JP2009100213A - 圧電振動装置の製造方法 - Google Patents

圧電振動装置の製造方法 Download PDF

Info

Publication number
JP2009100213A
JP2009100213A JP2007269329A JP2007269329A JP2009100213A JP 2009100213 A JP2009100213 A JP 2009100213A JP 2007269329 A JP2007269329 A JP 2007269329A JP 2007269329 A JP2007269329 A JP 2007269329A JP 2009100213 A JP2009100213 A JP 2009100213A
Authority
JP
Japan
Prior art keywords
piezoelectric
thermal bonding
piezoelectric element
vibration device
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007269329A
Other languages
English (en)
Inventor
Kenichi Kamisaka
健一 上坂
Korekiyo Ito
是清 伊藤
Hajime Kando
始 神籐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2007269329A priority Critical patent/JP2009100213A/ja
Publication of JP2009100213A publication Critical patent/JP2009100213A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】屈曲振動モードを抑制でき、輪郭振動モードを利用する圧電振動装置の製造方法を提供する。
【解決手段】圧電振動装置100の製造方法は、高圧雰囲気下熱接着工程を含む。高圧雰囲気下熱接着工程は、基体部101と蓋体部102とを熱接着する工程である。基体部101は、一対の電極間に圧電薄膜が設けられた圧電体素子50を配設したものである。蓋体部102は、圧電体素子50を封入するように基体部101上に配置されたものである。この高圧雰囲気下熱接着工程によって、圧電体素子50を封入する気密空間を基体部101と蓋体部102との間に構成する。また、高圧雰囲気下熱接着工程は、加圧雰囲気下で実施する。
【選択図】図6

Description

この発明は、圧電薄膜を有する圧電体素子をパッケージ内に封入した圧電振動装置の製造方法に関する。
従来、FBARフィルタやMEMSなどの素子をパッケージ内に封入した素子装置が知られている(例えば、特許文献1参照。)。
図1は、従来の素子装置の断面図である。
素子装置160は、素子構造部161とキャップ部162とを備える。素子構造部161は、基板163と素子部164と電極165,166と素子側金属封止部167とを備える。素子部164は、FBARフィルタやMEMSを構成する。電極165,166は素子部164に接続される。素子側金属封止部167は、素子部164と電極165,166を囲むように基板163の上面に形成される。キャップ部162は、キャップ用基板168と接続パッド171と接続プラグ169,170とキャップ側金属封止部177とを備える。接続パッド171は、素子構造部161の電極165,166に接続される。接続プラグ169,170は接続パッド171に導通し、キャップ用基板168の上面に外部接続用の電極を設ける。キャップ側金属封止部177は、接続パッド171を囲み、素子側金属封止部167と対向するように、キャップ用基板168の下面に形成される。キャップ部162を素子構造部161にかぶせ、キャップ側金属封止部177と素子側金属封止部167とが接続され、素子装置160が構成される。
このように素子をパッケージ内に封入する構成では、一般に、真空雰囲気や大気圧の不活性ガス雰囲気下での熱圧着により、部材の接続がおこなわれていた。
また、輪郭振動モードを利用する圧電体素子が素子として利用されることがある。このような圧電体素子をパッケージ内に封入した圧電振動装置でも、従来、上述のように真空雰囲気や大気圧の不活性ガス雰囲気下での熱圧着により、部材の接続がおこなわれていた。
特開2006−173557号公報
図2は、圧電体素子の振動モードを説明する図である。
この圧電体素子200は同図(A)に示す輪郭振動モードを主モードとして利用するものである。輪郭振動モードでは、圧電体素子200は輪郭振動し、圧電体素子200の奥行き寸法と長さ寸法とに応じた共振周波数で振幅が最大になる。また、圧電体素子200には同図(B)に示す屈曲振動モードも副次的に生じる。屈曲振動モードでは、圧電体素子200は屈曲振動する。圧電体素子200を輪郭振動モードの共振周波数付近で利用した場合、圧電体素子200には微小な屈曲振動も生じ、厳密には輪郭振動モードに屈曲振動モードが結合して本来の輪郭振動による変形に屈曲振動の変形が重畳されたモードで立体振動する。この立体振動は、圧電体素子200にとって問題となることがある。
図3は、従来の圧電体素子におけるインピーダンスの周波数特性を例示する図である。同図のグラフの横軸は交番電圧の周波数であり、縦軸はインピーダンスである。図中に示す実線は実効電圧が0.1Vrmsの例を、図中に示す点線は実効電圧が1.0Vrmsの例を示す。実効電圧が0.1Vrmsの場合、輪郭振動モードの共振周波数(約18.32MHz)から反共振周波数(約18.43MHz)にかけて、インピーダンスが連続的に変化する。一方、実効電圧が1.0Vrmsの場合、輪郭振動モードの共振周波数から反共振周波数の間でインピーダンスが不連続に変化する。
輪郭振動モードの共振周波数付近では本来の輪郭振動の振幅が大きくなるが、実効電圧1.0Vrmsの場合のように実効電圧が高いと立体振動が大きくなり過ぎてインピーダンスの周波数特性に悪影響を与える。すなわち、輪郭振動モードと屈曲振動モードの共振が結合する関係にあると、印加電圧を或る電圧より高くした状態では立体振動が、メカニカルな振動の振幅と電圧の振幅との関係が非線形に変化する領域にまで達し、図3に示したようなインピーダンスの周波数特性に不連続な部分が生じる。
そこで、本発明は、印加電圧を比較的高くしても、屈曲振動を抑制して、輪郭振動本来の特性を利用できるようにした圧電体振動装置の製造方法の提供を目的とする。
本発明の圧電振動装置の製造方法は、熱接着工程を含む。熱接着工程は、基体と蓋体とを熱接着する工程である。基体は、一対の電極間に圧電薄膜が設けられた圧電体素子を配設したものである。蓋体は、圧電体素子を封入するように基体上に配置されたものである。この熱接着工程によって、圧電体素子を封入する気密空間を基体と蓋体との間に構成する。また、熱接着工程は、加圧雰囲気下で実施する。
加熱環境下では気体が膨張するため、従来のように真空雰囲気や大気圧の不活性ガス雰囲気下で熱接着工程を行った場合、圧電振動装置の冷却後の気密空間の内部気圧が低下してしまう。そこで、本発明のように加圧雰囲気下で熱接着工程を実施することにより、圧電振動装置の冷却後の気密空間内の気圧を高められる。
これにより、気密空間に封入される圧電体素子に従来よりも大きな気圧がかかり、圧電体素子の屈曲振動モードでの振幅は抑制されたものになる。一方、圧電体素子の輪郭振動モードでの振幅は、気圧による影響が屈曲振動モードよりも小さく、ほとんど変化しない。したがって、気密空間を高気圧に維持することで屈曲振動が小さくなり、圧電体素子はほぼ輪郭振動モードと見なせるモードで振動する。
このため、実効電圧が大きい場合でも、圧電体素子の変形をインピーダンスが線形に変化する範囲に留めることができ、インピーダンスの周波数特性において共振周波数から反共振周波数までの間でのインピーダンスの不連続な変化を無くすことができる。
熱接着工程は、以下の条件式を満たす加圧雰囲気下で実施すると好適である。
式:P′>=P×(T′/T)
ただし、式中の記号T′は熱接着工程中の制御温度であり、式中の記号Tは圧電振動装置の使用時の標準温度であり、式中の記号P′は熱接着工程中の制御気圧であり、式中の記号Pは前記標準温度での標準気圧である。
このような制御温度と制御気圧の環境下で熱接着工程を実施することにより、標準温度への冷却後の圧電振動装置の気密空間の気圧が標準気圧と等しいか、それよりも高圧になる。なお、熱接着工程は、大気圧よりも加圧した雰囲気下で実施すると好適である。
基体および蓋体は、それぞれリジッドな基板を備えると好適である。圧電振動装置の気密空間の気圧が標準気圧よりも高圧でも、基体と蓋体との変形を抑制でき、パッケージの強度と封止の信頼性とが高まるためである。
この発明によれば、圧電振動装置の冷却後の気密空間内の気圧が、従来よりも高くなるので、気密空間に封入される圧電体素子に従来よりも高い気圧がかかる。これにより、圧電体素子の屈曲振動は抑制されたものになる。一方、圧電体素子の輪郭振動モードでの振幅は、気圧による影響が屈曲振動モードよりも小さく、ほとんど変化しない。したがって、屈曲振動が小さくなり、圧電体素子は、ほぼ輪郭振動モードと見なせるモードで振動する。したがって、圧電体素子への印加電圧を比較的高くしても、輪郭振動モード本来の特性を利用できる。
まず、本発明の実施により製造される圧電振動装置の形態を説明する。
図4はこの圧電振動装置の構成を説明する図である。同図(A)は圧電振動装置の平面図、同図(B)は圧電振動装置の断面図であり、同図(C)は圧電体素子の構造を説明する図である。
圧電振動装置100は、基体部101と蓋体部102とを備える。基体部101は本発明の基体に相当し、蓋体部102は本発明の蓋体に相当する。基体部101は、基体側基板60と圧電体素子50と基体側封止部材81と基体側導電部材91とを備える。蓋体部102は蓋体側基板70と蓋体側封止部材82と蓋体側導電部材92と外部接続端子71と接地端子73とを備える。基体側封止部材81と蓋体側封止部材82とは封止部80を構成する。基体側導電部材91と蓋体側導電部材92とは導電部90を構成する。基体側封止部材81と蓋体側封止部材82とは熱接着され、基体部101と蓋体部102との間に気密空間を構成する。この気密空間に、圧電体素子50と導電部90とが封入される。基体側導電部材91と蓋体側導電部材92とは接触していて、圧電体素子50の電極と外部接続端子71とを導通させる。
基体側基板60と蓋体側基板70とはSiを主成分とする。なお、基板60,70は素子との間で絶縁されることが望ましく、他の材料からなる基板にSiO層を形成したり、絶縁性の高い他の材料の基板、例えばガラス基板、水晶基板、LiTaO3、LiNbO3などのセラミック基板を採用したりしても良い。
封止部材81および導電部材91は、Cu等の金属材料からなり、封止部材82および導電部材92は、CuやSn等の金属材料からなる。好ましくは、封止部材81,82および導電部材91,92の接触部分でCuとSnとが接触した積層構造とし、CuとSnとを合金化して接着させるとよい。封止部材81,82および導電部材91,92は、蓋体側基板70に形成したコンタクトホールを介して外部接続端子71や接地端子73に導通する。封止部80は、基体側基板60と蓋体側基板70との外周から所定間隔へだてた内側に外周に沿って設けられ、気密空間を囲む。
圧電体素子50は、両端間でアーチ状に構成されていて、基体側基板60との間、および蓋体側基板70との間に空隙を介して中央部が保持される。また圧電体素子50は積層構造を有し、基体側から蓋体側にかけて順に下部温度特性補償膜51、下部電極膜52、圧電薄膜53、上部電極膜54、および上部温度特性補償膜55を備えている。下部温度特性補償膜51および上部温度特性補償膜55は、SiOを主成分とし、圧電体素子50の絶縁と温度特性補償とを担う。下部電極膜52および上部電極膜54は、Ptを主成分とする。圧電薄膜53は、AlNを主成分とする。外部接続端子71に、輪郭振動モードの共振周波数の交番電圧が入力されることで、圧電体素子50は、輪郭振動モードを主モードとして振動する。
次に圧電振動装置100の製造方法を図5および図6に基づいて説明する。ここでは、圧電振動装置100の基体側基板60と蓋体側基板70とが、それぞれウェハから予め分断されている例を説明するが、以下に説明する各工程をウェハに施し、その後にウェハから個別の圧電振動装置100を分断するようにしてもよい。
図5は、圧電振動装置100の製造工程のフローであり、図6は、製造工程での圧電振動装置100の断面図である。
ステップS1およびステップS2では、蓋体部形成工程と基体部形成工程とが実施され、基体部101と蓋体部102とのそれぞれが形成される。具体的には、基板60,70上に、圧電体素子50が形成され、且つ、封止部材81,82や導電部材91,92となる金属層が印刷され、基体部101と蓋体部102とのそれぞれが形成される。なお、ステップS1,S2は並列して実施しても、逆順に実施しても良い。
ステップS3では、配置工程が実施される。図6(A)に示す同工程では、ハンドル装置により基体部101上に蓋体部102が配置される。これにより、封止部材81に封止部材82が接触し、導電部材91に導電部材92が接触する。
ステップS4では、高圧雰囲気下熱接着工程が実施される。図6(B)に示す同工程では、基体部101と蓋体部102とが高圧加熱炉内に配置される。高圧加熱炉は、まず炉内に所定気圧の不活性ガスが注入され、その後、所定温度に加熱される。加熱条件は、SnとCuとの合金が得られるように設定する。これにより、封止部材81と封止部材82とが熱接着し、導電部材91と導電部材92とが熱接着する。その後、圧電振動装置100は冷却される。
ステップS5では、コンタクトホール形成工程が実施される。図6(C)に示す同工程では、蓋体部102にコンタクトホールとなる孔が形成される。
ステップS6では、電極形成工程が実施される。図6(D)に示す同工程では、蓋体部102の孔に電極材が充填され、且つ、外部接続端子71および接地端子73となる電極が成膜される。
以上の製造工程を経て圧電振動装置100は製造される。
高圧雰囲気下熱接着工程では、高圧加熱炉内に所定気圧の不活性ガスが注入される。そしてこの雰囲気下で、圧電振動装置100の加熱が行われる。圧電振動装置100の気密空間の内部気体は、加熱環境下では膨張し、その後の冷却により収縮する。したがって、冷却後の気密空間の内部気圧は、加熱環境下の気圧よりも大きく低下する。
そこで、冷却後の気密空間の内部気圧を標準気圧(例えば、大気圧)より大きくするため、高圧雰囲気下熱接着工程では、以下の条件式を満たす気圧まで、不活性ガスを加圧しておく。ただし、式中の記号T′は高圧雰囲気下熱接着工程中の制御温度であり、式中の記号Tは冷却後の圧電振動装置100使用時の標準温度であり、式中の記号P′は高圧雰囲気下熱接着工程中の制御気圧であり、式中の記号Pは標準温度Tでの標準気圧である。
式:P′>=P×(T′/T)
この条件式を満足する制御気圧P′下で高圧雰囲気下熱接着工程を実施することにより、冷却後の気密空間の内部気圧を標準気圧Pよりも高圧にできる。
例えば、SnとCuとの合金を得るために高圧加熱炉内を制御温度T′=568K(=295℃)に加熱する場合、制御気圧を約1.93気圧に加圧した不活性ガス環境下で、約1時間、制御温度T′=568Kの加熱を行うと、気密空間の内部気圧が標準温度T=293K(=20℃)において標準気圧P=1気圧になる。
したがって、圧電振動装置100の気密空間に封入される圧電体素子50に従来よりも大きな気圧がかかり、圧電体素子50の屈曲振動モードでの振幅は抑制されたものになる。一方、圧電体素子50の輪郭振動モードでの振幅は、気圧による影響が屈曲振動モードよりも小さく、ほとんど変化しない。したがって、気密空間を高気圧に維持することで屈曲振動が小さくなり、圧電体素子はほぼ輪郭振動モードと見なせるモードで振動する。このため、実効電圧が大きい場合でも圧電体素子50の変形を、インピーダンスが線形に変化する範囲に留めることができ、インピーダンスの周波数特性において共振周波数から反共振周波数までの間でのインピーダンスの不連続な変化を無くすことができる。
次に、本発明の実施により製造される圧電振動装置の他の形態を説明する。
図7は、圧電振動装置300の構成を説明する図である。圧電振動装置300は、圧電体素子350が蓋体部302側に設けられている点で圧電振動装置100と相違する。このような構成の圧電振動装置300は、その製造工程において、基体部301と蓋体部302とを高圧加熱炉内に配置し、高圧加熱炉の炉内に所定気圧の不活性ガスを注入し、その後、所定温度に加熱される。これにより、基体部301と蓋体部302とが熱接着される。
これにより、圧電振動装置300の気密空間に封入される圧電体素子350に従来よりも大きな気圧がかかり、圧電体素子350の屈曲振動モードでの振幅は抑制されたものになる。
図8は、圧電振動装置400の製造工程を説明する図である。圧電振動装置400は、封止部480にコンタクトホールを設けて、外部接続端子471と圧電体素子450の電極とを導通させる点で圧電振動装置100と相違する。このような構成の圧電振動装置400は、その製造工程において、基体部401と蓋体部402とを高圧加熱炉内に配置し、高圧加熱炉の炉内に所定気圧の不活性ガスを注入し、その後、所定温度に加熱される。これにより、基体部401と蓋体部402とが熱接着される。
これにより、圧電振動装置400の気密空間に封入される圧電体素子450に従来よりも大きな気圧がかかり、圧電体素子450の屈曲振動モードでの振幅は抑制されたものになる。
従来の素子装置の断面図である。 圧電体素子の振動モードを説明する図である。 従来の圧電体素子のインピーダンスの周波数特性を説明する図である。 本発明の実施により製造される圧電振動装置の構成を説明する図である。 同圧電振動装置の製造フローを示す図である。 同圧電振動装置の製造工程での断面図である。 本発明の実施により製造される圧電振動装置の他の構成を説明する図である。 本発明の実施により製造される圧電振動装置の他の構成を説明する図である。
符号の説明
50…圧電体素子
51…下部温度特性補償膜
52…下部電極膜
53…圧電薄膜
54…上部電極膜
55…上部温度特性補償膜
60…基体側基板
70…蓋体側基板
71,…外部接続端子
73,…接地端子
80…封止部
81,82…封止部材
90…導電部
91,92…導電部材
100,300,400…圧電振動装置
101…基体部
102…蓋体部

Claims (4)

  1. 輪郭振動する圧電体素子を配設した基体と、前記圧電体素子を封入するように前記基体上に配置された蓋体と、を熱接着して、前記圧電体素子を封入する気密空間を前記基体と前記蓋体との間に構成する熱接着工程を含む、圧電振動装置の製造方法であって、
    前記熱接着工程は、加圧雰囲気下で実施することを特徴とする圧電振動装置の製造方法。
  2. 前記熱接着工程は、以下の条件式を満たす加圧雰囲気下で実施する請求項1に記載の圧電振動装置の製造方法。
    式:P′>=P×(T′/T)
    ただし、式中の記号P′は熱接着工程中の制御気圧であり、式中の記号T′は熱接着工程中の制御温度であり、式中の記号Tは圧電振動装置の使用時の標準温度であり、式中の記号Pは前記標準温度での標準気圧である。
  3. 前記熱接着工程は、大気圧よりも加圧した雰囲気下で実施する請求項2に記載の圧電振動装置の製造方法。
  4. 前記基体および前記蓋体は、それぞれリジッドな基板を備える請求項1〜3のいずれかに記載の圧電振動装置の製造方法。
JP2007269329A 2007-10-16 2007-10-16 圧電振動装置の製造方法 Pending JP2009100213A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007269329A JP2009100213A (ja) 2007-10-16 2007-10-16 圧電振動装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007269329A JP2009100213A (ja) 2007-10-16 2007-10-16 圧電振動装置の製造方法

Publications (1)

Publication Number Publication Date
JP2009100213A true JP2009100213A (ja) 2009-05-07

Family

ID=40702802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007269329A Pending JP2009100213A (ja) 2007-10-16 2007-10-16 圧電振動装置の製造方法

Country Status (1)

Country Link
JP (1) JP2009100213A (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585119A (en) * 1978-12-21 1980-06-26 Seiko Instr & Electronics Ltd Piezoelectric oscillator of profile oscillation mode
JPH0379113A (ja) * 1989-08-23 1991-04-04 Seiko Electronic Components Ltd 水晶振動子の支持構造
JPH04276912A (ja) * 1991-03-05 1992-10-02 Seiko Epson Corp 厚み辷り圧電振動子
JPH04298110A (ja) * 1991-03-27 1992-10-21 Seiko Epson Corp 圧電振動子
JPH08186467A (ja) * 1994-12-29 1996-07-16 Murata Mfg Co Ltd 拡がり振動型圧電振動子およびその製造方法
JPH11108790A (ja) * 1997-09-30 1999-04-23 Mitsumi Electric Co Ltd 圧電振動子モジュールのリーク検出方法
JP2005094727A (ja) * 2002-11-11 2005-04-07 Piedekku Gijutsu Kenkyusho:Kk 水晶振動子、水晶ユニット、水晶発振器とそれらの製造方法
JP2005286602A (ja) * 2004-03-29 2005-10-13 Daishin Seisakusho:Kk 薄板基板の研磨方法及び薄板振動素子の製造方法
WO2006123653A1 (ja) * 2005-05-20 2006-11-23 Murata Manufacturing Co., Ltd. 圧電デバイス
WO2007088696A1 (ja) * 2006-01-31 2007-08-09 Murata Manufacturing Co., Ltd. 圧電振動装置
JP2007208564A (ja) * 2006-01-31 2007-08-16 Kyocera Kinseki Corp 圧電振動子の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585119A (en) * 1978-12-21 1980-06-26 Seiko Instr & Electronics Ltd Piezoelectric oscillator of profile oscillation mode
JPH0379113A (ja) * 1989-08-23 1991-04-04 Seiko Electronic Components Ltd 水晶振動子の支持構造
JPH04276912A (ja) * 1991-03-05 1992-10-02 Seiko Epson Corp 厚み辷り圧電振動子
JPH04298110A (ja) * 1991-03-27 1992-10-21 Seiko Epson Corp 圧電振動子
JPH08186467A (ja) * 1994-12-29 1996-07-16 Murata Mfg Co Ltd 拡がり振動型圧電振動子およびその製造方法
JPH11108790A (ja) * 1997-09-30 1999-04-23 Mitsumi Electric Co Ltd 圧電振動子モジュールのリーク検出方法
JP2005094727A (ja) * 2002-11-11 2005-04-07 Piedekku Gijutsu Kenkyusho:Kk 水晶振動子、水晶ユニット、水晶発振器とそれらの製造方法
JP2005286602A (ja) * 2004-03-29 2005-10-13 Daishin Seisakusho:Kk 薄板基板の研磨方法及び薄板振動素子の製造方法
WO2006123653A1 (ja) * 2005-05-20 2006-11-23 Murata Manufacturing Co., Ltd. 圧電デバイス
WO2007088696A1 (ja) * 2006-01-31 2007-08-09 Murata Manufacturing Co., Ltd. 圧電振動装置
JP2007208564A (ja) * 2006-01-31 2007-08-16 Kyocera Kinseki Corp 圧電振動子の製造方法

Similar Documents

Publication Publication Date Title
US8405463B2 (en) Electronic device, electronic apparatus, and electronic device manufacturing method
JP6247006B2 (ja) 電子デバイス、発振器及び電子デバイスの製造方法
JP4221756B2 (ja) 圧電発振器およびその製造方法
JP3887137B2 (ja) 圧電振動子の製造方法
JP4864152B2 (ja) 表面実装用の水晶振動子
JP2008060382A (ja) 電子部品及びその製造方法
JP2008131549A (ja) 水晶振動デバイス
JP5498677B2 (ja) 水晶発振子の製造方法
JP6780718B2 (ja) 圧電振動デバイス
JP3709113B2 (ja) 圧電振動子とその製造方法
US7990025B1 (en) Silicon package with embedded oscillator
JP6015010B2 (ja) 振動素子、振動子、発振器および電子機器
JP2009100213A (ja) 圧電振動装置の製造方法
JP2013168893A (ja) 圧電振動デバイス
JP5406108B2 (ja) 弾性波デバイス及びその製造方法
JP2012205032A (ja) 水晶振動子
JP2005333658A (ja) 圧電振動子
JP2009060260A (ja) 電子部品用パッケージおよびこれを用いた圧電振動デバイス
JP2016054195A (ja) パッケージの製造方法、及びパッケージ
JP3164890B2 (ja) 水晶振動子とその製造方法
WO2021131121A1 (ja) 圧電振動素子、圧電振動子及び電子装置
JP2010243155A (ja) 圧力センサーモジュール
JP4541983B2 (ja) 圧電振動子
CN107221396A (zh) 压电元件用热敏电阻以及包括此的压电元件封装件
JP2000223995A (ja) 圧電振動子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120831

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130702