JP2010083012A - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
JP2010083012A
JP2010083012A JP2008254882A JP2008254882A JP2010083012A JP 2010083012 A JP2010083012 A JP 2010083012A JP 2008254882 A JP2008254882 A JP 2008254882A JP 2008254882 A JP2008254882 A JP 2008254882A JP 2010083012 A JP2010083012 A JP 2010083012A
Authority
JP
Japan
Prior art keywords
speed
carriage
reference speed
measured
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008254882A
Other languages
English (en)
Inventor
Masatoshi Hirano
雅敏 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2008254882A priority Critical patent/JP2010083012A/ja
Publication of JP2010083012A publication Critical patent/JP2010083012A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Character Spaces And Line Spaces In Printers (AREA)
  • Feedback Control In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

【課題】操作量の算出に用いる参照速度を、推定速度から計測速度に切り替える制御装置において、当該切り替えによる影響を抑える。
【解決手段】本発明が適用されたプリンタ装置は、目標速度Vrと参照速度Vgとの偏差E=Vr−Vgから、キャリッジに対する操作量Uを求め、キャリッジの速度を制御するが、制御初期段階では、参照速度Vgを、エンコーダ信号に基づくキャリッジの検出速度Vmではなく、関数A(t)=Va・tで定まる規定速度に設定する(Vg=A(t))。そして、最短速度推定領域通過後には、参照速度Vgの傾きVaを、参照速度Vgがキャリッジの実速度に一致する方向に、補正する。例えば、参照速度Vgがキャリッジの実速度より低ければ、参照速度Vgの傾きVaを、傾き(Va+Vb)(但し、Vb>0)に補正し、参照速度Vgが、キャリッジの実速度に一致すると、参照速度Vgを、検出速度Vmに切り替える。
【選択図】 図7

Description

本発明は、駆動対象の速度制御を行う制御装置に関する。
従来、速度制御を行う制御装置としては、計測により得られた駆動対象の速度と目標速度との偏差Eに基づき、偏差Eがゼロとなるような駆動対象に対する操作量Uを求めて、駆動対象を目標速度に制御する制御装置が知られている。また、この種の制御装置としては、キャリッジの搬送制御を行うプリンタ装置やスキャナ装置等が知られている。
この他、駆動対象の速度を計測する方法としては、リニアエンコーダやロータリエンコーダ等を用いて、駆動対象の速度を計測する方法が知られている。例えば、インクリメンタル形のエンコーダを用いて、エンコーダから出力されるパルス信号におけるエッジ間の時間間隔(以下、「パルスエッジ間隔」という。)を計測することで、その逆数を、駆動対象の速度として計測する方法が知られている。
ところで、上記パルスエッジ間隔により駆動対象の速度を計測する場合には、静止する駆動対象の動き出し時に、少なくとも2以上のパルス信号がエンコーダから出力されるまで、駆動対象の速度を計測することができないといった問題がある。
また、パルスエッジ間隔により駆動対象の速度を計測する方法では、振動等の影響で速度を誤計測する可能性があるため、振動が発生しやすい駆動対象の動き出し時に、計測結果を用いて速度制御すると、誤った速度情報に基づく制御誤差の影響が長引いて、駆動対象の速度制御を精度よく実現できないといった問題がある。
従来では、このような問題を解決するために、加速初期段階において、予め推定した速度(以下、「推定速度」という。)を用いて、操作量Uを算出することが行われている。即ち、エンコーダによる速度の計測結果を用いずに、偏差Eとして、推定速度と目標速度との偏差を算出し、この偏差Eに基づき、操作量Uを算出するといった具合である(例えば、特許文献1参照)。
特開2004−98678号公報
しかしながら、推定速度を用いる従来の制御方法では、次のような問題があった。即ち、従来の制御方法では、速度推定領域を超えるまでは偏差Eとして推定速度と目標速度との偏差を用いるのに対し、速度推定領域を超えた時点からは、偏差Eとして、エンコーダにより計測された速度と目標速度との偏差を用いて、操作量Uを算出するため、速度推定領域の境界で、図11に示すように、操作量Uの算出に用いられる偏差Eが大きく変動するといった問題があった。
そして、この影響が尾を引いて、以後の制御精度が悪化し、例えば、駆動対象を加速させて定速移動させる制御装置においては、駆動対象が定速状態に移行して速度が安定するまでの時間が長くなるといった問題があった。また、偏差Eの大きな変動に伴って衝撃音が発生するといった問題があった。
尚、図11(a)は、駆動対象の速度を縦軸とし、時間を横軸として、エンコーダにより計測される駆動対象の速度変化の態様を、目標速度及び推定速度と共に示したものである。また、図11(b)は、偏差Eを縦軸とし、時刻を横軸として、偏差Eの変化の態様を示したものである。
本発明は、こうした問題に鑑みなされたものであり、目標速度と参照速度との偏差Eから駆動対象に対する操作量Uを算出して、駆動対象の速度制御を行う制御装置であって、参照速度を、推定速度から計測により得られた速度に切り替える制御装置において、当該切り替えによる偏差Eの変動を抑えることを目的とする。
かかる目的を達成するためになされた本発明の制御装置は、静止する駆動対象を加速させる際の速度制御を行う制御装置であって、信号発生手段と、速度計測手段と、参照速度設定手段と、操作量算出手段と、駆動手段と、を備える。
信号発生手段は、駆動対象が所定量変位する度にパルス信号を出力し、速度計測手段は、信号発生手段から出力されるパルス信号に基づき、駆動対象の速度を計測する。
一方、参照速度設定手段は、速度計測手段により計測される速度を、参照速度に設定し、操作量算出手段は、参照速度設定手段により設定された参照速度と、予め定められた目標速度との偏差を、所定の伝達関数に入力して、駆動対象に対する操作量を算出する。
そして、駆動手段は、操作量算出手段により算出された操作量に対応する動力を駆動対象に与えて、駆動対象を駆動する。
また、上記参照速度設定手段は、仮想速度設定手段及び判定手段を備える。
仮想速度設定手段は、制御開始後、所定時間が経過するまでの制御初期段階では、速度計測手段により計測される速度とは無関係に、規定の速度を、参照速度に設定し、制御初期段階の終了時点以降では、規定の速度を、速度計測手段によって計測される速度に一致させる方向に補正して、当該補正後の速度を、参照速度に設定する。
一方、判定手段は、制御初期段階の終了時点以降、速度計測手段が計測する速度に基づき、駆動対象の速度が参照速度に一致したか否かを繰返し判定する。
参照速度設定手段は、このように構成された仮想速度設定手段及び判定手段を用いて、制御開始後、判定手段により駆動対象の速度が参照速度に一致したと判定されるまでは、仮想速度設定手段により参照速度を設定し、判定手段により駆動対象の速度が参照速度に一致したと判定されたことを条件に、仮想速度設定手段による参照速度の設定を止めて、速度計測手段によって計測される速度を、参照速度に設定する。
このように、本発明の制御装置においては、制御初期段階の終了以降、参照速度が駆動対象の速度に一致するまでの期間、参照速度を、駆動対象の速度に近づけるように徐々に補正し、一致したことを条件に、参照速度を、速度計測手段によって計測される速度に切り替える。
従って、本発明の制御装置によれば、参照速度を、速度計測手段によって計測される速度に切り替える際に、目標速度と参照速度との偏差に大きな変動が生じるのを抑えることができ、当該大きな変動により、衝撃音が発生したり、以後の制御誤差が大きくなるのを防止することができる。
尚、ここでいう「規定の速度」は、一定速度であってもよいし、時間の関数で定められる速度であってもよい。また、上述の「制御初期段階」は、制御開始後、所定時間が経過するまでの期間に定められてもよいし、制御開始後、駆動対象が予め定められた地点を通過するまでの期間に定められても良い(請求項2)。
この他、仮想速度設定手段は、制御初期段階の終了時点で、速度計測手段によって計測された速度が、規定の速度よりも大きい場合、その時点以降、規定の速度を増加させる方向に補正することで、規定の速度を速度計測手段によって計測される速度に一致させる方向に補正して、補正後の速度を、参照速度に設定し、制御初期段階の終了時点で、速度計測手段によって計測された速度が、規定の速度よりも小さい場合には、その時点以降、規定の速度を減少させる方向に補正することで、規定の速度を速度計測手段によって計測される速度に一致させる方向に補正して、補正後の速度を、参照速度に設定する構成にすることができる(請求項3)。
また、制御初期段階では、規定の速度と目標速度との偏差に基づいて操作量Uを算出することになるので、駆動対象を加速させるためには、目標速度より低い値に上記「規定の速度」を、定めることになる。従って、制御初期段階の終了時点で、速度計測手段によって計測された速度が、上記規定の速度よりも小さい場合でも、駆動対象は、加速して、いずれ規定の速度を超えることになる。
従って、仮想速度設定手段は、制御初期段階の終了時点で、速度計測手段によって計測された速度が、規定の速度よりも小さい場合、その時点以降も規定の速度を補正せずに、当該規定の速度を、参照速度に設定する構成にされてもよい(請求項4)。このように仮想速度設定手段を構成しても、参照速度を駆動対象の速度に一致させることができる。
また、上述の「規定の速度」は、一次関数によって定めることができる(請求項5)。この場合には、制御初期段階の終了時点で、速度計測手段によって計測された速度が、規定の速度よりも大きい場合、その時点以降、一次関数の傾きを大きくする方向に補正することで、規定の速度を増加させる方向に補正すればよい。
逆に、制御初期段階の終了時点で、速度計測手段によって計測された速度が、規定の速度よりも小さい場合には、その時点以降、一次関数の傾きを小さく方向に補正することで、規定の速度を減少させる方向に補正すればよい。例えば、一次関数の傾きをゼロに設定するようにしてもよいし、傾きをマイナスに設定するようにしてもよい。
以下に本発明の実施例について、図面と共に説明する。
図1は、本実施例のプリンタ装置1の電気的構成を表すブロック図である。
本実施例のプリンタ装置1は、CPU11と、CPU11が実行するプログラム等を記憶するROM13と、プログラム実行時に作業領域として使用されるRAM15と、各種設定情報を記憶するEEPROM17と、パーソナルコンピュータ(PC)3から送信されてくる印刷指令や当該印刷指令と共に送信されてくる印刷対象データを受信するためのインタフェース19(例えば、USBインタフェース)と、印字制御部21と、モータ制御部30と、を備える。
また、このプリンタ装置1は、インク液滴を吐出するためのノズルが複数配列された記録ヘッド23と、記録ヘッド23を駆動するためのヘッド駆動回路25と、キャリッジ搬送機構40と、用紙搬送機構60と、キャリッジ搬送機構40が備えるCRモータ43を駆動するためのCRモータ駆動回路51と、CRモータ43によって駆動されるキャリッジ41が所定量変位する度にパルス信号を出力するCRエンコーダ53と、用紙搬送機構60が備えるLFモータ63を駆動するためのLFモータ駆動回路71と、LFモータ63が所定角度回転する度にパルス信号を出力するロータリエンコーダからなるLFエンコーダ73と、を備える。
キャリッジ搬送機構40は、図2に示すように、記録ヘッド23を主走査方向に搬送するキャリッジ41や、キャリッジ41を主走査方向に移動させるための直流モータであるCRモータ43等を備え、キャリッジ41がガイド軸42に沿って主走査方向に移動可能に設置され、キャリッジ41が、無端ベルト44に連結された構成にされている。図2は、プリンタ装置1が備えるキャリッジ搬送機構40の構成を表す斜視図である。
このキャリッジ搬送機構40において、無端ベルト44は、直流モータであるCRモータ43の回転軸に設けられたプーリー45と、アイドルプーリー(図示せず)との間に掛けられており、CRモータ43の回転力を、プーリー45を介して受けて、回転する。
即ち、キャリッジ搬送機構40は、CRモータ43の回転力を受けて、無端ベルト44が回転することにより、キャリッジ41が、キャリッジ搬送路を構成するガイド軸42に沿って、主走査方向に移動する構成にされている。
また、プリンタ装置1には、ガイド軸42に沿って、スリットが一定の微小間隔で形成されたタイミングスリット47が設けられ、タイミングスリット47に形成されたスリットの間隔を読み取ってキャリッジ41の位置に対応したパルス信号を出力するセンサ素子48が、キャリッジ41に設けられている。即ち、本実施例においては、タイミングスリット47とセンサ素子48とにより、リニアエンコーダとしてのCRエンコーダ53が構成されている。
また、記録ヘッド23は、周知のピエゾ型インクジェットヘッドと同一構成にされ、駆動電圧が印加されると、インク室に隣接する圧電部を変形させて、インク室の容積を変化させることにより、インク室内のインクをノズルから用紙に向けて吐出する構成にされている。この記録ヘッド23は、キャリッジ41に搭載されており、キャリッジ41に搬送されて、主走査方向に移動する。
また、用紙搬送機構60は、用紙Pを副走査方向に搬送するための搬送ローラ61や搬送ローラ61を回転させるための直流モータであるLFモータ63等を備え、LFモータ63により搬送ローラ61を回転させることで、用紙Pを、記録ヘッド23のノズルと対向する記録ヘッド23の下方に向けて、主走査方向とは直交する副走査方向に搬送する構成にされている。
また、印字制御部21は、CPU11の指令によって動作を開始すると、CRエンコーダ53から入力されるパルス信号及びCPU11から入力される画像データに基づき、記録ヘッド23を、ヘッド駆動回路25を通じて制御し、CPU11から入力される画像データに応じた画像を、用紙Pに形成する構成にされている。
具体的に、印字制御部21は、周知のプリンタ装置と同様、CRエンコーダ53から入力されるパルス信号に基づき、キャリッジ41の移動に同期して駆動電圧を記録ヘッド23に印加し、記録ヘッド23に、ノズルからインク液滴を吐出させる。
この他、モータ制御部30は、図3(a)に示すように、CRエンコーダ計測部31、CRモータ制御部33、LFエンコーダ計測部35、及び、LFモータ制御部37を備える。尚、図3(a)は、モータ制御部30の構成を表すブロック図である。
CRエンコーダ計測部31は、CRエンコーダ53から入力される上記パルス信号としてのA相信号及びB相信号に基づき、キャリッジ41の移動方向及び位置及び速度を計測するものであり、エッジ検出部311、速度検出部313、及び、位置検出部315を備える。CRエンコーダ53から入力されるA相信号及びB相信号は、このCRエンコーダ計測部31が備えるエッジ検出部311に入力される。
エッジ検出部311は、CRエンコーダ53から入力されるA相信号のパルスエッジを検出して、図3(b)に示すように、エッジ検出信号を出力すると共に、A相信号及びB相信号の位相差から、キャリッジ41の移動方向を検出し、この情報を、位置検出部315に入力するものである。
図3(b)は、速度検出部313における速度の計測方法を示した説明図である。速度検出部313は、このエッジ検出部311から入力されるエッジ検出信号に基づいて、図3(b)に示すように、A相信号のパルスエッジ間隔Teを計測し、この逆数1/Teを、キャリッジ41の検出速度Vmとして出力する。この検出速度Vmの情報は、CRモータ制御部33に入力される。
一方、位置検出部315は、エッジ検出部311から入力されるエッジ検出信号をカウントすることにより、キャリッジ41の位置を検出し、その検出位置Xmの情報を、CRモータ制御部33に入力する。
具体的に、位置検出部315は、キャリッジ41の移動方向が「正方向」であるときには、エッジ検出信号が入力される度に、位置Xmを1加算し、キャリッジ41の移動方向が「負方向」であるときには、エッジ検出信号が入力される度に、位置Xmを1減算することにより、キャリッジ41の位置Xmを検出する。尚、以下では、ガイド軸42に規制されて主走査方向を一次元的に移動するキャリッジ41の移動方向の内、位置検出部315において、位置Xmが1加算される方向を「正方向」と表現し、位置Xmが1減算される方向を「負方向」と表現する。
一方、CRモータ制御部33は、CPU11からの指令を受けて動作し、速度検出部313から入力されるキャリッジ41の検出速度Vmと、目標速度Vrが一致するように、CRモータ43に対する操作量U(駆動電圧又は駆動電流)を決定して、キャリッジ41の移動速度を制御する(詳細後述)。尚、位置検出部315から入力されるキャリッジ41の位置Xmの情報は、キャリッジ41を減速制御する際などに用いられる。
また、LFエンコーダ計測部35は、CRエンコーダ計測部31と同様の手法で、LFエンコーダ73から入力されるA相信号及びB相信号に基づき、LFモータ63の回転方向及び回転量及び回転速度を計測するものであり、これらの計測結果は、LFモータ制御部37に入力される。
この他、LFモータ制御部37は、CPU11からの指令を受けて動作し、LFエンコーダ計測部35から得られる計測結果に基づいて、CPU11から指定された量、用紙Pを送り出すように、LFモータ63を制御する。
続いて、CPU11が、PC3からインタフェース19を通じて、印刷指令を受信すると、実行する印刷制御処理について説明する。図4は、CPU11が、PC3からインタフェース19を通じて、印刷指令を受信すると、実行する印刷制御処理を表すフローチャートである。モータ制御部30は、CPU11が印刷制御処理を開始すると、CPU11から入力される指令を受けて、CRモータ43及びLFモータ63を制御する。
印刷制御処理を開始すると、CPU11は、キャリッジ41の搬送方向を「正方向」に設定すると共に(S110)、用紙搬送機構60に、用紙Pの給紙動作を実行させ(S115)、更に、CRモータ制御部33に対して指令入力し、キャリッジ41を、初期位置まで移動させる(S120)。尚、ここでは、キャリッジ41のホームポジションが「正方向」の上流側に位置するものとし、上記初期位置は、ホームポジションよりも下流に設定されているものとする。
更に、CPU11は、給紙された用紙Pにおける印字領域の先頭(印字対象の領域の副走査方向先頭)が、記録ヘッド23下方のインク吐出位置に到達するまで、用紙Pを副走査方向に搬送するように、LFモータ制御部37に対して指令入力する(S130)。
S130の処理後には、印字制御部21及びCRモータ制御部33に対して指令入力することにより、印字制御部21及びCRモータ制御部33に、1パス分の画像形成動作を実行させる(S140)。
尚、「1パス分の画像形成動作」とは、キャリッジ41を主走査方向に片道分移動させると共に、この際にインク液滴を記録ヘッド23に吐出させることにより、用紙Pに所定ライン数分の画像を形成する動作のことを言う。「1パス分の画像形成動作」にて画像形成可能なライン数は、記録ヘッド23の能力による。
S140の処理について詳述すると、ここでは、印字制御部21に対して、キャリッジ搬送路における画像形成開始位置及び画像形成終了位置を指定すると共に、画像形成開始位置から画像形成終了位置までの間で画像形成すべき画像データを与えることにより、印字制御部21にヘッド駆動回路25を通じて記録ヘッド23を制御させ、画像形成開始位置から画像形成終了位置までをキャリッジ41が移動する間に、記録ヘッド23が画像データに対応するインク液滴の吐出動作を、キャリッジ41の移動に併せて実行するようにする。
一方、CRモータ制御部33に対しては、S110又はS170で設定した搬送方向を、キャリッジ41の搬送方向として指定すると共に、キャリッジ41の目標停止位置Xeを指定することにより、CRモータ制御部33に、上記指定した搬送方向にキャリッジ41を搬送させて、目標停止位置Xeでキャリッジ41が停止するように、CRモータ43を制御させる。
また、S140での1パス分の画像形成動作が終了すると、CPU11は、S150に移行し、用紙1頁分の画像形成動作が完了したか否かを判断し、用紙1頁分の画像形成動作が完了していないと判断すると(S150でNo)、S160に移行する。
そして、S160では、LFモータ制御部37に指令入力することにより、LFモータ制御部37に、用紙搬送機構60を通じて、用紙Pを1パス分の距離、副走査方向下流に搬送させる。尚、ここでいう「1パス分の距離」は、S140における「1パス分の画像形成動作」によって用紙Pに形成可能な画像の副走査方向の長さに対応する。
また、S160での処理を終えると、CPU11は、キャリッジ41の搬送方向を現在設定されている方向とは逆方向に設定する。即ち、現在の設定値が「正方向」であれば、搬送方向を「負方向」に設定し、現在の設定値が「負方向」であれば、搬送方向を「正方向」に設定する(S170)。
その後、CPU11は、S140に移行して、印字制御部21及びCRモータ制御部33に、上述した「1パス分の画像形成動作」を実行させる。また、この処理を終えると、S150に移行して、用紙1頁分の画像形成動作が完了したか否かを判断し、完了していない場合には、S160に移行して同様の処理を繰り返す。
即ち、CPU11は、CRモータ制御部33を通じて、キャリッジ41を、主走査方向に往復運動させ、用紙P上をキャリッジ41が主走査方向に通過する際には、上述した印字制御部21の動作により、記録ヘッド23からインク液滴を用紙Pに吐出することにより、用紙Pに、印刷指令と共にPC3から受信した画像データに基づく画像を、形成する。具体的に、キャリッジ41は、搬送方向が「正方向」であるときの上記初期位置と、目標停止位置Xeとの間を往復運動することになる。
そして、用紙1頁分の画像形成動作が完了したと判断すると(S150でYes)、CPU11は、S180に移行し、用紙搬送機構60に、用紙Pの排紙動作を実行させる(S180)。また、S180での処理を終えると、次頁の画像データがあるか否かを判断し(S190)、次頁の画像データがあると判断すると(S190でYes)、S110に移行して、次頁の画像形成を、上述した手順と同様に実行する。一方、次頁の画像データがないと判断すると(190でNo)、CPU11は、CRモータ制御部33に対して指令入力して、キャリッジ41をホームポジションまで移動させた後(S195)、当該印刷制御処理を終了する。
続いて、CRモータ制御部33が実行する搬送制御処理について説明する。図5及び図6は、S140でCPU11から入力される指令に従って、CRモータ制御部33が実行する搬送制御処理を表すフローチャートである。また、図7及び図8は、当該搬送制御処理によって搬送されるキャリッジ41の速度変化の態様を、目標速度Vr及び参照速度Vgと共に示した説明図である。
この搬送制御処理を開始すると、CRモータ制御部33は、まず、状態フラグを値「1」に設定すると共に(S210)、CRモータ駆動回路51に対して出力する操作量Uをゼロに設定する(S220)。尚、状態フラグは、処理の切替に用いられるフラグであり、値「1」「2」「3」のいずれかを採る。
更に、最短速度推定領域終了位置Xwを設定する(S225)。
尚、本実施例では、キャリッジ41の動き出しから最短速度推定領域終了位置Xwにキャリッジ41が到達するまでは、速度検出部313による検出速度Vmの精度が低いものとみなして、キャリッジ41の実速度に設定されるべき参照速度Vgを、規定の関数A(t)によって、Vg=A(t)に設定する。そして、このように設定した参照速度Vgと目標速度Vrとの偏差E=Vr−Vgに基づき、CRモータ駆動回路51に対して出力する操作量Uを設定する。
最短速度推定領域終了位置Xwは、このような操作量Uの設定に影響を与えるパラメータであり、速度検出部313による速度の検出精度を考慮して、設計段階で、設計者により定められる。
具体的に、キャリッジ41の加速開始位置からの距離で最短速度推定領域終了位置が定められている場合には、S225において、CRモータ制御部33は、位置検出部315からキャリッジ41の検出位置Xmの情報を取り込み、この検出位置XmとCPU11から指定された搬送方向の情報に基づいて、検出位置Xmから搬送方向に所定距離離れた位置を、最短速度推定領域終了位置Xwを設定する。
また、S225での処理を終えると、CRモータ制御部33は、S230に移行し、先立ってS220(又はS350)で設定された最新の操作量Uを、CRモータ駆動回路51に出力することにより、CRモータ駆動回路51に、当該操作量Uに対応する駆動電圧又は駆動電流でCRモータ43を駆動させるようにする。また、速度検出部313からキャリッジ41の検出速度Vmの情報を取り込み、更には、位置検出部315からキャリッジ41の検出位置Xmの情報を取り込む。
また、S230での処理を終えると、CRモータ制御部33は、減速開始条件が満足されているか否かを判断し(S240)、減速開始条件が満足されていると判断すると(S240でYes)、CRモータ駆動回路51を通じてCRモータ43(ひいてはキャリッジ41)を減速・停止させ(S245)、その後、当該搬送制御処理を終了する。
一方、減速開始条件が満足されていないと判断すると(S240でNo)、CRモータ制御部33は、S250に移行する。尚、S240では、S230で取り込んだ検出位置Xmの情報に基づき、CPU11から指定された目標停止位置Xeより所定距離遡った地点を搬送方向下流にキャリッジ41が移動したか否かを判断し、当該判断によって、減速開始条件が満足されたか否かを判断すればよい。
S250に移行すると、CRモータ制御部33は、状態フラグが値「1」であるか否かを判断し、状態フラグが値「1」であると判断すると(S250でYes)、S260に移行し、状態フラグが値「1」ではないと判断すると(S250でNo)、S370に移行する。
また、S260に移行すると、CRモータ制御部33は、キャリッジ41が最短速度推定領域を通過したか否かを判断する。具体的に、ここでは、S230で取り込んだキャリッジ41の検出位置Xmが、S225で設定した最短速度推定領域終了位置Xwよりも、キャリッジ41の搬送方向下流の位置であるか否かを判断することにより、キャリッジ41が最短速度推定領域を通過したか否かを判断すればよい。
そして、キャリッジ41が最短速度推定領域を通過していないと判断すると(S260でNo)、CRモータ制御部33は、S270に移行し、予め定められた規定の関数A(t)に従って、参照速度Vgを、関数A(t)が示す現在時刻tの速度に設定する(Vg=A(t))。
その後、CRモータ制御部33は、S330に移行し、予め定められた速度指令関数F(t)に従って、目標速度Vrを、速度指令関数F(t)が示す現在時刻tの速度に設定する(Vr=F(t))。
尚、速度指令関数F(t)は、加速区間の目標速度Vrが一次関数で定義された次の関数により定められている。
F(t)=Vf・t (t≦Tc)
F(t)=V0=Vf・Tc (t>Tc)
即ち、速度指令関数F(t)は、制御開始時刻(t=0)から時刻Tcまでの時間領域において関数Vf・tにより定義され、時刻Tc以降の時間領域において定数(一定速度)V0=Vf・Tcに定められている。尚、時刻Tcは、加速終了時刻であり、Vfは、目標加速度である。これらの値Tc及び値Vfは、予め設計段階において正の値で定められる(Vf>0)。
また、S330で現在時刻の目標速度Vrを設定すると、CRモータ制御部33は、S340に移行し、現在設定されている目標速度Vrと、参照速度Vgとの偏差Eを算出する。
E=Vr−Vg
尚、上述しなかったが、関数A(t)は、上記速度指令関数F(t)よりも加速度の小さい次の一次関数により定められている。
A(t)=Va・t
具体的に、加速度Vaは、条件式Vf>Va>0を満足する正の値である。従って、Vg=A(t)であるときの偏差Eは、E=(Vf−Va)・tとなり正の値を採る。
また、S340で偏差Eを算出すると、CRモータ制御部33は、S350に移行し、S340で算出した偏差Eに基づき、次のS230でCRモータ駆動回路51に対して出力する操作量Uを設定する。
具体的には、参照速度Vgがキャリッジ41の実速度である場合に偏差Eを縮小する方向の操作量を算出する所定の伝達関数Gに、S340で算出した偏差Eを入力することにより、操作量Uを求める。尚、この伝達関数Gは、周知の手法で設計される。
そして、キャリッジ41の搬送方向として「正方向」が指定されている場合には、上記伝達関数Gにより得られる操作量Uを、S230でCRモータ駆動回路51に対して出力する操作量に決定し、キャリッジ41の搬送方向として「負方向」が指定されている場合には、上記伝達関数Gにより得られる操作量Uの符号(+/−)を反転させたものを、S230でCRモータ駆動回路51に対して出力する操作量に決定して、CRモータ43の回転方向が、「正方向」とは逆方向となるようにし、キャリッジ41が「負方向」に搬送されるようにする。
このようにして、S350で操作量Uを設定すると、CRモータ制御部33は、所定周期で定められた入出力タイミングが到来するまで待機し(S360)、入出力タイミングが到来すると(S360でYes)、S230に移行して、直前のS350で設定された最新の操作量Uを、CRモータ駆動回路51に出力することにより、CRモータ駆動回路51に、当該操作量Uに対応する駆動電圧又は駆動電流でCRモータ43を駆動させる。また、速度検出部313及び位置検出部315からキャリッジ41の検出速度Vm及び検出位置Xmの情報を取り込む。そして、後続の処理を上述したように実行する。
CRモータ制御部33は、このような処理を繰返すことでキャリッジ41が搬送方向前方に移動し、キャリッジ41が最短速度推定領域を通過すると(S260でYes)、S280に移行して、状態フラグを値「2」に切り替えた後、S290に移行し、参照速度Vgを、S270での処理と同様、Vg=A(t)に設定する。
また、参照速度Vgを設定し終えると、S300に移行し、S230で取り込んだキャリッジ41の検出速度Vmが、参照速度Vgよりも大きいか否かを判断し、検出速度Vmが参照速度Vgよりも大きいと判断すると(S300でYes)、増減フラグを「増加」を表す値に設定し(S310)、検出速度Vmが参照速度Vg以下であると判断すると、増減フラグを「減少」を表す値に設定する(S320)。その後、S330に移行し、上述した手法で後続の処理を実行する。
尚、増減フラグは、関数A(t)で設定される参照速度Vgを、キャリッジ41の実速度に一致させる方向に補正するためのものであり、参照速度Vgは、増減フラグが「増加」に設定された場合、後述する処理により、増加する方向に補正され、増減フラグが「減少」に設定された場合には、減少する方向に補正される。
このように増減フラグが設定される前には、上述したように状態フラグが値「2」に切り替わるので、ここで、増減フラグが設定された後、最初に実行されるS250の処理では、状態フラグが値「1」ではないと判断される。即ち、CRモータ制御部33は、S250でNoと判断して、S370に移行する。
そして、S370に移行すると、CRモータ制御部33は、状態フラグが値「2」であるか否かを判断し、状態フラグが値「2」であると判断すると(S370でYes)、S380に移行し、状態フラグが値「2」ではないと判断されると(S370でNo)、S450に移行する。
また、S380に移行すると、CRモータ制御部33は、増減フラグが「増加」に設定されているか否かを判断し、「増加」に設定されていると判断すると(S380でYes)、S390に移行し、参照速度Vgを、次式に従って設定する。
Vg=A(t)+B(t−Tw)
尚、上式において、値Twは、増減フラグを「増加」(又は「減少」)に設定したときの時刻(最短速度推定領域通過時刻)であり、関数B(t−Tw)は、参照速度Vgを、規定の速度A(t)から増加させる方向に補正するための関数である。この関数B(t−Tw)は、単調増加関数により定められている。
具体的に、本実施例の関数B(t−Tw)は、時刻Twで値ゼロとなる正の傾きVb(>0)を有する一次関数により定められている。
B(t−Tw)=Vb・(t−Tw)
また、S390での処理を終えると、CRモータ制御部33は、S400に移行し、S390で設定した参照速度Vgが、S230で取り込んだキャリッジ41の検出速度Vmよりも大きいか否かを判断する。
尚、ここでの判断は、参照速度Vgがキャリッジ41の実速度に一致したか否かを判断するためのものである。参照速度Vgがキャリッジ41の検出速度Vmよりも大きければ、検出速度Vm及び参照速度Vgの大小関係が、時刻Twでの大小関係と逆になったということであるので、直前に参照速度Vgがキャリッジ41の実速度に一致したと取扱う。
S400において、参照速度Vgがキャリッジ41の検出速度Vmより大きいと判断すると(S400でYes)、CRモータ制御部33は、S410に移行して、状態フラグを値「3」に切り替えた後、S330に移行して、後続の処理を実行する。
一方、参照速度Vgがキャリッジ41の検出速度Vm以下である場合には(S400でNo)、状態フラグを値「3」に切り替えず、値「2」に維持した状態で、S330に移行して、後続の処理を実行する。
これに対し、増減フラグが「減少」に設定されていると判断すると(S380でNo)、CRモータ制御部33は、S420に移行し、参照速度Vgを、次式に従って設定する。
Vg=A(t)+C(t−Tw)
但し、関数C(t−Tw)は、参照速度Vgを、規定の速度A(t)から減少させる方向に補正するための関数であり、時刻Twでの値がゼロの単調減少関数により予め設計段階で定められる。具体的に、本実施例において、関数C(t−Tw)は、ゼロ又は負の傾きVc(≦0)を有する一次関数により定められている。
C(t−Tw)=Vc・(t−Tw)
尚、傾きVcが値ゼロのときの関数C(t−Tw)は、厳密には一次関数ではなく定数であるが、ここでは、一次関数と表現して話を進める。
また、S420での処理を終えると、CRモータ制御部33は、S430に移行し、S420で設定した参照速度Vgが、S230で取り込んだキャリッジ41の検出速度Vmよりも小さいか否かを判断する。
尚、ここでの判断は、S400と同様、参照速度Vgがキャリッジ41の実速度に一致したか否かを判断するためのものである。参照速度Vgがキャリッジ41の検出速度Vmよりも小さければ、検出速度Vm及び参照速度Vgの大小関係が、時刻Twでの大小関係と逆になったということであるので、直前に参照速度Vgがキャリッジ41の実速度に一致したと取扱う。
S430において、参照速度Vgがキャリッジ41の検出速度Vmより小さいと判断すると(S430でYes)、CRモータ制御部33は、S440に移行して、状態フラグを値「3」に切り替えた後、S330に移行して、後続の処理を実行する。一方、参照速度Vgがキャリッジ41の検出速度Vm以上である場合には(S430でNo)、状態フラグを値「3」に切り替えず、値「2」に維持した状態で、S330に移行して、後続の処理を実行する。
また、S410又はS440で状態フラグが値「3」に切り替わると、その後のS370において、CRモータ制御部33は、否定判断して(S370でNo)、S450に移行し、参照速度Vgを、S230で取り込んだキャリッジ41の検出速度Vmに設定する。また、S450の処理後には、その参照速度VgでS330以降の処理を実行する。
このようにして、搬送制御処理では、キャリッジ41が最短速度推定領域にあるときには、参照速度Vgを規定の速度A(t)に設定し、キャリッジ41が最短速度推定領域を通過した後には、最短速度推定領域終了位置Xwでの参照速度Vgと検出速度Vmとの大小関係に基づき、参照速度Vgが、キャリッジ41の実速度に近づくように、当該参照速度Vgを、関数B(t−Tw)又は関数C(t−Tw)で補正する。
そして、参照速度Vgが、キャリッジ41の実速度に一致すると、参照速度Vgを、検出速度Vmに設定することにより、検出速度Vmに基づいたCRモータ43のフィードバック制御を行う。
従って、本実施例によれば、参照速度Vgを検出速度Vmに切り替えるときに、偏差Eが大きく変動することがなく、偏差Eが大きく変動することによって、従来装置のように、衝撃音が発生したり、以後の制御誤差が大きくなるのを防止することができる。
尚、図7(a)は、最短速度推定領域の通過時点で、参照速度Vgが検出速度Vmよりも小さいことに起因して、参照速度Vgを、関数A(t)で定まる規定の速度から増加させる方向に補正した場合におけるキャリッジ41の検出速度Vmの変化態様を、目標速度Vr及び参照速度Vgと共に示したグラフである。また、図7(b)は、そのときの偏差Eの変化態様を示したグラフである。
また、図8は、最短速度推定領域の通過時点で、参照速度Vgが検出速度Vm以上であることに起因して、参照速度Vgを、関数A(t)で定まる規定の速度から減少させる方向に補正した場合におけるキャリッジ41の検出速度Vmの変化態様を、目標速度Vr及び参照速度Vgと共に示したグラフである。
図11に示す従来例と比較すれば理解できるように、本実施例のプリンタ装置1によれば、上述した搬送制御処理により、従来例と比較して偏差Eの急激な変化を抑えることができるので、衝撃音を抑えられると共に、参照速度Vgを検出速度Vmに切り替えた時点以降の制御誤差が少なくて済み、結果として、加速終了時刻Tc以降で、キャリッジ41を一定速度V0で安定して定速運動させることができる。換言すると、本実施例によれば、参照速度の切り替えによる影響を抑えて、高精度に速度制御することができる。
ところで、上述した関数{A(t)+B(t−Tw)}の傾き(Va+Vb)及び関数{A(t)+C(t−Tw)}の傾き(Va+Vc)は、具体的に、次のように定められると好ましい。図9(a)は、関数{A(t)+C(t−Tw)}の傾き(Va+Vc)の設定例を示した説明図であり、図9(b)は、関数{A(t)+B(t−Tw)}の傾き(Va+Vb)の設定例を示した説明図である。
図9(a)に示すように、関数{A(t)+C(t−Tw)}の傾き(Va+Vc)については、最短速度推定領域通過時刻Twと、記録ヘッド23による画像形成開始時刻Tsとの中間の時刻(Tw+Ts)/2で、参照速度Vgが、最短速度推定領域通過時刻Twでのキャリッジ41の検出速度Vmと一致する傾きに設定されるとよい。
また、図9(b)に示すように、関数{A(t)+B(t−Tw)}の傾き(Va+Vb)については、最短速度推定領域通過時刻Twと、記録ヘッド23による画像形成開始時刻Tsとの中間の時刻(Tw+Ts)/2で、参照速度Vgが、その時刻での目標速度Vrと一致する傾きに設定されるとよい。
このようにすれば、最短速度推定領域通過時刻Tw周辺での偏差Eの変化量を抑えつつ、記録ヘッド23によるインク液滴の吐出動作が開始される前に、キャリッジ41の速度を、目標速度Vrに合わせることができる。
また、上記実施例では、図8に示すように、関数{A(t)+C(t−Tw)}を負の傾きをもつ一次関数に設定したが、関数{A(t)+C(t−Tw)}は、図10(a)に示すように、傾きゼロの一次関数(一定値)に定められてもよい。即ち、傾きVcは、傾き(−Va)に定められてもよい。
このように関数{A(t)+C(t−Tw)}を設定しても、参照速度Vgを、キャリッジ41の実速度に一致させてから、参照速度Vgを、検出速度Vmに切り替えることができる。
また、S420では、参照速度Vgを、S270,S290での処理と同様に、Vg=A(t)に設定してもよい。即ち、参照速度Vgを、関数C(t−Tw)で規定の速度A(t)から補正しないようにしてもよい。
このようにS420の処理を実行しても、図10(b)に示すように、参照速度Vgを、キャリッジ41の実速度に一致させてから、参照速度Vgを、検出速度Vmに切り替えることができる。
また、上記実施例では、S260において、キャリッジ41の検出位置Xmが最短速度推定領域終了位置Xwよりキャリッジ41の搬送方向下流の位置であるか否かを判断することにより、キャリッジ41が最短速度推定領域を通過したか否かを判断するようにしたが、キャリッジ41が最短速度推定領域を通過したか否かを判断は、制御開始時刻t=0からの経過時間で判断されてもよい。
即ち、予め最短速度推定領域通過時刻Twを固定値に定めておき、現在時刻が最短速度推定領域通過時刻Twを経過した時点で、キャリッジ41が最短速度推定領域を通過したと判断するように、S260の処理を置き換えてもよい。尚、このように時間によって、キャリッジ41が最短速度推定領域を通過したか否かを判断する場合には、S225の処理が不要であるので、S225の処理を実行しないように、搬送制御処理を構成すればよい。
以上、本発明の実施例について説明したが、「特許請求の範囲」に記載の信号発生手段は、CRエンコーダ53に対応し、速度計測手段は、CRエンコーダ計測部31に対応し、駆動手段は、CRモータ駆動回路51に対応する。また、参照速度設定手段は、CRモータ制御部33が実行するS250〜S320,S370〜S450の処理により実現され、操作量算出手段は、S330〜S350の処理により実現されている。
特に、仮想速度設定手段は、S270,S290,S390,S420の処理により実現され、判定手段は、S400,S410,S430,S440の処理により実現されている。
この他、制御初期段階は、制御開始時点から最短速度推定領域通過時刻Twが到来するまでの期間又は最短速度推定領域終了位置Xwを通過するまでの期間に対応し、「規定の速度」は、関数A(t)に定まる速度に対応する。
また、本発明は、上記実施例に限定されるものではなく、種々の態様を採ることができる。例えば、本発明の制御装置は、プリンタ装置1におけるキャリッジ41の制御に限定されず、静止する駆動対象を加速させる際の速度制御を行う種々の装置に適用することができる。
プリンタ装置1の電気的構成を表すブロック図である。 キャリッジ搬送機構40の構成を表す斜視図である。 モータ制御部30の構成を表すブロック図(a)及びキャリッジ41の速度計測方法を示した説明図(b)である。 CPU11が実行する印刷制御処理を表すフローチャートである。 CRモータ制御部33が実行する搬送制御処理を表すフローチャートである。 CRモータ制御部33が実行する搬送制御処理を表すフローチャートである。 キャリッジ41の速度及び偏差の変化を、目標速度Vr及び参照速度Vgと共に示したグラフである。 キャリッジ41の速度変化を、目標速度Vr及び参照速度Vgと共に示したグラフである。 最短速度推定領域通過以降の参照速度Vgの傾きの設定例を示す図である。 最短速度推定領域通過以降の参照速度Vgの傾きの設定例を示す図である。 従来の制御方法によるキャリッジ41の速度及び偏差の変化を示したグラフである。
符号の説明
1…プリンタ装置、11…CPU、13…ROM、15…RAM、17…EEPROM、19…インタフェース、21…印字制御部、23…記録ヘッド、25…ヘッド駆動回路、30…モータ制御部、31…CRエンコーダ計測部、33…CRモータ制御部、35…LFエンコーダ計測部、37…LFモータ制御部、40…キャリッジ搬送機構、41…キャリッジ、42…ガイド軸、43…CRモータ、44…無端ベルト、45…プーリー、47…タイミングスリット、48…センサ素子、51…CRモータ駆動回路、53…CRエンコーダ、60…用紙搬送機構、61…搬送ローラ、63…LFモータ、71…LFモータ駆動回路、73…LFエンコーダ、311…エッジ検出部、313…速度検出部、315…位置検出部、P…用紙

Claims (5)

  1. 静止する駆動対象を加速させる際の速度制御を行う制御装置であって、
    前記駆動対象が所定量変位する度にパルス信号を出力する信号発生手段と、
    前記信号発生手段から出力されるパルス信号に基づき、前記駆動対象の速度を計測する速度計測手段と、
    前記速度計測手段により計測される速度を、参照速度に設定する参照速度設定手段と、
    前記参照速度設定手段により設定された参照速度と、予め定められた目標速度との偏差を、所定の伝達関数に入力して、前記駆動対象に対する操作量を算出する操作量算出手段と、
    前記操作量算出手段により算出された前記操作量に対応する動力を前記駆動対象に与えて、前記駆動対象を駆動する駆動手段と、
    を備え、
    前記参照速度設定手段は、
    制御開始後、所定時間が経過するまでの制御初期段階では、前記速度計測手段により計測される速度とは無関係に、規定の速度を、前記参照速度に設定し、前記制御初期段階の終了時点以降では、前記規定の速度を、前記速度計測手段によって計測される速度に一致させる方向に補正して、補正後の速度を、前記参照速度に設定する仮想速度設定手段と、
    前記制御初期段階の終了時点以降、前記速度計測手段が計測する速度に基づき、前記駆動対象の速度が前記参照速度に一致したか否かを繰返し判定する判定手段と、
    を備え、前記制御開始後、前記判定手段により前記駆動対象の速度が前記参照速度に一致したと判定されるまでは、前記仮想速度設定手段により前記参照速度を設定し、前記判定手段により前記駆動対象の速度が前記参照速度に一致したと判定されたことを条件に、前記仮想速度設定手段による前記参照速度の設定を止めて、前記速度計測手段によって計測される速度を、前記参照速度に設定する構成にされていること
    を特徴とする制御装置。
  2. 静止する駆動対象を加速させる際の速度制御を行う制御装置であって、
    前記駆動対象が所定量変位する度にパルス信号を出力する信号発生手段と、
    前記信号発生手段から出力されるパルス信号に基づき、前記駆動対象の速度を計測する速度計測手段と、
    前記速度計測手段により計測される速度を、参照速度に設定する参照速度設定手段と、
    前記参照速度設定手段により設定された参照速度と、予め定められた目標速度との偏差を、所定の伝達関数に入力して、前記駆動対象に対する操作量を算出する操作量算出手段と、
    前記操作量算出手段により算出された前記操作量に対応する動力を前記駆動対象に与えて、前記駆動対象を駆動する駆動手段と、
    を備え、
    前記参照速度設定手段は、
    制御開始後、前記駆動対象が予め定められた地点を通過するまでの制御初期段階では、前記速度計測手段により計測される速度とは無関係に、規定の速度を、前記参照速度に設定し、前記制御初期段階の終了時点以降では、前記規定の速度を、前記速度計測手段によって計測される速度に一致させる方向に補正して、補正後の速度を、前記参照速度に設定する仮想速度設定手段と、
    前記制御初期段階の終了時点以降、前記速度計測手段が計測する速度に基づき、前記駆動対象の速度が前記参照速度に一致したか否かを繰返し判定する判定手段と、
    を備え、前記制御開始後、前記判定手段により前記駆動対象の速度が前記参照速度に一致したと判定されるまでは、前記仮想速度設定手段により前記参照速度を設定し、前記判定手段により前記駆動対象の速度が前記参照速度に一致したと判定されたことを条件に、前記仮想速度設定手段による前記参照速度の設定を止めて、前記速度計測手段によって計測される速度を、前記参照速度に設定する構成にされていること
    を特徴とする制御装置。
  3. 前記仮想速度設定手段は、前記制御初期段階の終了時点で、前記速度計測手段によって計測された速度が、前記規定の速度よりも大きい場合、その時点以降、前記規定の速度を増加させる方向に補正することで、前記規定の速度を前記速度計測手段によって計測される速度に一致させる方向に補正して、補正後の速度を、前記参照速度に設定する一方、前記制御初期段階の終了時点で、前記速度計測手段によって計測された速度が、前記規定の速度よりも小さい場合には、その時点以降、前記規定の速度を減少させる方向に補正することで、前記規定の速度を前記速度計測手段によって計測される速度に一致させる方向に補正して、補正後の速度を、前記参照速度に設定する構成にされていることを特徴とする請求項1又は請求項2記載の制御装置。
  4. 前記仮想速度設定手段は、前記制御初期段階の終了時点で、前記速度計測手段によって計測された速度が、前記規定の速度よりも大きい場合、その時点以降、前記規定の速度を増加させる方向に補正することで、前記規定の速度を前記速度計測手段によって計測される速度に一致させる方向に補正して、補正後の速度を、前記参照速度に設定する一方、前記制御初期段階の終了時点で、前記速度計測手段によって計測された速度が、前記規定の速度よりも小さい場合には、その時点以降も前記規定の速度を補正せずに、当該規定の速度を、前記参照速度に設定する構成にされていることを特徴とする請求項1又は請求項2記載の制御装置。
  5. 前記規定の速度は、一次関数によって定められていることを特徴とする請求項1〜請求項4記載の制御装置。
JP2008254882A 2008-09-30 2008-09-30 制御装置 Pending JP2010083012A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008254882A JP2010083012A (ja) 2008-09-30 2008-09-30 制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008254882A JP2010083012A (ja) 2008-09-30 2008-09-30 制御装置

Publications (1)

Publication Number Publication Date
JP2010083012A true JP2010083012A (ja) 2010-04-15

Family

ID=42247450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008254882A Pending JP2010083012A (ja) 2008-09-30 2008-09-30 制御装置

Country Status (1)

Country Link
JP (1) JP2010083012A (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048351A (ja) * 2001-08-07 2003-02-18 Seiko Epson Corp 印刷装置におけるキャリッジモータの制御
JP2004098678A (ja) * 2002-08-21 2004-04-02 Canon Inc 記録装置及びその制御方法
JP2007028808A (ja) * 2005-07-19 2007-02-01 Ricoh Co Ltd モータ駆動制御装置及び画像形成装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048351A (ja) * 2001-08-07 2003-02-18 Seiko Epson Corp 印刷装置におけるキャリッジモータの制御
JP2004098678A (ja) * 2002-08-21 2004-04-02 Canon Inc 記録装置及びその制御方法
JP2007028808A (ja) * 2005-07-19 2007-02-01 Ricoh Co Ltd モータ駆動制御装置及び画像形成装置

Similar Documents

Publication Publication Date Title
US8287088B2 (en) Image forming apparatus
JP2012215947A (ja) モータ制御装置及び画像形成装置
JP5891929B2 (ja) 搬送装置
JP5838990B2 (ja) 搬送システム、画像形成システム及び制御デバイス
JP4093191B2 (ja) モータ制御装置およびプリンタ
JP4124126B2 (ja) モータ制御装置
US9108815B2 (en) Sheet transport apparatus and image forming system
JP4687809B2 (ja) モータ制御装置
JP6665636B2 (ja) 制御システム及び画像形成システム
JP5195687B2 (ja) モータ制御装置及び画像形成装置
JP2006240212A (ja) プリンタおよびプリンタ用モータの制御方法
US8413983B2 (en) Image forming apparatus with accurate sheet conveyance
JP6390138B2 (ja) 制御装置
JP6213071B2 (ja) 搬送システム
JP6031813B2 (ja) 印刷装置、及び、印刷方法
JP2010083012A (ja) 制御装置
JP2019166761A (ja) モーター制御方法およびモーター制御装置
JP5256619B2 (ja) モータ駆動装置及び画像形成装置
JP5834730B2 (ja) モータ制御装置及び画像形成システム
JP5168064B2 (ja) 制御装置
JP7327026B2 (ja) 駆動システム
JP6651889B2 (ja) 画像形成装置、画像形成装置の制御方法、誤差算出方法、及びプログラム
JP6497177B2 (ja) 制御システム及び画像形成システム
JP2019086828A (ja) パラメータ更新方法、パラメータ更新システム、及びプログラム
JP5845693B2 (ja) 搬送装置及び画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120731