JP2010080216A - 光電変換素子 - Google Patents

光電変換素子 Download PDF

Info

Publication number
JP2010080216A
JP2010080216A JP2008246206A JP2008246206A JP2010080216A JP 2010080216 A JP2010080216 A JP 2010080216A JP 2008246206 A JP2008246206 A JP 2008246206A JP 2008246206 A JP2008246206 A JP 2008246206A JP 2010080216 A JP2010080216 A JP 2010080216A
Authority
JP
Japan
Prior art keywords
electrode
photoelectric conversion
conversion element
electrolyte
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008246206A
Other languages
English (en)
Inventor
Akiharu Funaki
秋晴 船木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2008246206A priority Critical patent/JP2010080216A/ja
Publication of JP2010080216A publication Critical patent/JP2010080216A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

【課題】線状の第一電極と板状の第二電極を用いて構成され、第一電極の所定長さごとに第一電極の端部を光電変換素子の外部へ取り出す必要が無い、光電変換素子を提供する。
【解決手段】本発明に係る光電変換素子1A(1)は、別体をなす第一電極10と第二電極20とが、電解質30を介して配される。第二電極は、少なくとも一部が非導電性の膜25で覆われた板状の導電性基材であり、第一電極は、線状をなし、少なくとも導電性を有する第一線材11と、該第一線材の外周に配され色素を担持した多孔質酸化物半導体層12とから構成され、かつ、第二電極の外側を巡るように配される。電解質は、多孔質酸化物半導体層及び/又は非導電性の膜の空間部に含まれており、第二電極の板厚をなす側面部の少なくとも一辺に沿って絶縁体22および第二導電体23が順に重ねて配され、該一辺において第一電極と第二導電体が電気的に接続された構造を有する。
【選択図】図1

Description

本発明は、色素増感太陽電池等に用いる光電変換素子に関する。
色素増感太陽電池は、スイスのグレッツェルらのグループなどから提案されたもので、安価で高い変換効率を得られる太陽電池モジュールとして着目されている(例えば、特許文献1、非特許文献1)。
図5は、従来の色素増感型太陽電池の一例を示す断面図である。
この色素増感型太陽電池100は、増感色素を担持させた多孔質半導体電極(以下、色素増感半導体電極とも呼ぶ)103が一方の面に形成された第一基板101と、導電膜104が形成された第二基板105と、これらの間に封入された例えばヨウ素/ヨウ化物イオンなどの酸化還元対を含む電解質層106を主な構成要素としている。
第一基板101としては光透過性の板材が用いられ、第一基板101の色素増感半導体電極103と接する面には導電性を持たせるために透明導電層102が配置されており、第一基板101、透明導電層102及び色素増感半導体電極103により作用極(窓極)108をなす。
一方、第二基板105としては、電解質層106と接する側の面には導電性を持たせるために例えば炭素や白金からなる導電層104が設けられ、第二基板105及び導電層104により対極109を構成している。
色素増感半導体電極103と導電層104が対向するように、第一基板101と第二基板105を所定の間隔をおいて配置し、両基板間の周辺部に例えば熱可塑性樹脂からなる封止剤107を設ける。そして、この封止剤107を介して2つの基板101,105を貼り合わせてセルを組み上げ、電解液の注入口110を通して、両極108,109間にヨウ素/ヨウ化物イオンなどの酸化物還元対を含む有機電解液を充填し、電荷移送用の電解質層106を形成したものが挙げられる。
このような色素増感型の光電変換素子は、特に光が入射する側の電極(窓電極)には、可視光の透過性と高い伝導性が要求されるため、ガラス基板やプラスチック基板状に、スズドープ酸化インジウム(ITO)や、フッ素ドープ酸化スズ(FTO)といった透明導電性金属酸化物を塗布した基板が用いられてきた。
これに対して、上述した色素増感型光電変換素子の導電性基板に用いられているインジウム(In)等は、希少金属であり、昨今の価格の高騰からも、光電変換素子の低コスト化を阻害する要因となっている。そこで、本発明者らは、図6に示すような構造、すなわち、希少金属を必須とする導電性基板を必要とせず、希少金属の使用量を抑制できる構造とした色素増感型の光電変換素子の開発を鋭意進めている。
図6は、希少金属の使用量を抑制できる構造の色素増感型光電変換素子の一例を示す図面であり、図6(a)は図6(b)C−C’線の厚さ方向に沿う断面図の一部、図6(b)は光電変換素子200の斜視図である。
この光電変換素子200は、別体をなす第一電極10と第二電極20とが、電解質30を介して配されてなる光電変換素子であって、前記第二電極20は、少なくとも一部が非導電性の膜25で覆われた板状をなしており、前記第一電極10は、線状をなし、少なくとも導電性を有する第一線材11と、該第一線材11の外周に配され色素を担持した多孔質酸化物半導体層12とから構成され、かつ、前記第二電極20の外側を巡るように配されており、前記電解質30は、前記多孔質酸化物半導体層12又は前記非導電性の膜25の空間部に含まれる構造を有する。
図6の構造とした光電変換素子200においては、第二電極20として、たとえばTi等の導電性基板を使用できるので、希少金属を不要とした光電変換素子が実現できる。
しかしながら、図6の構造とした光電変換素子200では、第一電極10が線状を成しているため、その長さが長くなるほど、第一電極自体の抵抗が増加する。それ故、光電変換素子の外部へ発電した電流を有効に(効率よく)取り出すためには、第一電極10の所定長さごとに外部への取り出し端子を設ける必要があった。これは、光電変換素子の構成を複雑なものとし、光電変換素子の製造コストを高めるとともに、その製造工程を煩雑なものとしていた。
図6の構造とした光電変換素子200において、第一電極10の所定長さごとにその端部を光電変換素子の外部へ取り出す必要が無くなれば、大幅な低コスト化が図れることから、その開発が期待されている。ただし、その際には、受光効率を犠牲にしないことが同時に満たされる必要がある。
特開平1−220380号公報 M.Graetzel et al., Nature, 737, p.353, 1991
本発明は、上記事情に鑑みてなされたものであり、線状の第一電極と板状の第二電極を用いてなる構成の光電変換素子において、第一電極の所定長さごとに第一電極の端部を光電変換素子の外部へ取り出す必要が無く、低コスト化が図れるとともに、簡易な工程で製造可能な、優れた受光効率及び発電効率を備えた新しい構造を有する光電変換素子を提供することを目的とする。
前記課題を解決するため、本発明の請求項1に記載の光電変換素子は、別体をなす第一電極と第二電極とが電解質を介して配されてなる光電変換素子であって、前記第二電極は、少なくとも一部が非導電性の膜で覆われた板状の導電性基材であり、前記第一電極は、線状をなし、少なくとも導電性を有する第一線材と、該第一線材の外周に配され色素を担持した多孔質酸化物半導体層とから構成され、かつ、前記第二電極の外側を巡るように配されており、前記電解質は、前記多孔質酸化物半導体層及び/又は前記非導電性の膜の空間部に含まれており、前記第二電極の板厚をなす側面部の少なくとも一辺に沿って絶縁体および第二導電体が順に重ねて配され、該一辺において前記第一電極と該第二導電体が電気的に接続された構造を有することを特徴とする。
本発明の請求項2に記載の光電変換素子は、請求項1において、前記第一電極、前記第二電極、及び前記非導電性の膜は、電解質中に配されていることを特徴とする。
本発明の請求項3に記載の光電変換素子は、請求項1または2において、前記第一電極の形状は、平角線または多角形線であることを特徴とする。
本発明に係る光電変換素子は、板状の第二電極の板厚をなす側面部の少なくとも一辺に沿って絶縁体および第二導電体が順に重ねて配され、該一辺において第一電極と該第二導電体が電気的に接続された構造としたことにより、周回する第一電極は長さに依存せず電気抵抗が一定となり、確実に発生した電気を集電可能となるため、発電特性の向上が図れる。また、第一電極の所定長さごとに出力端子を設ける必要がなくなるため、簡易な工程で製造可能となり、さらなる低コスト化が可能となる。
よって、従来の光電変換素子に比較して製造工程が簡易で低コストの、しかも受光効率及び発電効率の高い光電変換素子の提供に寄与する。
<第一実施形態>
以下、本発明に係る光電変換素子の一実施形態を図面に基づいて説明する。
図1は、本発明の第一実施形態に係る光電変換素子を説明する図面であり、図1(a)は光電変換素子1A(1)の斜視図、図1(b)は図1(a)A−A’線の厚さ方向に沿う断面図の一部である。
本発明の第一実施形態に係る光電変換素子1A(1)は、別体をなす第一電極10と第二電極20とが電解質30を介して配されてなる光電変換素子であって、前記第一電極10は、少なくとも導電性を有する第一線材11と、該第一線材11の外周に配され色素を担持した多孔質酸化物半導体層12とから構成された線状をなしており、前記多孔質酸化物半導体層12は、増感色素とともに電解質30をも含浸している。前記第二電極20は、板状の導電性基材であり、表面の少なくとも一部に非導電性の膜25を有し、当該膜25の空間部分に電解質30を構成する電解液を保持している。第一電極10は、かかる第二電極20の外側を巡るように配されていることにより、非導電性の膜25及び電解質30を介して接する構造となる。
そして本発明の第一実施形態に係る光電変換素子1A(1)は、前記第二電極20の板厚をなす側面部の少なくとも一辺に沿って絶縁体22および第二導電体23が順に重ねて配され、該一辺において前記第一電極10と該第二導電体23が電気的に接続された構造を有することを特徴とする。
第一線材11としては、具体的には、例えば、Ti、Ni、W、Rh、Mo、W、Ptのいずれか、またはこれらの合金からなるワイヤや、中空の線材、棒材などが挙げられる。また、導電性を有し、かつ、電解質に対して電気化学的に不活性な材質からなる線状基材を、例えば、Ti、Ni、W、Rh、Mo、のいずれか、またはこれらの合金で被覆したものも第一線材11として用いられる。
このような第一線材11の太さ(直径)としては、特に限定されるものではないが、例えば、10[μm]〜10[mm]とするのが好ましい。ただし、柔軟性を十分に発揮させるためには、第一線材11の太さは細いほどよい。
多孔質酸化物半導体層12は、第一線材11の周囲に設けられており、その表面には少なくとも一部に増感色素及び電解質30が担持されている。
多孔質酸化物半導体層12を形成する半導体としては特に限定されず、通常、光電変換素子用の多孔質酸化物半導体を形成するのに用いられるものであれば、いかなるものでも用いることができる。このような半導体としては、例えば、酸化チタン(TiO 、酸化スズ(SnO 、酸化亜鉛(ZnO)、酸化ニオブ(Nb)、酸化タングステン(WO)などを用いることができる。
多孔質酸化物半導体層12を形成する方法としては、例えば、市販の酸化物半導体微粒子を所望の分散媒に分散させた分散液、あるいは、ゾル−ゲル法により調製できるコロイド溶液に、必要に応じて所望の添加剤を添加してから、浸漬、塗布、押し出し等の方法により前記第一線材11の外周に配した後、焼成することにより形成する方法が挙げられる。
このような多孔質酸化物半導体層12の厚みとしては、特に限定されるものではないが、例えば、1[μm]〜50[μm]が好ましい。
増感色素としては、例えば、N719、N3、ブラックダイなどのルテニウム錯体、ポルフィリン、フタロシアニン等の含金属錯体をはじめ、エオシン、ローダミン、メロシアニン等の有機色素などを適用することができ、これらの中から用途、使用半導体に適した励起挙動をとるものを適宜選択すれば良い。
多孔質酸化物半導体層12内には、電解液が含浸されており、この電解液も前記電解質30の一部を構成している。この場合、多孔質酸化物半導体層12内の電解質30は、多孔質酸化物半導体層12内に電解液を含浸させてなるものか、または、多孔質酸化物半導体層12内に電解液を含浸させた後に、この電解液を適当なゲル化剤を用いてゲル化(擬固体化)して、多孔質酸化物半導体層12と一体に形成されてなるもの、あるいは、イオン液体をベースとしたもの、さらには、酸化物半導体粒子及び導電性粒子を含むゲル状の電解質などが用いられる。
上記電解液としては、ヨウ素、ヨウ化物イオン、ターシャリーブチルピリジンなどの電解質成分が、エチレンカーボネートやメトキシアセトニトリルなどの有機溶媒やイオン液体に溶解されてなるものが用いられる。
この電解液をゲル化する際に用いられるゲル化剤としては、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などが挙げられる。
また、揮発性電解質溶液に代えて、一般に色素増感型太陽電池に用いられるものであれば、溶媒がイオン液体であるものやゲル化したものだけではなく、p型無機半導体や有機ホール輸送層といった固体であっても制限なく使用可能である。
上記イオン液体としては、特に限定されるものではないが、室温で液体であり、例えば、四級化された窒素原子を有する化合物をカチオンとした常温溶融塩が挙げられる。
常温溶融塩のカチオンとしては、四級化イミダゾリウム誘導体、四級化ピリジニウム誘導体、四級化アンモニウム誘導体などが挙げられる。
常温溶融塩のアニオンとしては、BF ,PF ,(HF) 、ビストリフルオロメチルスルホニルイミド[N(CFSO ]、ヨウ化物イオンなどが挙げられる。
イオン液体の具体例としては、四級化イミダゾリウム系カチオンとヨウ化物イオンまたはビストリフルオロメチルスルホニルイミドイオンなどからなる塩類を挙げることができる。
上記酸化物半導体粒子としては、物質の種類や粒子サイズなどは特に限定されるものではないが、イオン液体を主体とする電解液との混和性に優れ、この電解液をゲル化させるようなものが用いられる。また、酸化物半導体粒子は、電解質30の半導電性を低下させることがなく、電解質30に含まれる他の共存成分に対する科学的安定性に優れることが必要である。特に、電解質30がヨウ素/ヨウ化物イオンや、臭素/臭化物イオンなどの酸化還元対を含む場合であっても、酸化物半導体粒子は、酸化反応による劣化を生じないものが好ましい。
このような酸化物半導体粒子としては、TiO、SnO、SiO、ZnO、Nb、In、ZrO、Al、WO、SrTiO、Ta、La、Y、Ho、Bi、CeOからなる群から選択される1種または2種以上の混合物が好ましく、その平均粒径は2nm〜1000nm程度が好ましい。
上記導電性微粒子としては、導電体や半導体など、導電性を有する粒子が用いられる。
また、導電性粒子の種類や粒子サイズなどは特に限定されるものではないが、イオン液体を主体とする電解液との混和性に優れ、この電解液をゲル化するようなものが用いられる。さらに、電解質30に含まれる他の共存成分に対する化学的安定性に優れることが必要である。
特に、電解質30がヨウ素/ヨウ化物イオンや、臭素/臭化物イオンなどの酸化還元対を含む場合であっても、酸化反応による劣化を生じないものが好ましい。
このような導電性微粒子としては、カーボンを主体とする物質からなるものが挙げられ、具体例としては、カーボンナノチューブ、カーボンファイバ、カーボンブラックなどの粒子を例示できる。これらの物質の製造方法はいずれも公知であり、また、市販品を用いることもできる。
第二電極20の発電部をなす第一導電体21は、板状をなし、その表面が不導態となる各種の金属基板、例えばTi板から構成される。また、前記第一導電体21は、表面に、Pt、C、導電性高分子等からなる触媒膜(不図示)を有している。その際、該被膜は、例えばPt等の金属またはカーボンから構成されることが好ましい。
前記導電性高分子としては、例えば、PEDOT[Poly(3,4-ethylenedioxythiophene)]誘導体や、PANI[Polyaniline]誘導体などが挙げられる。
さらに、第一導電体21は、第一電極10との接触により短絡してしまわないように、その少なくとも一部が、例えば非導電性のナイロン繊維を用いた網(メッシュ)状の非導電性の膜25に被われており、当該膜25が第一電極10と第一導電体21の間のセパレータの役割を果たす。さらに、前記非導電性の膜25を構成する網目の空間部内には電解液が担持されており、当該膜25の部分は、電解質30の層(電解質層)を構成している。
前記非導電性の膜25は厚さ1〜100μmであることが好ましい。非導電性の膜25としては、他にポリエチレン繊維を用いたメッシュやセラミックを用いたメッシュなどを用いることができるが、電解液に耐え、第一電極10と第一導電体21とを絶縁可能であれば、これらに限定されない。
さらに、第一導電体21の板厚をなす側面部の少なくとも一辺に沿って、絶縁体22および第二導電体23を順に重ねて配し、例えばアイオノマー樹脂等の接着樹脂にて貼付けて一体とした。
前記絶縁体22としては、特に限定されるものではないが、例えばガラスからなる棒材の他、電解液により劣化しにくく、絶縁性の基材であれば制限なく使用可能である。また、第一導電体21と第二導電体23との絶縁が図れれば、いかなる形状でも可能である。
前記第二導電体23としては、Ti、Ni、W、Rh、Mo、W、Ptのいずれか、またはこれらの合金からなる棒材や、中空の棒材などが挙げられる。また、導電性を有し、かつ、電解質に対して電気化学的に不活性な材質からなる基材を、例えば、Ti、Ni、W、Rh、Mo、のいずれか、またはこれらの合金で被覆したものも使用可能である。
次に、第一実施形態に係る光電変換素子1A(1)の作製方法について説明する。
図2(a)に示すように、第一電極10を第二電極20に複数回巻き付ける。このとき、第二導電体23と接触する第一電極10のターン部分に配された多孔質酸化物半導体層12を剥離させることにより、第一電極10と、絶縁体22を介して配された第二導電体23とが電気的に接続された構造となる。
このとき、受光効率を高められるよう、第二電極20に巻き付ける第一電極10の幅は、できるだけ密集していることが望ましい。
次に、図2(b)のように、第一電極10が第二電極20に巻き付いた状態のブロックを、例えばメトキシアセトニトリルを溶媒とする揮発性電解液に浸し、第一電極10及び第二電極20の少なくとも一部を被う膜25の網目に十分に電解質30が満たされた後、図2(c)のように前記第一電極10が第二電極20に巻き付いた状態のブロックを揮発性電解液の溶媒から引き上げることで太陽電池が完成する。
このように、第一電極10と第二導電体23とが電気的に接続された構造としたことにより、第一電極10の長さに関わらず、その電気抵抗が低減できる。そのため、第一電極10の所定長さごとに出力端子を設ける必要がなくなり、製造工程の簡易化が図れ、大幅な低コスト化が可能となる。また同時に、導電部22が集電極の役割を果たすため、発生した電気を確実に集電可能となる。これにより、周回する第一電極10の長さに依存せず、簡易な製造工程で安定した発電効率を得ることができる。
さらに、第二電極20の板厚をなす側面部の両側の辺に沿って絶縁体22および第二導電体23が順に重ねて配され、該両辺において該第一電極10と該第二導電体23が電気的に接続された構造とすることにより、第一電極10がターン部分の歪みにより第一導電体21と短絡する危険性がなくなり、より安定した動作が可能となる。また、両端の第二導電体23から集電可能となるため、第一電極10全体としてさらに電気抵抗の低減が図れ、大面積の太陽電池への対応も可能となる。
<第二実施形態>
図3は、本発明の第二実施形態に係る光電変換素子を説明する図面であり、図3(a)は光電変換素子1B(1)の斜視図、図3(b)は図3(a)B−B’線の厚さ方向に沿う断面図の一部である。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
第二実施形態に係る光電変換素子1B(1)は、第一実施形態と同様の構成を有する第一電極10が第二電極20に巻き付いたブロックを、透明基材40a、40b及び封止部材50からなり、電解液の溶媒を中に保持した筐体内に配してなることを特徴とする。
透明基材40a、40bとしては、光透過性の素材からなる基板が用いられ、無アルカリガラス基板、その他のガラス基板、樹脂基板、例えば、ガラス、ポリエチレンテレフタレート、ポリカーボネート、ポリエーテルスルホンなど、通常、光電変換素子の透明基材として用いられるものであればいかなるものでも用いることができる。透明基材40a、40bは、これらの中から電解液への耐性などを考慮して適宜選択される。また、透明基材40a、40bとしては、用途上、できる限り光透過性に優れる基板が好ましく、透過率が85%以上の基板がより好ましい。
封止部材(スペーサー)50としては、透明基材40a、40bに対する接着性に優れるものであれば特に限定されないが、例えば、分子鎖中にカルボン酸基を有する熱可塑性樹脂からなる接着剤などが望ましく、具体的には、ハイミラン(三井デュポンポリケミカル社製)、バイネル(デュポン社製)の他に、UV硬化可能な材料[例えば、31×−101(スリーボンド社製)]などが挙げられる。
このように、電解液を保持した筐体に光電変換素子1を配し、密封することで、電解液の蒸発を防止し、長期間安定的に光電変換素子1による太陽電池を使用可能となる。
またこの際にも、第一電極10の外部への出力端子の数が低減できるために、封止も容易になり、簡易な製造工程で作製可能な低コストの光電変換素子が得られる。
図4(a)〜(c)に示すように、第一電極10の形状を、平角線、三角形以上の多角線形などの異形線とすることも可能である。
これにより、集電する際の端子処理が容易になる。また、第二電極20に複数回巻き付ける際に充填率の向上が図れるため、さらに受光効率を高めることができる。
本発明は、低コスト化を図りつつ優れた受光効率及び発電効率を備えた光電変換素子に利用することができる。
本発明に係る光電変換素子の一例を示す斜視図及び断面図。 本発明に係る作製方法を示す斜視図。 本発明に係る光電変換素子の他の一例を示す斜視図及び断面図。 本発明に係る第一電極の形状の例を示す斜視断面図。 従来の光電変換素子の例を示す断面図。 希少金属の使用量を抑制できる構造の光電変換素子の一例を示す断面図及び斜視図。
符号の説明
1(1A,1B) 光電変換素子、10 第一電極、11 第一線材、12 多孔質酸化物半導体層、20 第二電極、21 第一導電体(発電部)、22 絶縁体、23 第二導電体、25 非導電性の膜、30 電解質、40(40a,40b) 透明基材、50 封止部材。

Claims (3)

  1. 別体をなす第一電極と第二電極とが、電解質を介して配されてなる光電変換素子であって、
    前記第二電極は、少なくとも一部が非導電性の膜で覆われた板状の導電性基材であり、
    前記第一電極は、線状をなし、少なくとも導電性を有する第一線材と、該第一線材の外周に配され色素を担持した多孔質酸化物半導体層とから構成され、かつ、前記第二電極の外側を巡るように配されており、
    前記電解質は、前記多孔質酸化物半導体層及び/又は前記非導電性の膜の空間部に含まれており、
    前記第二電極の板厚をなす側面部の少なくとも一辺に沿って絶縁体および第二導電体が順に重ねて配され、該一辺において前記第一電極と該第二導電体が電気的に接続された構造を有することを特徴とする光電変換素子。
  2. 前記第一電極、前記第二電極、及び前記非導電性の膜は、電解質中に配されていることを特徴とする請求項1に記載の光電変換素子。
  3. 前記第一電極の形状は、平角線または多角形線であることを特徴とする請求項1または2に記載の光電変換素子。
JP2008246206A 2008-09-25 2008-09-25 光電変換素子 Pending JP2010080216A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008246206A JP2010080216A (ja) 2008-09-25 2008-09-25 光電変換素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008246206A JP2010080216A (ja) 2008-09-25 2008-09-25 光電変換素子

Publications (1)

Publication Number Publication Date
JP2010080216A true JP2010080216A (ja) 2010-04-08

Family

ID=42210420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008246206A Pending JP2010080216A (ja) 2008-09-25 2008-09-25 光電変換素子

Country Status (1)

Country Link
JP (1) JP2010080216A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123515A (ja) * 2008-11-21 2010-06-03 Fujikura Ltd 光電変換素子
JP2011241499A (ja) * 2010-05-18 2011-12-01 Yokohama National Univ カーボンナノチューブを含む物品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123515A (ja) * 2008-11-21 2010-06-03 Fujikura Ltd 光電変換素子
JP2011241499A (ja) * 2010-05-18 2011-12-01 Yokohama National Univ カーボンナノチューブを含む物品

Similar Documents

Publication Publication Date Title
JP2009252522A (ja) 光電変換素子およびその製造方法
JP2010040391A (ja) 光電変換素子
EP2254194A1 (en) Opposing electrode and photoelectric conversion element using the opposing electrode
US20140174524A1 (en) Photoelectric conversion element, method for manufacturing the same, electronic apparatus, counter electrode for photoelectric conversion element, and architecture
JP5134867B2 (ja) 光電変換素子
JP5114499B2 (ja) 光電変換素子
JP5197965B2 (ja) 光電変換素子
JP5398441B2 (ja) 色素増感型光電変換素子
JP5106866B2 (ja) 光電変換素子
JP5216411B2 (ja) 光電変換素子
JP5160045B2 (ja) 光電変換素子
JP2010015830A (ja) 光電変換素子
JP2010080216A (ja) 光電変換素子
JP5150373B2 (ja) 光電変換素子
JP5337460B2 (ja) 光電変換素子
JP5095148B2 (ja) 作用極用基板及び光電変換素子
JP2007172917A (ja) 光電変換素子
JP2013122874A (ja) 光電変換素子およびその製造方法ならびに電子機器ならびに光電変換素子用対極ならびに建築物
JP5172487B2 (ja) 光電変換素子
JP4942919B2 (ja) 光電変換素子およびその製造方法
JP2010170964A (ja) 光電変換素子
JP5398440B2 (ja) 光電変換素子
JP2010153280A (ja) 光電変換素子
JP5604090B2 (ja) 色素増感型光電変換素子
JP5398449B2 (ja) 色素増感型光電変換素子