JP2010091717A - 画像形成方法、定着方法及びトナー - Google Patents

画像形成方法、定着方法及びトナー Download PDF

Info

Publication number
JP2010091717A
JP2010091717A JP2008260565A JP2008260565A JP2010091717A JP 2010091717 A JP2010091717 A JP 2010091717A JP 2008260565 A JP2008260565 A JP 2008260565A JP 2008260565 A JP2008260565 A JP 2008260565A JP 2010091717 A JP2010091717 A JP 2010091717A
Authority
JP
Japan
Prior art keywords
toner
image
heating member
load
fixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008260565A
Other languages
English (en)
Other versions
JP2010091717A5 (ja
JP5451023B2 (ja
Inventor
Naotaka Ikeda
池田  直隆
Shinya Yanai
信也 谷内
Katsuyuki Nonaka
克之 野中
Emi Tosaka
恵美 登坂
Nobuhisa Abe
展久 阿部
Satoshi Nishida
聡 西田
Masashi Tanaka
正志 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008260565A priority Critical patent/JP5451023B2/ja
Publication of JP2010091717A publication Critical patent/JP2010091717A/ja
Publication of JP2010091717A5 publication Critical patent/JP2010091717A5/ja
Application granted granted Critical
Publication of JP5451023B2 publication Critical patent/JP5451023B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

【課題】離型層を持つ像加熱部材を用いた場合においても、低温定着性と耐低温オフセット性、画像の高光沢性を両立することである。
【解決手段】トナー像を担持する記録材を加圧部材と像加熱部材とで形成されるニップ部を通過させて定着する定着工程を有する画像形成方法において、
該像加熱部材は、離型層と蓄熱層を有し、更にその下層として弾性層を有するローラであり、
該像加熱部材は、熱伝導率5.0W/mK以上の熱伝導フィラーを含有し、
該トナーが、個数平均粒径D1が3.00μm以上8.00μm以下であり、
該トナーに対する微小圧縮試験において、トナーの粒子径をD、トナーの1粒子に負荷速度9.8×10-5N/secで荷重9.8×10-4Nを負荷したときの最大変位量をX100、荷重2.0×10-4N時の変位量をX20としたとき、D1=D±0.20μm、0.100≦X100/D≦0.900、0.010≦X20/D≦0.080を満たす。
【選択図】なし

Description

本発明は、電子写真技術や静電記録技術を用いたプリンターや複写機、ファクシミリ等に用いられる画像形成方法、定着方法及びトナーに関する。
従来、画像形成装置において、記録材上に形成担持させた未定着トナー画像を永久固着画像として加熱定着する装置としては接触加熱型の装置が汎用されている。この接触加熱型の定着装置は、記録材に接触する表面の温度を所定の定着温度に加熱した回転部材(以下、定着ローラと記す)を記録材に対してニップ部にて接触させて、記録材上の未定着トナー画像を永久固着画像として加熱定着するものである。
定着ローラの加熱方式としては、従来から内部加熱方式がある。これは、定着ローラの内部に加熱手段(加熱源:ヒータ等)を配設し、定着ローラを内側から加熱して定着ローラの表面を所定の定着温度に加熱するものである。しかし、内部加熱方式ではローラ全体を加熱する必要があるために時間がかかり、オンデマンド性には劣る。
そのため、オンデマンド性に対応するために、種々の検討がなされており、中でもフィルム加熱定着方式は有用な定着方式である。これは、フィルムを介してヒータが直接加熱する方式であるため、ヒータの熱を効率良く記録材に付与することが出来る。しかし、サーフ定着はフィルムを使用するため、長期使用の際にフィルムが破れる、という不具合が生じることがある。
こうした懸念点を払拭する新たな定着方法として、外部加熱方式(表面加熱方式)が検討されている。
外部加熱方式の装置は、セラミックヒータやハロゲンヒータなどにより定着ローラを外側から直接的に加熱するため、定着ローラの表面を急激に昇温させることが可能である。そのため、内部加熱方式の装置に比べてウォームアップ時間や、プリント信号を受信してから未定着トナー画像が形成された記録材を加熱定着するまでの時間(以後、ファーストプリントアウトタイムと記す)を短縮できる。それらに伴ってオンデマンド性も高まるため、好ましい。また、フィルムを用いないことから前述の不具合は生じないため、好ましい。
このような外部加熱方式に関する技術として例えば、定着ローラの内部を断熱化し、且つ最表層は熱伝導フィラーを入れることで高熱伝導化するものがある。(例えば、特許文献1,2参照)しかし、この技術によってウォームアップタイムの短縮がなされオンデマンド性は高まるものの、記録材が定着ローラに巻きついたり、低温オフセットが生じやすい等、改善の余地を残している。
巻きつきや低温オフセットを改善するために、表層に離型性の高いPFA(テトラフルオロエチレンとパーフルオロアルキルビニルエーテルとの共重合体)を配置し、用紙への粘着性を低下させる技術が開示されている(例えば、特許文献3)。しかし、こうした熱伝導フィラーはトナーとの親和性が非常に高いため、熱伝導フィラーが多く露出していると巻きつきには不利になる。一方、露出が少なすぎると熱量の伝達効率が下がり、定着温度が高くなると共にオンデマンド性が劣るものとなるため、更なる改善の余地がある。
また、耐巻きつき性を改善するには、像加熱部材表面に、記録材との離型性に優れる離型層を設けることが非常に有効であり、種々の検討がなされている(例えば、特許文献4,5,6)。しかし、表層の熱容量が小さくなることで、記録材から像加熱部材への熱伝達率は低下する。そのため、加熱装置は像加熱部材に高いエネルギーを付与する必要が生じてしまう。また、耐低温オフセット性も十分とは言えず、改善の余地を残している。
したがって、更に低い温度での定着を可能にし、耐低温オフセット性を改善できる画像形成方法が求められている。
こうした要求に対して、トナー表面物性の制御によって低温定着性を改良する検討がなされている(例えば、特許文献7,8,9参照)。しかし、低温環境の如き像加熱部材が冷えやすい状況下では十分な定着性能を発揮できず、改善の余地を残している。
一方トナーにおいては、耐久性と定着性(定着温度の低温化)の両立という観点では、トナーの粘弾性や溶融粘度で議論されることが多い。一般的にトナーは、現像装置内で機械的な摩擦力を受け劣化するので、トナーの粘弾性や溶融粘度を高くする方が有利である。しかしながら、定着工程では消費エネルギーが増大する方向なので不利となる。これら両者のバランスを満足する手法が、これまで検討されている。
一方、耐久性と定着性を両立させるための検討において、トナー粒子の内部構造を考慮する場合は、トナーの1粒子単位の耐ストレス性や定着性を議論することが必要となり、トナーの1粒子単位の硬度(微小圧縮硬度)が有効な指標となる。トナーの1粒子の硬度(微小圧縮硬度)は、トナー粒子の変形度合い(弾性・塑性)を示す。従って、接触転写のようにトナー粒子に圧がかかりトナー粒子が変形し得る転写工程においては、トナーの1粒子の硬度(微小圧縮硬度)は、耐ストレス性や定着性に加え、転写性に対しても重要な指標となる。
例えば、低ガラス転移点を有する熱可塑性樹脂から成る熱溶融性芯材と非晶質ポリエステルを主成分とする外殻から構成されるカプセルトナーが提案されている。このカプセルトナーにおいて、トナーの1粒子に荷重を負荷した際に圧縮される変位量と荷重の関係を特定の範囲に規定することで、低温定着性、耐オフセット性、及び耐ストレス性が両立可能であることが開示されている(例えば、特許文献10、特許文献11参照)。
また、トナーの1粒子の微小圧縮試験を行って得られる荷重−変位曲線が変曲点を有し、且つ、その変曲点の荷重が現像装置内でトナーが受ける負荷よりも大きいことを特徴とするトナーが提案されている。このトナーを用いることにより、定着工程では簡単に圧裂するものの、現像器内の耐ストレス性に優れ安定した帯電特性が得られることが開示されている(例えば、特許文献12参照)。しかしながら、近年の高速化されつつある画像形成方法において、定着ローラと記録材との接触時間短くなりつつある。そのため、これらのトナーは、低ガラス転移点の芯材を比較的厚い外殻で覆っている構造であるため、定着ローラと記録材との短い接触時間の中で離型剤が有用にトナー表面に出ることができず、ローラにオフセットする場合がある。また、このカプセルトナーは、比較的厚い外殻で覆っている構造であるため、加熱加圧定着工程には有効であるが、軽負荷定着工程では低温定着性や画像の高光沢性を満足することが困難である。
更に、トナー粒子の結着樹脂に高分子量体と低分子量体を存在させることによりトナー粒子にある一定の硬度を持たせた、会合法によるトナーが提案されている。会合法によるこのトナーは、非磁性一成分現像方式において、トナー担持体及びトナー層規制部材による摩擦帯電作用によっても弊害を伴うことなく耐久安定性に優れることが開示されている(例えば、特許文献13参照)。会合法によるこのトナーは、樹脂粒子、着色剤粒子と離型剤粒子を塩析/融着させる工程を経ることによって得られる。その樹脂粒子の構造が中心部から表層に向かうに従って各層を構成する樹脂の分子量が小さくなるように制御されている為、耐ブロッキング性、耐高温オフセット性に改善すべき点がある。
以上、これらのことから、離型層を持つ像加熱部材を用いた系において、画像形成方法、定着方法及びトナーの改善によって、低温定着性、耐低温オフセット性を向上できる技術が求められている。
さらには、上記要求に加えて、離型層を持つ像加熱部材を用いた系において、画像形成方法、定着方法及びトナーの改善によって、更なる高速化、及び高精細フルカラー画像が要求されている現状において、画像の高光沢性を維持した上で、高耐久性と高転写性を向上できる技術が求められている。
特開2004−317788号公報 特開2007−121441号公報 特開2004−86202号公報 特開2003−173096号公報 特開2002−278338号公報 特開2003−186327号公報 特開2002−6541号公報 特開2004−145243号公報 特開2004−157423号公報 特許第03003018号 特許第03391931号 特開2005−300937号公報 特開2004−109601号公報
本発明の課題は離型層を持つ像加熱部材を用いた場合においても、低温定着性と耐低温オフセット性、画像の高光沢性を両立することである。
さらには、本発明の課題は離型層を持つ像加熱部材を用いた場合において、低温定着性と耐低温オフセット性、画像の高光沢性を維持・向上した上で、高耐久性と高転写性を向上させることである。
本発明者らは鋭意検討を重ねた結果、離型層を有する像加熱部材であっても、熱容量と表面組成を適正化した像加熱部材と、トナーの構造を制御したトナーを組み合わせることで課題に対して大きな効果があることを見出し、本発明に至った。すなわち、上記目的は以下の画像形成方法、定着方法及びトナーにより達成できる。
〔1〕静電潜像担持体を帯電手段により帯電する帯電工程、該帯電された静電潜像担持体を露光して静電潜像を形成する露光工程、該静電潜像をトナーで現像してトナー像を形成する現像工程、該トナー像を中間転写体を介して、又は介さずに記録材へ転写する転写工程、該トナー像を担持する記録材を加圧部材と回転可能な像加熱部材とで形成されるニップ部を通過させることにより加熱加圧定着する定着工程を有する画像形成方法において、
該像加熱部材は、外部加熱手段により最表層表面から加熱され、
該像加熱部材は、最表層として厚さ5μm以上200μm以下の離型層を有しており、その下層として蓄熱層を有し、更にその下層として弾性層を有するローラであり、
該像加熱部材は、熱伝導率5.0W/mK以上の熱伝導フィラーを含有し、該熱伝導フィラーはAl及び/又はZn化合物であり、
該像加熱部材の表面をEPMA(電子線マイクロアナライザー)により測定した際の該熱伝導フィラーに由来するAl及び/又はZn元素の存在割合が、EPMAで検出される全元素量に対して0.10質量%以上3.00質量%以下であり、
該蓄熱層の単位面積あたりの熱容量が100J/m2K以上600J/m2K以下であり、
該トナーが、結着樹脂、着色剤及びワックス成分を少なくとも含有するトナー粒子と、無機微粉体とを有するトナーであって、
該トナーの個数平均粒径D1が、3.00μm以上8.00μm以下であり、
該トナーに対する微小圧縮試験において、測定するトナーの粒子径をD(μm)、トナーの1粒子に負荷速度9.8×10-5N/secで荷重9.8×10-4Nを負荷したときの最大変位量をX100(μm)、荷重2.0×10-4N時の変位量をX20(μm)としたとき、下記式(1)から(3)を満たすことを特徴とする画像形成方法。
(1)D1=D±0.20μm
(2)0.100≦X100/D≦0.900
(3)0.010≦X20/D≦0.080
〔2〕該トナーに対する微小圧縮試験において、トナーの1粒子に負荷速度9.8×10-5N/secで荷重9.8×10-4Nを負荷したとき、荷重−変位曲線が屈曲点を有し、該屈曲点は、トナーが荷重2.0×10-4N以上8.5×10-4N以下を受けたときに生じるものであることを特徴とする〔1〕に記載の画像形成方法。
〔3〕該トナーの変位量X100(μm)及びX20(μm)が、
0.400≦X100/D≦0.850、0.015≦X20/D≦0.060
であることを特徴とする〔1〕又は〔2〕に記載の画像形成方法。
〔4〕該トナーが、フローテスターによる測定において100℃の粘度が、15000Pa・s以上65000Pa・s以下であることを特徴とする〔1〕乃至〔3〕に記載の画像形成方法。
〔5〕該トナーのテトラヒドロフラン(THF)可溶分のゲルパーミエーションクロマトグラフィー(GPC)により測定されるメインピークの分子量(M1)が10,000乃至80,000であり、
該分子量分布のチャートにおいてメインピークの分子量(M1)の高さをH(M1)、分子量4,000の高さをH(4,000)としたとき、
H(4,000):H(M1)=(0.100乃至0.950):1.00
を満足することを特徴とする請求項〔1〕乃至〔4〕に記載の画像形成方法。
〔6〕該トナー粒子は、水系媒体中で製造することを特徴とする〔1〕乃至〔5〕に記載の画像形成方法。
〔7〕該トナー粒子は、重合性単量体、着色剤、ワックス成分、ポリエステル樹脂、及び、スチレン又はスチレン誘導体を重合して得られた単重合体又は共重合体を少なくとも含有する重合性単量体組成物を水系媒体中に分散し、造粒し、重合性単量体を重合することによって得られたものであることを特徴とする〔1〕乃至〔6〕に記載の画像形成方法。
〔8〕該ポリエステル樹脂のガラス転移温度(Tg)と該トナーのガラス転移温度(Tg)が、下記(4)から(6)を満たすことを特徴とする〔1〕乃至〔7〕に記載の画像形成方法。
(4)60℃≦Tgp≦80℃
(5)50℃≦Tgt
(6)10℃≦Tgp−Tgt≦30℃
〔9〕該ポリエステル樹脂のガラス転移温度(Tgp)と該トナーのガラス転移温度(Tgt)が、下記(4)から(6)を満たすことを特徴とする〔1〕乃至〔8〕に記載の画像形成方法。
(4)60℃≦Tgp≦80℃
(5)50℃≦Tgt
12℃≦Tgp−Tgt≦25℃
〔10〕該像加熱部材の表面粗さRzが1.0μm以上10.0μm以下であることを特徴とする〔1〕乃至〔9〕記載の画像形成方法。
〔11〕該像加熱部材の離型層がフッ素ゴムを主成分とするソリッドゴム層であることを特徴とする〔1〕乃至〔10〕記載の画像形成方法。
〔12〕該像加熱部材の蓄熱層の中に熱伝導フィラーが10質量%以上50質量%以下含有されることを特徴とする〔1〕乃至〔11〕記載の画像形成方法。
〔13〕該像加熱部材のマイクロ硬度が30°以上68°以下であることを特徴とする〔1〕乃至〔12〕記載の画像形成方法。
〔14〕該弾性層は熱伝導率が0.15W/mK以下であることを特徴とする〔1〕乃至〔13〕記載の画像形成方法。
〔15〕記録材上に形成されているトナー画像を加圧部材と回転可能な像加熱部材とで形成されるニップ部を通過させることにより加熱加圧定着する定着方法において、
該像加熱部材は、外部加熱手段により最表層表面から加熱され、
該像加熱部材は、最表層として厚さ5μm以上200μm以下の離型層を有しており、その下層として蓄熱層を有し、更にその下層として弾性層を有するローラであり、
該像加熱部材は、熱伝導率5.0W/mK以上の熱伝導フィラーを含有し、該熱伝導フィラーはAl及び/又はZn化合物であり、
該像加熱部材の表面をEPMA(電子線マイクロアナライザー)により測定した際の該熱伝導フィラーに由来するAl及び/又はZn元素の存在割合が、EPMAで検出される全元素量に対して0.10質量%以上3.00質量%以下であり、
該蓄熱層の単位面積あたりの熱容量が100J/m2K以上600J/m2K以下であり、
該トナーが、結着樹脂、着色剤及びワックス成分を少なくとも含有するトナー粒子と、無機微粉体とを有するトナーであって、
該トナーの個数平均粒径D1が、3.00μm以上8.00μm以下であり、
該トナーに対する微小圧縮試験において、測定するトナーの粒子径をD(μm)、トナーの1粒子に負荷速度9.8×10-5N/secで荷重9.8×10-4Nを負荷したときの最大変位量をX100(μm)、荷重2.0×10-4N時の変位量をX20(μm)としたとき、下記式(1)から(3)を満たすことを特徴とする定着方法。
(1)D1=D±0.20μm
(2)0.100≦X100/D≦0.900
(5)0.010≦X20/D≦0.080
〔16〕該トナーに対する微小圧縮試験において、トナーの1粒子に負荷速度9.8×10-5N/secで荷重9.8×10-4Nを負荷したとき、荷重−変位曲線が屈曲点を有し、該屈曲点は、トナーが荷重2.0×10-4N以上8.5×10-4N以下を受けたときに生じるものであることを特徴とする、〔15〕に記載の定着方法。
〔17〕該トナーの変位量X100(μm)及びX20(μm)が、
0.400≦X100/D≦0.850、0.015≦X20/D≦0.060
であることを特徴とする〔15〕乃至〔16〕に記載の定着方法。
〔18〕該トナーが、フローテスターによる測定において100℃の粘度が、15000Pa・s以上65000Pa・s以下であることを特徴とする〔15〕乃至〔17〕に記載の定着方法。
〔19〕該トナーのテトラヒドロフラン(THF)可溶分のゲルパーミエーションクロマトグラフィー(GPC)により測定されるメインピークの分子量(M1)が10,000乃至80,000であり、該分子量分布のチャートにおいてメインピークの分子量(M1)の高さをH(M1)、分子量4,000の高さをH(4,000)としたとき、
H(4,000):H(M1)=(0.100乃至0.950):1.00
を満足することを特徴とする〔15〕乃至〔18〕に記載の定着方法。
〔20〕該トナー粒子は、水系媒体中で製造することを特徴とする〔15〕乃至〔19〕に記載の定着方法。
〔21〕該トナー粒子は、重合性単量体、着色剤、ワックス成分、ポリエステル樹脂、及び、スチレン又はスチレン誘導体を重合して得られた単重合体又は共重合体を少なくとも含有する重合性単量体組成物を水系媒体中に分散し、造粒し、重合性単量体を重合することによって得られたものであることを特徴とする〔15〕乃至〔20〕に記載の定着方法。
〔22〕該ポリエステル樹脂のガラス転移温度(Tg)と該トナーのガラス転移温度(Tg)、下記(4)から(6)を満たすことを特徴とする〔15〕乃至〔21〕に記載の定着方法。
(4)60℃≦Tgp≦80℃
(5)50℃≦Tgt
(6)10℃≦Tgp−Tgt≦30℃
〔23〕該ポリエステル樹脂のガラス転移温度(Tgp)と該トナーのガラス転移温度(Tgt)が、下記(4)から(6)を満たすことを特徴とする〔15〕乃至〔22〕に記載の定着方法。
(4)60℃≦Tgp≦80℃
(5)50℃≦Tgt
(8)12℃≦Tgp−Tgt≦25℃
〔24〕静電潜像担持体を帯電手段により帯電する帯電工程、該帯電された静電潜像担持体を露光して静電潜像を形成する露光工程、該静電潜像をトナーで現像してトナー像を形成する現像工程、該トナー像を中間転写体を介して、又は介さずに記録材へ転写する転写工程、該トナー像を担持する記録材を加圧部材と回転可能な像加熱部材とで形成されるニップ部を通過させることにより加熱加圧定着する定着工程を有しており、
該像加熱部材は、外部加熱手段により最表層表面から加熱され、
該像加熱部材は、最表層として厚さ5μm以上200μm以下の離型層を有しており、その下層として蓄熱層を有し、更にその下層として弾性層を有するローラであり、
該像加熱部材は、熱伝導率5.0W/mK以上の熱伝導フィラーを含有し、該熱伝導フィラーはAl及び/又はZn化合物であり、
該像加熱部材の表面をEPMA(電子線マイクロアナライザー)により測定した際の該熱伝導フィラーに由来するAl及び/又はZn元素の存在割合が、EPMAで検出される全元素量に対して0.10質量%以上3.00質量%以下であり、
該蓄熱層の単位面積あたりの熱容量が100J/m2K以上600J/m2K以下である画像形成方法に適用されるトナーであって、
該トナーが、結着樹脂、着色剤及びワックス成分を少なくとも含有するトナー粒子と、無機微粉体とを有し、
該トナーの個数平均粒径D1が、3.00μm以上8.00μm以下であり、
該トナーに対する微小圧縮試験において、測定するトナーの粒子径をD(μm)、トナーの1粒子に負荷速度9.8×10-5N/secで荷重9.8×10-4Nを負荷したときの最大変位量をX100(μm)、荷重2.0×10-4N時の変位量をX20(μm)としたとき、下記式(1)から(3)を満たすことを特徴とするトナー。
(1)D1=D±0.20μm
(2)0.100≦X100/D≦0.900
(6)0.010≦X20/D≦0.080
〔25〕該トナーに対する微小圧縮試験において、トナーの1粒子に負荷速度9.8×10-5N/secで荷重9.8×10-4Nを負荷したとき、荷重−変位曲線が屈曲点を有し、該屈曲点は、トナーが荷重2.0×10-4N以上8.5×10-4N以下を受けたときに生じるものであることを特徴とする〔24〕に記載のトナー。
〔26〕該トナーの変位量X100(μm)及びX20(μm)が、
0.400≦X100/D≦0.850、0.015≦X20/D≦0.060
であることを特徴とする〔24〕乃至〔25〕に記載のトナー。
〔27〕該トナーが、フローテスターによる測定において100℃の粘度が、15000Pa・s以上65000Pa・s以下であることを特徴とする〔24〕乃至〔26〕に記載のトナー。
〔28〕該トナーのテトラヒドロフラン(THF)可溶分のゲルパーミエーションクロマトグラフィー(GPC)により測定されるメインピークの分子量(M1)が10,000乃至80,000であり、該分子量分布のチャートにおいてメインピークの分子量(M1)の高さをH(M1)、分子量4,000の高さをH(4,000)としたとき、
H(4,000):H(M1)=(0.100乃至0.950):1.00
を満足することを特徴とする〔23〕乃至〔26〕に記載のトナー。
〔29〕該トナー粒子は、水系媒体中で製造することを特徴とする〔24〕乃至〔28〕に記載のトナー。
〔30〕該トナー粒子は、重合性単量体、着色剤、ワックス成分、ポリエステル樹脂、及び、スチレン又はスチレン誘導体を重合して得られた単重合体又は共重合体を少なくとも含有する重合性単量体組成物を水系媒体中に分散し、造粒し、重合性単量体を重合することによって得られたものであることを特徴とする〔24〕乃至〔29〕に記載のトナー。
〔31〕該ポリエステル樹脂のガラス転移温度(Tg)と該トナーのガラス転移温度(Tg)、下記(4)から(6)を満たすことを特徴とする〔24〕乃至〔30〕に記載のトナー。
(4)60℃≦Tgp≦80℃
(5)50℃≦Tgt
(6)10℃≦Tgp−Tgt≦30℃
〔32〕該ポリエステル樹脂のガラス転移温度(Tgp)と該トナーのガラス転移温度(Tgt)が、下記(4)から(6)を満たすことを特徴とする〔24〕乃至〔31〕に記載のトナー。
(4)60℃≦Tgp≦80℃
(5)50℃≦Tgt
12℃≦Tgp−Tgt≦25℃
本発明によれば、離型層を有する像加熱部材(定着部材)を用いた画像形成方法、定着方法の場合でも、本発明に用いるトナーの1粒子が、特定の微小圧縮硬度を有する事により、定着性(低温定着性、耐低温オフセット性、画像の高光沢性)、耐久性がバランス良く優れ、転写効率が高く、長期にわたり安定した画像を得ることができる。また、本発明に用いるトナーの1粒子が、特定の微小圧縮硬度を有する事により、多数枚の連続プリントを行うことでトナーが現像装置内で負荷を受ける場合でも、耐ストレス性が良好であることから、長期にわたり安定した画像を得ることができる。
以下、本発明を詳細に説明する。
本発明は、画像形成方法、定着方法及びトナーに関するものであるが、像担持体を一様に帯電する帯電工程、帯電した像担持体を露光することで潜像を形成する潜像形成工程、静電潜像を現像してトナー画像を形成する現像工程、現像画像を記録材上に転写する転写工程に関しては、従来公知の電子写真プロセスが適用でき、特に限定されるものではない。
本発明の画像形成方法は、静電潜像担持体を帯電手段により帯電する帯電工程、該帯電された静電潜像担持体を露光して静電潜像を形成する露光工程、該静電潜像をトナーで現像してトナー像を形成する現像工程、該トナー像を中間転写体を介して、又は介さずに記録材へ転写する転写工程、該トナー像を担持する記録材を加圧部材と回転可能な像加熱部材とで形成されるニップ部を通過させることにより加熱加圧定着する定着工程を有する画像形成方法において、
該像加熱部材は、外部加熱手段により最表層表面から加熱され、
該像加熱部材は、最表層として厚さ5μm以上200μm以下の離型層を有しており、その下層として蓄熱層を有し、更にその下層として弾性層を有するローラであり、
該像加熱部材は、熱伝導率5.0W/mK以上の熱伝導フィラーを含有し、該熱伝導フィラーはAl及び/又はZn化合物であり、
該像加熱部材の表面をEPMA(電子線マイクロアナライザー)により測定した際の該熱伝導フィラーに由来するAl及び/又はZn元素の存在割合が、EPMAで検出される全元素量に対して0.10質量%以上、3.00質量%以下であり、
該蓄熱層の単位面積あたりの熱容量が100J/m2K以上600J/m2K以下であり、
該トナーが、結着樹脂、着色剤及びワックス成分を少なくとも含有するトナー粒子と、無機微粉体とを有するトナーであって、
該トナーの個数平均粒径D1が、3.00μm以上8.00μm以下であり、
該トナーに対する微小圧縮試験において、測定するトナーの粒子径をD(μm)、トナーの1粒子に負荷速度9.8×10-5N/secで荷重9.8×10-4Nを負荷したときの最大変位量をX100(μm)、荷重2.0×10-4N時の変位量をX20(μm)としたとき、下記式(1)から(3)を満たすことを特徴とする画像形成方法である。
(1)D1=D±0.20μm
(2)0.100≦X100/D≦0.900
(3)0.010≦X20/D≦0.080
まず、本発明の像加熱部材について説明する。
本発明の像加熱部材は、像加熱部材の表面から順に離型層、蓄熱層、弾性層の三層構造であり、離型層は5μm以上200μm以下としたものである。この離型層は、像加熱部材とトナーとの離型効果を著しく高めるため、様々なメディアとトナーを組み合わせて使用する上で重要な構成である。しかし、離型層の熱伝導率は低いため、ヒータにより熱量を付与される際にロスを生じることで定着に必要な熱量は増大してしまう。本発明者らの検討によると、高い離型性を付与しつつ、熱量のロスを抑えられる離型層厚の範囲は5μm以上200μm以下であった。離型層の厚みが5μm未満であると、像加熱部材とトナーの離型性が低くなり、低温オフセットの如き定着時の不具合が生じる。200μmを超えると低温オフセットは良化するものの、表面の熱容量が低くなる為、ヒータの温度を高くしなければならない。このため、離型層の厚みは5μm以上200μm以下であることが重要であり、5μm以上100μm以下であると、より好ましい。
こうした像加熱部材構成において、更に定着温度を下げる検討を重ねた結果、熱伝導フィラーの物性と存在状態、及び蓄熱層の物性をそれぞれ制御することが重要であった。なお、本発明の熱伝導フィラーは、Al及び/又はZnを含有するものである。これは、Al及び/又はZnを含有させるとフィラーは高い熱伝導性を得やすく、しかも本件の像加熱部材に対して非常に適用しやすかったためである。
すなわち、本発明において、
(A)像加熱部材の表面をEPMA(電子線マイクロアナライザー)により測定した際の熱伝導フィラーに由来するAl及び/又はZn元素の存在割合が、EPMAで検出される全元素量に対して0.10質量%以上3.00質量%以下であり、(B)熱伝導フィラーの熱伝導率は5.0W/mK以上であり、(C)蓄熱層の熱容量を100J/m2K以上、600J/m2K以下に制御することが重要であった。
まず、(A)について説明する。本発明の像加熱部材は離型層、蓄熱層、弾性層の3層構成である。しかし、前述のように、熱伝導率の低い離型層があることによって表面の熱伝導率は下がるため、定着温度は上がってしまう。そこで、離型層の熱伝導性を高める検討を行ったところ、離型層表面に少量の熱伝導フィラーを存在させることで、定着温度を大幅に下げられることを見出した。本発明において、離型層表面の熱伝導フィラーの検出方法としては、EPMAを用いた。EPMAは表面から数μmの深さまでに存在する元素を測定するものであり、検出されるAlやZn元素は表面から数μmまでの深さに存在する熱伝導フィラー量と対応する。本発明者らの検討によると、EPMA測定で検出されるAl及び/又はZnの存在割合が、検出される全元素量に対して0.10質量%以上であると上記効果が得られた。この理由として、本発明者らは以下のように考えている。離型層がヒータから熱量を受け取ると、熱量は離型層を通って蓄熱層まで到達し、蓄熱される。この時、離型層は熱伝導性が低いため熱量のロスが発生してしまう。ここで、離型層表面にAl及び/又はZnの存在割合が0.10質量%以上となる量の熱伝導フィラーがあると、熱は熱伝導性の高いフィラーを介して蓄熱層に効率良く伝達される。こうして熱量ロスは生じ難くなり、必要最小限のヒータ温度で像加熱部材を所望の温度まで加熱することが出来ると考えている。
このため、離型性表面の熱伝導フィラー量は多い方が熱伝導率が高まり、定着温度を下げる効果が大きくなる。しかし、一般的にAl及び/又はZnを含有する熱伝導フィラーはローラを形成するゴムよりもトナーとの親和性が非常に高い。そのため、離型層に多く含有させると離型効果が失われ、例え本発明のD1、X100/D、X20/Dを有するトナーであっても、低温オフセットが発生してしまう。本発明者らの検討によると、EPMA測定で検出されるAl及び/又はZnの存在割合が3.00質量%以下であれば定着温度を下げつつ、耐低温オフセット性も満足させることが出来る。
したがって、像加熱部材表面には像加熱部材の表面をEPMAにより測定した際のAl及び/又はZn元素の存在割合が検出される全元素量に対して0.10質量%以上3.00質量%以下となる量の熱伝導フィラーが必要である。0.10質量%未満であると、表面と蓄熱層を仲介するフィラーが足りず、ヒータから受け取った熱量は蓄熱層に伝達される前に大きくロスしてしまい、定着温度は上昇してしまう。一方3.00質量%を超えると、熱伝導フィラー量が多いために離型層とトナーの付着力が高まり、耐低温オフセット性が著しく悪化してしまう。
次に、(B)の熱伝導フィラーの熱伝導率について説明する。本発明の像加熱部材構成における熱伝導フィラーは、離型層表面から蓄熱層に熱を効率的に伝える必要がある。このため、高い熱伝導率を有する必要があり、具体的には5.0W/mK以上であると、表面の僅かなフィラー存在量でも蓄熱層に熱を効率的に伝えることが出来る。5.0W/mK未満であると熱伝達効率の低下に伴って熱量ロスが増大し、定着温度は高まってしまうため好ましくない。
(A)により像加熱部材表面に僅かに熱伝導フィラーを存在させた上で、(B)により熱伝導フィラーの熱伝導率を高く調整すると、(A)で述べたような熱伝導フィラーの表面と蓄熱層を熱的に仲介する効果が大幅に高まる。こうした(A)(B)の相乗効果によって、像加熱部材は高い離型性及び表面−蓄熱層間の高い熱伝達効率を両立することが出来るため、耐低温オフセット性を向上させ、定着温度を下げることが出来る。
(C)の蓄熱層の熱容量について説明する。本発明における像加熱部材は外側から加熱する手段を具備するものである。ここで、熱の移動を追って考えてみると、ヒータが発した熱は像加熱部材が受け取り、更に記録材上のトナーに付与されて定着する。ただし、ヒータと記録材定着部分とは離れているため、蓄熱層である程度の時間、熱を保持しなければならない。そのため、蓄熱層の熱容量を高める必要がある。具体的には100J/m2K以上が必要であった。一方、熱容量が大きすぎると、像加熱部材表面の温度の上がり方が遅くなる。そのため、オンデマンド性に劣ると共に、定着に必要な熱量は増大してしまう。こうした弊害を無くすためには、蓄熱層の熱容量は600J/m2K以下とする必要があった。したがって、蓄熱層の熱量は100J/m2K以上600J/m2K以下とすることが重要である。熱容量が100J/m2K未満になると、放熱量が多くなると共に記録材に熱を奪われ易くなる。そのため、像加熱部材に付与する熱エネルギーは増大してしまう。600J/m2Kを超えると像加熱部材の温度上昇速度が低下し、ウォームアップタイムが延びるなどしてオンデマンド性に劣るため好ましくない。
以下に本発明の像加熱部材(以下、定着ローラ、とも記載する)について、好ましい形態を説明する。
図1に示すように、本発明の像加熱部材30は、芯金31の外周に、熱伝導率が低く、弾性を持つ弾性層(以下、断熱弾性層とも記載する)32を形成する。断熱弾性層32の外側には蓄熱層33が形成され、更に外側に離型層(不図示)を形成したものである。
本発明の像加熱部材の芯金31は、例えば、アルミや鉄、SUM材等の金属材料、セラミック等の他の剛体材料によりより形成される。芯金31は、断熱弾性層32によって定着ローラ表面から断熱される為、低熱伝導性、低熱容量であっても良い。また、その形態は中空の筒状であっても良い。
芯金31の外周に形成する断熱弾性層32は低熱伝導化したゴム層であり、熱伝導率は蓄熱層33より小さくなるよう配合調整される。本発明において、弾性層は熱伝導率が0.15W/mK以下であると、蓄熱層の熱量は芯金に逃げにくく、熱量のロスがなくなるため好ましい。
断熱弾性層32の厚さは特に制限されないが、有効な断熱性を有し、かつ熱容量が大きくなりすぎず、小径の定着ローラ30を構成するためには、1.0mm以上5.0mm以下、好ましくは2.0mm以上4.0mm以下とするのが良い。
断熱弾性層は、耐久性や断熱性の観点から、オルガノポリシロキサン組成物に中空フィラーを配合した配合物、あるいは、オルガノポリシロキサン組成物に吸水性ポリマーおよび水を配合した配合物を形成後に焼成および硬化して形成されたものが好ましい。
断熱弾性層32の形成方法を以下に例示する。
例えば、シリコーンゴム組成物であり、熱硬化性オルガノポリシロキサン組成物100質量部に平均粒子径が500μm以下の中空フィラーを0.1質量%以上、200.0質量%以下配合してなるシリコーンゴム組成物を加熱硬化して形成されるバルーンゴム層とする。
ここで、中空フィラーとしては、硬化物内に気体部分を持つことでスポンジゴムのように熱伝導率を低下させるもので、マイクロバルーン材等がある。このような材料としては、ガラスバルーン、シリカバルーン、カーボンバルーン、フェノールバルーン、アクリロニトリルバルーン、塩化ビニリデンバルーン、アルミナバルーン、ジルコニアバルーン、シラスバルーンなど、いかなるものでもかまわない。
上記の中空フィラーの配合量は、熱硬化性オルガノポリシロキサン組成物100質量部に対し0.1質量部以上200.0質量部以下であり、好ましくは0.2質量部以上150.0質量部以下、より好ましくは0.5質量部以上100.0質量部以下である。この場合、中空フィラーの定着ローラ用シリコーンゴム組成物中での含有量が体積比で10%以上80%以下、特に15%以上75%以下となるように配合することが好ましい。体積割合が少なすぎると熱伝導率の低下が不十分となりやすく、また多すぎると成形、配合が難しいだけでなく成形物もゴム弾性のない脆いものとなってしまう恐れがある。
また、例えば、吸水性ポリマーおよび水を添加する方法で、シリコーンゴム断熱層32を形成したものでも良い。かかるシリコーンゴム組成物としては、オルガノポリシロキサン組成物100質量部に吸水性ポリマーを0.1質量部以上50.0質量部以下、水を10質量部以上200質量部以下、その他、白金化合物触媒のような硬化触媒、SiHポリマーのような架橋剤を添加した組成物を形成する。その後、これを加熱成形して断熱弾性層32としても良い。
また、この場合には、以下の3段階あるいは2段階に分けて加熱する。即ち、第一段階では、シリコーンベースポリマーの実質的な硬化が起こらず、しかも水分が蒸発しない100℃以下、好ましくは50℃以上80℃以下のもとで10時間以上30時間以下加熱して型成型する。次いで、第二段階では、該型成形物を120℃以上250℃以下、好ましくは120℃以上180℃以下で1時間から5時間加熱して、含まれている水及び水を含んだ不純物中の水分を蒸発させる。そして、最後の第三段階では、得られた気泡体を180℃以上300℃以下、好ましくは200℃以上250℃以下で2時間から8時間加熱して、硬化を進めることにより、所望の多孔質ゴム状弾性体のシリコーンゴム層を完成させる。
よって、断熱弾性層32は、マイクロバルーン等のバルーンや吸水性ポリマーが含有されたオルガノポリシロキサンを主成分とする液状シリコーン組成物より形成されたものが望ましい。このようにして得られた断熱弾性層は、スポンジシリコーンゴム断熱層や、ソリッドゴム断熱層に比べ、断熱性と耐久性に優れ、また、熱膨張も少ない。
次に、断熱弾性層32の外周に形成する蓄熱層33について説明する。蓄熱層33は、例えばシリコーンゴム、あるいはフッ素ゴムなどに、粉末状の熱伝導フィラー(以下、単に「フィラー」とも呼ぶ)を混入させた層を断熱弾性層32の上に形成したソリッドゴム層が好適な形態として挙げられる。蓄熱層が上記のような形態であると、離型層を介して蓄熱層に付与された熱量が素早く蓄熱層全体に拡散するため、好ましい。
該蓄熱層の熱伝導率は、断熱弾性層32よりも高いことが重要である。好ましくは、一般的なソリッドゴムよりも熱伝導率を高め、0.30W/m・K以上とするのが望ましい。
内部の断熱層の熱伝導率を、蓄熱層の熱伝導率よりも低くすることで、定着ローラ表面から伝達された熱を、表面近傍の蓄熱層に偏在させ、保ちやすくする。また、蓄熱層の熱伝導率を高くする事で、蓄熱層での熱の吸収と放出を迅速に行うことができる。
蓄熱層33の厚みは20μm以上500μm以下で形成されていることが望ましい。
フィラーを分散し、高熱容量化された蓄熱層33は、弾性は持つものの硬度が高くなる。そのため、蓄熱層が厚すぎると定着ローラ表面も硬くなり、記録材への密着性が悪くなる。そのため均一なトナー画像定着を行うことが難しくなる。このため、蓄熱層33は500μm以下が望ましい。
一方、蓄熱層が薄すぎると、フィラーを均一に分散し、均一な熱容量とする事が難しくなり、定着ムラなどの原因となる。よって、蓄熱層33は20μm以上が好ましい。
本発明で用いる熱伝導フィラーは、熱伝導率が5.0W/mK以上のものである。また、フィラーの形状はどのような形状のものであっても良い。本発明においては、熱伝導フィラーはAl及び/又はZnを含有するものである。これらは熱伝達率が高く、定着温度を下げられる傾向があるため必須である。本発明で用いることの出来る熱伝導フィラーとしては、アルミナ、酸化亜鉛、チッ化アルミ、チッ化亜鉛、金属アルミ、金属亜鉛、アルミ含有合金、亜鉛含有合金等の粉末状の熱伝導フィラーが挙げられる。
熱伝導フィラーの混入量は10質量%以上50質量%以下であるとオンデマンド性が高まると共に、熱を保持しやすくなる為に好ましい。ここで、熱伝導フィラーの混入量が10質量%未満であると、蓄熱層の熱量を本発明で必要としている熱量に到達できない。また、50質量%を超えると、蓄熱層の熱容量が過剰になるため、昇温速度が低下することでウォームアップタイムが延びる傾向が見られる。
本発明の蓄熱層の製造方法としては、任意の手法を用いることが出来る。例えば、ディッピング塗工、スプレー塗工、および円柱状の芯金周囲に円筒形状の塗工ヘッドを用いて液状樹脂を被覆形成するリング塗工などの方法が挙げられる。特に、リング塗工は蓄熱層を均一に塗布出来るため、好ましく用いることが出来る。
図2にリング塗工装置の例を示す。架台1の上に垂直にコラム2が取り付けられ、さらに架台1とコラム2の上部に精密ボールネジ3が垂直に取り付けられている。また、精密ボールネジ3と平行に2本のリニアガイド14がコラム2に取り付けている。LMガイド4はリニアガイド14及び精密ボールネジ3と連結し、サーボモータ5よりプーリ6を介して回転運動が伝達され昇降できるようになっている。コラム2には、円筒状の芯体15の外周面に塗布液を吐出するリング形状の塗工ヘッド8が取り付けられている。さらにLMガイド4上にブラケット7が取り付けられている。このブラケット7には芯体15を保持し固定するワーク下保持具9が垂直に取り付けられ、また逆側の芯体15を保持するワーク上保持具10の中心軸がブラケット7の上部に取り付けられ、ワーク上保持具はワーク下保持具9に対向して同芯になるように配置して芯体15を保持している。
リング形状の塗工ヘッド8の中心軸は、ワーク下保持具9とワーク上保持具10の移動方向と平行となるように支持されている。また、ワーク下保持具9及びワーク上保持具10が昇降移動時において、塗工ヘッド8の内側に開口した環状スリットになっている吐出口の中心軸と、ワーク下保持具9及びワーク上保持具10の中心軸が同芯になるように調節してある。このような構成により塗工ヘッド8の環状スリットになっている吐出口の中心軸を芯体15の中心軸に同芯に合わせることができ、リング形状の塗工ヘッドの内周面と芯体15の外周面との間に均一な隙間が形成される。
また、塗布液の供給口11は、塗布液搬送用の配管12を介して材料供給弁13に接続されている。材料供給弁13は、その手前に混合ミキサー、材料供給ポンプ、材料定量吐出装置、材料タンク等を備え、定量(単位時間当たりの量が一定)の塗布液を吐出可能なものとしている。
芯体の外周上に形成された未加硫の液状ゴムを半硬化する工程と、半硬化した液状ゴム及び塗布積層後の樹脂液の硬化接着工程では、周方向の温度を一定に保つためにゴムローラを回転させながら加熱する方法を用いることが好ましい。熱源としては、ゴムローラに非接触で加熱できる遠赤外セラミックヒータ、近赤外線ヒータ、ランプ加熱ヒータ、UVヒータ、マイクロヒータ等が望ましい。
これらの熱源は、ゴムローラの両端部から中央部に向かって連続的に加熱温度を変化させるために、ゴムローラの長手方向に一定間隔で複数配置される。熱源の数はゴムローラの長手方向における加熱温度の変化パターンに合わせて適宜に決定されることになるが、その数が多いほど、ゴムローラの長手方向における温度変化を微妙にかつ正確に制御することが可能となる。
本発明の像加熱部材は、蓄熱層33の更に外周に離型層(不図示)を形成するものである。離型層は、シリコーンゴム、フッ素ゴム、フッ素樹脂等で形成されることが多い。本発明においては、フッ素ゴムを主成分とするソリッドゴム層であると、トナーとの離型性が高く、且つ離型層表面の硬さが安定するため、好ましい。なお、ここで言う「主成分」とは離型層全成分に対して70質量%以上占める成分を指しており、70質量%以上であれば上述の効果が得られる。
離型層の形成方法としては蓄熱層同様、ディスパージョンによるディッピング塗工、スプレー塗工、リング塗工等、任意の方法が用いられる。中でもリング塗工は、離型層形成時において蓄熱層の表面近傍にフィラーを偏在させることができるので、好ましく用いることが出来る。
また、本発明の像加熱部材では、像加熱部材表面の粗さを制御することも重要である。具体的には、像加熱部材の表面粗さRzが1.0μm以上10.0μm以下であることが好ましい。Rzが1.0μm以上10.0μm以下であると像加熱部材の表面の比表面積が大きくなり、外側からの加熱の際に効率的に像加熱部材に蓄熱することができる。また、適度に凹凸が存在しているため、トナーとの離型性を向上することができる。
像加熱部材の表面のRzが1.0μm未満であると、トナーと像加熱部材との接触面積が大きいために離型性が低下し、例え本発明のD1、X100/D、X20/Dを有するトナーであっても、低温オフセットが発生しやすくなる傾向がある。一方、像加熱部材の表面のRzが10.0μmより大きくなると、像加熱部材の表面の凹凸が大きくなりすぎる。それにより、トナーに均一に熱が加わりにくくなることで熱量のロスが増大するため、定着温度が高まる傾向が見られる。
Rzの制御の方法として、表面を機械的に研磨する方法を挙げることができる。粗面化方法としては、研磨粒子や、研磨粒子をテープ及び紙等に接着させ、それを押し当てることで研磨する等の公知の研磨方法を使用することができる。また、研磨粒子を表面にぶつけるサンドブラスト法なども用いることができる。中でも、研磨ペーパーを用いて研磨するとRzの制御が容易であり、好ましく用いることが出来る。
また、本発明の像加熱部材は、適度な硬さを持つことが好ましい。像加熱部材が適度な硬さを持つと、トナーとの離型性が高まる。具体的には、加熱部材のマイクロ硬度が30°以上68°以下であると好ましい。30°未満であると、定着ニップ部の圧力を所望の値にした際に、ニップ面積が広がる傾向になる。そのため、記録材と像加熱部材の接点が増加することに伴ってトナーが像加熱部材に保持されやすくなり、例え本発明のD1、X100/D、X20/Dを有するトナーであっても、低温オフセットが悪化する傾向がある。68°を超えると、像加熱部材の硬さが過剰になり、定着ニップが狭まることからトナーへの熱付与が不十分になりやすい。したがって、トナーを定着するために大きな熱量が必要となる傾向が見られる。
本発明の像加熱部材は、ヒータから熱量を受け取った後速やかに記録材へ熱付与できる構成であると良い。したがって、定着ローラ30は小径であることが望ましく、外径5mm以上、20mm以下の範囲が望ましい。
次に、本発明の画像形成方法を実施するための画像形成装置について説明する。
(1)画像形成装置例
図3は、本実施形態の画像形成装置を好適に示す一例たるレーザビームプリンタ(以下、プリンタと略称する)1の概略構成を示す模式的断面図である。
このプリンタ1には、プリンタ本体の外部に設けられたホストコンピュータ等の画像情報提供装置(図示せず)から画像情報が入力する。そして、プリンタ1は、入力した画像情報に応じた画像をシート状の記録材(記録媒体)Pに形成して記録するという一連の画像形成プロセスを公知の電子写真方式に則り行う。
プリンタ1は、潜像担持体としてのドラム状の回転自在な電子写真感光体(以下、感光体と略記する)2と、一次帯電機構8と、現像装置3と、を保持するプロセスカートリッジ4を備えている。また、画像情報提供装置から入力した画像情報に応じた露光処理工程により感光体2の外周面に前記画像情報に応じた静電潜像を形成するレーザスキャナユニット(以下、スキャナと略記する)5を備えている。また、記録材Pに画像を転写する処理を施すロール状の回転自在な転写体6と、画像転写処理済みの記録材Pに加熱及び加圧により定着処理を施す像加熱装置としての定着装置7を備えている。
プロセスカートリッジ4はプリンタ本体に対して着脱自在に支持されている。感光体2の修理及び現像装置3への現像剤補給等のメンテナンスが必要であるときには、前記本体にて開閉自在に支持されているカバー9を開いたのち、プロセスカートリッジ4ごと交換することによりメンテナンスの迅速化及び簡易化等が図られている。
一次帯電機構8は、スキャナ5による露光処理工程前において規定のバイアスを印加されることにより、回転している感光体2の外周面を規定電位分布に帯電せしめるようになっている。
スキャナ5は、画像情報提供装置からの画像情報に応じたレーザLaを出力する。そして、そのレーザLaにより、プロセスカートリッジ本体に設けられた窓4aを通して、感光体2の帯電処理済みの外周面が走査及び露光される。これにより、前記画像情報に応じた静電潜像が感光体2の外周面に形成されようになっている。
次に、プリンタ1における一連の画像形成プロセスに関して説明する。プリンタ本体に設けられたスタートボタン等(図示せず)が押されるなどにより、感光体2の回転駆動が開始される。感光体2は矢印K1の時計方向に規定の周速度にて回転駆動される。これと共に、規定のバイアスが印加されている一次帯電機構8により感光体2の外周面が規定の電位分布に帯電せしめられる。
次に、画像情報提供装置からの画像情報に応じて感光体2の外周面の帯電処理済みの部位がスキャナ5により走査及び露光される。これにより、前記画像情報に応じた静電潜像が感光体2の前記部位に形成される。その静電潜像が現像装置3の現像剤により現像されてトナー画像として可視像化される。
一方、所定のタイミングにて駆動された給紙ローラ12により給紙カセット11から記録材Pが給送される。給紙カセット11から給送された記録材Pはレジストローラ対12aにより所定の制御タイミングにて感光体2と転写体6との間に形成された転写ニップ部へと給送され、転写ニップ部を挟持搬送されていく。この挟持搬送過程において感光体2側の前記トナー画像が転写体6により記録材P側に順次に転写される。
そして、転写処理済みの記録材Pは、定着装置7によりトナー画像の加熱定着処理が施されたのち、プリンタ本体にて回転自在に支持された定着排紙部10を経由してプリンタ排紙部13により機外へと排紙される。排紙された記録材Pは、プリンタ本体の上面に取り付けられたトレイ14上に積載される。以上により、一連の画像形成プロセスが終了することとなる。
(2)定着装置7
図4は本実施形態を好適に示す一例たる外部加熱方式の像加熱装置である定着装置7の模式的断面図である。
30は記録材上の画像をニップ部にて加熱する回転可能な加熱部材としての定着ローラ(定着用回転体)である。63は加圧部材としての回転可能な加圧ローラである。なお、加圧部材63は固定されたパッドであっても良い。
定着ローラ30と加圧ローラ63は、上下にほぼ並行に配列され、且つ端部の加圧バネ(図示せず)により圧接されている。これにより、両者間に記録材搬送方向において所定幅の定着ニップ部(圧接ニップ部)Ntを形成させている。
定着ローラ30は駆動手段(図示せず)によって矢印の時計方向に規定の周速度で回転駆動される。加圧ローラ63は定着ローラ30の回転に従動して回転する。なお、定着ローラ30と、加圧ローラ63を別途、回転駆動しても良い。
21は定着ローラ30をその外側から加熱する加熱手段(加熱源)である。本実施例において、この加熱手段21は板状ヒータ(以下、ヒータと略記する)である。このヒータ21は、ヒータホルダ24に固定して保持させて、定着ローラ30上側に並行に配列してある。そして、ホルダ24を加圧機構(図示せず)により一定圧力で加圧し、ヒータ21が定着ローラ30の上面に所定の圧力で圧接するように調整している。ヒータ21は定着ローラ30に対して常に同じ部位で接触して、定着ローラ30との間に定着ローラ30の回転方向において所定幅の加熱ニップ部Nhを形成している。
回転する定着ローラ30は、加熱ニップ部Nhにおいてヒータ21により外側から加熱されて、定着ニップ部Ntにて記録材P上の未定着トナー画像Tを定着するのに必要・十分な熱量が与えられる。
記録材Pは前述したように画像形成部にてトナー画像Tが形成されたあと、定着装置7へ送られ、定着ローラ30と加圧ローラ63とで形成される定着ニップ部Ntへ導入されて挟持搬送される。記録材Pはこの定着ニップ部Ntを挟持搬送されていく過程において、定着ローラ30で加熱され、またニップ部圧を受けて、未定着トナー画像Tが記録材P面に永久固着画像として熱圧定着される。
以上述べてきたように、本発明の像加熱部材では、像加熱部材を3層構造とした上で(A)表面の熱伝導フィラー量調整、(B)熱伝導フィラーの熱伝導率調整、(C)蓄熱層の熱容量制御が重要であった。(A)(B)(C)を満たす像加熱部材と以下に述べるトナーとの組み合わせによって、本発明の目的は達成し得る。
次に該画像形成方法及び定着方法に用いられるトナーについて説明する。
本発明のトナーは、結着樹脂、着色剤及びワックス成分を少なくとも含有するトナー粒子と、無機微粉体とを有するトナーであって、
上記トナーの個数平均粒径D1が、3.0μm以上8.0μm以下であり、
上記トナーに対する微小圧縮試験において、測定するトナーの粒子径をD(μm)、トナーの1粒子に負荷速度9.8×10-5N/secで荷重9.8×10-4Nを負荷したときの最大変位量をX100(μm)、荷重2.0×10-4N時の変位量をX20(μm)としたとき、下記式(1)から(3)を満たすことを特徴とする。
(1)D=D1±0.20
(2)0.100≦X100/D≦0.900
(好ましくは、0.400≦X100/D≦0.850)
(3)0.010≦X20/D≦0.080
(好ましくは、0.015≦X20/D≦0.060)
本発明のトナーは、個数平均粒径(D1)が3.00μm以上8.00μm以下である。
トナーの個数平均粒径が8.00μmを超えると、静電荷像を現像するトナー粒子が大きくなるために、高解像度で高精細な潜像に対して忠実な現像が行われにくく、また、静電的な転写を行うとトナーが飛び散りやすくなる。また、個数平均粒径が3.00μm未満のトナーは、例え本発明のX100/D、X20/Dを有するトナーであっても、クーロン力に対してトナー間や現像ローラ間等との鏡像力やファンデルワールス力が大きくなり、転写時の飛び散りや、高解像度で高精細な潜像に対して忠実な現像が行われにくくなる。
トナーの粒度を測定するには、例えばコールターカウンターを使用する方法を挙げることができる。
<トナーの個数平均粒径測定>
電解質溶液100乃至150mlに界面活性剤(アルキルベンゼンスルホン酸塩)を0.1乃至5ml添加し、これに測定試料を2乃至20mg添加する。試料を懸濁した電解液を超音波分散器で1〜3分間分散処理して、コールターカウンターマルチサイザーにより100μmのアパーチャーを用いて体積を基準として2乃至40μmの粒度分布を測定し、トナーの個数平均粒径を算出するものとする。
トナーに対する微小圧縮試験において、測定するトナーの粒子径をD(μm)、トナーの1粒子に負荷速度9.8×10-5N/secで荷重9.8×10-4Nを負荷したときの最大変位量X100が0.100≦X100/D≦0.900であるということは、この時のトナー粒径の変形率が10.0乃至90.0%であることを意味する。また、荷重2.0×10-4N時の変位量X20が0.010≦X20/D≦0.080であるということは、この時のトナー粒径の変形率が1.0乃至8.0%であることを意味する。即ち、上記特性を有する本発明のトナーは、比較的小さな負荷ではほとんど変形せず形状を維持する為、現像装置内で受ける程度のストレスでは、トナーが劣化することが抑制され、長期にわたって安定した現像性を維持できる。一方、現像装置内で受けるストレスより大きい比較的大きな負荷、例えば接触転写のように圧がかかりトナー粒子が変形し得る転写工程においては、トナー粒子の変形率が高い為、転写材への接触面積が増大し転写されやすくなる。さらに、定着工程ではトナーは変形しやすく、トナーと定着部との接触面が増大するので熱伝達性が良好となり、本発明に用いられる像加熱装置に対して、優れた定着性をトナーは発現する。
特に、上記X100/D、X20/Dを満たす後述する懸濁重合法等により得られるコア・シェル構造を有するトナーにおいては、コア部を構成する結着樹脂及び/またはワックス成分が軟らかい物性を有するものであっても、シェル部を構成する結着樹脂が適度な硬さ及び/または厚さを有しているものである場合、優れた耐ストレス性、転写性と定着時における耐オフセット性を相乗的に兼ね備えたものとなる。
すなわち、X100/Dが0.100より小さい場合は、転写性、並びに低温定着性が十分に発現しない。例えば、トナーの変形性が低いと、トナーと定着部の接触面が十分ではなく、定着ローラから、トナーへの熱伝導性が悪い。そのため、トナーが定着ローラに低温オフセットしやすい。0.900より大きい場合は、定着時における耐高温オフセット性が低下する。本発明に用いられる像加熱装置において、トナーの高温オフセットが生じる、あるいは低温定着性が十分に発現されず低温オフセットがたとえわずかでも生じると、定着ローラにオフセットしたトナーが、本発明に用いられる像加熱装置の加熱源を汚染しやすくなる。特にこのオフセットによる加熱源の汚染は、像加熱装置の離型層に熱伝導フィラーが3.00質量%より多い場合には、顕著となる。その結果長期使用時において、加熱源が定着ローラに安定した熱を付与することができなくなり、安定かつ高精細な画像を得ることができない。
20/Dが0.010より小さい場合は、トナーの変形性が低い為、僅かな負荷によってトナー粒子が欠けてしまう恐れがある。その結果、定着時に、欠けたトナー、特にワックス成分が少ないトナー片が、定着ローラ表面にオフセットしてしまい、加熱源がトナーにより徐々に汚染されやすくなる。その結果長期使用時において、加熱源が定着ローラに安定した熱を付与することができなくなり、安定かつ高精細な画像を得ることができない。
20/Dが0.080より大きい場合は、現像装置内で受けるストレスによってトナー粒子が変形してしまい、現像性が低下する傾向にある。
本発明における微小圧縮試験は、(株)エリオニクス社製 超微小硬度計ENT1100を用いた。本装置は、圧子を試料へ押し込んだときの、圧子への負荷荷重と押し込み深さを負荷時、除荷時にわたり連続的に測定することにより、負荷荷重−押し込み深さ曲線を得、この曲線から微小圧縮硬度・弾性率等のデータを得るものである。該装置を用いた測定方法は、(株)エリオニクス発行のENT1100操作マニュアルに記載されているが、具体的には以下の通りである。
使用圧子は20μm×20μm四方の平圧子を用い、測定環境は温度27℃、湿度60%RHで測定した。最大荷重を9.8×10-4Nに設定し、9.8×10-5N/secのスピードで荷重を掛けた。最大荷重(9.8×10-4N)に到達後、0.1secの間、その荷重で放置した。該最大荷重到達後0.1sec経過時に変位している量を最大変位量X100(μm)とした。
一方、最大荷重を9.8×10-4Nに設定し、9.8×10-5N/secのスピードで荷重を掛け、荷重が2.0×10-4Nに達したときの変位量をX20(μm)とした。
実際の測定はセラミックセル上にトナーを塗布し、トナーがセル上に分散するように微小なエアーを吹き付ける。そのセルを装置にセットして測定する。
測定は、装置付帯の顕微鏡を覗きながら測定用画面(横幅:160μm 縦幅:120μm)に無機微粉体を有するトナー粒子が1粒子で存在しているもの選択する。変位量の誤差を極力無くすため、トナー粒子径がD1(個数平均粒子径)=D±0.20μmを満たすものを選択して測定する。なお、測定用画面から任意の無機微粉体を有するトナー粒子を選択するが、トナー粒子径の測定手段は超微小硬度計ENT1100付帯のソフトを用いてトナー粒子の長径と短径を測定し、それらから求められるアスペクト比[(長径+短径)/2]をD(μm)とした。
測定に際しては、トナー粒子径が上記条件をみたす、無機微粉体を有する任意のトナー粒子100個を選んで最大変位量X100を測定し、得られた最大変位量X100(μm)の最大値、及び最小値から大きい順番又は小さい順番にそれぞれ10個のトナー粒子を除いた残り80個のトナー粒子をデータとして使用した。該選択されたトナー粒子80個についてそれぞれ最大変位量X100(μm)をトナー粒子径D(μm)で除し、80個のX100/Dの算術平均値を求め、X100/Dとした。X20/D、及びY/X100も同様に求めた。
本発明のトナー(実施例のトナー1)の微小圧縮試験における荷重−変位曲線を表したグラフを図5に示す。
上記微小圧縮試験に関する上記種々の物性は、トナー粒子の製造方法や製造条件、ワックス成分、結着樹脂の物性等を調節することで満たすことが可能である。
本発明のトナーは、トナーのフローテスター昇温法による100℃の粘度が15000Pa・s以上65000Pa・s以下であることが好ましく、より好ましくは16000Pa・s以上45000Pa・s以下である。また、上記トナーに対する微小圧縮試験において、トナーの1粒子に負荷速度9.8×10-5N/secで荷重9.8×10-4Nを負荷したときに、荷重−変位曲線が屈曲点を有することが好ましい。更に、該屈曲点は、トナーが2.0×10-4N以上8.5×10-4N以下の荷重を受けたときに生じるものであることが好ましく、2.0×10-4N以上5.9×10-4N以下の荷重を受けたときに生じるものであることが更に好ましい。
本発明における「屈曲点」とは、図5で示すように、微小圧縮試験により得られた荷重−変位曲線において、グラフの傾き(「変位量の増加量」に対する「荷重の増加量」)が小さくなるポイントである。
具体的には、本発明における「屈曲点」は以下のように定めることが出来る。トナーの微小圧縮試験により得られた荷重−変位曲線において、変位量x(μm)のときのトナーに掛かる荷重をP(x)(N/sec)とする。トナーの1粒子に負荷する最大荷重が9.8×10-4Nであるとき、グラフ上の変位量xの点と(x−0.2)の点を結んだ直線の傾きと、変位量xの点と(x+0.2)の点を結んだ直線の傾きの比は、下記式(4)のように関数f(x)で表すことができる。
Figure 2010091717
本発明のトナーは、Pが9.8×10-4Nに達するまでに、f(x)が最小値f(x)minを有する。このとき、f(x)min≦0.5を満たし、f(x)minとなる変位量x時のグラフ上の点が本発明における「屈曲点」となる。すなわち、屈曲点までのグラフの傾き(「変位量の増加量」に対する「荷重の増加量」)より、屈曲点以降の傾きの方が小さいことを意味している。
本発明のようにフローテスター昇温法で測定される粘度が低いトナーは、低温定着性や画像の光沢性に優位であるが、一方で耐ストレス性が低下することが一般的である。しかしながら、本発明のトナーは、トナーの微小圧縮試験において荷重−変位曲線が屈曲点を有しており、該屈曲点までの「傾きの大きい荷重−変位曲線部」は比較的小さい負荷には耐え、該屈曲点以降の「傾きの小さい荷重−変位曲線部」は負荷に対して変形しやすいことを意味している。つまり、本発明のトナーは、低温定着性や画像の光沢性を満足しつつ、現像装置内で受けるストレスのような比較的小さい負荷には耐えることができる。屈曲点が2.0×10-4Nより小さい荷重を受けたときに生じると、現像装置内で受けるストレスによるトナーの変形性は高くなり耐ストレス性が低下しやすくなる。
屈曲点が8.5×10-4Nより大きい荷重を受けたときに生じると、比較的大きい負荷を受けた場合のトナーの変形性が低くなり転写性や画像の光沢性が低下する。また、定着時にトナー内部からワックス成分がトナー表面に瞬時に染み出さなくなり、トナーが定着ローラ表面に低温オフセットしてしまい、加熱源がトナーにより汚染しやすくなりやすい。その結果、加熱源が定着ローラに安定した熱を付与することができなくなり、長期使用時において、安定かつ高精細な画像を得ることがある。
上記フローテスター昇温法による100℃の粘度、及び「屈曲点」に関する上記種々の物性は、それぞれトナー粒子の製造方法や製造条件、及びワックス成分、結着樹脂の物性等を調節することで満たすことが可能である。
本発明のトナーは、トナーのテトラヒドロフラン(THF)可溶分のゲルパーミエーションクロマトグラフィー(GPC)により測定される分子量分布において、メインピークの分子量(M1)が10,000乃至80,000であり、該分子量分布のチャートにおいてメインピークの分子量(M1)の高さをH(M1)、分子量4,000の高さをH(4,000)としたとき、H(4,000):H(M1)=(0.100乃至0.950):1.000を満足していることが好ましい。即ち、分子量4,000前後の領域にある成分を含有していることが定着性の観点から好ましい。H(4,000)がH(M1)に対して0.100未満の場合は、低温定着性が低下し好ましくない。H(4,000)がH(M1)に対して0.950を超える場合には、耐高温オフセット性が低下して好ましくない。
本発明に係るトナーに使用可能なワックス成分としては、以下のものが挙げられる。パラフィンワックス、マイクロクリスタリンワックス、ペトロラクタムの如き石油系ワックス及びその誘導体、モンタンワックス及びその誘導体、フィッシャートロプシュ法による炭化水素ワックス及びその誘導体、ポリエチレン、ポリプロピレンの如きポリオレフィンワックス及びその誘導体、カルナバワックス、キャンデリラワックスの如き天然ワックス及びその誘導体(誘導体には酸化物や、ビニル系モノマーとのブロック共重合物、グラフト変性物)、高級脂肪族アルコール、ステアリン酸、パルミチン酸等の脂肪酸、酸アミドワックス、エステルワックス、ケトン、硬化ヒマシ油及びその誘導体、植物系ワックス、動物性ワックス、シリコ−ンワックス。これらワックス成分は単独で又は2種以上を併せて用いられる。
本発明に用いられるワックス成分の含有量は、トナーの全量に対して2.0質量%以上17.0質量%以下であることが好ましく、更に好ましくは5.0質量%以上16.0質量%以下である。ワックス成分の含有量が2.0質量%より小さいと、例え離型層を有する定着ローラを用いたとしても、定着時の離型性効果が十分に発揮できず、トナーの一部が定着ローラにオフセットし、像加熱装置の加熱源を汚染する場合がある。一方、17.0質量%より大きいと、現像装置内において過剰な摩擦の如き機械的ストレスを受けた場合、ワックス成分がトナー粒子表面に偏在しやすくなりカブリや融着といった弊害を生じやすくなる。
更に、上記ワックス成分は、示差走査熱量測定(DSC)装置で測定される昇温時のDSC曲線において、最大吸熱ピーク温度が60℃以上120℃以下の範囲内であることが好ましく、より好ましくは62℃以上110℃以下、更に好ましくは65℃以上90℃以下であるのが良い。最大吸熱ピーク温度が60℃未満の場合は、トナーの保存性及びカブリの如き現像性が低下する。一方、最大吸熱ピーク温度が120℃を超える場合は、トナーに与える可塑効果が少なく、定着時にトナーの一部が定着ローラにオフセットしやすくなり、像加熱装置の加熱源を汚染する場合がある。
本発明に用いられるワックス成分としては、炭化水素系ワックスを含むことが好ましい。その他のワックス成分として、以下のものが挙げられる。アミドワックス、高級脂肪酸、長鎖アルコール、ケトンワックス、エステルワックス及びこれらのグラフト化合物、ブロック化合物の如き誘導体。必要に応じて2種以上のワックス成分を併用しても良い。
本発明に用いられる炭化水素系ワックスとしては、以下のものが挙げられる。パラフィンワックス、マイクロクリスタリンワックス、ペトロラクタムの如き石油系ワックス及びその誘導体;フィッシャートロプシュ法によるフィッシャートロプシュワックス及びその誘導体;ポリエチレンワックス、ポリプロピレンワックスの如きポリオレフィンワックス及びその誘導体。誘導体には酸化物や、ビニルモノマーとのブロック共重合物、グラフト変性物も含まれる。更に、硬化ヒマシ油及びその誘導体、植物ワックス、動物ワックスが挙げられる。これらワックス成分は単独で又は2種以上を併せて用いられる。
これらの中でも、フィッシャートロプシュ法による炭化水素系ワックスを使用した場合、特に接触現像における現像性を長期にわたり良好に維持した上で、定着ローラへの耐オフセット性を良好に保ち得る。なお、これらの炭化水素系ワックスには、トナーの帯電性に影響を与えない範囲で酸化防止剤が添加されていてもよい。
本発明に用いられるトナー粒子は、どのような手法を用いて製造されても構わないが、懸濁重合法、乳化重合法、懸濁造粒法の如き、水系媒体中で造粒する製造法によって製造されることが好ましい。一般的な粉砕法により製造されるトナー粒子の場合、ワックス成分を多量にトナー粒子に添加することは、技術的難易度が非常に高い。水系媒体中でトナー粒子を造粒する製造法は、ワックス成分を多量にトナー粒子に添加しても、トナー粒子表面にワックス成分を存在させず、内包化することができる。そのため、本発明に用いる像加熱装置は、外部加熱方式であるため、定着ローラにトナーがオフセットし、加熱源を汚染することを極力防止することができる。その結果、長期にわたって、安定かつ高精細な画像をえることができる。これら製造法の中でも懸濁重合法はワックス成分のトナー粒子中への内包化による長期現像安定性、及び、製造時に溶剤を使用しないため製造コスト面から最も好ましい製造方法の一つである。
以下、本発明に用いられるトナー粒子を得る上で最も好適な懸濁重合法を例示して、該トナー粒子の製造方法を説明する。結着樹脂、着色剤、ワックス成分及び必要に応じた他の添加物を、ホモジナイザー、ボールミル、コロイドミル、超音波分散機の如き分散機に依って均一に溶解または分散させ、これに重合開始剤を溶解し、重合性単量体組成物を調製する。次に、該重合性単量体組成物を分散安定剤含有の水系媒体中に懸濁して重合を行うことによってトナー粒子は製造される。上記重合開始剤は、重合性単量体中に他の添加剤を添加する時に同時に加えても良いし、水系媒体中に懸濁する直前に混合しても良い。また、造粒直後、重合反応を開始する前に重合性単量体あるいは溶媒に溶解した重合開始剤を加えることもできる。
懸濁重合法により得られるトナー粒子は、ワックス成分を内包化している完全カプセル構造を有している。本発明のトナーは、微小圧縮硬度が図5で示されるような荷重−変位曲線で屈曲点を有することが好ましい。この屈曲点は、トナー粒子の内部構造が関係し、該屈曲点までの傾きの大きい「荷重−変位曲線部」はシェル部、該屈曲点以降の傾きの小さい「荷重−変位曲線部」はコア部の変位を表していると推察される。更に、本発明のトナーにおいて、結着樹脂の種類、結着樹脂の分子量分布、結着樹脂の粘度、結着樹脂のガラス転移温度(Tg)、コア部とシェル部の結着樹脂のガラス転移温度(Tg)差、ワックス成分の種類、ワックス成分の含有量などを好ましいものとすることで、微小圧縮試験時のシェル部・コア部の変位を最適化することができ、本発明のトナーの特徴である微小圧縮硬度を最適化することができる。
本発明に用いられる結着樹脂としては、一般的に用いられているスチレン−アクリル共重合体、スチレン−メタクリル共重合体、エポキシ樹脂、スチレン−ブタジエン共重合体が挙げられる。重合性単量体としては、ラジカル重合が可能なビニル系重合性単量体を用いることが可能である。該ビニル系重合性単量体としては、単官能性重合性単量体或いは多官能性重合性単量体を使用することができる。
結着樹脂を生成するための重合性単量体としては、以下のものが挙げられる。スチレン;o−(m−,p−)メチルスチレン、m−(p−)エチルスチレンの如きスチレン系単量体;アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸プロピル、メタクリル酸プロピル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸オクチル、メタクリル酸オクチル、アクリル酸ドデシル、メタクリル酸ドデシル、アクリル酸ステアリル、メタクリル酸ステアリル、アクリル酸ベヘニル、メタクリル酸ベヘニル、アクリル酸2−エチルヘキシル、メタクリル酸2−エチルヘキシル、アクリル酸ジメチルアミノエチル、メタクリル酸ジメチルアミノエチル、アクリル酸ジエチルアミノエチル、メタクリル酸ジエチルアミノエチルの如きアクリル酸エステル系単量体或いはメタクリル酸エステル系単量体;ブタジエン、イソプレン、シクロヘキセン、アクリロニトリル、メタクリロニトリル、アクリル酸アミド、メタクリル酸アミドの如きエン系単量体。
これらの重合性単量体は、単独、または、一般的には出版物ポリマーハンドブック第2版III−p139〜192(John Wiley&Sons社製)に記載の理論ガラス転移温度(Tg)が、40℃以上75℃以下を示すように重合性単量体を適宜混合して用いられる。理論ガラス転移温度が40℃未満の場合にはトナーの保存安定性や耐久安定性の面から問題が生じやすく、一方75℃を超える場合は、低温定着性が低下する。
また、本発明のトナーに使用するトナー粒子を製造する場合においては、トナーのTHF可溶分が好ましい分子量分布を有するために、低分子量ポリマーを添加することが好ましい。低分子量ポリマーは、懸濁重合法によってトナー粒子を製造する場合には、重合性単量体組成物中に添加することができる。該低分子量ポリマーとしては、ゲルパーミエーションクロマトグラフィー(GPC)により測定される重量平均分子量(Mw)が2,000以上5,000以下の範囲で、且つ、Mw/Mnが4.5未満、好ましくは3.0未満のものが好ましい。
低分子量ポリマーの例としては、スチレン又はスチレン誘導体を重合して得られた単重合体又は共重合体であり、低分子量ポリスチレン、低分子量スチレン−アクリル酸エステル共重合体、低分子量スチレン−アクリル共重合体が挙げられる。
上記低分子量ポリマーの好ましい添加量は、結着樹脂100質量部に対して1質量部以上50質量部以下であり、より好ましくは5質量部以上30質量部以下である。
本発明において、上述の結着樹脂と共にポリエステル樹脂やポリカーボネート樹脂の如きカルボキシル基を有する極性樹脂を併用することができる。
例えば、懸濁重合法により直接トナー粒子を製造する場合には、分散工程から重合工程に至る重合反応時に極性樹脂を添加すると、トナー粒子となる重合性単量体組成物と水系分散媒体の呈する極性のバランスに応じて、添加した極性樹脂がトナー粒子の表面に薄層を形成したり、トナー粒子表面から中心に向け傾斜性をもって存在するように、極性樹脂の存在状態を制御することができる。即ち、極性樹脂を添加することは、コアシェル構造のシェル部を強化することができるので、本発明のトナーの微小圧縮硬度を最適化することに貢献できる。
上記極性樹脂の好ましい添加量は、結着樹脂100質量部に対して1質量部以上25質量部以下であり、より好ましくは2質量部以上15質量部以下である。1質量部未満ではトナー粒子中での極性樹脂の存在状態が不均一となりやすく、一方、25質量部を超えるとトナー粒子の表面に形成される極性樹脂の層が厚くなるために、好ましくない。
本発明に用いられる極性樹脂としては、ポリエステル樹脂、エポキシ樹脂、スチレン−アクリル酸共重合体、スチレン−メタクリル酸共重合体、スチレン−マレイン酸共重合体が挙げられる。特に極性樹脂として、分子量3,000以上10,000以下にメインピークの分子量を有するポリエステル樹脂がトナー粒子の定着性、負摩擦帯電特性を良好にすることができるので好ましい。
また、該ポリエステル樹脂のガラス転移温度(Tgp)と該トナーのガラス転移温度(Tgt)が、下記(4)から(6)を満たすことが好ましい。
(4)60℃≦Tgp≦80℃(好ましくは、62℃≦Tgp≦77℃)
(5)50℃≦Tgt
(6)10℃≦Tgp−Tgt≦30℃(好ましくは、12℃≦Tgp−Tgt≦25℃)
トナーのガラス転移温度(Tgt)が50℃より低い場合、例えシェル部をポリエステル樹脂で強化したとしても、トナーの保存安定性や耐ストレス性が弱くなることがある。
ポリエステル樹脂のガラス転移温度(Tgp)が60℃より低い場合、シェル部の強度が弱く、トナーの保存安定性や耐ストレス性が弱くなることがある。また、本発明のトナーの微小圧縮硬度を満足できない場合がある。ポリエステル樹脂のガラス転移温度(Tgp)が80℃より高い場合、定着性が低下する。
トナーのガラス転移温度は、結着樹脂の主含量であるスチレン−アクリル共重合体、スチレン−メタクリル共重合体、エポキシ樹脂、スチレン−ブタジエン共重合体のTgによるところが大きい。すなわち、コア部の結着樹脂のガラス転移温度(Tg)が反映される部分が大きい。そのため、ポリエステル樹脂のガラス転移温度(Tgp)が、トナーのガラス転移温度(Tgt)よりも高いが、その差が10℃より小さい場合、トナーのコア部とシェル部の硬さの差が小さく、本発明のトナーの微小圧縮硬度を満足できない場合がある。特に、ポリエステル樹脂のガラス転移温度(Tgp)が高い(例えば80℃)場合、トナーのガラス転移温度(Tgt)も高い温度となることから、低温定着性が劣る。そのため、定着時にトナーの一部が定着ローラにオフセットしやすくなり、像加熱装置の加熱源を汚染する場合がある。
ポリエステル樹脂のガラス転移温度(Tgp)が、トナーのガラス転移温度(Tgt)よりも30℃より高くすると、実質のトナーのガラス転移温度を低くすることになるため、例えシェル部を強化したとしても、現像装置内で受けるストレスによるトナーの耐ストレス性が低下し、長期使用時において、安定かつ高精細な画像を得ることができない。
上述のとおり、シェル部に最適な極性樹脂を添加することでトナーの耐ストレス性及び保存安定性を強化し、コア部の結着樹脂、ワックス成分を定着に最適な条件になるよう調整する、すなわちコア部とシェル部それぞれの機能性を最適化をすることにより、トナーの耐ストレス性、保存性、定着性が相乗的に向上することが可能である。
先述した微小圧縮試験に関する上記種々の物性を、上記極性樹脂の種類、物性(例えばガラス転移温度(Tg))、添加量を調整することで、満たすことが好ましい。
本発明においては、トナー粒子の耐ストレス性を高めると共に、トナーのTHF可溶成分の分子量を制御するために、結着樹脂を合成する時に架橋剤を用いてもよい。
2官能の架橋剤として、以下のものが挙げられる。ジビニルベンゼン、ビス(4−アクリロキシポリエトキシフェニル)プロパン、エチレングリコールジアクリレート、1,3−ブチレングリコールジアクリレート、1,4−ブタンジオールジアクリレート、1,5−ペンタンジオールジアクリレート、1,6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコール#200、#400、#600の各ジアクリレート、ジプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ポリエステル型ジアクリレート(MANDA日本化薬)、及び上記のジアクリレートをジメタクリレートに代えたもの。
多官能の架橋剤としては、以下のものが挙げられる。ペンタエリスリトールトリアクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、オリゴエステルアクリレート及びそのメタクリレート、2,2−ビス(4−メタクリロキシポリエトキシフェニル)プロパン、ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート及びトリアリルトリメリテート。これらの架橋剤の添加量は、重合性単量体100質量部に対して、好ましくは0.05質量部以上10質量部以下、より好ましくは0.1質量部以上5質量部以下である。
本発明のトナーに用いられる重合開始剤としては、以下のものが挙げられる。2,2’−アゾビス−(2,4−ジメチルバレロニトリル)、2,2’−アゾビスイソブチロニトリル、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2’−アゾビス−4−メトキシ−2,4−ジメチルバレロニトリル、アゾビスイソブチロニトリルの如きアゾ系又はジアゾ系重合開始剤;ベンゾイルペルオキシド、メチルエチルケトンペルオキシド、ジイソプロピルペルオキシカーボネート、クメンヒドロペルオキシド、2,4−ジクロロベンゾイルペルオキシド、ラウロイルペルオキシド、tert−ブチル−パーオキシピバレートの如き過酸化物系重合開始剤。
これらの重合開始剤の使用量は、目的とする重合度により変化するが、一般的には、重合性ビニル系単量体100質量部に対して3質量部以上20質量部以下である。重合開始剤の種類は、重合法により若干異なるが、10時間半減期温度を参考に、単独又は混合して使用される。
本発明のトナーは、着色力を付与するために着色剤を必須成分として含有する。本発明に好ましく使用される着色剤として、以下の有機顔料、有機染料、無機顔料が挙げられる。
シアン系着色剤としての有機顔料又は有機染料としては、銅フタロシアニン化合物及びその誘導体、アントラキノン化合物、塩基染料レーキ化合物が挙げられる。具体的には、以下のものが挙げられる。C.I.ピグメントブルー1、C.I.ピグメントブルー7、C.I.ピグメントブルー15、C.I.ピグメントブルー15:1、C.I.ピグメントブルー15:2、C.I.ピグメントブルー15:3、C.I.ピグメントブルー15:4、C.I.ピグメントブルー60、C.I.ピグメントブルー62、C.I.ピグメントブルー。
マゼンタ系着色剤としての有機顔料又は有機染料としては、以下のものが挙げられる。縮合アゾ化合物、ジケトピロロピロール化合物、アントラキノン、キナクリドン化合物、塩基染料レーキ化合物、ナフトール化合物、ベンズイミダゾロン化合物、チオインジゴ化合物、ペリレン化合物。具体的には、以下のものが挙げられる。C.I.ピグメントレッド2、C.I.ピグメントレッド3、C.I.ピグメントレッド5、C.I.ピグメントレッド6、C.I.ピグメントレッド7、C.I.ピグメントバイオレット19、C.I.ピグメントレッド23、C.I.ピグメントレッド48:2、C.I.ピグメントレッド48:3、C.I.ピグメントレッド48:4、C.I.ピグメントレッド57:1、C.I.ピグメントレッド81:1、C.I.ピグメントレッド122、C.I.ピグメントレッド144、C.I.ピグメントレッド146、C.I.ピグメントレッド150、C.I.ピグメントレッド166、C.I.ピグメントレッド169、C.I.ピグメントレッド177、C.I.ピグメントレッド184、C.I.ピグメントレッド185、C.I.ピグメントレッド202、C.I.ピグメントレッド206、C.I.ピグメントレッド220、C.I.ピグメントレッド221、C.I.ピグメントレッド254。
イエロー系着色剤としての有機顔料又は有機染料としては、縮合アゾ化合物、イソインドリノン化合物、アントラキノン化合物、アゾ金属錯体、メチン化合物、アリルアミド化合物に代表される化合物が挙げられる。具体的には、以下のものが挙げられる。C.I.ピグメントイエロー12、C.I.ピグメントイエロー13、C.I.ピグメントイエロー14、C.I.ピグメントイエロー15、C.I.ピグメントイエロー17、C.I.ピグメントイエロー62、C.I.ピグメントイエロー74、C.I.ピグメントイエロー83、C.I.ピグメントイエロー93、C.I.ピグメントイエロー94、C.I.ピグメントイエロー95、C.I.ピグメントイエロー97、C.I.ピグメントイエロー109、C.I.ピグメントイエロー110、C.I.ピグメントイエロー111、C.I.ピグメントイエロー120、C.I.ピグメントイエロー127、C.I.ピグメントイエロー128、C.I.ピグメントイエロー129、C.I.ピグメントイエロー147、C.I.ピグメントイエロー151、C.I.ピグメントイエロー154、C.I.ピグメントイエロー155、C.I.ピグメントイエロー168、C.I.ピグメントイエロー174、C.I.ピグメントイエロー175、C.I.ピグメントイエロー176、C.I.ピグメントイエロー180、C.I.ピグメントイエロー181、C.I.ピグメントイエロー191、C.I.ピグメントイエロー194。
黒色着色剤としては、カーボンブラック、上記イエロー系着色剤/マゼンタ系着色剤/シアン系着色剤を用い黒色に調色されたものが挙げられる。
これらの着色剤は、単独又は混合し更には固溶体の状態で用いることができる。本発明のトナーに用いられる着色剤は、色相角、彩度、明度、耐光性、OHP透明性、トナー中の分散性の点から選択される。
該着色剤は、好ましくは重合性単量体又は結着樹脂100質量部に対し1質量部以上20質量部以下添加して用いられる。
本発明においては重合法を用いてトナー粒子を得る場合には、着色剤の持つ重合阻害性や水相移行性に注意を払う必要があり、好ましくは、重合阻害のない物質による疎水化処理を着色剤に施しておいたほうが良い。特に、染料系着色剤やカーボンブラックは、重合阻害性を有しているものが多いので使用の際に注意を要する。
また、染料系着色剤の重合阻害性を抑制する方法としては、あらかじめこれら染料の存在下に重合性単量体を重合せしめる方法が挙げられ、得られた着色重合体を重合性単量体組成物に添加する。
また、カーボンブラックについては、上記染料と同様の処理の他、カーボンブラックの表面官能基と反応する物質(例えば、ポリオルガノシロキサン等)で処理を行っても良い。
該水系媒体調製時に使用する分散安定剤としては、公知の無機系及び有機系の分散安定剤を用いることができる。
具体的には、無機系の分散安定剤の例としては、以下のものが挙げられる。リン酸三カルシウム、リン酸マグネシウム、リン酸アルミニウム、リン酸亜鉛、炭酸マグネシウム、炭酸カルシウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、メタケイ酸カルシウム、硫酸カルシウム、硫酸バリウム、ベントナイト、シリカ、アルミナ。
また、有機系の分散剤としては、以下のものが挙げられる。ポリビニルアルコール、ゼラチン、メチルセルロース、メチルヒドロキシプロピルセルロース、エチルセルロース、カルボキシメチルセルロースのナトリウム塩、デンプン。
また、市販のノニオン、アニオン、カチオン型の界面活性剤の利用も可能である。この様な界面活性剤としては、以下のものが挙げられる。ドデシル硫酸ナトリウム、テトラデシル硫酸ナトリウム、ペンタデシル硫酸ナトリウム、オクチル硫酸ナトリウム、オレイン酸ナトリウム、ラウリル酸ナトリウム、ステアリン酸カリウム、オレイン酸カルシウム。
本発明のトナーに用いられる水系媒体調製時に使用する分散安定剤としては、無機系の難水溶性の分散安定剤が好ましく、しかも酸に可溶性である難水溶性無機分散安定剤を用いることが好ましい。
また、本発明においては、難水溶性無機分散安定剤を用い、水系媒体を調製する場合に、これらの分散安定剤の使用量は重合性単量体100質量部に対して、0.2質量部以上2.0質量部以下であることが好ましい。また、本発明においては、重合性単量体組成物100質量部に対して300質量部以上3,000質量部以下の水を用いて水系媒体を調製することが好ましい。
本発明において、上記のような難水溶性無機分散安定剤が分散された水系媒体を調製する場合には、市販の分散安定剤をそのまま用いて分散させてもよい。また、細かい均一な粒度を有する分散安定剤の粒子を得るために、水の如き液媒体中で、高速撹拌下、難水溶性無機分散安定剤を生成させて水系媒体を調製してもよい。例えば、リン酸三カルシウムを分散安定剤として使用する場合、高速撹拌下でリン酸ナトリウム水溶液と塩化カルシウム水溶液を混合してリン酸三カルシウムの微粒子を形成することで、好ましい分散安定剤を得ることができる。
本発明のトナーにおいては、必要に応じて荷電制御剤をトナー粒子と混合して用いることも可能である。荷電制御剤を配合することにより、荷電特性を安定化、現像システムに応じた最適の摩擦帯電量のコントロールが可能となる。
荷電制御剤としては、公知のものが利用でき、特に帯電スピードが速く、かつ、一定の帯電量を安定して維持できる荷電制御剤が好ましい。さらに、トナー粒子を直接重合法により製造する場合には、重合阻害性が低く、水系媒体への可溶化物が実質的にない荷電制御剤が特に好ましい。
荷電制御剤として、トナーを負荷電性に制御するものとしては、以下のものが挙げられる。有機金属化合物、キレート化合物が有効であり、モノアゾ金属化合物、アセチルアセトン金属化合物、芳香族オキシカルボン酸、芳香族ダイカルボン酸、オキシカルボン酸及びダイカルボン酸系の金属化合物。他には、芳香族オキシカルボン酸、芳香族モノ及びポリカルボン酸及びその金属塩、無水物、エステル類、ビスフェノールの如きフェノール誘導体類なども含まれる。さらに、尿素誘導体、含金属サリチル酸系化合物、含金属ナフトエ酸系化合物、ホウ素化合物、4級アンモニウム塩、カリックスアレーン、樹脂系帯電制御剤が挙げられる。
また、トナーを正荷電性に制御する荷電制御剤としては、以下のものが挙げられる。ニグロシン及び脂肪酸金属塩の如きによるニグロシン変性物;グアニジン化合物;イミダゾール化合物;トリブチルベンジルアンモニウム−1−ヒドロキシ−4−ナフトスルフォン酸塩、テトラブチルアンモニウムテトラフルオロボレートの如き4級アンモニウム塩、及びこれらの類似体であるホスホニウム塩の如きオニウム塩及びこれらのレーキ顔料;トリフェニルメタン染料及びこれらのレーキ顔料(レーキ化剤としては、りんタングステン酸、りんモリブデン酸、りんタングステンモリブデン酸、タンニン酸、ラウリン酸、没食子酸、フェリシアン化物、フェロシアン化物など);高級脂肪酸の金属塩;樹脂系荷電制御剤。
本発明のトナーは、これら荷電制御剤を単独で或いは2種類以上組み合わせて含有することができる。
これら荷電制御剤の中でも、本発明の効果を十分に発揮するためには、金属を含有するサリチル酸系化合物が好ましく、特にその金属がアルミニウムもしくはジルコニウムが好ましい。最も好ましい荷電制御剤としては、3,5−ジ−tert−ブチルサリチル酸アルミニウム化合物である。
荷電制御剤の好ましい配合量は、重合性単量体又は結着樹脂100質量部に対して0.01質量部以上20質量部以下、より好ましくは0.5質量部以上10質量部以下である。しかしながら、本発明のトナーには、荷電制御剤の添加は必須ではなく、トナーの層厚規制部材やトナー担持体との摩擦帯電を積極的に利用することでトナー中に必ずしも荷電制御剤を含ませる必要はない。
本発明のトナー粒子には流動性向上剤として、無機微粉体が添加されている。
本発明のトナー粒子に外添する無機微粉体としては、シリカ微粉体、酸化チタン微粉体、アルミナ微粉体またはそれらの複酸化物微粉体の如き微粉体が挙げられる。該無機微粉体の中でもシリカ微粉体及び酸化チタン微粉体が好ましい。
シリカ微粉体としては、ケイ素ハロゲン化物の蒸気相酸化により生成された乾式シリカ又はヒュームドシリカ、及び水ガラスから製造される湿式シリカ、ゾル−ゲル法により製造されるゾルゲルシリカなどが挙げられる。無機微粉体としては、表面及びシリカ微粉体の内部にあるシラノール基が少なく、またNa2O、SO3 2-の少ない乾式シリカの方が好ましい。また乾式シリカは、製造工程において、塩化アルミニウム、塩化チタン他の如き金属ハロゲン化合物をケイ素ハロゲン化合物と共に用いることによって製造された、シリカと他の金属酸化物の複合微粉体であっても良い。
無機微粉体は、トナーの流動性改良及びトナー粒子の帯電均一化のためにトナー粒子に外添される。無機微粉体を疎水化処理することによって、トナーの帯電量の調整、環境安定性の向上、高湿環境下での特性の向上を達成することができるので、疎水化処理された無機微粉体を用いることが好ましい。トナーに添加された無機微粉体が吸湿すると、トナーとしての帯電量が低下し、現像性や転写性の低下が生じ易くなる。
無機微粉体の疎水化処理の処理剤としては、未変性のシリコーンワニス、各種変性シリコーンワニス、未変性のシリコーンオイル、各種変性シリコーンオイル、シラン化合物、シランカップリング剤、その他有機ケイ素化合物、有機チタン化合物が挙げられる。これらの処理剤は単独で或いは併用して用いられても良い。
その中でも、シリコーンオイルにより処理された無機微粉体が好ましい。より好ましくは、無機微粉体をカップリング剤で疎水化処理すると同時或いは処理した後に、シリコーンオイルにより処理したシリコーンオイル処理された疎水化処理無機微粉体が高湿環境下でもトナー粒子の帯電量を高く維持し、選択現像性を低減する上でよい。
{測定方法}
以下、本発明の定着ローラやそれに用いられるフィラーについての各種測定方法について説明する。
(1)定着ローラ表面のEPMA(電子線マイクロアナライザー)測定
本発明では、定着ローラの表面を電子線マイクロアナライザー(EPMA)により測定した際の検出される全元素量に対するAl及び/又はZn元素の存在割合を規定している。この時、Al元素やZn元素は熱伝導フィラーに由来するものである。EPMAは表面から数μmの深さまでに存在する元素を測定するものであり、全元素量に対するAlやZnの存在割合は表面から数μmまでの深さに存在する熱伝導フィラー量と対応する。したがって、AlやZnの存在割合が高い場合、表面部分により多く熱伝導フィラーが存在することを示す。
<測定条件>
装置:電子線マイクロアナライザー EPMA−1610(島津製作所製)
加速電圧:15kV
照射電流:20nA
計測時間:500msec
ビーム径:10μm
(2)熱伝導フィラー、蓄熱層、断熱弾性層の熱伝導率測定及び蓄熱層の単位面積あたりの熱容量
○蓄熱層の単位面積あたりの熱容量測定
本発明では、蓄熱層の単位面積あたりの熱容量を規定している。ここで、蓄熱層の表面積とは、離型層を全て剥離した際に現れる蓄熱層表面の面積を指す。したがって、「試験片の表面積」も上述のように剥離した際に現れる面の面積のみを表している。
蓄熱層の単位面積あたりの熱容量は、以下の式で求められる。
定着ローラの単位面積あたりの熱容量
=試験片の体積×体積熱容量÷試験片の表面積
または、
=体積熱容量×比熱容量×蓄熱層33厚み 式(A)
したがって、蓄熱層の単位面積あたりの熱容量を算出するには、まず比熱容量及び体積熱容量を測定する必要がある。比熱容量及び体積熱容量は以下のように求めた。
まず、定着ローラ30の蓄熱層33より、縦5mm、横5mmの試験片を切り出し、上記試験片を、乾式自動密度計(型番AccuPyc1330 株式会社 島津製作所)にて測定し、質量密度を求める。次に、上記試験片を、示差走査熱量計(型番DSC8240、株式会社リガク製)にて測定し、比熱容量を求める。
体積熱容量は、下式から求められるため、上記により得られた値から計算される。
体積熱容量=質量密度×比熱容量
こうして得られた比熱容量と体積熱容量を式(A)に代入することで蓄熱層の単位面積あたりの熱容量を算出した。
(3)熱伝導フィラー/蓄熱層/断熱弾性層の熱伝導率の測定
熱伝導率はフーリエ変換型温度熱拡散率測定装置(型番FTC−1、アルバック理工株式会社製)にて熱拡散率を測定する。蓄熱層や断熱弾性層を測定する場合、厚み方向の測定を行う。そして、下記の式から、熱伝導フィラーの熱伝導率、及び蓄熱層又は断熱弾性層の厚み方向の熱伝導率を求める。
熱伝導率=熱拡散率×質量密度×比熱容量
(4)像加熱部材表面のRz測定方法
サーフコーダーSE−3300(小坂研究所製)にて、測定距離4mmで測定した。測定箇所は、像加熱部材のゴム端部から30mm以上40mm以下の位置の両端部及び、ゴム端部から110mm以上120mm以下の位置の中央部とした。それぞれの箇所で軸方向と周方向について測定し、6点の測定値の平均値をRzとした。
(5)像加熱部材のマイクロ硬度の測定
像加熱部材のマイクロ硬度は、マイクロ硬度計MD−1型(高分子計器株式会社製)を用い、23℃/55%RH環境においてピークホールドモードで測定した値とすることができる。具体的には、像加熱部材を金属製の板の上に置き、金属製のブロックを置いて像加熱部材が転がらないように簡単に固定し、金属板に対して垂直方向から像加熱部材の中心に正確に測定端子を押し当て5秒後の値を読み取る。これを像加熱部材のゴム端部から30mm以上40mm以下の位置の両端部及び中央部について合計3点測定し、反転させた後同様に3点測定する。得られた合計6点の測定値の平均値をマイクロ硬度とした。
以下、本発明のトナーに係る微小圧縮硬度以外の各種測定方法について説明する。
(6)フローテスター昇温法によるトナーの100℃の粘度の測定法
フローテスター昇温法によるトナーの100℃の粘度は、フローテスターCFT−500D(株式会社島津製作所製)を用い、該装置の操作マニュアルに従い、下記の条件で測定を行った。
・サンプル:トナーを1.0g秤量し、これを直径1cmの加圧成型器により荷重20kNで1分間加圧することで成型してサンプルとする。
・ダイ穴径:1.0mm
・ダイ長さ:1.0mm
・シリンダ圧力:9.807×105(Pa)
・測定モード:昇温法
・昇温速度:4.0℃/min
上記の方法により、50℃乃至200℃におけるトナーの粘度(Pa・s)を測定し、100℃の粘度(Pa・s)を求めた。
(7)トナーの個数平均粒径(D1)の測定法
トナーの個数平均粒径(D1)は、コールターマルチサイザー(コールター社製)を用い、個数分布、体積分布を出力するインターフェイス(日科機製)及びPC9801パーソナルコンピューター(NEC製)を接続し、該装置の操作マニュアルに従い実施した。
具体的には、先ず、電解液として1級塩化ナトリウムを用いて1%NaCl水溶液を調製した。電解液としては、市販のISOTON R−II(コールターサイエンティフィックジャパン社製)も使用できる。該電解水溶液100mlに測定試料(トナー)を5mg、及びコンタミノン水溶液(和光純薬工業株式会社製)0.1mlを加える。試料を懸濁した電解液は超音波分散器で約1分間分散処理を行い該コールターマルチサイザーにより100μmアパーチャーを用いて、2.0μm以上のトナー粒子の体積、個数を測定して個数平均粒径(D1)を求める。
(8)トナーのテトラヒドロフラン(THF)可溶分のゲルパーミエーションクロマトグラフィー(GPC)による分子量分布及び分子量の測定法
本発明のトナーのTHF可溶分の分子量分布及び分子量は、GPC測定装置(HLC−8120GPC 東ソー(株)社製)を用い、該装置の操作マニュアルに従い、下記の測定条件で測定した。
<測定条件>
・カラム(昭和電工株式会社製):Shodex GPC KF−801,Shodex GPC KF−802,Shodex GPC KF−803,Shodex GPC KF−804,Shodex GPC KF−805,Shodex GPC KF−806,Shodex GPC KF−807(直径8.0mm、長さ30cm)の7連
・温度:40℃
・流速:0.6ml/min
・検出器:RI
・サンプル濃度:0.1質量%の試料を10μl
サンプル調製は、測定対象のトナー試料をテトラヒドロフラン(THF)中に入れ、6時間放置した後、充分に振とうし(試料の合一体がなくなるまで)、更に1日以上静置して行った。そして、サンプル処理フィルター(ポアサイズ0.45μm)を通過させたものをGPC測定用試料とした。検量線は、単分散ポリスチレン標準試料、例えば東ソー社製の分子量が102乃至107程度のものを、少なくとも10点程度用いて作成した分子量校正曲線を使用した。
(9)ワックス成分の示差走査熱量測定(DSC)装置で測定される昇温時のDSC吸熱曲線における最大吸熱ピーク温度の測定法
ワックス成分のDSC装置で測定される昇温時のDSC吸熱曲線における最大吸熱ピーク温度の測定は、例えばパーキンエルマー社製のDSC−7又はTAインスツルメンツジャパン社製のDSC−2920が利用できる。本発明においては、TAインスツルメンツジャパン社製DSC−2920を用い、該装置の操作マニュアルに従い実施した。具体的には、測定サンプルにはアルミニウム製のパンを用い、対照用に空パンをセットし、20℃から振幅±1.5℃、周期1/minのモジュレーションをかけながら昇温速度2℃/minで180℃まで昇温し、得られた昇温時のDSC曲線からワックス成分の最大吸熱ピーク温度を得た。
(10)ガラス転移温度Tgの測定
本発明においては、示差熱分析測定装置(DSC測定装置)、DSC−7(パーキンエルマー社製)を利用できる。
測定試料は5乃至20mg、好ましくは10mgを精密に秤量する。これをアルミパン中に入れ、リファレンスとして空のアルミパンを用い、先ず前履歴を消去する目的で、次の操作を行う。N2雰囲気下で室温から200℃まで10℃/minで昇温させ、200℃で10分間保つ。その後急冷し、10℃まで温度を下げ、10℃で10分間保つ。その後、昇温速度10℃/minで、200℃まで昇温する。この昇温過程で、温度40〜100℃の範囲におけるメインピークの吸熱ピークが得られる。
この時の吸熱ピークが出る前と出た後のベースラインの中間点の線と示差熱曲線との交点を本発明におけるガラス転移温度Tgとする。
以下、本発明を定着ローラ、トナー製造例をより更に具体的に説明するが、これらは本発明をなんら限定するものではない。
◎定着ローラの製造
(蓄熱層用塗工液1乃至5の製造)
シリコーンゴム原料組成物として、付加型シリコーンゴム(東レ・ダウコーニング・シリコーン社製(商品名:DY35−561A/B))70質量部に対し、フィラーとしてアルミナ(昭和電工(株)製(商品名:アルミナビーズCB−A50S))を30質量部配合した。これを固形分濃度10%となるように、メチルエチルケトンで希釈し、混練して蓄熱層用塗工液1を得た。液粘度は3.0×10-2Pa・sであった。また、表1のようにフィラー種の選択及び配合比調整を行い、蓄熱層用塗工液2乃至6及び比較用塗工液を得た。なお、表中の「アルミナ」は昭和電工(株)製アルミナ(商品名:アルミナビーズCB−A50S)、「酸化亜鉛」は境化学工業(株)製酸化亜鉛(商品名:LPZINC−11)、「ジルコニア」はアスザック(株)製ジルコニア(商品名:AZI)を示す。
Figure 2010091717
(離型層用分散液の製造)
・離型層用分散液1、3、4の製造
PFA分散液(商品名:ネオフロンAD−2CR、ダイキン工業株式会社)に対し、フィラーとしてアルミナ(昭和電工(株)製(商品名:アルミナビーズCB−A50S))をPFAの固形分に対する含有率が1.00質量%となるよう配合し、離型層用分散液1を得た。含有率を0.05質量%、3.00質量%として同様に操作し、離型層用分散液3及び4を作製した。主成分、フィラー含有率を表2に示す。
・離型層用分散液2の製造
付加型シリコーンゴム(東レ・ダウコーニング・シリコーン社製(商品名:DY35−561A/B))99質量部に対し、フィラーとしてアルミナ(昭和電工(株)製(商品名:アルミナビーズCB−A50S))を1質量部配合した。これを固形分濃度10%となるようにメチルエチルケトンで希釈し、離型層用分散液2を得た。主成分、フィラー含有率を表2に示す。
Figure 2010091717
(定着ローラ1の製造方法)
[1]弾性層の製造
信越化学工業製の付加硬化型液状シリコーンゴム材料KE1218A液(主剤)/B液(硬化剤)各50質量部に、中空フィラーとして松本油脂製薬製のマイクロバルーンF80S(材質:アクリロニトリル、軟化温度:160℃以上170℃以下)を3質量部、ポリエチレングリコール1質量部を添加し、15分撹拌を続け、シリコーンゴムを得た。
外径8mmのSUM芯金上に、上記で得たシリコーンゴムを注型し、150℃で1時間、一次加硫を行った後、型から脱型して取り出した。次に、200℃で4時間、2次加硫を行った後、更に、230℃で4時間の加熱処理を施すことで、厚み2mmの弾性層を有する定着ローラ前駆体1−1を作製した。この弾性層はバルーンゴムであり、熱伝導率は0.12W/mKであった。
[2]蓄熱層の製造
リング塗工装置を用いて蓄熱層用塗工液1を定着ローラ前駆体1−1に塗布した。この時、リング塗工装置の条件は移動速度15mm/s、材料吐出量2100mm3/secとした。その後300℃の温風循環加熱炉で60分加熱し、ソリッドゴム層及びフィラーから構成される、厚み150μmの蓄熱層を有する定着ローラ前駆体1−2を得た。
フィラーの熱伝導率は23.0W/mK、蓄熱層の単位表面積あたりの熱容量は250J/m2K、蓄熱層の熱伝導率は0.32W/mK、蓄熱層の厚みは150μmであった。
[3]離型層の製造
リング塗工装置を用いてPFA分散液(商品名:ネオフロンAD−2CR、ダイキン工業株式会社)を定着ローラ前駆体1−2に塗布した。なお、リング塗工装置の条件は移動速度15mm/s、材料吐出量2100mm3/secとした。乾燥後300℃で30分焼成を行うことでソリッドゴム層及びフィラーから構成される、厚み50μmの離型層を形成した。その後、表面を研磨ペーパーを用いて研磨(研磨機:松田精機製スーパーフィニッシャー、研磨紙:3Mインペリアルラッピングフィルム30micシリコンカーバイド砥粒タイプ)し、定着ローラ1を得た。
定着ローラ1のRzは6.0μm、外径は12mm、ゴム部の長さは230mm、外周面(図1に斜線部分Sとして図示)の表面積は8671mm2であった。作製したローラの概要は表3の通りである。なお、表中の「表面存在割合」とは、定着ローラをEPMAで測定した際に検出される全元素量に対するAl及び/又はZnの存在割合を示す。ここでAl、Zn元素は熱伝導フィラーに由来するものである。
(定着ローラ2の製造方法)
弾性層に用いるシリコーンゴムを付加型シリコーンゴム(東レ・ダウコーニング・シリコーン社製(商品名:DY35−561A/B))に変え、離型層形成後の研磨を調整することでRzを11.0μmとしたこと以外は定着ローラ1と同様に製造し、定着ローラ2を得た。弾性層の熱伝導率は0.25W/mKであった。作製したローラの概要は表3の通りである。
(定着ローラ3の製造方法)
離型層を形成する際に、スプレーコートによって厚み60μmの層を形成し、乾燥後、リング塗工装置を用いて更に50μmの層を形成することで離型層の厚みを110μmとし、離型層形成後に研磨を行わなかったこと以外は定着ローラ2と同様に製造し、定着ローラ3を得た。作製したローラの概要は表3の通りである。
(定着ローラ4の製造方法)
離型層を形成する際に、スプレーコートによって厚み140μmの層を形成し、乾燥後、リング塗工装置を用いて更に50μmの層を形成することで離型層の厚みを190μmとしたこと以外は定着ローラ1と同様に製造し、定着ローラ4を得た。作製したローラの概要は表3の通りである。
(定着ローラ5の製造方法)
リング塗工装置を用いて離型層の厚みを5μmとしたこと以外は定着ローラ1と同様に製造し、定着ローラ5を得た。作製したローラの概要は表3のとおりである。
(定着ローラ6の製造方法)
離型層形成時に使用する離型層用分散液を離型層用分散液2に変えたこと以外は定着ローラ5と同様に製造し、定着ローラ6を得た。作製したローラの概要は表3の通りである。
(定着ローラ7の製造方法)
使用する蓄熱層用塗工液を蓄熱層用塗工液2に変え、蓄熱層を形成する際にスプレーコートによって厚み200μmの層を形成し、乾燥後、リング塗工装置を用いて更に50μmの層を形成することで蓄熱層の厚みを250μmとしたこと以外は定着ローラ1と同様に製造し、定着ローラ7を得た。作製したローラの概要は表3の通りである。
(定着ローラ8の製造方法)
使用する蓄熱層用塗工液を蓄熱層用塗工液3に変え、蓄熱層を形成する際にスプレーコートによって厚み50μmの層を形成し、乾燥後、リング塗工装置を用いて更に50μmの層を形成することで蓄熱層の厚みを100μmとしたこと以外は定着ローラ1と同様に製造し、定着ローラ8を得た。作製したローラの概要は表3の通りである。
(定着ローラ9の製造方法)
使用する蓄熱層用塗工液を蓄熱層用塗工液4に変えたこと以外は定着ローラ8と同様に製造し、定着ローラ9を得た。作製したローラの概要は表3の通りである。なお、比較用定着ローラ1に関してのみ、表中の「表面存在割合」はEPMA測定で検出された全元素量に対するジルコニウムの存在割合を示している。ジルコニウムは、比較用定着ローラ1で熱伝導フィラーの代わりに用いたジルコニアに由来するものである。
(定着ローラ10の製造方法)
蓄熱層を形成する際にスプレーコートによって厚み220μmの層を形成し、乾燥後、リング塗工装置を用いて更に50μmの層を形成することで蓄熱層の厚みを270μmとしたこと以外は定着ローラ7と同様に製造し、定着ローラ10を得た。作製したローラの概要は表3の通りである。
(定着ローラ11の製造方法)
蓄熱層を形成する際にスプレーコートによって厚み30μmの層を形成し、乾燥後、リング塗工装置を用いて更に50μmの層を形成することで蓄熱層の厚みを80μmとしたこと以外は定着ローラ8と同様に製造し、定着ローラ11を得た。作製したローラの概要は表3の通りである。
(定着ローラ12の製造方法)
離型層を形成する際に、スプレーコートによって厚み170μmの層を形成し、乾燥後、リング塗工装置を用いて更に50μmの層を形成することで離型層の厚みを220μmとしたこと以外は定着ローラ1と同様に製造し、定着ローラ12を得た。作製したローラの概要は表3の通りである。
(定着ローラ13の製造方法)
離型層を形成する際に、リング塗工装置を用いて3μmの層を形成したこと以外は定着ローラ1と同様に製造し、定着ローラ13を得た。作製したローラの概要は表3の通りである。
(定着ローラ14の製造方法)
離型層形成時に使用する離型層用分散液を離型層用分散液3に変えたこと以外は定着ローラ1と同様に製造し、定着ローラ14を得た。作製したローラの概要は表3の通りである。
(定着ローラ15の製造方法)
離型層形成時に使用する離型層用分散液を離型層用分散液4に変えたこと以外は定着ローラ1と同様に製造し、定着ローラ15を得た。作製したローラの概要は表3の通りである。
(定着ローラ16の製造方法)
離型層形成時に使用する離型層用分散液を離型層用分散液5に変えたこと以外は定着ローラ1と同様に製造し、定着ローラ16を得た。作製したローラの概要は表3の通りである。
Figure 2010091717
◎トナーの製造
次に、本発明の実施例で用いるトナーの製造方法について説明する。なお、以下に示したトナー1から26の物性は表4に示した。
<トナー1の製造例>
スチレン単量体100質量部に対して、C.I.Pigment Blue15:3を16.5質量部、ジ−ターシャリーブチルサリチル酸のアルミ化合物〔ボントロンE88(オリエント化学工業社製)〕を3.0質量部用意した。これらを、アトライター(三井鉱山社製)に導入し、半径1.25mmのジルコニアビーズ(140質量部)を用いて200rpmにて25℃で180分間撹拌を行い、マスターバッチ分散液1を調製した。
一方、イオン交換水710質量部に0.1M−Na3PO4水溶液450質量部を投入し60℃に加温した後、1.0M−CaCl2水溶液67.7質量部を徐々に添加してリン酸カルシウム化合物を含む水系媒体を得た。
・マスターバッチ分散液1 40質量部
・スチレン単量体 28質量部
・n−ブチルアクリレート単量体 18質量部
・低分子量ポリスチレン 20質量部
(Mw=3,000、Mn=1,050、Tg=55℃)
・炭化水素系ワックス 9質量部
(フィッシャートロプシュワックス、最大吸熱ピーク=78℃、Mw=750)
・ポリエステル樹脂 5質量部
(テレフタル酸:イソフタル酸:プロピレンオキサイド変性ビスフェノールA(2モル付加物):エチレンオキサイド変性ビスフェノールA(2モル付加物)=30:30:30:10の重縮合物、酸価11、Tg=74℃、Mw=11,000、Mn=4,000)
上記材料を65℃に加温し、TK式ホモミキサー(特殊機化工業製)を用いて、5,000rpmにて均一に溶解し分散した。これに、重合開始剤1,1,3,3−テトラメチルブチルパーオキシ2−エチルヘキサノエートの70%トルエン溶液7.1質量部を溶解し、重合性単量体組成物を調製した。
該水系媒体中に上記重合性単量体組成物を投入し、温度65℃、N2雰囲気下において、TK式ホモミキサーにて10,000rpmで10分間撹拌し重合性単量体組成物を造粒し、その後、パドル撹拌翼で撹拌しつつ温度67℃に昇温し、重合性ビニル系単量体の重合転化率が90%に達したところで、0.1mol/リットルの水酸化ナトリウム水溶液を添加して水系分散媒体のpHを9に調整した。更に昇温速度40℃/hで80℃に昇温し4時間反応させた。重合反応終了後、減圧下でトナー粒子の残存モノマーを留去した。水系媒体を冷却後、塩酸を加えpHを1.4にし、6時間撹拌することでリン酸カルシウム塩を溶解した。トナー粒子を濾別し水洗を行った後、温度40℃にて48時間乾燥し、シアン色のトナー粒子1を得た。
このトナー粒子100質量部に対し、ヘキサメチルジシラザンで表面処理された疎水性シリカ微粉体1.5質量部(数平均一次粒子径:7nm)、i−ブチルトリメトキシシランとジメチルシリコーンオイルで表面処理されたアナターゼ型酸化チタン微粉体0.2質量部(数平均一次粒子径:30nm)をヘンシェルミキサー(三井鉱山社製)で5分間乾式混合して、本発明のトナー1を得た。
<トナー2の製造例>
トナー1の製造例の重合性単量体組成物の調製において、重合開始剤1,1,3,3−テトラメチルブチルパーオキシ2−エチルヘキサノエートの70%トルエン溶液の添加量をそれぞれ、6.2質量部に変更すること以外は、トナー1の製造例と同様にして、本発明のトナー2を得た。
<トナー3乃至5の製造例>
トナー1の製造例の重合性単量体組成物の調製において、低分子量ポリスチレン(Mw=3,000、Mn=1,050、Tg=55℃)の添加量を5.0質量部に、スチレン単量体の添加量を43質量部に、重合開始剤1,1,3,3−テトラメチルブチルパーオキシ2−エチルヘキサノエートの70%トルエン溶液の添加量をそれぞれ、4.9質量部、4.8質量部、4.7質量部、ワックスをベヘン酸ベヘニル:最大吸熱ピーク=72℃、Mw=700に変更すること以外は、トナー1の製造例と同様にして、本発明のトナー3〜5を得た。
<トナー6乃至8の製造例>
実施例1の重合性単量体組成物の調製において、スチレン単量体を添加しないこと、低分子量ポリスチレン(Mw=3,000、Mn=1,050、Tg=55℃)の添加量を48質量部、重合開始剤1,1,3,3−テトラメチルブチルパーオキシ2−エチルヘキサノエートの70%トルエン溶液の添加量をそれぞれ4.1質量部、5.1質量部、5.3質量部、ポリエステルの添加量を表4のように変更すること以外は、トナー1の製造例と同様にして、本発明のトナー6乃至8を得た。
<トナー9の製造例>
トナー1の製造例の重合性単量体組成物の調製において、低分子量ポリスチレン(Mw=3,000、Mn=1,050、Tg=55℃)の添加量を10質量部、ポリエステルの添加量を1質量部、スチレン単量体の添加量を33.5質量部に、n−ブチルアクリレート単量体の添加量を22.5質量部に、重合開始剤1,1,3,3−テトラメチルブチルパーオキシ2−エチルヘキサノエートの70%トルエン溶液の添加量を7.7質量部に変更すること以外は、トナー1の製造例と同様にして、本発明のトナー9を得た。
<トナー10乃至13の製造例>
トナー1の製造例において、0.1M−Na3PO4水溶液の添加量をそれそれ360質量部、342質量部、576質量部、612質量部、1.0M−CaCl2水溶液54.2質量部、51.5質量部、86.7質量部、92.1質量部に変更すること以外は、トナー1の製造例と同様にして、本発明のトナー10乃至13を得た。
<トナー14、15の製造例>
トナー1の製造例の重合性単量体組成物の調製において、低分子量ポリスチレン(Mw=3,000、Mn=1,050、Tg=55℃)の添加量をそれぞれ1.9質量部、0質量部に変更すること以外は、トナー1の製造例と同様にして、本発明のトナー14、15を得た。
<トナー16乃至21の製造例>
トナー1の製造例の重合性単量体組成物の調製において、スチレン単量体の添加量を33.0質量部に、n−ブチルアクリレート単量体の添加量を18.5質量部に、重合開始剤1,1,3,3−テトラメチルブチルパーオキシ2−エチルヘキサノエートの70%トルエン溶液の添加量を6.2質量部に、ポリエステル樹脂のテレフタル酸:イソフタル酸:プロピレンオキサイド変性ビスフェノールA(2モル付加物):エチレンオキサイド変性ビスフェノールA(2モル付加物)の比率を変え表4に示すガラス転移点したこと以外は、トナー1の製造例と同様にして、本発明のトナー16乃至21を得た。トナー16乃至21の各種物性を、表4に示した。
<トナー22の製造例>
“トナー16乃至21の製造例”において、ポリエステル樹脂を添加しなかったこと以外は、トナー16乃至21の製造例と同様にして、本発明のトナー22を得た。トナー22の各種物性を、表4に示した。
<トナー23乃至26の製造例>
ワックスの添加量を表4に示すように変更すること以外は、トナー1の製造例と同様にして、本発明のトナー23乃至26を得た。トナー23乃至26の各種物性を、表4に示した。
<トナー27の製造例>
下記材料を予め混合物し、二軸エクストルーダーで溶融混練し、冷却した混練物をハンマーミルで粗粉砕し、得られた微粉砕物を分級してトナー粒子を得た。得られたトナー粒子に、トナー1の製造例と同様にして無機微粉体を外添し、トナー27を得た。トナー27の各種物性を、表4に示した。トナー27の微小圧縮試験における荷重−変位曲線を図6に示す。
・結着樹脂 100質量部
[スチレン−n−ブチルアクリレート共重合樹脂(Mw=30,000、Tg=62℃)]
・C.I.Pigment Blue15:3 5質量部
・ジ−ターシャリーブチルサリチル酸のアルミ化合物 3質量部
〔オリエント化学工業社製:ボントロンE88〕
・エステルワックス 6.0質量部
(ベヘン酸ベヘニル:最大吸熱ピーク=72℃、Mw=700)
Figure 2010091717
<実施例1>
評価機として定着ローラ1を用いた図4の機構を有する定着装置7を具備したLBP−2510(キヤノン社製)の改造機(プロセススピード:100mm/sec、A4用紙16枚/分、定着設定中心温度170℃、紙:キヤノン社製カラーレーザーコピア用紙A4)を使用し、各環境下にて以下の画像評価を行った。評価は、カートリッジにトナー1を190g充填し、シアンステーションに装着し、その他のステーションにはダミーカートリッジを装着して評価(1)から(4)を実施した。また、図5にトナー1の微小圧縮試験における荷重−変位曲線を示す。
(1)から(4)定着性評価を行ったところ、すべてについて、良好な結果が得られた。
上記結果を表5に示す。
〔評価〕
(1)低温定着性
評価には、定着ユニットを定着温度が調整できるように改造した改造定着器を用いた。常温常湿(N/N:温度23.5℃,湿度60%RH)環境下にて評価を行った。未定着画像のトナーのり量が0.6mg/cm2となるように調製した後、温度120〜200℃の範囲を温度5℃間隔で設定した定着温度で、A4紙中に5cm角のベタ画像を9点出力させた。その画像を4.9kPaの荷重をかけたシルボン紙で5回往復し、濃度低下率が20%以上となる温度を定着下限温度として評価した。A,およびBは使用上問題とならないレベルであるが、Cは使用上問題となるレベルである。
A:定着下限温度が、135℃未満
B:定着下限温度が、135℃以上、145℃未満
C:定着下限温度が、145℃以上
(2)耐低温オフセット性試験
低温低湿環境(15℃,10%RH)下にトナー及び画像形成装置を3時間調湿した後、定着装置の定着ローラ表面温度が200℃になった時点でヒータを切って、ベタ黒画像を3枚通紙した。この操作によって、定着ローラにトナーを付着させ、低温オフセットに対して厳しい環境にて評価した。画像の前半半分がベタ黒、後半半分が白地の静電オフセット試験用チャートを作成し、A4の75g/m2紙を用いて定着装置全体の温度が、雰囲気温度になじんだ状態から連続100枚の画出しを行った。目視にて、定着画像の低温オフセットによる汚れの程度を評価した。
ランクA:低温オフセット未発生
ランクB:わずかに低温オフセットが発生(実用レベル)
ランクC:ひどく低温オフセットが発生(実用が難しいレベル)
(3)画像光沢性
常温常湿(N/N:温度23.5℃,湿度60%RH)環境下にて、紙上のトナーのり量が0.5mg/cm2であるベタ画像を作成し、「PG−3D」(日本電色工業株式会社製)を用いて、測定光学部角度75°における定着画像の光沢度を測定した。A,BおよびCは使用上問題とならないレベルであるが、DおよびEは使用上問題となるレベルである。
A:30以上
B:25以上、30未満
C:23以上、25未満
D:20以上、23未満
E:20未満
(4)ウォームアップタイム測定
定着ローラ1を用いた図4の機構を有する定着装置7を低温低湿環境(15℃/10%RH)に6時間放置し、電源を入れてから定着ローラ表面が170℃に達成するまでの時間を測定した。
<実施例2から実施例9、比較例1から比較例7>
実施例1において、定着ローラをそれぞれ表5のように変更すること以外は同様にして評価した。結果を表5に示した。その結果、実施例2から実施例9では、実質上問題は見受けられなかった。一方、比較例1から比較例7では、耐低温オフセット性に劣る、定着温度が高まる、定着光沢性が劣る、またはウォームアップタイムが長くなる等、実用上の問題が見られた。
Figure 2010091717
<実施例1、実施例9、実施例10から実施例12>
実施例1と同様にトナーをそれぞれ表6のようにトナー2からトナー4に変更すること以外は同様にして(1)から(10)を評価を行なった(実施例1は、(1)から(4)に加えて、(5)から(10)の評価を行なった。)。結果を表6に示した。
結果が示すとおり、全ての評価項目において、実質上問題は見受けられなかった。
〔評価〕
(5)耐高温オフセット性
評価には、定着ユニットを定着温度が調整できるように改造した改造定着器を用いた。常温常湿(N/N:温度23.5℃,湿度60%RH)環境下にて評価を行った。未定着画像のトナーのり量が0.6mg/cm2となるように調製した後、170〜220℃の範囲を温度10℃間隔で設定した定着温度で、A4横置きで先端から5cmの全域が画像濃度0.5のハーフトーン、それ以外がベタ白という画像を出力させた。この際の白地部に現れるオフセットのレベルを目視確認した。A,BおよびCは使用上問題とならないレベルであるが、DおよびEは使用上問題となるレベルである。
A:オフセットが全く発生しない
B:定着温度220℃で、A4縦置きで通紙した部分以外の端部にうっすらとオフセットが発生した。
C:定着温度220℃で、長手方向全域に、オフセットが発生した。
D:定着温度210℃で、A4縦置きで通紙した部分以外の端部にうっすらとオフセットが発生した。
E:定着温度210℃で、長手方向全域に、オフセットが発生した。
(6)画像カブリ
高温高湿(H/H:温度30℃,湿度80%RH)環境下にて、2%の印字比率の画像を10,000枚までプリントアウトする画出し試験において、耐久評価終了時に白地部分を有する画像を出力し、「REFLECTMETER MODEL TC−6DS」(東京電色社製)により測定したプリントアウト画像の白地部分の白色度(反射率Ds(%))と転写紙の白色度(平均反射率Dr(%))の差から、カブリ濃度(%)(=Dr(%)−Ds(%))を算出し、耐久評価終了時の画像カブリを評価した。フィルターは、アンバーライトフィルターを用いた。A,BおよびCは使用上問題とならないレベルであるが、DおよびEは使用上問題となるレベルである。
A:0.5%未満
B:0.5%以上1.0%未満
C:1.0%以上1.5%未満
D:1.5%以上3.0%未満
E:3.0%以上
(7)転写効率
高温高湿(H/H:温度30℃,湿度80%RH)環境下にて、2%の印字比率の画像を10,000枚までプリントアウトする画出し試験において、耐久評価終了時にベタ画像を出力する際、ドラム上のトナー量と転写紙上のトナー量との重量変化から転写効率を求めた(ドラム上トナー量が全量転写紙上に転写された場合を転写効率100%とする。)A,BおよびCは使用上問題とならないレベルであるが、Dは使用上問題となるレベルである。
A:転写効率が95%以上
B:転写効率が90%以上95%未満
C:転写効率が80%以上90%未満
D:転写効率が70%以上80%未満
(8)規制部材(=現像ブレード)汚染
常温常湿(N/N:温度23.5℃,湿度60%RH)環境下、及び高温高湿(H/H:温度30℃,湿度80%RH)環境下にて、2%の印字比率の画像を10,000枚までプリントアウトする画出し試験において、耐久評価終了後に規制部材(=現像ブレード)の観察を行ない、最も悪かった環境での結果を以下の基準で評価し、表6に示した。A,BおよびCは使用上問題とならないレベルであるが、DおよびEは使用上問題となるレベルである。
A:全く汚染していない。
B:わずかに汚染しているが画像欠陥は全く発生していない。
C:汚染しており画像欠陥もわずかに発生している。
D:汚染が目立ち、画像欠陥も目立つ。
E:汚染がひどく、顕著な画像欠陥も発生している。
(9)画像濃度均一性(加熱ムラ)
常温常湿(N/N:温度23.5℃,湿度60%RH)環境下、高温高湿(H/H:温度30℃,湿度80%RH)環境下、及び低温低湿(L/L:温度15℃,湿度10%RH)環境下にて、2%の印字比率の画像を10,000枚までプリントアウトする画出し試験において、500枚ごとに、ベタ画像を出力し、紙上に形成された画像の4隅、中央の5点平均の相対濃度とし評価した。尚、画像濃度は「マクベス反射濃度計 RD918」(マクベス社製)を用いて、原稿濃度が0.00の白地部分の画像に対する相対濃度を測定した。AおよびBは使用上問題とならないレベルであるが、Cは使用上問題となるレベルである。
オリジナル画像濃度1.5を用いて(1)同様5点の相対濃度を測定し、最大濃度差として測定した。
A:0.0〜0.20未満
B:0.20〜0.35未満
C:0.35以上
(10)ブロッキング試験(保存性試験)
50ccのポリカップにトナーを10g入れた。これを温度53℃の恒温槽に72時間放置した時のトナーの状態を下記のごとく目視判断した。A,BおよびCは使用上問題とならないレベルであるが、DおよびEは使用上問題となるレベルである。
A:まったくブロッキングしておらず、初期とほぼ同様の状態。
B:若干、凝集気味であるが、ポリカップの回転で崩れる状態であり、特に問題とならない。
C:凝集気味であるが、手で崩してほぐれる状態。
D:凝集が激しい。
E:固形化している。
<比較例8>
実施例1と同様にトナーをトナー5に変更すること以外は同様にして評価を行なった。結果を表6に示した。結果が示すとおり、低温定着性、耐低温オフセット性等が悪化した。これは、X100/Dが小さいため、トナーの変形性が低いため、トナーの定着部の接触面が十分ではなく、定着ローラからトナーへの熱伝導性が悪いことが原因であると考えられる。
<実施例13、14>
実施例1と同様にトナーをそれぞれ表6のようにトナー6、トナー7に変更すること以外は同様にして評価を行なった。結果を表6に示した。結果が示すとおり、全ての評価項目において、実質上問題は見受けられなかった。
<比較例9>
実施例1と同様にトナーをトナー8に変更すること以外は同様にして評価を行なった。結果を表6に示した。結果が示すとおり、耐高温オフセット性、画像濃度均一性等が悪化した。これは、X100/Dが大きく、H(4000)/H(M1)も大きいため、トナーが高温オフセットしやすく、その結果、像加熱装置の加熱源が、オフセットされたトナーで汚染され、安定した定着温度を維持する事が難しくなり、画像濃度均一性が悪化したものと推定される。
<比較例10>
実施例1と同様にトナーをトナー9に変更すること以外は同様にして評価を行なった。結果を表6に示した。結果が示すとおり、かぶりや規制部材汚染が悪化した。これは、X20/Dが大きいために、現像装置内で受けるストレスによってトナー粒子が変形してしまい、かぶりや規制部材汚染が悪化したものと推定される。
<実施例15>
実施例1と同様にトナーをトナー10に変更すること以外は同様にして評価を行なった。結果を表6に示した。結果が示すとおり、全ての評価項目において、実質上問題は見受けられなかった。
<比較例11>
実施例1と同様にトナーをトナー11に変更すること以外は同様にして評価を行なった。結果を表6に示した。結果が示すとおり、規制部材汚染、転写効率、かぶり等が悪化した。これは、トナーの個数平均粒子径が小さいために、トナーの流動性が悪く、規制部材を汚染した、また転写時のとびちりが悪化したためであると推定される。
<実施例16>
実施例1と同様にトナーをトナー12に変更すること以外は同様にして評価を行なった。結果を表6に示した。結果が示すとおり、全ての評価項目において、実質上問題は見受けられなかった。
<比較例12>
実施例1と同様にトナーをトナー11に変更すること以外は同様にして評価を行なった。結果を表6に示した。結果が示すとおり、画像濃度均一性等が悪化した。これは、トナーの個数平均粒子径が大きいために、高解像度で高精細な潜像に対して忠実な現像が行われにくく、また、静電的な転写を行うとトナーが飛び散りやすくなったためであると推定される。
<実施例17から23>
実施例1と同様にトナーをトナー14からトナー20に変更すること以外は同様にして評価を行なった。結果を表6に示した。結果が示すとおり、全ての評価項目において、実質上問題は見受けられなかった。
<比較例13>
実施例1と同様にトナーをトナー21に変更すること以外は同様にして評価を行なった。結果を表6に示した。結果が示すとおり、かぶり等が悪化した。これは、X100/Dが大きく、また粘度も小さめであるため、耐ストレス性が弱くなったため、現像装置内で受けるストレスによって、トナーが劣化したためであると推定される。
<比較例14>
実施例1と同様にトナーをトナー22に変更すること以外は同様にして評価を行なった。結果を表6に示した。結果が示すとおり、ほぼ全ての評価が悪化した。これは、X100/D、X20/Dが共に大きいため、低温定着性、耐低温オフセット性、耐ストレス性が悪化したことによるものと推定される。
<実施例24>
実施例1と同様にトナーをトナー23に変更すること以外は同様にして評価を行なった。結果を表6に示した。結果が示すとおり、全ての評価項目において、実質上問題は見受けられなかった。
<実施例25>
実施例1と同様にトナーをトナー24に変更すること以外は同様にして評価を行なった。結果を表6に示した。結果が示すとおり、実質上問題はないものの、耐低温オフセット性等が若干悪化した。これは、ワックスの添加量が、少な目であるために、定着時のトナーの離型性が若干悪くなったためであると推定される。
<実施例26>
実施例1と同様にトナーをトナー25に変更すること以外は同様にして評価を行なった。結果を表6に示した。結果が示すとおり、全ての評価項目において、実質上問題は見受けられなかった。
<実施例27>
実施例1と同様にトナーをトナー26に変更すること以外は同様にして評価を行なった。結果を表6に示した。結果が示すとおり、実質上問題はないものの、規制部材の汚染や、かぶりが若干悪化した。これは、ワックスの添加量が、多目であるためにワックス成分がトナー粒子表面に偏在しやすくなったため、現像器内でストレスを受けた際にかぶりや規制部材汚染が若干悪化したためであると推定される。
<比較例15>
実施例1と同様にトナーをトナー27に変更すること以外は同様にして評価を行なった。結果を表6に示した。また、図6にトナー27の微小圧縮試験における荷重−変位曲線を示す。結果が示すとおり、かぶり、転写効率、規制部材汚染等が悪化した。これは、X20/Dが大きく、また屈曲点がないため、耐ストレス性が非常に弱いためであると推定される。
Figure 2010091717
本発明における像加熱部材(像加熱部材30)の構成図である。 本発明で好ましく用いられるリング塗工装置を説明する構成図である。 本発明に用いることの出来る画像形成装置(画像形成装置1)の構成図である。 本発明における定着装置(定着装置7)の構成図である。 トナー1の微小圧縮試験における荷重−変位曲線である。 トナー26の微小圧縮試験における荷重−変位曲線である。

Claims (32)

  1. 静電潜像担持体を帯電手段により帯電する帯電工程、該帯電された静電潜像担持体を露光して静電潜像を形成する露光工程、該静電潜像をトナーで現像してトナー像を形成する現像工程、該トナー像を中間転写体を介して、又は介さずに記録材へ転写する転写工程、該トナー像を担持する記録材を加圧部材と回転可能な像加熱部材とで形成されるニップ部を通過させることにより加熱加圧定着する定着工程を有する画像形成方法において、
    該像加熱部材は、外部加熱手段により最表層表面から加熱され、
    該像加熱部材は、最表層として厚さ5μm以上200μm以下の離型層を有しており、その下層として蓄熱層を有し、更にその下層として弾性層を有するローラであり、
    該像加熱部材は、熱伝導率5.0W/mK以上の熱伝導フィラーを含有し、該熱伝導フィラーはAl及び/又はZn化合物であり、
    該像加熱部材の表面をEPMA(電子線マイクロアナライザー)により測定した際の該熱伝導フィラーに由来するAl及び/又はZn元素の存在割合が、EPMAで検出される全元素量に対して0.10質量%以上3.00質量%以下であり、
    該蓄熱層の単位面積あたりの熱容量が100J/m2K以上600J/m2K以下であり、
    該トナーが、結着樹脂、着色剤及びワックス成分を少なくとも含有するトナー粒子と、無機微粉体とを有するトナーであって、
    該トナーの個数平均粒径D1が、3.00μm以上8.00μm以下であり、
    該トナーに対する微小圧縮試験において、測定するトナーの粒子径をD(μm)、トナーの1粒子に負荷速度9.8×10-5N/secで荷重9.8×10-4Nを負荷したときの最大変位量をX100(μm)、荷重2.0×10-4N時の変位量をX20(μm)としたとき、下記式(1)から(3)を満たすことを特徴とする画像形成方法。
    (1)D1=D±0.20μm
    (2)0.100≦X100/D≦0.900
    (3)0.010≦X20/D≦0.080
  2. 該トナーに対する微小圧縮試験において、トナーの1粒子に負荷速度9.8×10-5N/secで荷重9.8×10-4Nを負荷したとき、荷重−変位曲線が屈曲点を有し、該屈曲点は、トナーが荷重2.0×10-4N以上8.5×10-4N以下を受けたときに生じるものであることを特徴とする請求項1に記載の画像形成方法。
  3. 該トナーの変位量X100(μm)及びX20(μm)が、
    0.400≦X100/D≦0.850、0.015≦X20/D≦0.060
    であることを特徴とする請求項1又は2に記載の画像形成方法。
  4. 該トナーが、フローテスターによる測定において100℃の粘度が、15000Pa・s以上65000Pa・s以下であることを特徴とする請求項1乃至3のいずれかに記載の画像形成方法。
  5. 該トナーのテトラヒドロフラン(THF)可溶分のゲルパーミエーションクロマトグラフィー(GPC)により測定されるメインピークの分子量(M1)が10,000乃至80,000であり、
    該分子量分布のチャートにおいてメインピークの分子量(M1)の高さをH(M1)、分子量4,000の高さをH(4,000)としたとき、
    H(4,000):H(M1)=(0.100乃至0.950):1.00
    を満足することを特徴とする請求項1乃至13のいずれかに記載の画像形成方法。
  6. 該トナー粒子は、水系媒体中で製造することを特徴とする請求項1乃至5のいずれかに記載の画像形成方法。
  7. 該トナー粒子は、重合性単量体、着色剤、ワックス成分、ポリエステル樹脂、及び、スチレン又はスチレン誘導体を重合して得られた単重合体又は共重合体を少なくとも含有する重合性単量体組成物を水系媒体中に分散し、造粒し、重合性単量体を重合することによって得られたものであることを特徴とする請求項1乃至6のいずれかに記載の画像形成方法。
  8. 該ポリエステル樹脂のガラス転移温度(Tg)と該トナーのガラス転移温度(Tg)が、下記(4)から(6)を満たすことを特徴とする請求項1乃至7のいずれかに記載の画像形成方法。
    (4)60℃≦Tgp≦80℃
    (5)50℃≦Tgt
    (6)10℃≦Tgp−Tgt≦30℃
  9. 該ポリエステル樹脂のガラス転移温度(Tgp)と該トナーのガラス転移温度(Tgt)が、下記(4)から(6)を満たすことを特徴とする請求項1乃至8のいずれかに記載の画像形成方法。
    (4)60℃≦Tgp≦80℃
    (5)50℃≦Tgt
    12℃≦Tgp−Tgt≦25℃
  10. 該像加熱部材の表面粗さRzが1.0μm以上10.0μm以下であることを特徴とする請求項1乃至9のいずれかに記載の画像形成方法。
  11. 該像加熱部材の離型層がフッ素ゴムを主成分とするソリッドゴム層であることを特徴とする請求項1乃至10のいずれかに記載の画像形成方法。
  12. 該像加熱部材の蓄熱層の中に熱伝導フィラーが10質量%以上50質量%以下で含有されることを特徴とする請求項1乃至11のいずれかに記載の画像形成方法。
  13. 該像加熱部材のマイクロ硬度が30°以上68°以下であることを特徴とする請求項1乃至12のいずれかに記載の画像形成方法。
  14. 該弾性層は熱伝導率が0.15W/mK以下であることを特徴とする請求項1乃至13のいずれかに記載の画像形成方法。
  15. 記録材上に形成されているトナー画像を加圧部材と回転可能な像加熱部材とで形成されるニップ部を通過させることにより加熱加圧定着する定着方法において、
    該像加熱部材は、外部加熱手段により最表層表面から加熱され、
    該像加熱部材は、最表層として厚さ5μm以上200μm以下の離型層を有しており、その下層として蓄熱層を有し、更にその下層として弾性層を有するローラであり、
    該像加熱部材は、熱伝導率5.0W/mK以上の熱伝導フィラーを含有し、該熱伝導フィラーはAl及び/又はZn化合物であり、
    該像加熱部材の表面をEPMA(電子線マイクロアナライザー)により測定した際の該熱伝導フィラーに由来するAl及び/又はZn元素の存在割合が、EPMAで検出される全元素量に対して0.10質量%以上3.00質量%以下であり、
    該蓄熱層の単位面積あたりの熱容量が100J/m2K以上600J/m2K以下であり、
    該トナーが、結着樹脂、着色剤及びワックス成分を少なくとも含有するトナー粒子と、無機微粉体とを有するトナーであって、
    該トナーの個数平均粒径D1が、3.00μm以上8.00μm以下であり、
    該トナーに対する微小圧縮試験において、測定するトナーの粒子径をD(μm)、トナーの1粒子に負荷速度9.8×10-5N/secで荷重9.8×10-4Nを負荷したときの最大変位量をX100(μm)、荷重2.0×10-4N時の変位量をX20(μm)としたとき、下記式(1)から(3)を満たすことを特徴とする定着方法。
    (1)D1=D±0.20μm
    (2)0.100≦X100/D≦0.900
    (3)0.010≦X20/D≦0.080
  16. 該トナーに対する微小圧縮試験において、トナーの1粒子に負荷速度9.8×10-5N/secで荷重9.8×10-4Nを負荷したとき、荷重−変位曲線が屈曲点を有し、該屈曲点は、トナーが荷重2.0×10-4N以上8.5×10-4N以下を受けたときに生じるものであることを特徴とする、請求項15に記載の定着方法。
  17. 該トナーの変位量X100(μm)及びX20(μm)が、
    0.400≦X100/D≦0.850、0.015≦X20/D≦0.060
    であることを特徴とする請求項15又は16に記載の定着方法。
  18. 該トナーが、フローテスターによる測定において100℃の粘度が、15000Pa・s以上65000Pa・s以下であることを特徴とする請求項15乃至17のいずれかに記載の定着方法。
  19. 該トナーのテトラヒドロフラン(THF)可溶分のゲルパーミエーションクロマトグラフィー(GPC)により測定されるメインピークの分子量(M1)が10,000乃至80,000であり、該分子量分布のチャートにおいてメインピークの分子量(M1)の高さをH(M1)、分子量4,000の高さをH(4,000)としたとき、
    H(4,000):H(M1)=(0.100乃至0.950):1.00
    を満足することを特徴とする請求項15乃至18のいずれかに記載の定着方法。
  20. 該トナー粒子は、水系媒体中で製造することを特徴とする請求項15乃至19のいずれかに記載の定着方法。
  21. 該トナー粒子は、重合性単量体、着色剤、ワックス成分、ポリエステル樹脂、及び、スチレン又はスチレン誘導体を重合して得られた単重合体又は共重合体を少なくとも含有する重合性単量体組成物を水系媒体中に分散し、造粒し、重合性単量体を重合することによって得られたものであることを特徴とする請求項15乃至20のいずれかに記載の定着方法。
  22. 該ポリエステル樹脂のガラス転移温度(Tg)と該トナーのガラス転移温度(Tg)、下記(4)から(6)を満たすことを特徴とする請求項15乃至21のいずれかに記載の定着方法。
    (4)60℃≦Tgp≦80℃
    (5)50℃≦Tgt
    (6)10℃≦Tgp−Tgt≦30℃
  23. 該ポリエステル樹脂のガラス転移温度(Tgp)と該トナーのガラス転移温度(Tgt)が、下記(4)から(6)を満たすことを特徴とする請求項15乃至22のいずれかに記載の定着方法。
    (4)60℃≦Tgp≦80℃
    (5)50℃≦Tgt
    12℃≦Tgp−Tgt≦25℃
  24. 静電潜像担持体を帯電手段により帯電する帯電工程、該帯電された静電潜像担持体を露光して静電潜像を形成する露光工程、該静電潜像をトナーで現像してトナー像を形成する現像工程、該トナー像を中間転写体を介して、又は介さずに記録材へ転写する転写工程、該トナー像を担持する記録材を加圧部材と回転可能な像加熱部材とで形成されるニップ部を通過させることにより加熱加圧定着する定着工程を有しており、
    該像加熱部材は、外部加熱手段により最表層表面から加熱され、
    該像加熱部材は、最表層として厚さ5μm以上200μm以下の離型層を有しており、その下層として蓄熱層を有し、更にその下層として弾性層を有するローラであり、
    該像加熱部材は、熱伝導率5.0W/mK以上の熱伝導フィラーを含有し、該熱伝導フィラーはAl及び/又はZn化合物であり、
    該像加熱部材の表面をEPMA(電子線マイクロアナライザー)により測定した際の該熱伝導フィラーに由来するAl及び/又はZn元素の存在割合が、EPMAで検出される全元素量に対して0.10質量%以上3.00質量%以下であり、
    該蓄熱層の単位面積あたりの熱容量が100J/m2K以上600J/m2K以下である画像形成方法に適用されるトナーであって、
    該トナーが、結着樹脂、着色剤及びワックス成分を少なくとも含有するトナー粒子と、無機微粉体とを有し、
    該トナーの個数平均粒径D1が、3.00μm以上8.00μm以下であり、
    該トナーに対する微小圧縮試験において、測定するトナーの粒子径をD(μm)、トナーの1粒子に負荷速度9.8×10-5N/secで荷重9.8×10-4Nを負荷したときの最大変位量をX100(μm)、荷重2.0×10-4N時の変位量をX20(μm)としたとき、下記式(1)から(3)を満たすことを特徴とするトナー。
    (1)D1=D±0.20μm
    (2)0.100≦X100/D≦0.900
    (4)0.010≦X20/D≦0.080
  25. 該トナーに対する微小圧縮試験において、トナーの1粒子に負荷速度9.8×10-5N/secで荷重9.8×10-4Nを負荷したとき、荷重−変位曲線が屈曲点を有し、該屈曲点は、トナーが荷重2.0×10-4N以上8.5×10-4N以下を受けたときに生じるものであることを特徴とする、請求項24に記載のトナー。
  26. 該トナーの変位量X100(μm)及びX20(μm)が、
    0.400≦X100/D≦0.85、0.015≦X20/D≦0.060
    であることを特徴とする請求項24又は25に記載のトナー。
  27. 該トナーが、フローテスターによる測定において100℃の粘度が、15000Pa・s以上65000Pa・s以下であることを特徴とする請求項24乃至26のいずれかに記載のトナー。
  28. 該トナーのテトラヒドロフラン(THF)可溶分のゲルパーミエーションクロマトグラフィー(GPC)により測定されるメインピークの分子量(M1)が10,000乃至80,000であり、該分子量分布のチャートにおいてメインピークの分子量(M1)の高さをH(M1)、分子量4,000の高さをH(4,000)としたとき、
    H(4,000):H(M1)=(0.100乃至0.950):1.00
    を満足することを特徴とする請求項24乃至27のいずれかに記載のトナー。
  29. 該トナー粒子は、水系媒体中で製造することを特徴とする請求項24乃至28のいずれかに記載のトナー。
  30. 該トナー粒子は、重合性単量体、着色剤、ワックス成分、ポリエステル樹脂、及び、スチレン又はスチレン誘導体を重合して得られた単重合体又は共重合体を少なくとも含有する重合性単量体組成物を水系媒体中に分散し、造粒し、重合性単量体を重合することによって得られたものであることを特徴とする請求項24乃至29のいずれかに記載のトナー。
  31. 該ポリエステル樹脂のガラス転移温度(Tg)と該トナーのガラス転移温度(Tg)、下記(4)から(6)を満たすことを特徴とする請求項24乃至30のいずれかに記載のトナー。
    (4)60℃≦Tgp≦80℃
    (5)50℃≦Tgt
    (6)10℃≦Tgp−Tgt≦30℃
  32. 該ポリエステル樹脂のガラス転移温度(Tgp)と該トナーのガラス転移温度(Tgt)が、下記(4)から(6)を満たすことを特徴とする請求項24乃至31のいずれかに記載のトナー。
    (4)60℃≦Tgp≦80℃
    (5)50℃≦Tgt
    (7)12℃≦Tgp−Tgt≦25℃
JP2008260565A 2008-10-07 2008-10-07 画像形成方法及び定着方法 Expired - Fee Related JP5451023B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008260565A JP5451023B2 (ja) 2008-10-07 2008-10-07 画像形成方法及び定着方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008260565A JP5451023B2 (ja) 2008-10-07 2008-10-07 画像形成方法及び定着方法

Publications (3)

Publication Number Publication Date
JP2010091717A true JP2010091717A (ja) 2010-04-22
JP2010091717A5 JP2010091717A5 (ja) 2011-11-24
JP5451023B2 JP5451023B2 (ja) 2014-03-26

Family

ID=42254510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008260565A Expired - Fee Related JP5451023B2 (ja) 2008-10-07 2008-10-07 画像形成方法及び定着方法

Country Status (1)

Country Link
JP (1) JP5451023B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022313A (ja) * 2010-06-16 2012-02-02 Canon Inc トナー
JP2015141220A (ja) * 2014-01-27 2015-08-03 京セラドキュメントソリューションズ株式会社 トナー及びその製造方法
JP2015141221A (ja) * 2014-01-27 2015-08-03 京セラドキュメントソリューションズ株式会社 トナー及びその製造方法
JP2016057397A (ja) * 2014-09-08 2016-04-21 富士ゼロックス株式会社 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置、及び、画像形成方法
JP2017083602A (ja) * 2015-10-27 2017-05-18 キヤノン株式会社 トナー粒子の製造方法
JP2017173448A (ja) * 2016-03-22 2017-09-28 富士ゼロックス株式会社 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法
JPWO2016132928A1 (ja) * 2015-02-17 2017-12-07 株式会社リコー トナー、トナー収容ユニット、及び画像形成装置
US10545439B2 (en) 2018-06-07 2020-01-28 Canon Kabushiki Kaisha Fixed member and heat fixing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156854A (ja) * 2000-11-17 2002-05-31 Konica Corp 定着装置及び画像形成装置
JP2007121441A (ja) * 2005-10-25 2007-05-17 Canon Inc 像加熱装置
JP2008145950A (ja) * 2006-12-13 2008-06-26 Canon Inc トナー
JP2008165024A (ja) * 2006-12-28 2008-07-17 Canon Inc 加熱回転体、その加熱回転体の製造方法、及びその加熱回転体を有する像加熱装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156854A (ja) * 2000-11-17 2002-05-31 Konica Corp 定着装置及び画像形成装置
JP2007121441A (ja) * 2005-10-25 2007-05-17 Canon Inc 像加熱装置
JP2008145950A (ja) * 2006-12-13 2008-06-26 Canon Inc トナー
JP2008165024A (ja) * 2006-12-28 2008-07-17 Canon Inc 加熱回転体、その加熱回転体の製造方法、及びその加熱回転体を有する像加熱装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022313A (ja) * 2010-06-16 2012-02-02 Canon Inc トナー
JP2015141220A (ja) * 2014-01-27 2015-08-03 京セラドキュメントソリューションズ株式会社 トナー及びその製造方法
JP2015141221A (ja) * 2014-01-27 2015-08-03 京セラドキュメントソリューションズ株式会社 トナー及びその製造方法
US9690223B2 (en) 2014-01-27 2017-06-27 Kyocera Document Solutions Inc. Toner and method of manufacturing the same
US9772573B2 (en) 2014-01-27 2017-09-26 Kyocera Document Solutions Inc. Toner and method of manufacturing the same
JP2016057397A (ja) * 2014-09-08 2016-04-21 富士ゼロックス株式会社 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置、及び、画像形成方法
CN106154774A (zh) * 2014-09-08 2016-11-23 富士施乐株式会社 静电图像显影用调色剂、静电图像显影剂和调色剂盒
CN106154774B (zh) * 2014-09-08 2019-11-08 富士施乐株式会社 静电图像显影用调色剂、静电图像显影剂和调色剂盒
JPWO2016132928A1 (ja) * 2015-02-17 2017-12-07 株式会社リコー トナー、トナー収容ユニット、及び画像形成装置
JP2017083602A (ja) * 2015-10-27 2017-05-18 キヤノン株式会社 トナー粒子の製造方法
JP2017173448A (ja) * 2016-03-22 2017-09-28 富士ゼロックス株式会社 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法
US10545439B2 (en) 2018-06-07 2020-01-28 Canon Kabushiki Kaisha Fixed member and heat fixing apparatus

Also Published As

Publication number Publication date
JP5451023B2 (ja) 2014-03-26

Similar Documents

Publication Publication Date Title
KR101252579B1 (ko) 토너
JP5451023B2 (ja) 画像形成方法及び定着方法
JP5074755B2 (ja) トナー
JP5776291B2 (ja) 画像形成方法
JP2007206171A (ja) フルカラー画像形成装置
JP5067856B2 (ja) 画像形成方法
JP2002365834A (ja) 静電潜像現像用トナーと画像形成方法及び画像形成装置
JP4810183B2 (ja) トナーの製造方法
JP5142839B2 (ja) トナー及び画像形成方法
JP5241089B2 (ja) 非磁性トナー
JP5207661B2 (ja) 非磁性一成分トナーを用いた画像形成方法
JP5339780B2 (ja) 画像形成方法および定着方法
JP5020757B2 (ja) 画像形成方法
JP2010008454A (ja) トナー
JP5473301B2 (ja) 画像形成方法
JP5020756B2 (ja) 画像形成方法
JP5460206B2 (ja) 現像方法
JP5339779B2 (ja) 画像形成方法および定着方法
JP2008287150A (ja) トナー、及び画像形成方法
JP5473354B2 (ja) 電子写真用トナー容器及び画像形成方法
JP2009244657A (ja) 補給用トナー及び画像形成方法
JP5147495B2 (ja) トナー及び画像形成方法
JP5100472B2 (ja) トナー及び画像形成方法
JP5294706B2 (ja) 画像形成方法、定着方法及びトナー
JPH0934287A (ja) 画像形成方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131226

R151 Written notification of patent or utility model registration

Ref document number: 5451023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees