JP2010171536A - 圧電振動子 - Google Patents

圧電振動子 Download PDF

Info

Publication number
JP2010171536A
JP2010171536A JP2009010184A JP2009010184A JP2010171536A JP 2010171536 A JP2010171536 A JP 2010171536A JP 2009010184 A JP2009010184 A JP 2009010184A JP 2009010184 A JP2009010184 A JP 2009010184A JP 2010171536 A JP2010171536 A JP 2010171536A
Authority
JP
Japan
Prior art keywords
base substrate
glass frit
electrode
piezoelectric vibrator
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009010184A
Other languages
English (en)
Inventor
Kazuyoshi Sugama
一義 須釜
Satoshi Numata
理志 沼田
Shuji Yamane
修二 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2009010184A priority Critical patent/JP2010171536A/ja
Priority to TW98143656A priority patent/TW201041197A/zh
Priority to US12/690,382 priority patent/US8207654B2/en
Priority to CN201010119375A priority patent/CN101783659A/zh
Publication of JP2010171536A publication Critical patent/JP2010171536A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1014Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device
    • H03H9/1021Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device the BAW device being of the cantilever type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

【課題】加熱後の冷却時や実装後のベース基板の変形時において大きな応力が発生しにくく、かつキャビティの気密を保持して圧電振動片と外部電極とを確実に導通できる貫通電極を有する圧電振動子を提供する。
【解決手段】互いに接合されたベース基板2とリッド基板3との間に形成されたキャビティC内に圧電振動片4が封止された圧電振動子1は、ベース基板2を厚さ方向に貫通するスルーホール30,31に設けられた貫通電極32,33を備え、貫通電極32,33は、スルーホール内に充填されて焼成されるガラスフリットと、金属として鉄及びニッケルのみを含む材料で形成されてガラスフリットとともにスルーホール内に配置され、キャビティ外部と圧電振動片とを導通させる芯材部7とを有し、ベース基板2、ガラスフリット、及び芯材部7の熱膨張係数の値が、ベース基板≧ガラスフリット>芯材部となる様に設定されている。
【選択図】図3

Description

本発明は、圧電振動子、より詳しくは、接合された2枚の基板の間に形成されたキャビティ内に圧電振動片が封止された表面実装型の圧電振動子に関する。
近年、携帯電話や携帯情報端末には、時刻源や制御信号などのタイミング源、リファレンス信号源などとして水晶などを利用した圧電振動子が用いられている。この種の圧電振動子は、様々なものが知られているが、その一つとして、表面実装型(SMD)の圧電振動子がある。
一般的な表面実装型圧電振動子としては、一般的に圧電振動片が形成された圧電基板をベース基板とリッド基板とで上下から挟み込むように接合した3層構造タイプのものが知られている。この場合、圧電振動子はベース基板とリッド基板との間に形成されたキャビティ(密閉室)内に収納されている。また、近年では、上述した3層構造タイプのものではなく、2層構造タイプのものも開発されている。
2層構造タイプの圧電振動子は、ベース基板とリッド基板とが直接接合されることで2層構造になっており、両基板の間に形成されたキャビティ内に圧電振動片が収納されている。2層構造タイプの圧電振動子は、3層構造のものに比べて薄型化を図ることができるなどの点において優れており、好適に使用されている。このような2層構造タイプの圧電振動子の一つとして、ベース基板を貫通するように形成された導電部材を利用して、圧電振動片とベース基板に形成された外部電極とを導通させた圧電振動子が知られている(例えば、特許文献1および特許文献2参照)。
特許文献1や特許文献2に記載の圧電振動子においては、セラミックやガラスなどからなる絶縁性のベース基板にスルーホールが形成されている。そして、当該スルーホールを塞ぐように、導電部材がスルーホール内に埋め込まれている。導電部材は、ベース基板の下面に形成された外部電極に電気的に接続されているとともに、キャビティ内にマウントされている圧電振動片と電気的に接続されている。
上述の圧電振動子において、導電部材は、スルーホールを塞いでキャビティ内の気密を維持すること、圧電振動片と外部電極とを導通させること、という2つの大きな役割を担っている。スルーホールと導電部材との密着が不十分であると、キャビティ内の気密が損なわれてしまうことがあり、また、圧電振動片または外部電極と導電部材との電気的接続が不十分であると圧電振動片の作動不良の原因となる。したがって、このような不具合を無くすためにも、スルーホールの内面に強固に密着した状態でスルーホールを完全に塞ぎ、しかも、表面に凹みなどがない状態で導電部材を形成することが重要である。
導電部材として導電ペーストを使用する場合には、スルーホール内に導電ペーストを埋め込んだ後、焼成を行って硬化させる必要がある。ところが、焼成を行うと、導電ペーストに含まれる有機物が蒸発により消失してしまうため、通常、焼成後の体積が焼成前に比べて減少してしまう(例えば、導電ペーストとしてAgペーストを用いた場合には、体積が略20%程度減少してしまう)。そのため、導電ペーストを利用して導電部材を形成したとしても、表面に凹みが発生してしまったり、ひどい場合には貫通孔が中心に開いてしまったりすることがある。その結果、キャビティ内の気密が損なわれたり、圧電振動片と外部電極との導通性が損なわれたりすることがあるという問題がある。
この問題を解決するために、スルーホールに金属製のピンを配置し、スルーホールとピンとの隙間にガラスフリット等のペースト材を充填して焼成することで貫通電極を形成する方法が提案されている。このように貫通電極を形成することで、ペースト材の部分のみ体積が減少するため、その後の研磨工程の時間を削減することができ、効率的に貫通電極を形成することができる。
特開2001−267190号公報 特開2007−328941号公報
ところで、ペースト材を焼成する際には、ピン及びペースト材が配置された状態でベース基板が高温に加熱される。そのため、ベース基板、ピン、及びペースト材の体積は、それぞれの熱膨張係数にしたがって膨張する。
ここで、一般的には、ペースト材の熱膨張係数はピンの熱膨張係数よりも大きく設定されるのが好ましい。このようにすると、加熱時にペースト材の膨張がピンの膨張を上回ることによってピンに圧縮力が加わるので、スルーホールの気密維持に好都合だからである。
しかしながら、ピンの熱膨張係数が小さすぎると、加熱後の冷却時や実装後のベース基板の変形時において焼成後のペースト材の変形幅が大きくなり、大きな応力が焼成後のペースト材やベース基板に作用することがある。その結果、圧電振動子が破損することがあるという問題がある。
本発明は、上記の事情に鑑みてなされたものであり、加熱後の冷却時や実装後のベース基板の変形時において大きな応力が発生しにくく、かつキャビティの気密を保持して圧電振動片と外部電極とを確実に導通できる貫通電極を有する圧電振動子を提供することを目的とする。
本発明は、互いに接合されたベース基板とリッド基板との間に形成されたキャビティ内に圧電振動片が封止された圧電振動子であって、前記ベース基板を厚さ方向に貫通するスルーホールに設けられた貫通電極を備え、前記貫通電極は、前記スルーホール内に充填されて焼成されるガラスフリットと、金属として鉄及びニッケルのみを含む材料で形成されて前記ガラスフリットとともに前記スルーホール内に配置され、前記キャビティの外部と前記圧電振動片とを導通させる芯材部と、を有し、前記ベース基板、前記ガラスフリット、及び前記芯材部の熱膨張係数の値が、前記ベース基板≧前記ガラスフリット>前記芯材部となるように設定されていることを特徴とする。
本発明の圧電振動子によれば、ガラスフリットとベース基板との熱膨張係数における差が小さいため、両者の界面に大きな応力が発生しにくい。また、芯材部の熱膨張係数がガラスフリットの熱膨張係数よりも小さいため、キャビティの気密性が好適に保持される。
前記芯材部は、鉄を58重量パーセント、ニッケルを42重量パーセント含有する合金で形成されてもよい。この場合、広く用いられている合金である42アロイで芯材部を形成することができ、容易かつ安価に本発明の圧電振動子を製造することができる。
本発明の圧電振動子によれば、加熱後の冷却時や実装後のベース基板の変形時において大きな応力が発生しにくく、かつキャビティの気密を保持して圧電振動片と外部電極とを確実に導通できる貫通電極を有する圧電振動子を提供することができる。
本発明に係る圧電振動子の一実施形態を示す外観斜視図である。 同圧電振動子のリッド基板を取り外した状態を示す平面図である。 図2のA−A線における断面図である。 同圧電振動子の貫通電極を形成する一過程を示す図である。 同貫通電極の形成に用いられる鋲体を示す図である。 同圧電振動子の貫通電極を形成する一過程を示す図である。 同圧電振動子の貫通電極を形成する一過程を示す図である。 同圧電振動子の貫通電極を形成する一過程を示す図である。 同圧電振動子の貫通電極を形成する一過程を示す図である。 同圧電振動子の貫通電極を形成する一過程を示す図である。 標準的な表面実装部品の耐基板曲げ性試験方法を示す模式図である。 本実施形態における耐基板曲げ性試験のシミュレーションモデルを示す模式図である。 同圧電振動子におけるベース基板、ガラスフリット、及び芯材部の構成と発生する応力との関係についてのシミュレーション結果を示す表である。
以下、本発明に係る実施形態を、図1〜図13を参照して説明する。
図1〜図3に示すように、本実施形態の圧電振動子1は、ベース基板2とリッド基板3とで2層に積層された箱状に形成されており、内部のキャビティC内に圧電振動片4が収納された表面実装型の圧電振動子である。
圧電振動片4は、水晶、タンタル酸リチウムやニオブ酸リチウム等の圧電材料から形成された公知の音叉型の振動片であり、所定の電圧が印加されたときに振動するものである。
図2に示すように、圧電振動片4は、平行に配置された一対の振動腕部10、11と、振動腕部10、11の基端側を一体的に固定する基部12と、振動腕部10、11の外表面上に形成されて一対の振動腕部10、11を振動させる第1励振電極13と第2励振電極14とからなる励振電極15と、第1励振電極13及び第2励振電極14に電気的に接続されたマウント電極16、17とを有している。
また、本実施形態の圧電振動片4は、一対の振動腕部10、11の両主面上に、各振動腕部10、11の長手方向に沿ってそれぞれ形成された溝部18を備えている。この溝部18は、各振動腕部10、11の基端側から略中間付近まで形成されている。
第1励振電極13と第2励振電極14とからなる励振電極15は、一対の振動腕部10、11を互いに接近又は離間する方向に所定の共振周波数で振動させる電極であり、各振動腕部10、11の外表面に、それぞれ電気的に切り離された状態でパターニングされて形成されている。具体的には、第1励振電極13が、一方の振動腕部10の溝部18上と他方の振動腕部11の両側面上とに主に形成され、第2励振電極14が、一方の振動腕部10の両側面上と他方の振動腕部11の溝部18上とに主に形成されている。
また、第1励振電極13及び第2励振電極14は、基部12の両主面上において、それぞれ引き出し電極19、20を介してマウント電極16、17に電気的に接続されている。そして、このマウント電極16、17を介して圧電振動片4に電圧が印加される。
なお、上述した励振電極15、マウント電極16、17及び引き出し電極19、20は、例えば、クロム(Cr)、ニッケル(Ni)、アルミニウム(Al)やチタン(Ti)等の導電性膜の被膜により形成されたものである。
また、一対の振動腕部10、11の先端には、自身の振動状態を所定の周波数の範囲内で振動するように調整(周波数調整)を行うための重り金属膜21が被膜されている。なお、この重り金属膜21は、周波数を粗く調整する際に使用される粗調膜21aと、微小に調整する際に使用される微調膜21bとに分かれている。これら粗調膜21a及び微調膜21bを利用して周波数調整を行うことで、一対の振動腕部10、11の周波数をデバイスの公称周波数の範囲内に収めることができる。
このように構成された圧電振動片4は、図3に示すように、金等のバンプBを利用してベース基板2の上面(キャビティC側の面)にバンプ接合されている。より具体的には、ベース基板2の上面にパターニングされた後述する引き回し電極36、37上に形成された2つのバンプB上に、一対のマウント電極16、17がそれぞれ接触した状態でバンプ接合されている。これにより、圧電振動片4は、ベース基板2の上面と離間して浮いた状態で支持されると共に、マウント電極16、17と引き回し電極36、37とがそれぞれ電気的に接続されている。
リッド基板3は、例えばソーダ石灰ガラス等のガラス材料からなる透明の絶縁基板であり、図1及び図3に示すように、板状に形成されている。そして、ベース基板2が接合される接合面側には、圧電振動片4が収まる矩形状の凹部3aが形成されている。
この凹部3aは、両基板2、3が重ね合わされたときに、圧電振動片4を収容するキャビティCとなるキャビティ用の凹部である。そして、リッド基板3は、この凹部3aをベース基板2の上面に対向させた状態でベース基板2に対して陽極接合されている。
ベース基板2は、リッド基板3と同様のガラス材料からなる透明な絶縁基板であり、図1から図3に示すように、リッド基板3に対して重ね合わせ可能な大きさで板状に形成されている。
ベース基板2には、ベース基板2を厚さ方向に貫通する一対のスルーホール30、31が形成されている。一対のスルーホール30、31は、キャビティC内に開口するように配置されている。より詳しく説明すると、スルーホール30、31は、マウントされた圧電振動片4の基部12側に対応した位置に一方のスルーホール30が形成され、振動腕部10、11の先端側に対応した位置に他方のスルーホール31が形成されている。
なお、本実施形態では、ベース基板2の下面から上面に向かって漸次径が縮径した断面テーパ状のスルーホールを例に挙げて説明するが、スルーホールの形状はこれに限られず、例えば軸線方向にわたって径が同一の略円筒状のスルーホールでも構わない。いずれにしても、ベース基板2を貫通していればその形状に特に制限はない。
そして、一対のスルーホール30、31には、各スルーホール30、31を埋めるように形成された一対の貫通電極32、33が形成されている。これら貫通電極32、33は、図3に示すように、焼成によってスルーホール30、31に対して一体的に固定された筒体6及び芯材部7によって形成されたものであり、スルーホール30、31を完全に塞いでキャビティC内の気密を維持するとともに、後述する外部電極38、39と引き回し電極36、37とを導通させる役割を担っている。
筒体6は、ペースト状のガラスフリットが焼成されたものである。筒体6は、両端が略平坦で且つベース基板2と略同じ厚みに形成されており、筒体6の中心には、芯材部7が筒体6を貫通するように配されている。本実施形態ではスルーホール30、31の形状に合わせて、筒体6の外形が略円錐台状(断面テーパ状)となるように形成されている。そして、筒体6は、図3に示すように、スルーホール30、31内に埋め込まれた状態で焼成されており、各スルーホール30、31に対して強固に固着されている。
芯材部7は、後述する42アロイ合金により円柱状に形成された導電性の芯材であり、筒体6と同様に両端が平坦で且つベース基板2の厚みと略同じ厚さとなるように形成されている。なお、図3に示すように、貫通電極32、33の完成時において、芯材部7は、上述のようにベース基板2の厚みと同一(略同一を含む)厚さとなるように形成されているが、製造過程では、芯材部7の長さは、製造過程の当初のベース基板2の厚さよりも所定の長さ、例えば0.02mmだけ短い長さのものが用いられる(後に製造方法の説明で詳述する。)。そして、芯材部7は、筒体6の中心孔に位置しており、筒体6が焼成されることによって筒体6に対して強固に固着されている。
なお、貫通電極32、33は、導電性の芯材部7を通して電気導通性が確保されている。
ベース基板2の上面(リッド基板3が接合される面)側には、図1及び図3に示すように、導電性材料(例えば、アルミニウム)により、陽極接合用の接合膜35と、一対の引き回し電極36、37とがパターニングされている。このうち接合膜35は、リッド基板3に形成された凹部3aの周囲を囲むようにベース基板2の上面の周縁に沿って形成されている。
また、各引き回し電極36、37は、一対の貫通電極32、33のうち、一方の貫通電極32と圧電振動片4の一方のマウント電極16とを電気的に接続すると共に、他方の貫通電極33と圧電振動片4の他方のマウント電極17とを電気的に接続するようにパターニングされている。
より詳しく説明すると、一方の引き回し電極36は、圧電振動片4の基部12の真下に位置するように一方の貫通電極32の真上に形成されている。また、他方の引き回し電極37は、一方の引き回し電極36に隣接した位置から、振動腕部10、11に沿って該振動腕部10、11の先端側に引き回された後、他方の貫通電極33の真上に位置するように形成されている。
そして、これら一対の引き回し電極36、37上にそれぞれバンプBが形成されており、バンプBを利用して圧電振動片4がマウントされている。これにより、圧電振動片4の一方のマウント電極16が、一方の引き回し電極36を介して一方の貫通電極32に導通し、他方のマウント電極17が、他方の引き回し電極37を介して他方の貫通電極33に導通している。
ベース基板2の下面には、図1及び図3に示すように、一対の貫通電極32、33に対してそれぞれ電気的に接続される外部電極38、39が形成されている。つまり、一方の外部電極38は、一方の貫通電極32及び一方の引き回し電極36を介して圧電振動片4の第1励振電極13に電気的に接続されている。また、他方の外部電極39は、他方の貫通電極33及び他方の引き回し電極37を介して、圧電振動片4の第2励振電極14に電気的に接続されている。これにより、外部の基板等に外部電極38、39を接触させて圧電振動子を当該基板等に動作可能に実装することができる。
このように構成された圧電振動子1を作動させる場合には、ベース基板2に形成された外部電極38、39に対して、所定の駆動電圧を印加する。これにより、圧電振動片4の第1励振電極13及び第2励振電極14からなる励振電極15に電流を流すことができ、一対の振動腕部10、11を接近・離間させる方向に所定の周波数で振動させることができる。そして、この一対の振動腕部10、11の振動を利用して、時刻源、制御信号のタイミング源やリファレンス信号源等として利用することができる。
次に、貫通電極32、33の製造手順について説明する。
まずベース基板2に、一対のスルーホール30,31をベース基板2の厚さ方向に貫通するように形成する。この工程は、ベース基板2の下面側から、例えばサンドブラスト法で行ってもよい。このようにすると、図4に示すように、ベース基板2の下面から上面に向かって漸次径が縮径する断面テーパ状のスルーホール30及び31を形成することができる。スルーホール30及び31は、後にベース基板2とリッド基板3とを重ね合わせたときに、リッド基板3に形成された凹部3a内に開口し、かつ一方のスルーホール30が圧電振動片4の基部12側に位置し、他方のスルーホール31が振動腕部10、11の先端側に位置するように形成する。
続いて、スルーホール30、31内に、芯材部7となる部分を有する鋲体9を挿入して配置するとともに、ガラス材料からなるペースト状のガラスフリット6aをスルーホール30、31内に充填する。このときに用いる鋲体9としては、図5に示すように、平板状の土台部8と、土台部8上から土台部8の平板状の表面に略直交する方向に沿ってベース基板2の厚さよりも所定の値、例えば0.02mmだけ短い長さで形成されるとともに、先端が平坦に形成された芯材部7と、を有するものが好ましい。
次に、図6に示すように、鋲体9の土台部8がベース基板2に接触するまで、芯材部7を挿入する。このとき、芯材部7の軸線方向とスルーホール30、31の軸線方向とが略一致するように鋲体9を配置する必要がある。しかしながら、土台部8上に芯材部7が形成された鋲体9を利用するため、土台部8をベース基板用ウエハ40に接触させるまで押し込むだけの簡単な作業で、芯材部7の軸方向とスルーホール30、31の軸方向とを略一致させることができる。したがって、セット工程時における作業性を向上することができる。
しかも、土台部8をベース基板2の表面に接触させることで、ペースト状のガラスフリット6aを確実にスルーホール30、31内に充填させることができる。
更に、土台部8は、平板状に形成されているため、スルーホール内に配置した後、後述するガラスフリット6aの焼成までの間にベース基板2を机上等の平面上に載置したとしても、がたつき等がなく安定する。この点においても、作業性の向上を図ることができる。
ガラスフリット6aをスルーホール30、31内に充填する際には、スルーホール30、31内に確実にガラスフリット6aが充填されるように多めに塗布する。したがって、ベース基板2の表面にもガラスフリット6aが塗布されている。この状態でガラスフリット6aを焼成すると、後述する研磨作業に要する時間が多くなるため、焼成前に余分なガラスフリット6aを除去する。この作業においては、図7に示すように、例えば樹脂製のスキージ45を用い、スキージ45の先端45aをベース基板2の表面に当接して、当該表面に沿って移動させることによりガラスフリット6aを除去するのが好ましい。このようにすると、図8に示すように、簡易な作業で確実に余分なガラスフリット6aを除去することができる。本実施形態では鋲体9の芯材部7の長さをベース基板2の厚さよりも0.02mm短くしているため、スキージ45がスルーホール30、31の上部を通過する際に、スキージ45の先端45aと芯材部7の先端とが接触することがなく、芯材部7がスルーホールの軸線に対して傾いてしまうことが抑制される。
なお、スルーホールが本実施形態のような形状である場合、鋲体9は、図6に示すように、スルーホールの径が小さいベース基板2の上面側から挿入されると、ガラスフリット6aをスルーホール内に充填しやすく、好ましい。
続いて、埋め込んだ充填材を所定の温度で焼成する。これにより、スルーホール30、31と、スルーホール30、31内に埋め込まれたガラスフリット6aと、ガラスフリット6a内に配置された鋲体9とが互いに固着し合う。焼成を行う際に、土台部8が鋲体9についたまま焼成するため、芯材部7の軸方向とスルーホール30,31の軸方向とが略一致した状態を保持しつつ、両者を一体的に固定することができる。ガラスフリット6aが焼成されると固化して筒体6となる。
焼成後、図9に示すように、鋲体9の土台部8を研磨して除去する。これにより、筒体6と芯材部7とを位置決めする役割を果たしていた土台部8が除去され、芯材部7のみが筒体6の内部に固定して配置される。そして、同時にベース基板2の上面を芯材部7の先端が露出するまで研磨して平坦面に加工する。その結果、図10に示すように、筒体6と芯材部7とが一体的に固定された一対の貫通電極32,33がベース基板2に形成される。
このとき、ベース基板を完成時の厚さよりも若干厚く形成し、研磨後にベース基板が所望の厚さとなり、かつベース基板2の表面と貫通電極32、33の表面とが略面一な状態となるようにしてもよい。さらに、ベース基板用ウエハに複数組のスルーホール30、31を形成し、上述の手順によって貫通電極を形成した後にベース基板用ウエハを分離切断することによって、貫通電極を有するベース基板2を一度に多数製造してもよい。
以上が本実施形態における貫通電極の形成方法であるが、上述の方法においては、充填材が焼成される際に、ベース基板2、ガラスフリット6a、及び鋲体9がいずれも熱によって膨張するため、当該膨張とそれに伴う応力の発生について考慮する必要がある。
ベース基板2、ガラスフリット6a、及び鋲体9(特に芯材部7)は、焼成時にそれぞれの熱膨張係数にしたがって膨張する。一般的に、ベース基板2とガラスフリット6aとの熱膨張係数は概ね同等であるのが好ましいと考えられている。これは、熱膨張の差によってベース基板2とガラスフリット6aとの界面に応力が発生しにくくなるからである。
一方、鋲体9の熱膨張係数は、ガラスフリット6aの熱膨張係数よりも小さい方がよいと考えられている。これは、焼成時にガラスフリット6aが芯材部7を押圧する(図8の矢印参照)力関係となり、冷却された際に、ガラスフリット6aと芯材部7との間に間隙が発生することによるキャビティCの気密性の低下が起きにくくなるためである。
しかしながら、ガラスフリット6aと芯材部7との熱膨張率の差が大きすぎると、ガラスフリット6aのうち、特に芯材部7周辺の部位に大きな引張応力が発生し、その結果曲げ強度を低下させることがある。したがって、芯材部7の熱膨張係数は、使用されるガラスフリットの熱膨張係数よりも小さい値でありながら、あまり大きな差を有さないものが好ましいと考えられる。
そこで、ベース基板2、ガラスフリット6a、及び芯材部7の構成と圧電振動子1に発生する応力との関係を検討するために、シミュレーションによる検討を行った。シミュレーションは加熱後の冷却を想定したものと、製造された圧電振動子1が実装された基板に曲げ応力が加わった状態を想定したものとの2種類行った。以下にその詳細について説明する。
(1)加熱後冷却シミュレーション
貫通電極32、33の形成における焼成とその後の冷却に準じた温度設定として、365℃から25℃に冷却される設定とした。ベース基板2の熱膨張係数は一般的なソーダ石灰ガラスの8.33ppmとし、芯材部及びガラスフリットの熱膨張係数の値を様々に設定して、温度変化によってベース基板側及びガラスフリット側に生じる応力を検討した。
(2)基板曲げシミュレーション
図11は、標準的な表面実装部品の耐基板曲げ性試験方法(JISC5206.1.4の(1))を示す模式図である。この方法では、図11に示すように、長手方向の寸法が90ミリメートル(mm)の基板100の長手方向中央に表面実装部品101を実装し、表面実装部品101が下方に位置するように、基板100の長手方向両端を所定の大きさの支点102で支持する。そして、所定の圧子で基板100の長手方向中央に上方から圧力を加え、基板100の長手方向中央が3mm下方に移動するように基板100を撓ませるというものである。
図12は、上記試験方法の1/2モデルとして本シミュレーションに使用したモデルを示す図である。このモデルでは、長手方向の寸法が45mmの基板103の第一の端部103Aを支点102で支持し、第二の端部103Bの下面に表面実装部品としての圧電振動子1を実装する。そして、第二の端部103Bの上面から所定の圧子で圧力を加え、第二の端部103Bが下方に3mm移動するまで撓ませる。この時点でベース基板2、ガラスフリット6a、及びリッド基板3に発生する応力を検討した。
いずれのシミュレーションにおいても、芯材部7は、鉄、ニッケル、及びコバルトからなる合金(コバール)製のもの、及び金属として鉄及びコバルトのみを含む合金(42アロイ:鉄58重量%(wt%)、ニッケル42wt%、50アロイ:鉄50wt%、ニッケル50wt%の2種類)製のものの計3種類を用いた。熱膨張係数はそれぞれ、コバール4.81ppm、42アロイ6.7ppm、50アロイ9.7ppmとした。ガラスフリット6aの熱膨張係数は組成を変更することによって細かく設定できるため、様々な値に設定して検討した。上記2種類のシミュレーションの結果を図13に示す。
図13に示すように、コバール製の芯材部を用いた条件下においては、加熱後冷却シミュレーション、基板曲げシミュレーションのいずれにおいても、ベース基板及びガラスフリットの少なくとも一方に100メガパスカル(MPa)以上の大きな応力が発生する結果となった。これは鉄、ニッケル、及びコバルトからなるコバールの熱膨張係数とフリットガラスとの熱膨張係数の差が大きすぎることによるものと推測された。
これに対し、金属として鉄及びコバルトのみを含む42アロイ及び50アロイ製の芯材部を用いた条件下においては、概ね発生する応力が100MPa以下に収まっていたが、ガラスフリットの熱膨張係数がベース基板よりも大きく、かつその差が大きくなるにつれて発生する応力が高くなる傾向が見られ、ガラスフリットの熱膨張係数が最も大きい9.7である条件下では、基板曲げシミュレーションにおいて、ガラスフリット側に100MPa以上の応力が発生した。したがって、ガラスフリットの熱膨張係数は、ベース基板の熱膨張係数以下に設定されるのが好ましいと思われた。
また、上記シミュレーションとは離れるが、42アロイと50アロイを比較した場合は、42アロイのほうがガラスフリットよりも熱膨張係数を低く設定しやすく、上述したキャビティCの気密性保持の観点からは好ましいと考えられる。
したがって、これと上記シミュレーションの結果とをあわせ考えると、ガラスフリット6aの熱膨張係数をベース基板2の熱膨張係数以下に設定し、かつ金属として鉄及びコバルトのみを含む合金、例えば42アロイ等を用いて鋲体9を形成し、芯材部7の熱膨張係数をガラスフリット6aより小さくするのが最も好適であると考えられた。この場合、熱膨張係数の大小関係は、ベース基板2≧ガラスフリット6a>芯材部7となる。
以上の結果を踏まえ、本実施形態の圧電振動子1においては、芯材部7として42アロイ製のものを使用し、熱膨張係数の大小関係が、ベース基板2≧ガラスフリット6a>芯材部7となるように設定されている。
このような構成の圧電振動子1によれば、好適にキャビティCの気密性が保持されるとともに、表面実装時に大きな応力が生じることによる破損等を好適に抑制することができる。
以上、本発明の一実施形態について説明してきたが、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上述の各実施形態においては、芯材部7を含む鋲体9が42アロイで形成される例を説明したが、熱膨張係数において、ベース基板2≧ガラスフリット6a>芯材部7の関係が確保できれば、金属として鉄及びコバルトのみを含む他の合金を用いて芯材部7が形成されてもよい。ただし、上述の42アロイは広く用いられており安価に入手できる合金であるため、42アロイを用いて芯材部7を形成すると、本発明の圧電振動子を容易かつ安価に製造することが可能である。
1 圧電振動子
2 ベース基板
3 リッド基板
4 圧電振動片
6a ガラスフリット
7 芯材部
30、31 スルーホール
32、33 貫通電極
C キャビティ

Claims (2)

  1. 互いに接合されたベース基板とリッド基板との間に形成されたキャビティ内に圧電振動片が封止された圧電振動子であって、
    前記ベース基板を厚さ方向に貫通するスルーホールに設けられた貫通電極を備え、
    前記貫通電極は、
    前記スルーホール内に充填されて焼成されるガラスフリットと、
    金属として鉄及びニッケルのみを含む材料で形成されて前記ガラスフリットとともに前記スルーホール内に配置され、前記キャビティの外部と前記圧電振動片とを導通させる芯材部と、を有し、
    前記ベース基板、前記ガラスフリット、及び前記芯材部の熱膨張係数の値が、前記ベース基板≧前記ガラスフリット>前記芯材部となるように設定されていることを特徴とする圧電振動子。
  2. 前記芯材部は、鉄を58重量パーセント、ニッケルを42重量パーセント含有する合金で形成されていることを特徴とする請求項1に記載の圧電振動子。
JP2009010184A 2009-01-20 2009-01-20 圧電振動子 Withdrawn JP2010171536A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009010184A JP2010171536A (ja) 2009-01-20 2009-01-20 圧電振動子
TW98143656A TW201041197A (en) 2009-01-20 2009-12-18 Piezoelectric oscillator
US12/690,382 US8207654B2 (en) 2009-01-20 2010-01-20 Piezoelectric vibrator
CN201010119375A CN101783659A (zh) 2009-01-20 2010-01-20 压电振子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009010184A JP2010171536A (ja) 2009-01-20 2009-01-20 圧電振動子

Publications (1)

Publication Number Publication Date
JP2010171536A true JP2010171536A (ja) 2010-08-05

Family

ID=42336365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009010184A Withdrawn JP2010171536A (ja) 2009-01-20 2009-01-20 圧電振動子

Country Status (4)

Country Link
US (1) US8207654B2 (ja)
JP (1) JP2010171536A (ja)
CN (1) CN101783659A (ja)
TW (1) TW201041197A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7936114B2 (en) * 2008-02-18 2011-05-03 Seiko Instruments Inc. Piezoelectric vibrator manufacturing method, piezoelectric vibrator, oscillator, electronic device, and radio-controlled watch
US20110221310A1 (en) * 2010-03-15 2011-09-15 Yoshihiro Kusanagi Method of manufacturing package, piezoelectric vibrator, oscillator, electronic apparatus, and radio-controlled timepiece

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101946404A (zh) * 2008-02-18 2011-01-12 精工电子有限公司 压电振动器的制造方法、压电振动器、振荡器、电子设备及电波钟
JP2012060628A (ja) * 2010-08-07 2012-03-22 Nippon Dempa Kogyo Co Ltd 圧電デバイス及びその製造方法
CN102035495A (zh) * 2010-11-03 2011-04-27 李斌 基座、石英晶体谐振器及加工工艺
JP2012169376A (ja) * 2011-02-10 2012-09-06 Seiko Instruments Inc 陽極接合装置、パッケージ製造方法、圧電振動子、発振器、電子機器および電波時計
JP5827088B2 (ja) * 2011-09-27 2015-12-02 セイコーインスツル株式会社 電子部品の端子接続構造、パッケージ、圧電振動子、発振器、電子機器および電波時計
JP6247006B2 (ja) * 2013-01-23 2017-12-13 セイコーインスツル株式会社 電子デバイス、発振器及び電子デバイスの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645022A (ja) * 1992-07-21 1994-02-18 Shinko Electric Ind Co Ltd 表面実装型気密封止端子
JPH0662471U (ja) * 1993-02-08 1994-09-02 株式会社フジ電科 気密端子
JP2004007236A (ja) * 2002-05-31 2004-01-08 Suncall Corp 水晶振動子用パッケージ及びその製造方法
JP2006210576A (ja) * 2005-01-27 2006-08-10 Kyocera Corp 電子部品搭載用基板および電子装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152616A (en) * 1975-07-14 1979-05-01 Cts Corporation Piezoelectric crystal mounting
US6005329A (en) * 1995-05-11 1999-12-21 Seiko Epson Corporation Method and apparatus for sealing piezoelectric resonator via laser welding
JPH09153568A (ja) * 1995-09-28 1997-06-10 Toshiba Corp 窒化珪素セラミック回路基板および半導体装置
JP2000285819A (ja) * 1999-03-31 2000-10-13 Fuji Denshi Kogyo Kk ガラスと金属の接合電子部品
JP4812154B2 (ja) 2000-03-21 2011-11-09 エヌイーシー ショット コンポーネンツ株式会社 気密端子の製造方法
AU2003234672A1 (en) * 2002-05-28 2003-12-12 Vectron International Low acceleration sensitivity mounting structures for crystal resonators
US20060255691A1 (en) * 2005-03-30 2006-11-16 Takahiro Kuroda Piezoelectric resonator and manufacturing method thereof
CN101189921A (zh) * 2005-06-01 2008-05-28 松下电器产业株式会社 电路基板和其制造方法以及使用该电路基板的电子部件
JP2007328941A (ja) 2006-06-06 2007-12-20 Etou Denki Kk めっき被膜付き気密端子の製造方法
JP2009164673A (ja) * 2007-12-28 2009-07-23 Nippon Dempa Kogyo Co Ltd 水晶振動子用の金属ベース及びこれを用いた水晶振動子
JP5180975B2 (ja) * 2008-02-18 2013-04-10 セイコーインスツル株式会社 圧電振動子の製造方法および圧電振動子
JP5135510B2 (ja) * 2008-02-18 2013-02-06 セイコーインスツル株式会社 圧電振動子の製造方法、圧電振動子、発振器、電子機器及び電波時計

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645022A (ja) * 1992-07-21 1994-02-18 Shinko Electric Ind Co Ltd 表面実装型気密封止端子
JPH0662471U (ja) * 1993-02-08 1994-09-02 株式会社フジ電科 気密端子
JP2004007236A (ja) * 2002-05-31 2004-01-08 Suncall Corp 水晶振動子用パッケージ及びその製造方法
JP2006210576A (ja) * 2005-01-27 2006-08-10 Kyocera Corp 電子部品搭載用基板および電子装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7936114B2 (en) * 2008-02-18 2011-05-03 Seiko Instruments Inc. Piezoelectric vibrator manufacturing method, piezoelectric vibrator, oscillator, electronic device, and radio-controlled watch
US20110221310A1 (en) * 2010-03-15 2011-09-15 Yoshihiro Kusanagi Method of manufacturing package, piezoelectric vibrator, oscillator, electronic apparatus, and radio-controlled timepiece

Also Published As

Publication number Publication date
TW201041197A (en) 2010-11-16
CN101783659A (zh) 2010-07-21
US20100181872A1 (en) 2010-07-22
US8207654B2 (en) 2012-06-26

Similar Documents

Publication Publication Date Title
JP2010171536A (ja) 圧電振動子
US9590588B2 (en) Piezoelectric vibrating piece and piezoelectric vibrator
JP6247006B2 (ja) 電子デバイス、発振器及び電子デバイスの製造方法
WO2007072668A1 (ja) 圧電振動片、及び圧電振動デバイス
CN105743460B (zh) 压电振动器及压电振动器的制造方法
JP2006211089A (ja) 圧電振動デバイス
JP5281144B2 (ja) 圧電振動子、及び圧電振動子の実装体
JP2015122413A (ja) パッケージおよびその製造方法
JP2018082400A (ja) 圧電振動片及び圧電振動子
JP5062139B2 (ja) 圧電振動デバイス
JP2009100213A (ja) 圧電振動装置の製造方法
JP4529894B2 (ja) 圧電振動片、及び圧電振動デバイス
JP2009081670A (ja) 圧電振動デバイス、およびその製造方法
JP2016139860A (ja) 圧電振動片及び圧電振動子
JP2007089003A (ja) 圧電部品
JP2006074567A (ja) 圧電デバイス
JP7380067B2 (ja) 音叉型圧電振動片および当該音叉型圧電振動片を用いた音叉型圧電振動子
JP2008060910A (ja) 圧電振動デバイス
JP6901383B2 (ja) 音叉型水晶素子及びその音叉型水晶素子を用いた水晶デバイス
JP5183718B2 (ja) 水晶デバイス
JP6892315B2 (ja) 音叉型水晶素子及びその音叉型水晶素子を用いた水晶デバイス
JP6585450B2 (ja) 音叉型水晶素子および水晶デバイス
JP5731870B2 (ja) 電子部品パッケージ
JP2015065589A (ja) 圧電振動片および圧電振動子
JP2012064673A (ja) 電子部品パッケージ、及び電子部品パッケージの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130403