JP2010073539A - 電極体及びその製造方法、並びに、リチウムイオン二次電池 - Google Patents

電極体及びその製造方法、並びに、リチウムイオン二次電池 Download PDF

Info

Publication number
JP2010073539A
JP2010073539A JP2008240822A JP2008240822A JP2010073539A JP 2010073539 A JP2010073539 A JP 2010073539A JP 2008240822 A JP2008240822 A JP 2008240822A JP 2008240822 A JP2008240822 A JP 2008240822A JP 2010073539 A JP2010073539 A JP 2010073539A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
layer
electrode active
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008240822A
Other languages
English (en)
Inventor
Yasushi Tsuchida
靖 土田
Yukiyoshi Ueno
幸義 上野
Shigeki Hama
重規 濱
Hirobumi Nakamoto
博文 中本
Hiroshi Nagase
浩 長瀬
Masato Kamiya
正人 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008240822A priority Critical patent/JP2010073539A/ja
Publication of JP2010073539A publication Critical patent/JP2010073539A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】界面抵抗を低減することが可能な電極体及びその製造方法、並びに、リチウムイオン二次電池を提供する。
【解決手段】ニオブ酸リチウムを含有する被覆層が表面の少なくとも一部に形成されたコバルト酸リチウムを含む正極活物質と、固体の硫化物を含む固体電解質とを有し、XPSによる電子状態分析で検出されるメインピークよりも低エネルギー側にメインピークとは異なるピークが検出されるニオブが、コバルト酸リチウム表面の被覆層に含有される電極体、及び、ニオブ酸リチウムを含有する被覆層をコバルト酸リチウムの表面の少なくとも一部に形成して被覆体を作製する工程と、作製された被覆体を熱処理して正極活物質を作製する工程と、作製された正極活物質と固体の硫化物を有する固体電解質とを混合する混合工程と、を有する電極体の製造方法、並びに、負極層と固体電解質層と上記電極体を含有する正極層とを具備するリチウムイオン二次電池とする。
【選択図】図1

Description

本発明は、正極活物質と固体電解質とを含有する電極体及びその製造方法、並びに、当該電極体を備えたリチウムイオン二次電池に関する。
リチウムイオン二次電池は、他の二次電池よりもエネルギー密度が高く、高電圧での動作が可能という特徴を有している。そのため、小型軽量化を図りやすい二次電池として携帯電話等の情報機器に使用されており、近年、ハイブリッド自動車用等、大型の動力用としての需要も高まっている。
リチウムイオン二次電池には、正極層及び負極層と、これらの間に配置される電解質とが備えられ、電解質は、非水系の液体又は固体によって構成される。電解質に非水系の液体(以下において「電解液」という。)が用いられる場合には、電解液が正極層の内部へと浸透する。そのため、正極層を構成する正極活物質と電解質との界面が形成されやすく、性能を向上させやすい。ところが、広く用いられている電解液は可燃性であるため、安全性を確保するためのシステムを搭載する必要がある。一方、固体の電解質は不燃性であるため、上記システムを簡素化できる。それゆえ、不燃性である固体の電解質(以下において「固体電解質層」ということがある。)が備えられる形態のリチウムイオン二次電池が提案されている。
固体電解質層が正極層と負極層との間に配設されるリチウムイオン二次電池(以下において「圧粉全固体電池」ということがある。)では、正極活物質及び電解質が固体であるため、電解質が正極活物質の内部へ浸透しにくく、正極活物質と電解質との界面が低減しやすい。それゆえ、圧粉全固体電池では、正極活物質の粉末と固体電解質の粉末とを混合した混合粉末を含有する正極合剤層を正極層として用いることにより、界面の面積を増大させている。
また、圧粉全固体電池では、正極活物質と固体電解質との界面をリチウムイオンが移動する際の抵抗(以下において「界面抵抗」ということがある。)が増大しやすい。これは、正極活物質と固体電解質とが反応することにより、正極活物質の表面に高抵抗部位が形成されるためであると言われている(非特許文献1)。界面抵抗と圧粉全固体電池の性能との間には相関があるため、界面抵抗を低減することにより圧粉全固体電池の性能を向上させることを目的とした技術が、これまでに開示されてきている。例えば、非特許文献1には、コバルト酸リチウムの表面がニオブ酸リチウムによって被覆された形態の正極活物質とすることにより、界面抵抗を低減させる技術が開示されている。
このほか、特許文献1には、リチウム含有遷移金属酸化物からなる正極活物質の表面の少なくとも一部分にリチウム塩化物を担持させる圧粉全固体電池に関する技術が開示されている。また、特許文献2には、コバルト酸リチウム粒子の表面に金属酸化物が付着した改変コバルト酸リチウムを含む正極を有するリチウムイオン電池に関する技術が開示されている。
特開2001−52733号公報 特開2004−175609号公報 Electrochemistry Communications、9(2007)、p.1486−1490
非特許文献1に開示された技術によれば、コバルト酸リチウムの表面をニオブ酸リチウムで被覆することにより、界面抵抗を低減することが可能になると考えられる。しかしながら、コバルト酸リチウムの表面に、ニオブ酸リチウム層を単に形成すると、ニオブ酸リチウム層のリチウムイオン伝導抵抗を充分に低減することが困難になる場合があり、界面抵抗の低減効果が損なわれる虞があるという問題があった。かかる問題は、非特許文献1に開示された技術と、特許文献1〜特許文献2に開示された技術とを組み合わせたとしても、解決が困難であった。
そこで本発明は、界面抵抗を低減することが可能な電極体及びその製造方法、並びに、当該電極体を備えたリチウムイオン二次電池を提供することを課題とする。
上記課題を解決するために、本発明は以下の手段をとる。すなわち、
第1の本発明は、ニオブ酸リチウムを含有する被覆層が表面の少なくとも一部に形成されているコバルト酸リチウムを含む正極活物質と、固体の硫化物を含む固体電解質と、を有し、X線光電子分光分析による電子状態分析で検出されるメインピークよりも低エネルギー側に、メインピークとは異なるピークが検出されるニオブが、被覆層に含有されることを特徴とする、電極体である。
本発明において、「ニオブ酸リチウムを含有する被覆層が表面の少なくとも一部に形成されているコバルト酸リチウム」とは、コバルト酸リチウムの表面の少なくとも一部に形成された、ニオブ酸リチウムを含有する被覆層が、流動しない形態で維持されていることをいう。さらに、本発明において、「メインピーク」とは、X線光電子分光分析(以下において「XPS」又は「XPS分析」ということがある。)により電子状態を分析した場合に、結合エネルギーが206eV以上209eV未満の箇所、及び、結合エネルギーが209eV以上211eV未満の箇所に観察されるニオブのピークをいう。さらに、本発明において、「メインピークよりも低エネルギー側に、メインピークとは異なるピークが検出される」とは、XPSにより電子状態を分析した場合に、上記メインピークよりも低エネルギー側、より具体的には、例えば、結合エネルギーが201eV以上203eV未満付近、及び、結合エネルギーが204eV以上206eV未満付近に、上記メインピークとは異なるニオブのピークが検出されることをいう。
第2の本発明は、ニオブ酸リチウムを含有する被覆層をコバルト酸リチウムの表面の少なくとも一部に形成することにより、被覆層が形成された被覆体を作製する被覆工程と、該被覆工程で作製された被覆体を、300℃以上350℃以下の温度環境下に1時間に亘って保持することにより、正極活物質を作製する熱処理工程と、該熱処理工程で作製された正極活物質と固体の硫化物を含む固体電解質とを混合する混合工程と、を有することを特徴とする、電極体の製造方法である。
本発明において、「被覆工程」は、ニオブ酸リチウムを含有する被覆層がコバルト酸リチウムの表面の少なくとも一部へ流動しない形態で形成された被覆体、を作製可能な工程であれば、特に限定されるものではなく、公知の形態とすることができる。また、本発明において、「混合工程」は、熱処理工程を経て作製した正極活物質と固体の硫化物を含む固体電解質とを均一に混合可能な工程であれば、特に限定されるものではなく、公知の形態とすることができる。ただし、界面抵抗を低減可能な電極体を製造可能とする等の観点からは、コバルト酸リチウムの表面に形成した被覆層の剥離を抑制可能なように、混合工程で付与されるせん断力が所定値以下(例えば、10[N]以下)である状態を維持しながら、正極活物質と固体の硫化物を含む固体電解質とを均一に混合する形態、とすることが好ましい。
第3の本発明は、正極層及び負極層、並びに、正極層と負極層との間に配設された固体電解質層を具備し、上記第1の本発明にかかる電極体が、正極層に含有されることを特徴とする、リチウムイオン二次電池である。
第1の本発明によれば、XPSによる電子状態分析で検出されるメインピークよりも低エネルギー側にメインピークとは異なるピークが検出されるニオブが、コバルト酸リチウムの表面を被覆している被覆層に含有されるので、界面抵抗を低減することが可能な、電極体を提供することができる。
第2の本発明は、被覆工程の後に、熱処理工程を有する。熱処理工程で作製された正極活物質のXPS分析を行うと、メインピークよりも低エネルギー側にメインピークとは異なるピークが検出されるニオブを確認することができる。このようなニオブがコバルト酸リチウムの表面を被覆している被覆層に含有されると、界面抵抗を低減することができるので、第2の本発明によれば、界面抵抗を低減し得る電極体を製造することが可能な、電極体の製造方法を提供することができる。
第3の本発明によれば、第1の本発明にかかる電極体が正極層に備えられるので、界面抵抗を低減することにより性能を向上させることが可能な、リチウムイオン二次電池を提供することができる。
被覆層が形成された正極活物質と固体電解質とを含有する正極層(電極体)を用いることによって、圧粉全固体電池のリチウムイオン伝導抵抗を低減させ得ることが知られており、圧粉全固体電池の性能を向上させるためには、リチウムイオン伝導抵抗の小さい被覆層を形成することが有効である。本発明者らは、鋭意研究の結果、コバルト酸リチウムの表面にニオブ酸リチウム含有組成物を配置した被覆体に所定の熱処理を施すことにより、被覆層のリチウムイオン伝導抵抗を低減可能であることを知見した。本発明は、このような知見に基づいてなされたものであり、リチウムイオン伝導抵抗を低減させた被覆層を形成することにより、界面抵抗を低減させることが可能な電極体、及びその製造方法を提供することを第1の要旨とする。加えて、リチウムイオン伝導抵抗を低減させた被覆層を有する正極活物質が備えられる形態とすることにより、性能を向上させることが可能なリチウムイオン二次電池(圧粉全固体電池)を提供することを第2の要旨とする。
以下、図面を参照しつつ、本発明について説明する。なお、以下に示す形態は本発明の例示であり、本発明は以下に示す形態に限定されるものではない。
1.電極体(正極合剤層)
図1は、本発明の電極体(以下において「正極合剤層」ということがある。)の形態例を示す概念図である。図1に示すように、本発明の正極合剤層1には、正極活物質2、2、…、及び、固体電解質3、3、…が含有され、これらが均一に混合されている。正極活物質2、2、…は、活物質2a、2a、…と、その表面に形成された被覆層2b、2b、…と、を有している。正極合剤層1において、活物質2a、2a、…の主成分はLiCoOであり、被覆層2b、2b、…の主成分はLiNbOである。一方、固体電解質3、3、…は、Li11によって構成されている。
正極合剤層1において、活物質2aと固体電解質3とが接触すると、これらが反応することにより、活物質2aの表面に高抵抗部位が形成される。活物質2aの表面に高抵抗部位が形成されると、リチウムイオン伝導抵抗が増大するため、正極合剤層1を有する圧粉全固体電池の性能が低下する。かかる事態を抑制するため、正極合剤層1では、活物質2a、2a、…の表面が被覆層2b、2b、…によって被覆されている状態の正極活物質2、2、…と、固体電解質3、3、…とが混合された形態とされている。活物質2a、2a、…の表面に被覆層2b、2b、…を配置し、活物質2a、2a、…と固体電解質3、3、…との間に被覆層2b、2b、…を介在させることにより、活物質2a、2a、…と固体電解質3、3、…との反応が抑制されるため、高抵抗部位の形成を抑制することができる。したがって、本発明の正極合剤層1によれば、界面抵抗を低減することが可能になる。
さらに、XPS分析により、被覆層2b、2b、…に含有されるニオブの電子状態を分析すると、結合エネルギーが206eV以上209eV未満の箇所、及び、結合エネルギーが209eV以上211eV未満の箇所に観察されるニオブのピーク(メインピーク)よりも低エネルギー側(例えば、結合エネルギーが201eV以上203eV未満付近、及び、結合エネルギーが204eV以上206eV未満付近)に、メインピークとは異なるピークが検出される。後述するように、かかる正極合剤層1を備える圧粉全固体電池の界面抵抗は、被覆層2b、2b、…とは異なる被覆層のみを有する圧粉全固体電池の界面抵抗よりも小さい。そのため、XPS分析による電子状態分析で検出されるメインピークよりも低エネルギー側に、メインピークとは異なるピークを有するニオブを含有した被覆層2b、2b、…を、活物質2a、2a、…の表面に配置することにより、本発明によれば、界面抵抗を低減させることが可能な正極合剤層1を提供することができる。
本発明の正極合剤層1は、例えば、活物質2a、2a、…の表面にLiNbOを主成分とする層を形成した後、所定の熱処理を施すことにより、正極活物質2、2、…を作製し、次いで、この正極活物質2、2、…と固体電解質3、3、…とを混合して混合粉体とし、さらに結着剤を加えて調整した合剤を塗布・乾燥する等の工程を経て、製造することができる。製造工程の詳細については後述する。
2.電極体の製造方法
図2は、本発明にかかる電極体の製造方法の形態例を示すフローチャートである。以下、図1及び図2を参照しつつ、本発明の電極体の製造方法について説明する。図2に示すように、本発明の電極体の製造方法は、被覆工程(工程S1)と、熱処理工程(工程S2)と、混合工程(工程S3)と、を有している。
2.1.被覆工程(工程S1)
工程S1は、活物質2a、2a、…の表面に、LiNbOを主成分とする被覆層を形成することにより、活物質2a、2a、…の表面に被覆層が形成された被覆体を作製する工程である。工程S1は、例えば、溶剤(例えば、エタノール)に等モルのLiOC及びNb(OCを溶解させて作製した組成物を、活物質2a、2a、…(LiCoO)の表面へ、転動流動コーティング装置を用いてスプレーコートすることにより、活物質2a、2a、…の表面に被覆層が形成された被覆体を作製する形態、とすることができる。工程S1は、当該形態に限定されるものではなく、活物質2a、2a、…の表面へLiNbOを主成分とする被覆層を形成し得るものであれば、他の形態とすることも可能である。
2.2.熱処理工程(工程S2)
工程S2は、上記工程S1で作製した被覆体に、300℃以上350℃以下の温度環境下に1時間に亘って保持する熱処理を施して、上記工程S1で活物質2a、2a、…の表面に形成した被覆層を、被覆層2b、2b、…へと変化させることにより、正極活物質2、2、…を作製する工程である。
2.3.混合工程(工程S3)
工程S3は、上記工程S2で作製した正極活物質2、2、…と、固体電解質3、3、…とを均一に混合する工程である。被覆層2b、2b、…を有する正極活物質2、2、…と固体電解質3、3、…とを混合する際に、せん断力が被覆層2b、2b、…に付与されると、活物質2a、2a、…の表面を被覆していた被覆層2b、2b、…が剥離しやすい。それゆえ、工程S3は、被覆層2b、2b、…に付与されるせん断力が所定値以下(例えば、10[N]以下)である状態を維持しながら、正極活物質2、2、…と固体電解質3、3、…とを均一に混合する工程とすることが好ましい。工程S3は、正極活物質2、2、…と固体電解質3、3、…とを均一に混合し得る工程であれば、その形態は特に限定されるものではないが、例えば、スパチュラを用いて正極活物質2、2、…と固体電解質3、3、…とを混合する形態や、振盪器を用いて正極活物質2、2、…と固体電解質3、3、…とを混合する形態とすることが好ましい。
さらに、工程S3において、被覆層2b、2b、…に付与されるせん断力を所定値以下に維持しても、正極活物質2、2、…と固体電解質3、3、…とが均一に混合されなければ、正極活物質2、2、…と固体電解質3、3、…との接触界面が低減し、正極合剤層1におけるリチウムイオン伝導性及び電子伝導性が低下する結果、正極合剤層1の性能が低下する。それゆえ、工程S3では、正極活物質2、2、…と固体電解質3、3、…とを均一に混合する。これらが均一に混合されたか否かは、例えば、上記工程S2で作製された正極活物質粒子2の直径をR1、及び、工程S3によって混合された粉体に含有される正極活物質粒子2、2、…の凝集体の直径をR2とするとき、R2≦3×R1を満たすか否かによって判断することができる。
このように、工程S1〜工程S3を有する本発明の電極体の製造方法によれば、工程S2を経ることにより、XPS分析による電子状態分析で検出されるメインピークよりも低エネルギー側に、メインピークとは異なるピークを有するニオブを含有した被覆層2b、2b、…を、活物質2a、2a、…の表面へ形成することができる。そして、本発明の電極体の製造方法によれば、工程S1〜工程S3により作製した、正極活物質2、2、…と固体電解質3、3、…とが均一に混合された粉体へ、結着剤を加えて調整した合剤を塗布・乾燥する等の工程を経て、正極合剤層1を製造することができる。正極合剤層1には、被覆層2b、2b、…を有する正極活物質2、2、…が含有されているので、本発明によれば、界面抵抗を低減し得る電極体(正極合剤層1)を製造することが可能な、電極体の製造方法を提供することができる。
本発明の電極体の製造方法において、工程S3で正極活物質2、2、…と混合される固体電解質3、3、…の製造方法は特に限定されるものではく、例えば、特開2005−228570号公報に記載されている方法等により、製造することができる。
3.リチウムイオン二次電池
図3は、本発明のリチウムイオン二次電池に備えられるセルの形態例を示す概念図である。図3において、図1と同様の構成を採るものには、図1で使用した符号と同符号を付し、その説明を適宜省略する。また、図3では、正極層の形態を簡略化して示す。以下、図1及び図3を参照しつつ、本発明のリチウムイオン二次電池について説明する。
図3に示すように、本発明のリチウムイオン二次電池10(以下において「二次電池10」という。)は、正極合剤層1によって構成される正極層(以下において「正極層1」ということがある。)と、Li11を含有する固体電解質層4と、In箔によって構成される負極層5と、を備える。二次電池10の充電時には、正極層1の正極活物質2、2、…を構成する活物質2a、2a、…からリチウムイオンが引き抜かれ、このリチウムイオンが、被覆層2b、2b、…、固体電解質3、3、…、及び、固体電解質層4を伝って、負極層5へと達する。これに対し、二次電池10の放電時には、負極層5から放出されたリチウムイオンが、固体電解質層4、固体電解質3、3、…、及び、被覆層2b、2b、…を伝って、活物質2a、2a、…へと達する。このように、二次電池10の充放電時には、正極活物質2、2、…と固体電解質3、3、…との界面をリチウムイオンが移動するため、二次電池10の高容量化・高出力化を図るには、当該界面の抵抗(界面抵抗)を低減することが重要である。ここで、二次電池10には、正極合剤層1が備えられ、正極合剤層1には、活物質2a、2a、…の表面に被覆層2b、2b、…が配置された状態の正極活物質2、2、…が含有されている。活物質2a、2a、…と固体電解質3、3、…との間に被覆層2b、2b、…を介在させることにより、活物質2a、2a、…と固体電解質3、3、…との反応を抑制することができ、その結果、活物質2a、2a、…の表面への高抵抗部位の形成を抑制することができる。加えて、被覆層2b、2b、…には、XPS分析による電子状態分析で検出されるメインピークよりも低エネルギー側にメインピークとは異なるピークを有するニオブが、含有されている。このようなニオブを含有する被覆層2b、2b、…を、活物質2a、2a、…の表面へ形成することにより、界面抵抗を低減することが容易になる。すなわち、二次電池10には、界面抵抗を容易に低減することが可能な正極層1が備えられるので、本発明によれば、界面抵抗を低減させることにより性能を向上させることが可能な、二次電池10を提供することができる。
本発明において、電極体、及び、リチウムイオン二次電池の正極層は、ニオブ酸リチウムを含有する被覆層が表面の少なくとも一部に形成されているコバルト酸リチウムを含む正極活物質と、固体の硫化物を含む固体電解質とを有していれば良く、これらに加えて、さらに他の物質(例えば、導電剤等)が含有された形態とすることも可能である。本発明の電極体やリチウムイオン二次電池の正極層に導電剤が含有された形態とすることにより、上記効果に加えて、電子伝導性を向上させることが可能になる。本発明において使用可能な導電剤としては、気相成長炭素繊維のほか、アセチレンブラック、ケッチェンブラック、黒鉛等を例示することができる。
本発明に関する上記説明では、Li11によって構成される固体電解質3、3、…が含有される形態を例示したが、本発明は当該形態に限定されるものではない。本発明における固体電解質は、固体の硫化物を含み、かつ、圧粉全固体電池の正極層で使用可能な固体電解質であれば、特に限定されるものではない。本発明における固体電解質の具体例としては、Li11のほか、80LiS−20P、LiPO−LiS−SiS等を例示することができる。
また、本発明に関する上記説明では、Li11を含有する固体電解質層4が備えられる形態の二次電池10を例示したが、本発明のリチウムイオン二次電池は当該形態に限定されるものではない。本発明のリチウムイオン二次電池に備えられる固体電解質層は、圧粉全固体電池の固体電解質層として機能し得る物質によって構成されていれば良い。本発明のリチウムイオン二次電池における固体電解質層を構成し得る物質の具体例としては、Li11のほか、80LiS−20P、LiPO−LiS−SiS、Li3.25Ge0.250.75等を例示することができる。
また、本発明に関する上記説明では、In箔によって構成される負極層5が備えられる形態の二次電池10を例示したが、本発明のリチウムイオン二次電池は当該形態に限定されるものではない。本発明のリチウムイオン二次電池に備えられる負極層は、圧粉全固体電池の負極層として機能し得る物質によって構成されていれば良い。本発明のリチウムイオン二次電池における負極層を構成し得る物質の具体例としては、Inのほか、黒鉛、Sn、Si、LiTi12、Al、FeS等を例示することができる。
また、本発明において、電極体及びリチウムイオン二次電池、並びに、電極体の製造方法における混合工程で作製される粉体に含有される正極活物質の凝集体の大きさは、上記関係(R2≦3×R1)を満たすことが好ましく、さらに、正極活物質と混合される固体電解質粒子の直径をR3、正極活物質と混合された固体電解質粒子の凝集体の直径をR4、とするとき、R4≦3×R3であることが好ましい。具体的には、R2<35[μm]、且つ、R4<35[μm]とすることが好ましい。
1)リチウムイオン二次電池の作製
<実施例1>
エタノール溶媒に、等モルのLiOC及びNb(OCを溶解させて作製した組成物を、LiCoOの表面に、転動流動コーティング装置(SFP−01、株式会社パウレック製)を用いてスプレーコートした。その後、コーティングされたLiCoOを、350℃、大気圧下で1時間に亘って熱処理(以下において「実施例1の熱処理」という。)することにより、LiCoO(活物質)の表面にLiNbOの層(被覆層)を形成し、実施例1の正極活物質を作製した。
次いで、質量比で、正極活物質:固体電解質=7:3となるように秤量した、実施例1の正極活物質と、特開2005−228570号公報に開示された方法により作製した固体電解質(Li11)と、を混合することにより、粉体を作製した。このようにして作製した粉体を用いて正極層1を作製し、図3に示すセルを備える二次電池10(以下において「実施例1の電池」という。)を作製した。
<実施例2>
上記実施例1の熱処理の温度を300℃へと変更した熱処理を経て、実施例2の正極活物質を作製したほかは、上記実施例1の電池と同様の製造工程・物質により、実施例2の電池を作製した。
<比較例1>
上記実施例1の熱処理の温度を400℃へと変更した熱処理を経て、比較例1の正極活物質を作製したほかは、上記実施例1の電池と同様の製造工程・物質により、比較例1の電池を作製した。
<比較例2>
コーティングされたLiCoOに熱処理を施さず、200℃の温度環境下で溶媒を乾燥させることによって、比較例2の正極活物質を作製したほかは、上記実施例1の電池と同様の製造工程・物質により、比較例2の電池を作製した。
2)XPS分析
上記工程により作製した、実施例1の正極活物質、実施例2の正極活物質、比較例1の正極活物質、及び、比較例2の正極活物質、並びに、リファレンス試料(アルドリッチ社製のLiNbO粉末)のXPS分析を行うことにより、電子状態を調査した。結果を図4に示す。
図4より、実施例1の正極活物質は、結合エネルギーが206eV以上209eV未満の箇所、及び、209eV以上211eV未満の箇所にニオブのメインピークが検出されたほか、当該メインピークよりも低エネルギー側である201eV以上203eV未満付近、及び、203eV以上205eV未満付近にも、ニオブのピークが検出された。さらに、実施例2の正極活物質は、結合エネルギーが206eV以上209eV未満の箇所、及び、209eV以上211eV未満の箇所にニオブのメインピークが検出されたほか、当該メインピークよりも低エネルギー側である201eV以上204eV未満付近、及び、204eV以上206eV未満付近にも、ニオブのピークが検出された。これに対し、熱処理温度が400℃であった比較例1の正極活物質、熱処理を行わなかった比較例2の正極活物質、及び、リファレンス試料では、メインピークよりも低エネルギー側にピークは検出されなかった。
3)界面抵抗の測定
実施例1の電池、実施例2の電池、比較例1の電池、及び、比較例2の電池に、127μAの定電流で3.58Vまで充電し、充電後の各電池のインピーダンスを交流インピーダンス法により測定した。インピーダンス測定において、コールコールプロットにより、界面抵抗は円弧の大きさで表される。また、各円弧の頂点の周波数から、下記式を用いてキャパシタンスCを求めることができる。
2πfm=1/RC
ここで、fmは頂点の周波数、Rは界面抵抗、Cはキャパシタンスである。コールコールプロットの概念図を図5に示す。
実施例1の電池、実施例2の電池、比較例1の電池、及び、比較例2の電池に用いた材料系では、キャパシタンスC=5×10−5F程度に相当する円弧の直径から、正極活物質/固体電解質界面の抵抗(界面抵抗)を求めた。結果を図6に示す。
図6より、実施例1の正極活物質を有する実施例1の電池は、インピーダンスが約60Ωであり、実施例2の正極活物質を有する実施例2の電池は、インピーダンスが約195Ωであった。これに対し、比較例1の正極活物質を有する比較例1の電池は、インピーダンスが約380Ωであり、比較例2の正極活物質を有する比較例2の電池は、インピーダンスが約310Ωであった。すなわち、図6より、300℃〜350℃の温度環境下に1時間に亘って保持する熱処理を施すことにより、界面抵抗を低減させることが可能になる一方、熱処理温度を400℃にまで高めると界面抵抗が増大することが確認された。
図4の結果及び図6の結果より、界面抵抗を低減させることができた実施例1の電池に含有されていた正極活物質(実施例1の正極活物質)、及び、実施例2の電池に含有されていた正極活物質(実施例2の正極活物質)の被覆層には、XPS分析による電子状態分析で検出されるメインピークよりも低エネルギー側にメインピークとは異なるピークが検出されるニオブが、含有されていた。以上より、このようなニオブを含有する被覆層が形成された正極活物質が備えられる形態とすることにより、界面抵抗を低減させ得ることが確認された。
正極合剤層1の形態例を示す概念図である。 本発明にかかる電極体の製造方法の形態例を示すフローチャートである。 二次電池10に備えられるセルの形態例を示す概念図である。 XPS分析の結果を示す図である。 コールコールプロットの概念図である。 インピーダンスの結果を示す図である。
符号の説明
1…正極合剤層(電極体、正極層)
2…正極活物質
2a…活物質
2b…被覆層
3…固体電解質
4…固体電解質層
5…負極層
10…二次電池(リチウムイオン二次電池)

Claims (3)

  1. ニオブ酸リチウムを含有する被覆層が表面の少なくとも一部に形成されているコバルト酸リチウムを含む正極活物質と、固体の硫化物を含む固体電解質と、を有し、
    X線光電子分光分析による電子状態分析で検出されるメインピークよりも低エネルギー側に、前記メインピークとは異なるピークが検出されるニオブが、前記被覆層に含有されることを特徴とする、電極体。
  2. ニオブ酸リチウムを含有する被覆層をコバルト酸リチウムの表面の少なくとも一部に形成することにより、被覆層が形成された被覆体を作製する、被覆工程と、
    前記被覆工程で作製された前記被覆体を、300℃以上350℃以下の温度環境下に1時間に亘って保持することにより、正極活物質を作製する、熱処理工程と、
    前記熱処理工程で作製された前記正極活物質と、固体の硫化物を含む固体電解質とを混合する、混合工程と、
    を有することを特徴とする、電極体の製造方法。
  3. 正極層及び負極層、並びに、前記正極層と前記負極層との間に配設された固体電解質層を具備し、請求項1に記載の電極体が、前記正極層に含有されることを特徴とする、リチウムイオン二次電池。
JP2008240822A 2008-09-19 2008-09-19 電極体及びその製造方法、並びに、リチウムイオン二次電池 Withdrawn JP2010073539A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008240822A JP2010073539A (ja) 2008-09-19 2008-09-19 電極体及びその製造方法、並びに、リチウムイオン二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008240822A JP2010073539A (ja) 2008-09-19 2008-09-19 電極体及びその製造方法、並びに、リチウムイオン二次電池

Publications (1)

Publication Number Publication Date
JP2010073539A true JP2010073539A (ja) 2010-04-02

Family

ID=42205125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008240822A Withdrawn JP2010073539A (ja) 2008-09-19 2008-09-19 電極体及びその製造方法、並びに、リチウムイオン二次電池

Country Status (1)

Country Link
JP (1) JP2010073539A (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136488A1 (ja) * 2012-03-15 2013-09-19 株式会社 東芝 固体電解質二次電池用電極、固体電解質二次電池および電池パック
WO2013161982A1 (ja) * 2012-04-27 2013-10-31 株式会社村田製作所 固体電池およびその製造方法
WO2014003036A1 (ja) * 2012-06-29 2014-01-03 トヨタ自動車株式会社 複合活物質、固体電池および複合活物質の製造方法
WO2014010341A1 (ja) 2012-07-12 2014-01-16 トヨタ自動車株式会社 被覆活物質の製造方法
WO2014032405A1 (zh) * 2012-08-28 2014-03-06 华为技术有限公司 一种全固态锂离子电池复合型正极材料及其制备方法和全固态锂离子电池
WO2014073466A1 (ja) * 2012-11-07 2014-05-15 株式会社 村田製作所 正極材料、全固体電池およびそれらの製造方法
WO2014122520A1 (en) 2013-02-08 2014-08-14 Toyota Jidosha Kabushiki Kaisha Composite active material, manufacturing method for composite active material, and lithium secondary battery including composite active material
DE102015110661A1 (de) 2014-07-10 2016-01-14 Toyota Jidosha Kabushiki Kaisha Verbundaktivmaterial und Verfahren für dessen Herstellung
JP2016170973A (ja) * 2015-03-12 2016-09-23 トヨタ自動車株式会社 活物質複合粒子及びリチウム電池
US9608288B2 (en) 2014-07-17 2017-03-28 Samsung Electronics Co., Ltd. Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same
US9929403B2 (en) 2014-03-19 2018-03-27 Toyota Jidosha Kabushiki Kaisha Method of producing an active material powder
US10038229B2 (en) 2015-10-22 2018-07-31 Toyota Jidosha Kabushiki Kaisha Battery
EP3514865A1 (en) * 2018-01-17 2019-07-24 Toyota Jidosha Kabushiki Kaisha Cathode mixture for all solid-state battery, cathode for all solid-state battery, all solid-state battery, and method for producing the same
JP2019139862A (ja) * 2018-02-06 2019-08-22 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極活物質の製造方法、リチウムイオン電池用正極及びリチウムイオン電池
US10439260B2 (en) 2016-06-30 2019-10-08 Toyota Jidosha Kabushiki Kaisha Battery
KR20210058101A (ko) * 2019-11-13 2021-05-24 한국생산기술연구원 황화물계 및 산화물계 융합 고체전해질을 포함하는 고전압 안전성 전고체 리튬이차전지 및 그의 제조방법
WO2021255111A1 (fr) 2020-06-16 2021-12-23 Saft Electrode traitee en surface, protection des electrolytes solides, les elements, modules et batteries la comprenant
CN114975905A (zh) * 2021-02-22 2022-08-30 精工爱普生株式会社 前驱体溶液、前驱体粉末、电极的制造方法以及电极

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9705155B2 (en) 2012-03-15 2017-07-11 Kabushiki Kaisha Toshiba Electrode for solid electrolyte secondary battery, solid electrolyte secondary battery, and battery pack
WO2013136488A1 (ja) * 2012-03-15 2013-09-19 株式会社 東芝 固体電解質二次電池用電極、固体電解質二次電池および電池パック
WO2013161982A1 (ja) * 2012-04-27 2013-10-31 株式会社村田製作所 固体電池およびその製造方法
DE112013003243B4 (de) 2012-06-29 2024-04-18 Toyota Jidosha Kabushiki Kaisha Aktives Verbundmaterial, Festkörperbatterie und Verfahren zum Herstellen aktiven Verbundmaterials
WO2014003036A1 (ja) * 2012-06-29 2014-01-03 トヨタ自動車株式会社 複合活物質、固体電池および複合活物質の製造方法
US9887417B2 (en) 2012-06-29 2018-02-06 Toyota Jidosha Kabushiki Kaisha Composite active material, solid state battery and method for producing composite active material
CN104364942A (zh) * 2012-06-29 2015-02-18 丰田自动车株式会社 复合活性物质、固体电池以及复合活性物质的制造方法
KR20160150118A (ko) 2012-06-29 2016-12-28 도요타지도샤가부시키가이샤 복합 활물질, 고체 전지 및 복합 활물질의 제조 방법
WO2014010341A1 (ja) 2012-07-12 2014-01-16 トヨタ自動車株式会社 被覆活物質の製造方法
WO2014032405A1 (zh) * 2012-08-28 2014-03-06 华为技术有限公司 一种全固态锂离子电池复合型正极材料及其制备方法和全固态锂离子电池
JP5930063B2 (ja) * 2012-11-07 2016-06-08 株式会社村田製作所 正極材料、全固体電池およびそれらの製造方法
JPWO2014073466A1 (ja) * 2012-11-07 2016-09-08 株式会社村田製作所 正極材料、全固体電池およびそれらの製造方法
WO2014073466A1 (ja) * 2012-11-07 2014-05-15 株式会社 村田製作所 正極材料、全固体電池およびそれらの製造方法
WO2014122520A1 (en) 2013-02-08 2014-08-14 Toyota Jidosha Kabushiki Kaisha Composite active material, manufacturing method for composite active material, and lithium secondary battery including composite active material
US9929430B2 (en) 2013-02-08 2018-03-27 Toyota Jidosha Kabushiki Kaisha Composite active material, manufacturing method for composite active material, and lithium secondary battery including composite active material
US9929403B2 (en) 2014-03-19 2018-03-27 Toyota Jidosha Kabushiki Kaisha Method of producing an active material powder
KR20160007352A (ko) 2014-07-10 2016-01-20 도요타 지도샤(주) 복합 활물질 및 그 제조 방법
DE102015110661A1 (de) 2014-07-10 2016-01-14 Toyota Jidosha Kabushiki Kaisha Verbundaktivmaterial und Verfahren für dessen Herstellung
US9608288B2 (en) 2014-07-17 2017-03-28 Samsung Electronics Co., Ltd. Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same
US9843038B2 (en) 2014-07-17 2017-12-12 Samsung Electronics Co., Ltd. Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same
DE102016102947B4 (de) 2015-03-12 2023-09-21 Toyota Jidosha Kabushiki Kaisha Aktivmaterialkompositteilchen und Lithiumbatterie
JP2016170973A (ja) * 2015-03-12 2016-09-23 トヨタ自動車株式会社 活物質複合粒子及びリチウム電池
US10038229B2 (en) 2015-10-22 2018-07-31 Toyota Jidosha Kabushiki Kaisha Battery
US10439260B2 (en) 2016-06-30 2019-10-08 Toyota Jidosha Kabushiki Kaisha Battery
EP3514865A1 (en) * 2018-01-17 2019-07-24 Toyota Jidosha Kabushiki Kaisha Cathode mixture for all solid-state battery, cathode for all solid-state battery, all solid-state battery, and method for producing the same
US11569502B2 (en) 2018-01-17 2023-01-31 Toyota Jidosha Kabushiki Kaisha Cathode mixture for all solid-state battery, cathode for all solid-state battery, all solid-state battery, and method for producing the same
JP2019139862A (ja) * 2018-02-06 2019-08-22 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極活物質の製造方法、リチウムイオン電池用正極及びリチウムイオン電池
KR20210058101A (ko) * 2019-11-13 2021-05-24 한국생산기술연구원 황화물계 및 산화물계 융합 고체전해질을 포함하는 고전압 안전성 전고체 리튬이차전지 및 그의 제조방법
KR102347799B1 (ko) * 2019-11-13 2022-01-07 한국생산기술연구원 황화물계 및 산화물계 융합 고체전해질을 포함하는 고전압 안전성 전고체 리튬이차전지 및 그의 제조방법
WO2021255111A1 (fr) 2020-06-16 2021-12-23 Saft Electrode traitee en surface, protection des electrolytes solides, les elements, modules et batteries la comprenant
CN114975905A (zh) * 2021-02-22 2022-08-30 精工爱普生株式会社 前驱体溶液、前驱体粉末、电极的制造方法以及电极

Similar Documents

Publication Publication Date Title
JP2010073539A (ja) 電極体及びその製造方法、並びに、リチウムイオン二次電池
JP5293112B2 (ja) 活物質の製造方法、及び電極体の製造方法
Aravindan et al. Best practices for mitigating irreversible capacity loss of negative electrodes in Li‐ion batteries
JP2009193940A (ja) 電極体及びその製造方法、並びに、リチウムイオン二次電池
US9337509B2 (en) Solid electrolyte material, solid state battery, and method for producing solid electrolyte material
EP2609652B1 (en) Sulfide solid electrolyte material, cathode body and lithium solid state battery
JP5287739B2 (ja) 固体電解質材料
CN104919627B (zh) 全固体电池及其制造方法
JP5277984B2 (ja) 正極活物質材料
JP2010225309A (ja) 正極活物質材料の製造方法
CN105470475B (zh) 锂电池用正极活性物质、锂电池及锂电池用正极活性物质的制造方法
JP2012048973A (ja) 硫化物固体電解質材料およびリチウム固体電池
JP2011159639A (ja) 電極体及びその製造方法、並びに、リチウムイオン二次電池
KR20160121547A (ko) 안정화된 리튬 복합 입자들을 포함한 리튬 이온 배터리들
JP2009193803A (ja) 全固体リチウム二次電池
JP6295966B2 (ja) 全固体電池
Feng et al. Effects of polypyrrole and chemically reduced graphene oxide on electrochemical properties of lithium iron (II) phosphate
JP5780322B2 (ja) 硫化物固体電解質材料およびリチウム固体電池
CN114613939B (zh) 全固体电池
JP2014056818A (ja) 硫化物固体電解質材料、正極体およびリチウム固体電池
CN114068913A (zh) 全固体电池
JP2020087627A (ja) 全固体電池用負極活物質複合体
CN114824155B (zh) 全固体电池
JP7004969B2 (ja) リチウムイオン二次電池用電極
KR102251336B1 (ko) 나트륨 이차 전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 나트륨 이차 전지

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101116

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120125