) 2002-12-13 2008-11-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 層上のスポットを照射するための方法及び装置における液体除去
DE60307322T2 (de) 2002-12-19 2007-10-18 Koninklijke Philips Electronics N.V. Verfahren und anordnung zum bestrahlen einer schicht mittels eines lichtpunkts
KR100971440B1 (ko) 2002-12-19 2010-07-21 코닌클리케 필립스 일렉트로닉스 엔.브이. 레이어 상의 스폿을 조사하기 위한 방법 및 장치
WO2004090633A2 (en) 2003-04-10 2004-10-21 Nikon Corporation An electro-osmotic element for an immersion lithography apparatus
JP4315198B2 (ja) 2003-04-11 2009-08-19 株式会社ニコン 液浸液体を光学アセンブリ下に維持するリソグラフィ装置及び液浸液体維持方法並びにそれらを用いるデバイス製造方法
TWI295414B (en) * 2003-05-13 2008-04-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7274472B2 (en) * 2003-05-28 2007-09-25 Timbre Technologies, Inc. Resolution enhanced optical metrology
US7684008B2 (en) * 2003-06-11 2010-03-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US6867844B2 (en) 2003-06-19 2005-03-15 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
JP4343597B2 (ja) * 2003-06-25 2009-10-14 キヤノン株式会社 露光装置及びデバイス製造方法
JP2005019616A (ja) * 2003-06-25 2005-01-20 Canon Inc 液浸式露光装置
EP1498778A1 (en) * 2003-06-27 2005-01-19 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
JP3862678B2 (ja) * 2003-06-27 2006-12-27 キヤノン株式会社 露光装置及びデバイス製造方法
US6809794B1 (en) * 2003-06-27 2004-10-26 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
US7738074B2 (en) * 2003-07-16 2010-06-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7070915B2 (en) * 2003-08-29 2006-07-04 Tokyo Electron Limited Method and system for drying a substrate
US6954256B2 (en) * 2003-08-29 2005-10-11 Asml Netherlands B.V. Gradient immersion lithography
JP4378136B2 (ja) * 2003-09-04 2009-12-02 キヤノン株式会社 露光装置及びデバイス製造方法
JP3870182B2 (ja) * 2003-09-09 2007-01-17 キヤノン株式会社 露光装置及びデバイス製造方法
JP2005159322A (ja) * 2003-10-31 2005-06-16 Nikon Corp 定盤、ステージ装置及び露光装置並びに露光方法
JP2005175016A (ja) * 2003-12-08 2005-06-30 Canon Inc 基板保持装置およびそれを用いた露光装置ならびにデバイス製造方法
JP2005175034A (ja) * 2003-12-09 2005-06-30 Canon Inc 露光装置
US7589818B2 (en) * 2003-12-23 2009-09-15 Asml Netherlands B.V. Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus
JP2005191393A (ja) * 2003-12-26 2005-07-14 Canon Inc 露光方法及び装置
JP2005191381A (ja) * 2003-12-26 2005-07-14 Canon Inc 露光方法及び装置
JP4429023B2 (ja) * 2004-01-07 2010-03-10 キヤノン株式会社 露光装置及びデバイス製造方法
JP4018647B2 (ja) * 2004-02-09 2007-12-05 キヤノン株式会社 投影露光装置およびデバイス製造方法
JP4510494B2 (ja) * 2004-03-29 2010-07-21 キヤノン株式会社 露光装置
JP2005286068A (ja) * 2004-03-29 2005-10-13 Canon Inc 露光装置及び方法
JP4474979B2 (ja) * 2004-04-15 2010-06-09 株式会社ニコン ステージ装置及び露光装置
JP2006237291A (ja) * 2005-02-25 2006-09-07 Canon Inc 露光装置
US7474379B2 (en) * 2005-06-28 2009-01-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10303114A (ja) * 1997-04-23 1998-11-13 Nikon Corp 液浸型露光装置
JP2004172621A (ja) * 2002-11-18 2004-06-17 Asml Netherlands Bv リソグラフ装置およびデバイス製造方法
JP2005166997A (ja) * 2003-12-03 2005-06-23 Nikon Corp 露光装置及び露光方法、デバイス製造方法
JP2006019720A (ja) * 2004-06-04 2006-01-19 Nikon Corp 露光装置、露光方法及びデバイス製造方法
JP2006024915A (ja) * 2004-06-10 2006-01-26 Nikon Corp 露光装置及び露光方法、並びにデバイス製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014150264A (ja) * 2009-08-25 2014-08-21 Nikon Corp 露光装置及び露光方法、並びにデバイス製造方法

Also Published As

Publication number Publication date
CN101361024A (zh) 2009-02-04
CN101361024B (zh) 2011-06-29
JP4870726B2 (ja) 2012-02-08
US7656501B2 (en) 2010-02-02
JP2008277856A (ja) 2008-11-13
JP5180347B2 (ja) 2013-04-10
US20070109512A1 (en) 2007-05-17
JP2011205121A (ja) 2011-10-13
JP5008750B2 (ja) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5008750B2 (ja) 露光装置
JP4567651B2 (ja) 露光装置及びデバイス製造方法
US11789369B2 (en) Lithographic apparatus and device manufacturing method
US10768536B2 (en) Lithographic apparatus and device manufacturing method
TWI452439B (zh) 微影裝置
KR100881963B1 (ko) 리소그래피 장치 및 디바이스 제조방법
JP4643616B2 (ja) リソグラフィ装置
TWI394011B (zh) 微影裝置及器件製造方法
JP2011071545A (ja) 露光装置及びデバイス製造方法
JP5412399B2 (ja) リソグラフィ装置およびデバイス製造方法
JP4866404B2 (ja) リソグラフィ装置およびデバイス製造方法
JP2010147466A (ja) 流体ハンドリング構造、テーブル、リソグラフィ装置、液浸リソグラフィ装置、及びデバイス製造方法
US20080057440A1 (en) Lithographic apparatus and device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120529

R150 Certificate of patent or registration of utility model

Ref document number: 5008750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250