JP5216411B2 - 光電変換素子 - Google Patents

光電変換素子 Download PDF

Info

Publication number
JP5216411B2
JP5216411B2 JP2008126243A JP2008126243A JP5216411B2 JP 5216411 B2 JP5216411 B2 JP 5216411B2 JP 2008126243 A JP2008126243 A JP 2008126243A JP 2008126243 A JP2008126243 A JP 2008126243A JP 5216411 B2 JP5216411 B2 JP 5216411B2
Authority
JP
Japan
Prior art keywords
electrode
wire
photoelectric conversion
conversion element
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008126243A
Other languages
English (en)
Other versions
JP2009277435A (ja
Inventor
秋晴 船木
隆之 北村
剛志 木嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2008126243A priority Critical patent/JP5216411B2/ja
Publication of JP2009277435A publication Critical patent/JP2009277435A/ja
Application granted granted Critical
Publication of JP5216411B2 publication Critical patent/JP5216411B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、色素増感型太陽電池等に用いる光電変換素子に関する。
色素増感型太陽電池は、スイスのグレッツェルらのグループなどから提案されたもので、安価で高い変換効率を得られる光電変換素子として着目されている(例えば、特許文献1、非特許文献1を参照)。
図6は、従来の色素増感型太陽電池の一例を示す断面図である。
この色素増感型太陽電池100は、増感色素を担持させた多孔質半導体電極(以下、色素増感半導体電極とも呼ぶ)103が一方の面に形成された第一基板101と、導電膜104が形成された第二基板105と、これらの間に封入された例えばヨウ素/ヨウ化物イオンなどの酸化還元対を含む電解質層106を主な構成要素としている。
第一基板101としては光透過性の板材が用いられ、第一基板101の色素増感半導体電極103と接する面には導電性を持たせるために透明導電層102が配置されており、第一基板101、透明導電層102及び色素増感半導体電極103により作用極(窓極)108をなす。
一方、第二基板105としては、電解質層106と接する側の面には導電性を持たせるために例えば炭素や白金からなる導電層104が設けられ、第二基板105及び導電層104により対極109を構成している。
色素増感半導体電極103と導電層104が対向するように、第一基板101と第二基板105を所定の間隔をおいて配置し、両基板間の周辺部に例えば熱可塑性樹脂からなる封止剤107を設ける。そして、この封止剤107を介して2つの基板101、105を貼り合わせてセルを組み上げ、電解液の注入口110を通して、両極108、109間にヨウ素/ヨウ化物イオンなどの酸化還元対を含む有機電解液を充填し、電荷移送用の電解質層106を形成したものが挙げられる。
このような色素増感型の光電変換素子は、特に光が入射する側の電極(窓電極)には、可視光の透過性と高い伝導性が要求されるため、ガラス基板やプラスチック基板上に、スズドープ酸化インジウム(ITO)や、フッ素ドープ酸化スズ(FTO)といった透明導電性金属酸化物を塗布した基板が用いられてきた。
しかしながら、上述した色素増感型光電変換素子の導電性基板に用いられているインジウム(In)等は、希少金属であり、昨今の価格の高騰からも、光電変換素子の低コスト化を阻害する要因となっている。したがって、導電性基板を必要とせず、希少金属の使用量を抑制できる構造とした色素増感型の光電変換素子が実現すれば、大幅な低コスト化が図れることから、その開発が期待されていた。ただし、その際には、受光効率を犠牲にしないことが同時に満たされる必要がある。
特開平1−220380号公報 M.Graetzel et al., Nature, 737, p.353, 1991
本発明は、上記事情に鑑みてなされたものであり、導電性基板を不要とし、低コスト化が図れるとともに、優れた受光効率を備えることが可能な、新しい構造を有する光電変換素子を提供することを第一の目的とする。
また、本発明は、導電性基板を不要として低コスト化を図りつつ、軽量かつ耐食性に優れた新しい構造の光電変換素子を、容易にかつ大量に、安定して製造可能な光電変換素子の製造方法を提供することを第二の目的とする。
本発明の請求項1に記載の光電変換素子は、別体をなす第一電極と第二電極とが、電解質を介して配されてなる光電変換素子であって、前記第一電極は、線状をなしており、被覆金属により全長被覆された中心金属を備えた第一線材と、該第一線材の外周に配され、色素を担持した多孔質酸化物半導体層とから構成され、前記中心金属は、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金から選ばれたいずれか一の金属材料からなり、前記被覆金属は、チタン、ニッケル、タングステン、ロジウム、モリブデンから選ばれたいずれか一の金属からなることを特徴とする。
本発明の請求項2に記載の光電変換素子は、前記第二電極が線状をなし、該第二電極の直径が前記第一電極の直径の1/4以下であり、複数の該第二電極に対向して、前記複数の第一電極が該第二電極と交互に配置されるとともに、前記複数の第二電極が隙間無く配置され、隣接する第一電極間の隙間に第二電極が配置されていることを特徴とする。
本発明の請求項3に記載の光電変換素子は、前記第一電極が、前記第一線材と前記多孔質酸化物半導体層とから構成され、かつ、前記第一線材は、前記中心金属と前記被覆金属により構成され、かつ、3層以上の多重構造とされていることを特徴とする。
本発明の請求項に記載の光電変換素子は、前記第一電極及び前記第二電極の形状が、平角線または多角形線であることを特徴とする。
本発明の請求項に記載の光電変換素子は、前記第二電極は、カーボン繊維、カーボン被覆したチタン線及びチタン複合線から選ばれたいずれか一の金属材料からなることを特徴とする。

本発明に係る光電変換素子は、導電性を有する第一線材と、該第一線材の外周に配され、色素を担持した多孔質酸化物半導体層とから構成された第一電極を用いることにより、導電性基板が不要となり、低コスト化が図れる新しい構造を有するものとなる。
特に、第一線材の構成として、比重が軽くかつ導電率の高い金属、又はかかる金属の合金を用い、その外周にチタン等を被覆する構造とすることにより、中心金属をチタン(Ti)、ニッケル(Ni)、タングステン(W)、ロジウム(Rh)、モリブデン(Mo)等から選択された単一の金属線材とするよりも、導電線の耐久性を保ちかつ重量を軽量化しつつ導電線の導電率を高め、低コスト化を図ることができる。
<第一実施形態>
以下、本発明の実施の形態を、図面を参照して説明する。
図1は、本発明の電極(第一電極)の一例を示す断面図である。図2は、第一電極を用いた光電変換素子の一例を示す断面図であり、図3は上面図の例である。
図1に示すように、本発明の第一電極10は、少なくとも導電性を有する金属線からなる第一線材11と、該第一線材11の外周に配され、増感色素を担持させた多孔質酸化物半導体層12とから構成され、線状をなしていることを特徴とする。
ガラス、プラスチック等からなる透明基材上に、FTOやITOなどの透明導電膜が形成されてなる透明導電性基板を用いた従来の電極(作用極)においては、透明基材の耐熱性の問題から、多孔質酸化物半導体層の形成時に、ガラスではおよそ600℃以上、プラスチックではおよそ150℃以上の高温での焼成が難しかった。これに対して、本発明の第一電極10においては、第一線材11に金属線を採用したことにより、上記のような問題がなく、高温でも十分に焼成できるため、光電変換素子用電極(作用極)として好適である。
また、板状の基板を用いずに線状の線材を用いているので、フレキシブル性を有し、様々な構造の光電変換素子用電極として利用することができる。
さらに、従来の電極のようにガラス基板や、透明導電膜を用いないため、安価に電極を製造することができる。
第一線材11は、線状をなしており、中心金属11Aと、この中心金属11Aを被覆する被覆金属11Bからなるものである。中心金属11Aとしては、Ti、Ni、W、Rh、Moのいずれかの単一金属、またはこれらの合金からなるワイヤや、中空の線材、棒材などを用いることが考えられるが、第一電極の耐食性や加工性、軽量化、導電率などを向上させるために、アルミニウム(Al)、マグネシウム(Mg)、銀(Ag)などのいずれかの単一金属、またはこれらの合金からなる線状基材を用いることができる。この場合、中心金属の表面の均一性の維持や、酸化防止などを高めるために、電解質に対して電気化学的に不活性な材質からなるチタン等の被覆金属又はこれらの合金で被覆したものを用いるのが望ましい。
第一線材11の中心金属11Aと被覆金属11Bの中心金属の表面の均一性や、酸化防止率を高めるためには、中心金属11Aとして、銅(Cu)被覆Al線やCu被覆Al合金線の複合線を使用し、更に被覆金属11BとしてTiで被覆し、第一線材11を多重構造とすることも可能である。
Tiの面積率は11〜15%で、Tiを被覆する内部は、純Alである。本発明による線材によると、同線径および線長で比較した場合、11%Ti被覆Al線の導電率は、Ti線の14倍、W線の1.8倍となる。また、質量はTi線の0.64倍、W線の0.15倍となり、導電性向上、軽量化を同時に達成することが出来る。
被覆金属11Bとしては、Ti、Ni、W、Rh、Moを用いることが出来る。
このような第一線材11の太さ(直径)としては、特に限定されるものではないが、例えば、10[μm]〜10[mm]とするのが好ましい。ただし、柔軟性を十分に発揮させるためには、第一線材11の太さは細いほどよい。
多孔質酸化物半導体層12は、第一線材11の周囲に設けられており、その表面には少なくとも一部に増感色素が担持されている。
なお、多孔質酸化物半導体層12は、第一線材11の外周の一部のみを覆うものであってもよいが、光収集能力の低下、逆電子移動反応の促進等があるため、第一線材11の外周を完全に覆うことが好ましい。
多孔質酸化物半導体層12を形成する半導体としては特に限定されず、通常、光電変換素子用の多孔質酸化物半導体を形成するのに用いられるものであれば、いかなるものでも用いることができる。このような半導体としては、例えば、酸化チタン(TiO)、酸化スズ(SnO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)、酸化タングステン(WO)などを用いることができる。
多孔質酸化物半導体層12を形成する方法としては、例えば、市販の酸化物半導体微粒子を所望の分散媒に分散させた分散液、あるいは、ゾル−ゲル法により調製できるコロイド溶液に、必要に応じて所望の添加剤を添加してから、浸漬、塗布、押し出し等の方法により前記第一線材11の外周に配した後、焼成することにより形成する手法が挙げられる。
このような多孔質酸化物半導体層12の厚みとしては、特に限定されるものではないが、例えば、1[μm]〜50[μm]が好ましい。
増感色素としては、N3、ブラックダイなどのルテニウム錯体、ポルフィリン、フタロシアニン等の含金属錯体をはじめ、エオシン、ローダミン、メロシアニンなどの有機色素などを適用することができ、これらの中から用途、使用半導体に適した励起挙動をとるものを適宜選択すれば良い。
第一線材11の製造方法の一例を、例えば被覆金属11BをTiとし、中心金属11AをAlとした場合について説明すると、まずTiを押出成型等によってパイプ状に形成すると共に、Alを押出成型等によって線状に形成し、これらTiパイプとアルミ線材を同時に走行させつつTi製パイプの内部にAlの線材を挿入し、これらを絞って、両者間を密着させて、Ti被覆Alを得る。次に、Ti被覆Al線をTiO2ペースト中に侵漬、引き上げ、乾燥を3回繰り返して塗布した後、表面にTiO2微粉末を付着させて焼結し、多孔質半導体層を形成し、増感色素を担持させる。
第二電極20は、線状をなし、例えば白金(Pt)、Pt被覆したTi線及びTi複合線、カーボン、カーボン被覆したTi線及びTi複合線、導電性高分子から構成される。また、導電性を有し、かつ、電解質に対して電気化学的に不活性な材質からなる線状基材をPtで被覆したものや、上記線状基材をカーボンや導電性高分子で被覆したものも第二電極20として用いられる。このような第二電極20では電解質との電荷の授受が速やかに進行する。
このような線状基材としては、具体的には、例えば、Ti、Ni、W、Rh、Moなどの不活性金属、あるいは炭素繊維などが挙げられる。
上記カーボンとしては、具体的には、例えば、グラファイト化(結晶化)カーボンあるいは非晶質カーボン、フラーレン、カーボンナノチューブ、カーボンファイバ、カーボンブラックなどの粒子をペースト化し、塗布してもよい。このようなカーボンを使用する場合には、加熱、焼成処理などにより不要吸着物を除去して用いた方が、ヨウ素レドックス対の電極反応が円滑に進むようになるので好ましい。
また、第二電極20の材料を構成する導電性高分子としては、例えば、PEDOT[Poly(3,4-ethylenedioxythiophene):「ポリエチレンジオキシチオフェン」]誘導体や、PANI[Polyaniline]誘導体などが挙げられる。
なお、特開2003−77550号公報において、対極に金線を用いるとの記述があるが、このような構成で実際に素子を構築すると、金線は一緒に使用する電解質溶液に容易に溶解してしまうため、光電変換素子の呈をなさず、科学的正確性に欠ける。
本実施形態のように、第一電極10と第二電極20の双方が線状をなすとき、第二電極20の直径は、第一電極10の直径の1/4以下であることが好ましい。これにより、複数の第一電極10を隙間なく配置し、その間隙に第二電極20を設けることができる。
しかし、第二電極20が細くなると抵抗が増加するため、より太い方が好ましい。よって、第二電極20の直径は、第一電極10の直径の1/4程度とすることが好ましい。
また、図3に示すように、第一線材11は、素子の外部へと引き出されていることが好ましい。これにより、発電した電気を容易に外部へと取り出すことが可能である。
電解質層17は、多孔質酸化物半導体層12内に電解液を含浸させてなるものか、または、多孔質酸化物半導体層12内に電解液を含浸させた後に、この電解液を適当なゲル化剤を用いてゲル化(擬固体化)して、多孔質酸化物半導体層12と一体に形成されてなるもの、あるいは、イオン液体をベースとしたもの、さらには、酸化物半導体粒子及び導電性粒子を含むゲル状の電解質などが用いられる。
上記電解液としては、ヨウ素、ヨウ化物イオン、ターシャリーブチルピリジンなどの電解質成分が、エチレンカーボネートやメトキシアセトニトリルなどの有機溶媒やイオン液体に溶解されてなるものが用いられる。
この電解液をゲル化する際に用いられるゲル化剤としては、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などが挙げられる。
また、揮発性電解質溶液に代えて、一般に色素増感型太陽電池に用いられるものであれば、溶媒がイオン液体であるものやゲル化したものだけではなく、p型無機半導体や有機ホール輸送層といった固体であっても制限なく使用可能である。
上記イオン液体としては、特に限定されるものではないが、室温で液体であり、例えば、四級化された窒素原子を有する化合物をカチオンとした常温溶融塩が挙げられる。
常温溶融塩のカチオンとしては、四級化イミダゾリウム誘導体、四級化ピリジニウム誘導体、四級化アンモニウム誘導体などが挙げられる。
常温溶融塩のアニオンとしては、BF 、PF 、(HF) 、ビストリフルオロメチルスルホニルイミド[N(CFS0 ]、ヨウ化物イオンなどが挙げられる。
イオン液体の具体例としては、四級化イミダゾリウム系カチオンとヨウ化物イオンまたはビストリフルオロメチルスルホニルイミドイオンなどからなる塩類を挙げることができる。
上記酸化物半導体粒子としては、物質の種類や粒子サイズなどが特に限定されないが、イオン液体を主体とする電解液との混和性に優れ、この電解液をゲル化させるようなものが用いられる。また、酸化物半導体粒子は、電解質の半導電性を低下させることがなく、電解質に含まれる他の共存成分に対する化学的安定性に優れることが必要である。特に、電解質がヨウ素/ヨウ化物イオンや、臭素/臭化物イオンなどの酸化還元対を含む場合であっても、酸化物半導体粒子は、酸化反応による劣化を生じないものが好ましい。
このような酸化物半導体粒子としては、TiO、SnO、SiO、ZnO、Nb、In、ZrO、Al、WO、SrTiO、Ta、La、Y、Ho、Bi、CeOからなる群から選択される1種または2種以上の混合物が好ましく、その平均粒径は2nm〜1000nm程度が好ましい。
上記導電性微粒子としては、導電体や半導体など、導電性を有する粒子が用いられる。
また、導電性粒子の種類や粒子サイズなどは特に限定されないが、イオン液体を主体とする電解液との混和性に優れ、この電解液をゲル化するようなものが用いられる。さらに、電解質に含まれる他の共存成分に対する化学的安定性に優れることが必要である。特に、電解質がヨウ素/ヨウ化物イオンや、臭素/臭化物イオンなどの酸化還元対を含む場合でも、酸化反応による劣化を生じないものが好ましい。
このような導電性微粒子としては、カーボンを主体とする物質からなるものが挙げられ、具体例としては、カーボンナノチューブ、カーボンファイバ、カーボンブラックなどの粒子を例示できる。これらの物質の製造方法はいずれも公知であり、また、市販品を用いることもできる。
透明基材18としては、光透過性の素材からなる基板が用いられ、無アルカリガラス基板、その他のガラス基板、樹脂基板、例えば、ガラス、ポリエチレンテレフタレート、ポリカーボネート、ポリエーテルスルホンなど、通常、光電変換素子の透明基材として用いられるものであればいかなるものでも用いることができる。透明基材18は、これらの中から電解液への耐性などを考慮して適宜選択される。また、透明基材18としては、用途上、できる限り光透過性に優れる基板が好ましく、透過率が85%以上の基板がより好ましい。
封止部材(スペーサー)19としては、透明基材18に対する接着性に優れるものであれば特に限定されないが、例えば、分子鎖中にカルボン酸基を有する熱可塑性樹脂からなる接着剤などが望ましく、具体的には、ハイミラン(三井デュポンポリケミカル社製)、バイネル(デュポン社製)の他に、UV硬化可能な材料[例えば、31X−101(スリーボンド社製)]などが挙げられる。
本発明による光電変換素子1全体について説明する。
図2に示すように、本発明の光電変換素子1は、別体をなす第一電極(作用極)10と第二電極(対極)20とが少なくとも一つずつ、電解質17を介して配されてなる光電変換素子1であって、第一電極10は、電解質に対して電気化学的に不活性な材質からなる被覆金属11Bを中心金属11Aに被覆した第一線材11と、第一線材11の外周に配され、色素を担持した多孔質酸化物半導体層12とから構成された線状をなし、かかる第一電極10と線状をなした第二電極20とが交互に配置され、透明基材18及び封止部材(スペーサー)19により封止されていることを特徴とする。
本発明では、導電性基板を必要としない、従来とは全く異なる光電変換素子1の構造を提案する。導電性は耐食性の良い例えば金属線(第一線材11)に担わせ、電解質17を封止するために、透明だが導電性を持たない基板18を用いた。
このような光電変換素子1では、線状をなす第一電極10の外周面が受光面となるため、照射光に対する投影面積を増大することができ、かつ光入射角度依存性が少なくなることが期待される。
また、本発明による光電変換素子1によると、第二電極20も線状にし、第一電極10の間隙部に配することにより、スペースを有効に利用することができ、さらに薄型になる。
<第二実施形態>
以下、本発明に係る光電変換素子1の第二実施形態を図4に基づいて説明する。
図4は、本実施形態に係る光電変換素子1の他の一例を示す断面図である。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
第二実施形態の光電変換素子1B(1)は、第二電極20を第一電極10の上下に配したもので、この点以外は第一実施形態とほぼ同様である。
本実施形態のように第二電極20を第一電極10の上下に配することで、第一電極10−第二電極20間で距離の離れている部分を少なくすることができる。なお、鉛直方向からの光入射に対しては、対極として機能する第二電極20の数を増やしても変換効率の低下は殆どない。
<第三実施形態>
本発明に係る光電変換素子1の第三実施形態を図5に基づいて説明する。
図5は、本実施形態に係る光電変換素子1の他の一例を示す断面図である。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
第三実施形態の光電変換素子1C(1)は、第一電極とほぼ同様の径を有する第二電極20を第一電極10と左右に交互に配したもので、この点以外は第一実施形態とほぼ同様である。
本実施形態のように第一電極とほぼ同様の径を有する第二電極20を第一電極10と左右に交互に配することで、直線的に線を配することが容易になる。
図7(a)(b)に示すように、第一電極10及び第二電極(不図示)の形状を、平角線、3角形以上の多角線形などの異形線とすることも可能である。
次に、本発明による素子の作成方法を示す。
まず、直径1.0mmのTi被覆Al線を、TiO2ペースト(Solaronix社製、Ti Nanoxide−T)に浸漬、引き上げ、乾燥を3回繰り返して塗布した後、電気炉で500℃、1時間焼結して多孔質TiO2膜付きTiワイヤを得る。TiO2の塗布範囲は長さ5cmとし、TiO2膜厚はおよそ6μmとする。
次に、上記電極を、ルテニウム色素(Solaronix社製、RutheAlum535−BisTBA、一般にはN719と呼ばれる)の0.3mM、アセトニトリル/tert−ブタノール=1:1溶液に浸漬し、室温で24時間放置してTiO2表面に色素を担持する。色素溶液から引き上げた後、上記混合溶媒で洗浄し、これを作用極とする。
対極として直径0.08mmのPtワイヤ6本と、上記作用極5本とを交互に無アルカリガラス基板上に並べて、厚さ1.0mmのPETフィルムをスペーサーにしてメトキシアセトニトリルを溶媒とする揮発性電解質に浸し、次いで同じく無アルカリガラスを上面に被せて、本発明による光電変換素子を得る。
上記のようにして作成された光電変換素子に、ソーラーシミュレータ(AM1.5、100mW/cm)にて光を照射し、電流電位曲線を測定した場合、変換効率は、3.1%となった(Jsc=6.8mA/cm、VOC=710mV、ff=0.64)
このような光電変換素子1によると、従来の電極のようにガラス基板や、透明導電膜を用いないため、安価に電極を製造することができる。
また、本発明に基づく光電変換素子によると、第一線材11の中心線を、高耐食性であって、高導電率、低コストかつ軽量な特性を有する金属を用い、該中心線にTi等を被覆した金属複合線を用いることにより、耐食性を高めておきながら導電率を高く保持することができ、かつ軽量とすることができる。
また、本発明に基づく光電変換素子によると、第一線材11を多重構造とすることにより第一線材11の中心線材と被覆金属との表面の均一性や、酸化防止率などを高めることが可能となる。
またさらに、本発明に基づく光電変換素子によると、第一線材及び/又は第二電極を平角又は多角形状とすることで、端子付けが容易になり、また、電極線の総表面積が大きくなること、及び、入光側のガラス板(透明基板)と発電部(多孔質酸化物半導体層)表面との距離を短くできることから、発電量向上が期待できる。
が可能となる。
また更に、本発明に基づく光電変換素子によると、第二電極20を、線状のPt被覆したTi線及びTi複合線、カーボン、カーボン被覆したTi線及びTi複合線とすることで、より低いコストで太陽電池セルの作成が可能になる。
本発明に係る光電変換素子の電極(第一電極)の一例を示す斜視断面図である。 本発明に係る光電変換素子の一例を示す断面図である。 本発明に係る光電変換素子の一例を示す上面図である。 本発明に係る光電変換素子の他の一例を示す断面図である。 本発明に係る光電変換素子の他の一例を示す断面図である。 従来の光電変換素子の一例を示す断面図である。 (a)(b) 本発明に係る光電変換素子の電極(第一電極)の他の例を示す断面図斜視断面図である。
符号の説明
1,1A(1),1B(1),1C(1),100:光電変換素子、10,108:第一電極、11:第一線材、11A:中心金属、11B:被覆金属、12,103:多孔質酸化物半導体層、20,109:第二電極、17,106:電解質層、18:透明基材、19,107:封止材

Claims (5)

  1. 別体をなす第一電極と第二電極とが、電解質を介して配されてなる光電変換素子であって、
    前記第一電極は、線状をなしており、被覆金属により全長被覆された中心金属を備えた第一線材と、該第一線材の外周に配され、色素を担持した多孔質酸化物半導体層とから構成され、前記中心金属は、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金から選ばれたいずれか一の金属材料からなり、
    前記被覆金属は、チタン、ニッケル、タングステン、ロジウム、モリブデンから選ばれたいずれか一の金属からなることを特徴とする光電変換素子。
  2. 前記第二電極が線状をなし、該第二電極の直径が前記第一電極の直径の1/4以下であり、複数の該第二電極に対向して、前記複数の第一電極が該第二電極と交互に配置されるとともに、前記複数の第二電極が隙間無く配置され、隣接する第一電極間の隙間に第二電極が配置されていることを特徴とする請求項1に記載の光電変換素子。
  3. 前記第一電極は、前記第一線材と前記多孔質酸化物半導体層とから構成され、かつ、前記第一線材は、前記中心金属と前記被覆金属により構成され、かつ、3層以上の多重構造とされていることを特徴とする請求項1又は2に記載の光電変換素子。
  4. 前記第一電極及び前記第二電極の形状は、平角線または多角形線であることを特徴とする請求項1ないしに記載の光電変換素子。
  5. 前記第二電極は、カーボン繊維、カーボン被覆したチタン線及びチタン複合線から選ばれたいずれか一の金属材料からなることを特徴とする請求項1からのいずれかに記載の光電変換素子。
JP2008126243A 2008-05-13 2008-05-13 光電変換素子 Active JP5216411B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008126243A JP5216411B2 (ja) 2008-05-13 2008-05-13 光電変換素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008126243A JP5216411B2 (ja) 2008-05-13 2008-05-13 光電変換素子

Publications (2)

Publication Number Publication Date
JP2009277435A JP2009277435A (ja) 2009-11-26
JP5216411B2 true JP5216411B2 (ja) 2013-06-19

Family

ID=41442692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008126243A Active JP5216411B2 (ja) 2008-05-13 2008-05-13 光電変換素子

Country Status (1)

Country Link
JP (1) JP5216411B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400700A (zh) * 2013-08-08 2013-11-20 中国海洋大学 基于二元低铂合金对电极的染料敏化太阳能电池及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5150373B2 (ja) * 2008-06-04 2013-02-20 株式会社フジクラ 光電変換素子
JP5337460B2 (ja) * 2008-11-21 2013-11-06 株式会社フジクラ 光電変換素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4415481B2 (ja) * 1999-11-04 2010-02-17 パナソニック電工株式会社 光電変換素子及びその製造方法
JP2006252959A (ja) * 2005-03-10 2006-09-21 Ngk Spark Plug Co Ltd 色素増感型太陽電池
JP2008108508A (ja) * 2006-10-24 2008-05-08 Oki Electric Ind Co Ltd 色素増感型太陽電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400700A (zh) * 2013-08-08 2013-11-20 中国海洋大学 基于二元低铂合金对电极的染料敏化太阳能电池及其制备方法和应用
CN103400700B (zh) * 2013-08-08 2016-05-04 中国海洋大学 基于二元低铂合金对电极的染料敏化太阳能电池及其制备方法和应用

Also Published As

Publication number Publication date
JP2009277435A (ja) 2009-11-26

Similar Documents

Publication Publication Date Title
JP2009252522A (ja) 光電変換素子およびその製造方法
JP2010040391A (ja) 光電変換素子
JP2006236960A (ja) 色素増感太陽電池及びその製造方法
EP2254194A1 (en) Opposing electrode and photoelectric conversion element using the opposing electrode
US20140174524A1 (en) Photoelectric conversion element, method for manufacturing the same, electronic apparatus, counter electrode for photoelectric conversion element, and architecture
JP5134867B2 (ja) 光電変換素子
JP5114499B2 (ja) 光電変換素子
JP2013114778A (ja) 光電変換素子、光電変換素子モジュール、光電変換素子モジュールの製造方法、電子機器および建築物
JP2012089407A (ja) 作用極用網状体、作用極、その製造方法及び色素増感太陽電池
JP5216411B2 (ja) 光電変換素子
JP5197965B2 (ja) 光電変換素子
JP5106866B2 (ja) 光電変換素子
KR20100115629A (ko) 극소수성 화합물이 도입된 금속산화물 반도체 전극. 이를 포함하는 염료감응 태양전지 및 그 제조 방법
JP5398441B2 (ja) 色素増感型光電変換素子
JP2010015830A (ja) 光電変換素子
JP5150373B2 (ja) 光電変換素子
JP5095148B2 (ja) 作用極用基板及び光電変換素子
JP2013122874A (ja) 光電変換素子およびその製造方法ならびに電子機器ならびに光電変換素子用対極ならびに建築物
JP2013122875A (ja) 光電変換素子およびその製造方法ならびに光電変換素子用対極ならびに電子機器ならびに建築物
JP5172487B2 (ja) 光電変換素子
JP5337460B2 (ja) 光電変換素子
JP2010080216A (ja) 光電変換素子
JP5460159B2 (ja) 色素増感型光電変換素子
JP5398440B2 (ja) 光電変換素子
JP2010170964A (ja) 光電変換素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

R151 Written notification of patent or utility model registration

Ref document number: 5216411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250