JP2009242880A - 銀ナノワイヤー及びその製造方法、並びに水性分散物及び透明導電体 - Google Patents

銀ナノワイヤー及びその製造方法、並びに水性分散物及び透明導電体 Download PDF

Info

Publication number
JP2009242880A
JP2009242880A JP2008091702A JP2008091702A JP2009242880A JP 2009242880 A JP2009242880 A JP 2009242880A JP 2008091702 A JP2008091702 A JP 2008091702A JP 2008091702 A JP2008091702 A JP 2008091702A JP 2009242880 A JP2009242880 A JP 2009242880A
Authority
JP
Japan
Prior art keywords
silver
silver nanowire
aqueous dispersion
nanowire
axis length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008091702A
Other languages
English (en)
Other versions
JP5203769B2 (ja
Inventor
Tadashi Miyagishima
規 宮城島
Kenji Naoi
憲次 直井
Hiroyuki Hirai
博幸 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008091702A priority Critical patent/JP5203769B2/ja
Priority to US12/412,695 priority patent/US20090242231A1/en
Publication of JP2009242880A publication Critical patent/JP2009242880A/ja
Application granted granted Critical
Publication of JP5203769B2 publication Critical patent/JP5203769B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/02Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by evaporation of the solvent
    • C30B7/04Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by evaporation of the solvent using aqueous solvents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12431Foil or filament smaller than 6 mils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Inorganic Fibers (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

【課題】透明性と導電性を両立できる銀ナノワイヤー、及び水溶媒中で該水溶媒の沸点以下の温度で製造する銀ナノワイヤーの製造方法、並びに該銀ナノワイヤーを含有し、塗布後の保存安定性及び分散安定性が向上した水性分散物、及び透明導電体の提供。
【解決手段】水溶媒中で銀錯体を該水溶媒の沸点以下の温度で加熱することを特徴とする銀ナノワイヤーの製造方法である。銀錯体が、銀アンモニア錯体である態様、水溶媒の沸点以下の温度に加熱する態様、還元糖類を還元剤として用いる態様、などが好ましい。
【選択図】なし

Description

本発明は、透明性と導電性を両立できる銀ナノワイヤー及び水溶媒中で、溶媒の沸点以下の温度で製造する銀ナノワイヤーの製造方法、並びに水性分散物及び透明導電体に関する。
長軸長さが1μm以上、短軸長さが100nm以下である金属ナノワイヤー水性分散物の製造方法として、ポリオール法を用いて調製された銀ナノワイヤーポリオール分散物を、遠心分離工程を経て溶媒置換し、水性分散物を製造する方法が提案されている(特許文献1及び2参照)。
また、水溶媒を用いることを特徴とする銀ナノワイヤーの合成方法として、アンモニア銀を用い、オートクレーブ(120℃、8hr)で、長軸長さが数十μm、短軸長さが28nmのナノワイヤーを製造する方法が提案されている(非特許文献1参照)。
また、アンモニアを用いず100℃以下の水溶媒を用いることを特徴とする銀ナノワイヤーの合成方法としては、45℃の水溶媒を用い一晩以上かけて作製される長軸長さ数十μmから100μm、短軸長さが80nmの銀ナノワイヤーの製造方法が提案されている(非特許文献2参照)。
また、100℃の水溶媒中で作製された長軸長さ300nm〜4μm、短軸長さ15nmの銀ナノワイヤーの製造方法が提案されている(非特許文献3参照)。
また、銅微粒子を電界析出したガラス基板を硝酸銀水溶液に一晩浸漬することにより得られ、短軸長さ90nm〜300nmの銀ナノワイヤーの製造方法が提案されている(特許文献3参照)。
これらの文献により銀ナノワイヤーを製造する方法が提案されているが、安価に効率よく製造するためにはオートクレーブなどによる加圧を行うことなく、水溶媒を用いて短時間で製造することが望まれている。また、短軸長さが小さい銀ナノワイヤーでは酸化防止が望まれ、短軸長さが大きな銀ナノワイヤーでは透明度向上が望まれている。
したがってこれらの観点をすべて満足できると考えられる短軸長さが5nm以上500nm以下の銀ナノワイヤーの提供が望まれているのが現状である。
米国特許出願公開第2005/0056118号明細書 米国特許出願公開第2007/0074316号明細書 特開2006−196923号公報 J. Phys. Chem.B 2005,109,5497 Adv. Funct. Mater. 2004,14,183 J. Solid State Chemistry 179 (2006) 696
本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、透明性と導電性を両立できる銀ナノワイヤー、及び水溶媒中で該水溶媒の沸点以下の温度で製造する銀ナノワイヤーの製造方法、並びに該銀ナノワイヤーを含有し、塗布後の保存安定性及び分散安定性が向上した水性分散物、及び透明導電体を提供することを目的とする。
前記課題を解決するための手段としては以下の通りである。即ち、
<1> 水溶媒中で銀錯体を該水溶媒の沸点以下の温度で加熱することを特徴とする銀ナノワイヤーの製造方法である。
<2> 銀錯体が、銀アンモニア錯体である前記<1>に記載の銀ナノワイヤーの製造方法である。
<3> ハロゲン化銀を経由する前記<1>から<2>のいずれか記載の銀ナノワイヤーの製造方法である。
<4> 還元糖類を還元剤として用いる前記<1>から<3>のいずれか記載の銀ナノワイヤーの製造方法である。
<5> 前記<1>から<4>のいずれかに記載の銀ナノワイヤーの製造方法により製造されたことを特徴とする銀ナノワイヤーである。
<6> 短軸長さが、5nm以上500nm以下である前記<5>に記載の銀ナノワイヤーである。
<7> 前記<5>から<6>のいずれかに記載の銀ナノワイヤーを含有することを特徴とする水性分散物である。
<8> 前記<7>に記載の水性分散物により形成された透明導電層を有することを特徴とする透明導電体である。
本発明によると、従来における問題を解決することができ、透明性と導電性を両立できる銀ナノワイヤー、及び水溶媒中で該水溶媒の沸点以下の温度で製造する銀ナノワイヤーの製造方法、並びに該銀ナノワイヤーを含有し、塗布後の保存安定性及び分散安定性が向上した水性分散物、及び透明導電体を提供することができる。
(銀ナノワイヤーの製造方法及び銀ナノワイヤー)
本発明の銀ナノワイヤーの製造方法は、水溶媒中で銀錯体を該水溶媒の沸点以下で加熱することを特徴とする。
本発明の銀ナノワイヤーは、本発明の銀ナノワイヤーの製造方法により製造される。
以下、本発明の銀ナノワイヤーの製造方法の説明を通じて、本発明の銀ナノワイヤーの詳細についても明らかにする。
本発明の銀ナノワイヤーの製造方法は、水溶媒中で銀錯体を該水溶媒の沸点以下の温度で加熱し、還元反応により銀ナノワイヤーを形成する。その後、必要に応じて脱塩処理を行ってもよく、用途によっては脱塩処理工程することで水性分散物の伝導率を下げる方が好ましい。
前記水溶媒とは、溶媒の20%以上が水であり、水以外の溶媒としては、親水性溶媒が好ましく、例えばメタノール、エタノール、プロパノール、イソプロパノール、ブタノールなどのアルコール類;ジオキサン、テトラヒドロフランなどのエーテル類;アセトンなどのケトン類;テトラヒドロフラン、ジオキサン等の環状エーテル類などが挙げられる。
前記加熱温度は、前記水溶媒の沸点以下であり、100℃以下が好ましく、20℃以上100℃以下がより好ましく、30℃以上100℃以下が更に好ましく、40℃以上100℃以下が特に好ましい。
前記加熱温度が、100℃を超えると、粒子に強く吸着している分散剤が減少するためか、塗布膜評価での透過率が低くなることがある。また、前記加熱温度が低くなる程、核形成確率が下がり銀ナノワイヤーが長くなりすぎたためか、銀ナノワイヤーが絡みやすく、分散安定性が悪くなることがある。この傾向は20℃以下で顕著となる。
なお、銀ナノワイヤーを製造する際の反応系は、加圧なしの大気圧で行うことが好ましく、反応の際の撹拌は行っても、行わなくてもよいが、攪拌する方がより好ましい。
前記銀錯体としては、特に制限はなく、目的に応じて適宜選択することができるが、銀錯体の配位子としては、例えばCN、SCN、SO 2−、チオウレア、アンモニアなどが挙げられる。これらについては、“The Theory of the Photographic Process 4th Edition”Macmillan Publishing、T.H.James著の記載を参照することができる。これらの中でも、銀アンモニア錯体が特に好ましい。
前記加熱の際には還元剤を添加して行うことが好ましい。該還元剤としては、特に制限はなく、通常使用されるものの中から適宜選択することができ、例えば、水素化ホウ素ナトリウム、水素化ホウ素カリウム等の水素化ホウ素金属塩;水素化アルミニウムリチウム、水素化アルミニウムカリウム、水素化アルミニウムセシウム、水素化アルミニウムベリリウム、水素化アルミニウムマグネシウム、水素化アルミニウムカルシウム等の水素化アルミニウム塩;亜硫酸ナトリウム、ヒドラジン化合物、デキストリン、ハイドロキノン、ヒドロキシルアミン、クエン酸又はその塩、コハク酸又はその塩、アスコルビン酸又はその塩等;ジエチルアミノエタノール、エタノールアミン、プロパノールアミン、トリエタノールアミン、ジメチルアミノプロパノール等のアルカノールアミン;プロピルアミン、ブチルアミン、ジプロピレンアミン、エチレンジアミン、トリエチレンペンタミン等の脂肪族アミン;ピペリジン、ピロリジン、Nメチルピロリジン、モルホリン等のヘテロ環式アミン;アニリン、N−メチルアニリン、トルイジン、アニシジン、フェネチジン等の芳香族アミン;ベンジルアミン、キシレンジアミン、N−メチルベンジルアミン等のアラルキルアミン;メタノール、エタノール、2−プロパノール等のアルコール;エチレングリコール、グルタチオン、有機酸類(クエン酸、リンゴ酸、酒石酸等)、還元糖類(グルコース、ガラクトース、マンノース、フルクトース、スクロース、マルトース、ラフィノース、スタキオース等)、糖アルコール類(ソルビトール等)、などが挙げられる。これらの中でも、還元糖類、その誘導体としての糖アルコール類が特に好ましい。
前記還元剤種によっては機能として分散剤としても働く場合があり、同様に好ましく用いることができる。
前記還元剤の添加のタイミングは、分散剤の添加前でも添加後でもよく、ハロゲン化合物あるいはハロゲン化銀微粒子の添加前でも添加後でもよい。
本発明の銀ナノワイヤー製造の際には分散剤とハロゲン化合物、又はハロゲン化銀微粒子を添加して行うことが好ましい。分散剤量やハロゲン化合物、又はハロゲン化銀微粒子の量を加減することによりナノワイヤーの形態を制御することができる。
前記分散剤を添加する段階は、粒子調製する前に添加し、分散ポリマー存在下で添加してもよいし、粒子調整後に分散状態の制御のために添加しても構わないが、粒子形成前に添加する方がより好ましい。
前記分散剤としては、例えばアミノ基含有化合物、チオール基含有化合物、スルフィド基含有化合物、アミノ酸又はその誘導体、ペプチド化合物、多糖類、多糖類由来の天然高分子、合成高分子、又はこれらに由来するゲル等の高分子類、などが挙げられる。
前記高分子類としては、例えば保護コロイド性のあるポリマーでゼラチン、ポリビニルアルコール(P−3)、メチルセルロース、ヒドロキシプルピルセルロース、ポリアルキレンアミン、ポリアクリル酸の部分アルキルエステル、ポリビニルピロリドン(P−1)、ポリビニルピロリドン共重合体、などが挙げられる。
前記分散剤として使用可能な構造については、例えば「顔料の事典」(伊藤征司郎編、株式会社朝倉書院発行、2000年)の記載を参照できる。
なお、使用する分散剤の種類によって得られる銀ナノワイヤーの形状を変化させることができる。
前記ハロゲン化合物としては、臭素、塩素、ヨウ素を含有する化合物であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、臭化ナトリウム、塩化ナトリウム、ヨウ化ナトリウム、ヨウ化カリウム、臭化カリウム、塩化カリウム、ヨウ化カリウムなどのアルカリハライドや下記の分散剤と併用できる物質が好ましい。ハロゲン化合物の添加タイミングは、分散剤の添加前でも添加後でもよく、還元剤の添加前でも添加後でもよい。これらの一部は溶液中でハロゲン化銀微粒子を形成し得る。
なお、ハロゲン化合物種によっては、分散剤として機能するものがありうるが、同様に好ましく用いることができる。
前記ハロゲン化合物の代替としてハロゲン化銀微粒子を使用してもよいし、ハロゲン化合物とハロゲン化銀微粒子を共に使用してもよい。
前記分散剤とハロゲン化合物又はハロゲン化銀微粒子は同一物質で併用してもよい。分散剤とハロゲン化合物を併用した化合物としては、例えば、アミノ基と臭化物イオンを含むHTAB(ヘキサデシル−トリメチルアンモニウムブロミド)、アミノ基と塩化物イオンを含むHTAC(ヘキサデシル−トリメチルアンモニウムクロライド)などが挙げられる。
前記脱塩処理は、銀ナノワイヤーを形成した後、限外ろ過、透析、ゲルろ過、デカンテーション、遠心分離などの手法により行うことができる。
−銀ナノワイヤー−
前記銀ナノワイヤーの形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば円柱状、直方体状、断面が多角形となる柱状など任意の形状をとることができる。
前記銀ナノワイヤーの長軸長さは、1μm以上500μm以下が好ましく、5μm以上250μm以下がより好ましく、10μm以上100μm以下が特に好ましい。
前記銀ナノワイヤーの短軸長さは、5nm以上500nm以下が好ましく、10nm以上100nm以下がより好ましく、10nm以上50nm以下が特に好ましい。
前記銀ナノワイヤーの長軸長さが、1μm未満であると、導電体を塗布により作製した場合において、金属同士の接点が少なくなり導通が取りにくくなり、結果、抵抗が高くなってしまい、長軸の長さが500μmを超えると、銀ナノワイヤーが絡みやすくなるためか、分散安定性が悪くなってしまうことがある。
また、前記銀ナノワイヤーの短軸長さが、500nmを超えると、導電体としての特性は良化するが、光散乱によるヘイズが非常に目立ち、透明性が失われるため不都合であり、前記ナノワイヤーの短軸長さが、5nm未満であると、透明性は良化するが、酸化により導電性が悪化するため不都合である。
ここで、前記銀ナノワイヤーの長軸長さ、及び短軸長さは、例えば、透過型電子顕微鏡(TEM)を用い、TEM像を観察することにより求めることができる。
(水性分散物)
本発明の水性分散物は、分散溶媒中に本発明の前記銀ナノワイヤーを含有してなる。
本発明の前記銀ナノワイヤーの前記水性分散物における含有量は、0.1質量%〜99質量%が好ましく、0.3質量%〜95質量%がより好ましい。前記含有量が、0.1質量%未満であると、製造時、乾燥工程における負荷が多大となり、99質量%を超えると、粒子の凝集が起こりやすくなることがある。
この場合、長軸長さが10μm以上の銀ナノワイヤーを0.01質量%以上、より好ましくは0.05質量%以上含有することが、より少ない塗布銀量で導電性を高くすることができ、透明性との両立の観点で特に好ましい。
本発明の水性分散物における分散溶媒としては、主として水が用いられ、水と混和する有機溶媒を80容量%以下の割合で併用することができる。
前記有機溶媒としては、例えば、沸点が50℃〜250℃、より好ましくは55℃〜200℃のアルコール系化合物が好適に用いられる。このようなアルコール系化合物を併用することにより、塗布工程での塗り付け良化、乾燥負荷の低減をすることができる。
前記アルコール系化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えばメタノール、エタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール200、ポリエチレングリコール300、グリセリン、プロピレングリコール、ジプロピレングリコール、1,3−プロパンジオール、1,2−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1−エトキシ−2−プロパノール、エタノールアミン、ジエタノールアミン、2−(2−アミノエトキシ)エタノール、2−ジメチルアミノイソプロパノール、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、エタノール、エチレングリコールが特に好ましい。
本発明の水性分散物は、アルカリ金属イオン、アルカリ土類金属イオン、ハロゲン化物イオン等の無機イオンをなるべく含まないことが好ましい。
前記水性分散物の電気伝導度は1mS/cm以下が好ましく、0.1mS/cm以下がより好ましく、0.05mS/cm以下が更に好ましい。
前記水性分散物の20℃における粘度は、0.5mPa・s〜100mPa・sが好ましく、1mPa・s〜50mPa・sがより好ましい。
本発明の水性分散物には、必要に応じて、各種の添加剤、例えば、界面活性剤、重合性化合物、酸化防止剤、硫化防止剤、腐食防止剤、粘度調整剤、防腐剤などを含有することができる。
前記腐食防止剤としては、特に制限はなく、目的に応じて適宜選択することができ、アゾール類が好適である。該アゾール類としては、例えばベンゾトリアゾール、トリルトリアゾール、メルカプトベンゾチアゾール、メルカプトベンゾトリアゾール、メルカプトベンゾテトラゾール、(2−ベンゾチアゾリルチオ)酢酸、3−(2−ベンゾチアゾリルチオ)プロピオン酸、及びこれらのアルカリ金属塩、アンモニウム塩、並びにアミン塩から選ばれる少なくとも1種が挙げられる。該腐食防止剤を含有することで、一段と優れた防錆効果を発揮することができる。前記腐食防止剤は直接水分散物中に、適した溶媒で溶解した状態、又は粉末で添加するか、後述する透明導電体を作製後に、これを腐食防止剤浴に浸すことで付与することができる。
本発明の水性分散物は、インクジェットプリンター用水性インク及びディスペンサー用水性インクにも好ましく用いることができる。
インクジェットプリンターによる画像形成用途において、水性分散物を塗設する基板としては、例えば紙、コート紙、表面に親水性ポリマーなどを塗設したPETフイルムなどが挙げられる。
(透明導電体)
本発明の透明導電体は、本発明の前記水性分散物により形成される透明導電層を有する。
前記透明導電体の製造方法は、本発明の前記水性分散物を、基板上へ塗設し、乾燥する。
以下、前記透明導電体の製造方法の説明を通じて、本発明の透明導電体の詳細についても明らかにする。
前記水性分散物を塗設する基板としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、透明導電体用基板には、以下のものが挙げられるが、これらの中でも、製造適性、軽量性、可撓性、光学性(偏光性)などの点からポリマーフイルムが好ましく、PET、TAC、PENフイルムが特に好ましい。
(1)石英ガラス、無アルカリガラス、結晶化透明ガラス、パイレックス(登録商標)ガラス、サファイア等のガラス
(2)ポリカーボネート、ポリメチルメタクリレート等のアクリル樹脂、ポリ塩化ビニル、塩化ビニル共重合体等の塩化ビニル系樹脂、ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリイミド、PET、PEN、フッ素樹脂、フェノキシ樹脂、ポリオレフィン系樹脂、ナイロン、スチレン系樹脂、ABS樹脂等の熱可塑性樹脂
(3)エポキシ樹脂等の熱硬化性樹脂
前記基板材料としては、所望により併用してもよい。用途に応じてこれらの基板材料から適宜選択して、フィルム状等の可撓性基板、又は剛性のある基板とすることができる。
前記基板の形状としては、円盤状、カード状、シート状等のいずれの形状であってもよい。また、三次元的に積層されたものでもよい。更に基板のプリント配線を行う箇所にアスペクト比1以上の細孔、細溝を有していてもよく、これらの中に、インクジェットプリンター又はディスペンサーにより本発明の水性分散物を吐出することもできる。
前記基板の表面は親水化処理を施すことが好ましい。また、前記基板表面に親水性ポリマーを塗設したものが好ましい。これらにより水性分散物の基板への塗布性、及び、又は、密着性が良化する。
前記親水化処理としては、特に制限はなく、目的に応じて適宜選択することができ、例えば薬品処理、機械的粗面化処理、コロナ放電処理、火炎処理、紫外線処理、グロー放電処理、活性プラズマ処理、レーザー処理などが挙げられる。これらの親水化処理により表面の表面張力を30dyne/cm以上にすることが好ましい。
前記基板表面に塗設する親水性ポリマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ゼラチン、ゼラチン誘導体、ガゼイン、寒天、でんぷん、ポリビニルアルコール、ポリアクリル酸共重合体、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン、デキストラン、などが挙げられる。
前記親水性ポリマー層の層厚(乾燥時)は、0.001μm〜100μmが好ましく、0.01μm〜20μmがより好ましい。
前記親水性ポリマー層には、硬膜剤を添加して膜強度を高めることが好ましい。前記硬膜剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えばホルムアルデヒド、グルタルアルデヒド等のアルデヒド化合物;ジアセチル、シクロペンタンジオン等のケトン化合物;ジビニルスルホン等のビニルスルホン化合物;2−ヒドロキシ−4,6−ジクロロ−1,3,5−トリアジン等のトリアジン化合物;米国特許第3,103,437号明細書等に記載のイソシアネート化合物、などが挙げられる。
前記親水性ポリマー層は、上記化合物を水などの適当な溶媒に溶解又は分散させて塗布液を調製し、スピンコート、ディップコート、エクストルージョンコート、バーコート、ダイコート等の塗布法を利用して親水化処理した基板表面に塗布することにより形成することができる。更に、基板と上記親水性ポリマー層の間に、更なる密着性の改善など必要により下引き層を導入してもよい。前記乾燥温度は120℃以下が好ましく、30℃〜100℃がより好ましく、40℃〜80℃が更に好ましい。
本発明においては、透明導電体を形成後に、腐食防止剤浴に通すことも好ましく行うことができ、これにより、更に優れた腐食防止効果を得ることができる。
−用途−
本発明の透明導電体は、例えばタッチパネル、ディスプレイ用帯電防止、電磁波シールド、有機又は無機ELディスプレイ用電極、その他フレキシブルディスプレイ用電極・帯電防止、太陽電池用電極、電子ペーパー等の各種デバイスなどに幅広く適用される。
以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
以下の実施例及び比較例において、「銀ナノワイヤーの平均粒径(長軸・短軸の長さ)」、及び「水分散物の粘度」は、以下のようにして測定した。
<銀ナノワイヤーの平均粒径(長軸・短軸の長さ)>
銀ナノワイヤーの平均粒径は、透過型電子顕微鏡(TEM;日本電子株式会社製、JEM−2000FX)を用い、TEM像を観察することにより求めた。
<水分散物の粘度>
CBCマテリアルズ社製VISCOMATE VM−1G により、25℃での粘度を測定した。
(実施例1)
<銀ナノワイヤー水分散物の調製>
−添加液Aの調製−
硝酸銀粉末0.51gを純水50mLに溶解した。その後、1Nのアンモニア水を透明になるまで添加した。そして、全量が100mLになるように純水を添加した。
−添加液Gの調製−
グルコース粉末0.5gを140mLの純水で溶解して、添加液Gを調製した。
−添加液Hの調製−
HTAB(ヘキサデシル−トリメチルアンモニウムブロミド)粉末0.5gを27.5mLの純水で溶解して、添加液Hを調製した。
−試料101の作製−
添加液A 20.6mLを三口フラスコ内に入れ室温にて攪拌した。この液に純水41mL、添加液H 16.5mL、及び添加液G 20.6mLをロートにて添加した。その後、90℃で5時間加熱した。この加熱中の三口フラスコ内のサンプル液温度は大気圧下、77℃で行った。攪拌回転数200rpmで行った。
得られた水分散物を冷却した後、遠心分離し、伝導度が50μS/cm以下になるまで精製し、水分散物を作製した。
得られた試料101の銀ナノワイヤーは短軸長さ15nm〜30nm、長軸長さ40μm〜60μmであった。
−試料102の作製−
試料101において、添加液Gのグルコースを等モルのマルトースに置き換えて得られた水分散物を試料102とした。
得られた試料102の銀ナノワイヤーは短軸長さ30nm〜40nm、長軸長さ30μm〜50μmであった。
−試料103の作製−
試料101において、添加液HのHTABを40質量%のPVP(K30)と等モルのNaBrに置き換えて得られた水分散物を試料103とした。
得られた試料103の銀ナノワイヤーは短軸長さ15nm〜40nm、長軸長さ30μm〜60μmであった。
−試料104の作製−
試料101において、添加液Aの硝酸銀を等モルの酢酸銀に置き換えて得られた水分散物を試料104とした。
得られた試料104の銀ナノワイヤーは短軸長さ15nm〜25nm、長軸長さ40μm〜60μmであった。
−試料105の作製−
試料101において、加熱をオートクレーブ内で、圧力1.8atom、120℃で8時間行った以外は、試料101の作製と同様にして、得られた水分散物を試料105とした。
得られた試料105の銀ナノワイヤーは短軸長さ25nm〜30nm、長軸長さ40μm〜50μmであった。
得られた水分散物に水を加えて遠心分離し、伝導度が50μS/cm以下になるまで精製し、銀の含有量が、銀22質量%となるよう調整した塗布用水分散物を作製した。これらの塗布用水分散物の粘度はすべて10mPa・s(25℃)以下であった。また、XRD測定(理学電機株式会社製、RINT2500)より、すべての試料で金属銀の回折パターンを得た。
次に、市販の二軸延伸熱固定済の厚さ100μmのポリエチレンテレフタレート(PET)基板に8W/m・分のコロナ放電処理を施し、下記組成の下引き層を乾燥厚みが0.8μmになるように塗設した。
−下引き層の組成−
ブチルアクリレート(40質量%)と、スチレン(20質量%)と、グリシジルアクリレート(40質量%)との共重合体ラテックスに、ヘキサメチレン−1,6−ビス(エチレンウレア)を0.5質量%含有させたもの
次に、下引き層の表面に8W/m・分のコロナ放電処理を施して、ヒドロキシエチルセルロースを親水性ポリマー層として乾燥厚みが0.2μmになるように塗設した。
次に、ドクターコーターを用いて、試料101〜105の各塗布用水分散物を親水性ポリマー層上に塗布し、乾燥した。塗布銀量を蛍光X線分析装置(SII社製、SEA1100)にて測定し、0.02g/mとなるように塗布量を調節した。
得られた塗布物について、以下のようにして諸特性を評価した。結果を表1に示す。
<塗布物の透過率>
島津製作所製UV−2550を用いて、400nm〜800nmの透過率を測定した。
<塗布物の表面抵抗>
三菱化学株式会社製Loresta−GP MCP−T600を用いて表面抵抗を測定した。
<塗布用水分散物の安定性>
マグネティックスターラーにて攪拌の後、1辺5cm、高さ30cmの透明アクリル柱へ水分散液を移し、室温で3時間静置させた。水面から深さ2cmのところから液をサンプリングし、紫外可視透過吸収スペクトル(島津製作所製、UV−2550)を測定することで、分散安定性の評価を行った。ベースラインは水を入れた光学セルを100%とした。分散安定性が高いサンプルは、水面近くにおいても透過率が低く、分散安定の低いサンプルにおいては、沈降が著しく起こるため、水面近くの透過率が高くなった。
評価基準は以下の通りである。なお、分散安定性は数字が大きいほど優れていることを示す。
〔評価基準〕
1: 透過率が90%以上で、沈降が著しく、実用上問題あるレベルである。
2: 透過率が70%以上90%未満で、沈降が確認でき、実用上問題あるレベルである。
3: 透過率が50%以上70%未満で、沈降が若干見られるが、実用上問題ないレベルである。
4: 透過率が30%以上50%未満で、沈降がほとんどなく、実用上問題ないレベルである。
5: 透過率が0%以上30%未満で、沈降が確認できず、実用上問題ないレベルである。
<塗布物の保存安定性>
試料101〜105の各水分散物を用いて、前述と同様の方法で塗布サンプルを作製した。50℃、湿度60%RHの空気中にて2週間放置し、放置後の表面抵抗測定により、塗布物の保存安定性の比較を行った。
Figure 2009242880
本発明の銀ナノワイヤー及び水性分散物は、例えばタッチパネル、ディスプレイ用帯電防止、電磁波シールド、有機又は無機ELディスプレイ用電極、その他フレキシブルディスプレイ用電極・帯電防止、太陽電池用電極、電子ペーパー等の各種デバイスなどに幅広く適用される。

Claims (8)

  1. 水溶媒中で銀錯体を該水溶媒の沸点以下の温度で加熱することを特徴とする銀ナノワイヤーの製造方法。
  2. 銀錯体が、銀アンモニア錯体である請求項1に記載の銀ナノワイヤーの製造方法。
  3. ハロゲン化銀を経由する請求項1から2のいずれか記載の銀ナノワイヤーの製造方法。
  4. 還元糖類を還元剤として用いる請求項1から3のいずれか記載の銀ナノワイヤーの製造方法。
  5. 請求項1から4のいずれかに記載の銀ナノワイヤーの製造方法により製造されたことを特徴とする銀ナノワイヤー。
  6. 短軸長さが、5nm以上500nm以下である請求項5に記載の銀ナノワイヤー。
  7. 請求項5から6のいずれかに記載の銀ナノワイヤーを含有することを特徴とする水性分散物。
  8. 請求項7に記載の水性分散物により形成された透明導電層を有することを特徴とする透明導電体。
JP2008091702A 2008-03-31 2008-03-31 銀ナノワイヤー及びその製造方法、並びに水性分散物及び透明導電体 Active JP5203769B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008091702A JP5203769B2 (ja) 2008-03-31 2008-03-31 銀ナノワイヤー及びその製造方法、並びに水性分散物及び透明導電体
US12/412,695 US20090242231A1 (en) 2008-03-31 2009-03-27 Silver nanowire, production method thereof, and aqueous dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008091702A JP5203769B2 (ja) 2008-03-31 2008-03-31 銀ナノワイヤー及びその製造方法、並びに水性分散物及び透明導電体

Publications (2)

Publication Number Publication Date
JP2009242880A true JP2009242880A (ja) 2009-10-22
JP5203769B2 JP5203769B2 (ja) 2013-06-05

Family

ID=41115387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008091702A Active JP5203769B2 (ja) 2008-03-31 2008-03-31 銀ナノワイヤー及びその製造方法、並びに水性分散物及び透明導電体

Country Status (2)

Country Link
US (1) US20090242231A1 (ja)
JP (1) JP5203769B2 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100945208B1 (ko) * 2008-11-10 2010-03-03 한국전기연구원 일액형 탄소나노튜브 바인더 혼합액을 이용한 투명히터의 제조방법 그리고 그 제조방법에 의한 투명히터
JP2010084173A (ja) * 2008-09-30 2010-04-15 Fujifilm Corp 金属ナノワイヤー及びその製造方法、並びに水性分散物、及び透明導電体
WO2011078305A1 (ja) * 2009-12-25 2011-06-30 富士フイルム株式会社 導電膜及びその製造方法、並びにタッチパネル
WO2011077896A1 (ja) * 2009-12-24 2011-06-30 富士フイルム株式会社 金属ナノワイヤー及びその製造方法、並びに透明導電体及びタッチパネル
JP2013000924A (ja) * 2011-06-14 2013-01-07 Toray Ind Inc 導電性フィルム及びその製造方法
JP2013517603A (ja) * 2010-01-15 2013-05-16 カンブリオス テクノロジーズ コーポレイション 低曇価透明導体
WO2013118965A1 (ko) * 2012-02-06 2013-08-15 한국과학기술원 단결정 금-은 합금 나노 와이어의 제조 방법
JP2013167021A (ja) * 2013-03-27 2013-08-29 Fujifilm Corp 導電層形成用分散物及び透明導電体
JP2013231231A (ja) * 2012-04-30 2013-11-14 Dow Global Technologies Llc 高アスペクト比銀ナノワイヤを製造する方法
WO2013191337A1 (ko) * 2012-06-20 2013-12-27 한국과학기술원 은 나노와이어의 제조방법
JP2014505787A (ja) * 2010-12-14 2014-03-06 エルジー イノテック カンパニー リミテッド ナノワイヤー及びその製造方法
JP2014162946A (ja) * 2013-02-25 2014-09-08 Univ Of Shiga Prefecture 銀ナノワイヤの製造方法
JP2014211004A (ja) * 2013-04-18 2014-11-13 財團法人工業技術研究院 ナノ金属線とその製造方法、および、ナノ線
US9662710B2 (en) 2013-08-14 2017-05-30 Samsung Display Co., Ltd. Method of manufacturing silver nanowires
JP2019168386A (ja) * 2018-03-26 2019-10-03 昭和電工株式会社 材料中の針状物質の配向性の測定方法
CN110539004A (zh) * 2019-09-20 2019-12-06 深圳市云记科技有限公司 一种金属纳米线结构化网络搭接方法及其应用
US10589494B2 (en) 2015-03-25 2020-03-17 Fujifilm Corporation Far infrared reflective film, dispersion for forming far infrared reflective film, manufacturing method of far infrared reflective film, far infrared reflective glass, and window

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101333012B1 (ko) 2005-08-12 2013-12-02 캄브리오스 테크놀로지즈 코포레이션 나노와이어 기반의 투명 도전체
TWI397446B (zh) * 2006-06-21 2013-06-01 Cambrios Technologies Corp 控制奈米結構形成及形狀之方法
WO2009090748A1 (ja) 2008-01-17 2009-07-23 Applied Nanoparticle Laboratory Corporation 複合銀ナノ粒子、その製法及び製造装置
EP2430639A1 (en) * 2009-05-05 2012-03-21 Cambrios Technologies Corporation Reliable and durable conductive films comprising metal nanostructures
US20110024159A1 (en) * 2009-05-05 2011-02-03 Cambrios Technologies Corporation Reliable and durable conductive films comprising metal nanostructures
US8962131B2 (en) * 2009-07-17 2015-02-24 Carestream Health Inc. Transparent conductive film comprising water soluble binders
US8541098B2 (en) * 2009-08-24 2013-09-24 Cambrios Technology Corporation Purification of metal nanostructures for improved haze in transparent conductors made from the same
JP2013503260A (ja) * 2009-08-25 2013-01-31 カンブリオス テクノロジーズ コーポレイション 金属ナノワイヤの形態を制御する方法
DE102010017706B4 (de) * 2010-07-02 2012-05-24 Rent-A-Scientist Gmbh Verfahren zur Herstellung von Silber-Nanodrähten
DE102010033924A1 (de) * 2010-08-03 2012-02-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von Nanopartikeln aus einem Edelmetall und die Verwendung der so hergestellten Nanopartikel
TWI423268B (zh) * 2011-01-28 2014-01-11 Benq Materials Corp 含奈米銀線之軟性透明導電膜及其製造方法
US20120328469A1 (en) * 2011-06-24 2012-12-27 Carestream Health, Inc. Nanowire preparation methods, compositions, and articles
TWI476160B (zh) 2011-12-19 2015-03-11 Ind Tech Res Inst 奈米銀線之製備方法
US10029916B2 (en) 2012-06-22 2018-07-24 C3Nano Inc. Metal nanowire networks and transparent conductive material
US9920207B2 (en) 2012-06-22 2018-03-20 C3Nano Inc. Metal nanostructured networks and transparent conductive material
KR20150081253A (ko) 2012-08-30 2015-07-13 코닝 인코포레이티드 은의 무-용매 합성법 및 이에 의해 생산된 은 생산물
WO2014036261A1 (en) * 2012-08-31 2014-03-06 Corning Incorporated Low-temperature dispersion-based syntheses of silver and silver products produced thereby
CN104755639B (zh) 2012-08-31 2017-12-15 康宁股份有限公司 银回收方法和由此制备的银产物
AU2013323179B2 (en) 2012-09-27 2018-02-15 Rhodia Operations Process for making silver nanostructures and copolymer useful in such process
US20140170427A1 (en) * 2012-12-13 2014-06-19 Carestream Health, Inc. Anticorrosion agents for transparent conductive film
US10020807B2 (en) 2013-02-26 2018-07-10 C3Nano Inc. Fused metal nanostructured networks, fusing solutions with reducing agents and methods for forming metal networks
CN103302305B (zh) * 2013-06-09 2016-01-27 佛山市天宝利硅工程科技有限公司 一种利用生物分子氨基酸为还原剂制备银纳米线的方法
US11274223B2 (en) 2013-11-22 2022-03-15 C3 Nano, Inc. Transparent conductive coatings based on metal nanowires and polymer binders, solution processing thereof, and patterning approaches
US11343911B1 (en) 2014-04-11 2022-05-24 C3 Nano, Inc. Formable transparent conductive films with metal nanowires
WO2015167133A1 (ko) * 2014-04-30 2015-11-05 서울대학교 산학협력단 표면개질된 은 나노와이어 및 이의 제조 방법
CN104014805B (zh) * 2014-05-20 2016-04-20 苏州明动新材料科技有限公司 一种银纳米线的制备方法
US9183968B1 (en) 2014-07-31 2015-11-10 C3Nano Inc. Metal nanowire inks for the formation of transparent conductive films with fused networks
DE102015013238A1 (de) 2014-10-28 2016-04-28 Dow Global Technologies Llc Verfahren mit niedriger Sauerstoffkonzentration zur Herstellung von Silber-Nanodrähten
DE102015013220A1 (de) 2014-10-28 2016-04-28 Dow Global Technologies Llc Verfahren zur Herstellung von Silber-Nanodrähten
DE102015013239A1 (de) 2014-10-28 2016-04-28 Dow Global Technologies Llc Hydrothermalverfahren zur Herstellung von Silber-Nanodrähten
DE102015013219A1 (de) 2014-10-28 2016-04-28 Dow Global Technologies Llc Verfahren zur Herstellung von Silber-Nanodrähten
US10081020B2 (en) 2015-06-12 2018-09-25 Dow Global Technologies Llc Hydrothermal method for manufacturing filtered silver nanowires
US10376898B2 (en) 2015-06-12 2019-08-13 Dow Global Technologies Llc Method for manufacturing high aspect ratio silver nanowires
EP3144989A1 (de) 2015-09-16 2017-03-22 ThyssenKrupp Steel Europe AG Festkörper-photovoltaikelement
CN106031950A (zh) * 2015-11-10 2016-10-19 南京工业大学 一种快速高效的超细银纳米线制备方法
CN106238718A (zh) * 2016-07-18 2016-12-21 深圳市华科创智技术有限公司 处理银纳米线的方法以及银纳米线
CN106541144B (zh) * 2016-10-26 2018-10-23 东南大学 一种大批量、多步合成直径可控的超长银纳米线的方法
CN109261983A (zh) * 2018-11-22 2019-01-25 韩金玲 一种超细高长径比银纳米线的制备方法
KR20220038762A (ko) * 2019-12-27 2022-03-29 쇼와 덴코 가부시키가이샤 은 나노와이어 분산액의 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005054223A (ja) * 2003-08-01 2005-03-03 Mitsui Mining & Smelting Co Ltd ロッド状銀粒子の製造方法
JP2006161102A (ja) * 2004-12-07 2006-06-22 Mitsuboshi Belting Ltd 金属ナノ構造体の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6979491B2 (en) * 2002-03-27 2005-12-27 Cc Technology Investment Co., Ltd. Antimicrobial yarn having nanosilver particles and methods for manufacturing the same
US7585349B2 (en) * 2002-12-09 2009-09-08 The University Of Washington Methods of nanostructure formation and shape selection
US7923072B2 (en) * 2004-01-14 2011-04-12 University Of South Florida Silver crystals through Tollen's reaction
US7718094B2 (en) * 2004-06-18 2010-05-18 The Research Foundation Of State University Of New York Preparation of metallic nanoparticles
US20060090598A1 (en) * 2004-11-03 2006-05-04 Goia Dan V Aqueous-based method for producing ultra-fine silver powders
KR101333012B1 (ko) * 2005-08-12 2013-12-02 캄브리오스 테크놀로지즈 코포레이션 나노와이어 기반의 투명 도전체
US7291292B2 (en) * 2005-08-26 2007-11-06 E.I. Du Pont De Nemours And Company Preparation of silver particles using thermomorphic polymers
TWI397446B (zh) * 2006-06-21 2013-06-01 Cambrios Technologies Corp 控制奈米結構形成及形狀之方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005054223A (ja) * 2003-08-01 2005-03-03 Mitsui Mining & Smelting Co Ltd ロッド状銀粒子の製造方法
JP2006161102A (ja) * 2004-12-07 2006-06-22 Mitsuboshi Belting Ltd 金属ナノ構造体の製造方法

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010084173A (ja) * 2008-09-30 2010-04-15 Fujifilm Corp 金属ナノワイヤー及びその製造方法、並びに水性分散物、及び透明導電体
KR100945208B1 (ko) * 2008-11-10 2010-03-03 한국전기연구원 일액형 탄소나노튜브 바인더 혼합액을 이용한 투명히터의 제조방법 그리고 그 제조방법에 의한 투명히터
WO2011077896A1 (ja) * 2009-12-24 2011-06-30 富士フイルム株式会社 金属ナノワイヤー及びその製造方法、並びに透明導電体及びタッチパネル
JP2011149092A (ja) * 2009-12-24 2011-08-04 Fujifilm Corp 金属ナノワイヤー及びその製造方法、並びに透明導電体及びタッチパネル
CN102725085A (zh) * 2009-12-24 2012-10-10 富士胶片株式会社 金属纳米线、其生产方法、透明导体及触控面板
WO2011078305A1 (ja) * 2009-12-25 2011-06-30 富士フイルム株式会社 導電膜及びその製造方法、並びにタッチパネル
KR102185128B1 (ko) * 2010-01-15 2020-12-02 캄브리오스 필름 솔루션스 코포레이션 저헤이즈 투명 도전체
JP2013517603A (ja) * 2010-01-15 2013-05-16 カンブリオス テクノロジーズ コーポレイション 低曇価透明導体
KR20190072682A (ko) * 2010-01-15 2019-06-25 캄브리오스 필름 솔루션스 코포레이션 저헤이즈 투명 도전체
KR101992172B1 (ko) 2010-01-15 2019-06-24 캄브리오스 필름 솔루션스 코포레이션 저헤이즈 투명 도전체
KR20180110216A (ko) * 2010-01-15 2018-10-08 씨에이엠 홀딩 코포레이션 저헤이즈 투명 도전체
JP2014505787A (ja) * 2010-12-14 2014-03-06 エルジー イノテック カンパニー リミテッド ナノワイヤー及びその製造方法
US9528168B2 (en) 2010-12-14 2016-12-27 Lg Innotek Co., Ltd. Nano wire and method for manufacturing the same
JP2013000924A (ja) * 2011-06-14 2013-01-07 Toray Ind Inc 導電性フィルム及びその製造方法
WO2013118965A1 (ko) * 2012-02-06 2013-08-15 한국과학기술원 단결정 금-은 합금 나노 와이어의 제조 방법
JP2013231231A (ja) * 2012-04-30 2013-11-14 Dow Global Technologies Llc 高アスペクト比銀ナノワイヤを製造する方法
WO2013191337A1 (ko) * 2012-06-20 2013-12-27 한국과학기술원 은 나노와이어의 제조방법
JP2014162946A (ja) * 2013-02-25 2014-09-08 Univ Of Shiga Prefecture 銀ナノワイヤの製造方法
JP2013167021A (ja) * 2013-03-27 2013-08-29 Fujifilm Corp 導電層形成用分散物及び透明導電体
US9761354B2 (en) 2013-04-18 2017-09-12 Industrial Technology Research Institute Method of manufacturing a nano metal wire
JP2014211004A (ja) * 2013-04-18 2014-11-13 財團法人工業技術研究院 ナノ金属線とその製造方法、および、ナノ線
US9662710B2 (en) 2013-08-14 2017-05-30 Samsung Display Co., Ltd. Method of manufacturing silver nanowires
US10589494B2 (en) 2015-03-25 2020-03-17 Fujifilm Corporation Far infrared reflective film, dispersion for forming far infrared reflective film, manufacturing method of far infrared reflective film, far infrared reflective glass, and window
JP2019168386A (ja) * 2018-03-26 2019-10-03 昭和電工株式会社 材料中の針状物質の配向性の測定方法
JP7241272B2 (ja) 2018-03-26 2023-03-17 株式会社レゾナック 材料中の針状物質の配向性の測定方法
CN110539004A (zh) * 2019-09-20 2019-12-06 深圳市云记科技有限公司 一种金属纳米线结构化网络搭接方法及其应用
CN110539004B (zh) * 2019-09-20 2022-06-03 深圳市云记科技有限公司 一种金属纳米线结构化网络搭接方法及其应用

Also Published As

Publication number Publication date
JP5203769B2 (ja) 2013-06-05
US20090242231A1 (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP5203769B2 (ja) 銀ナノワイヤー及びその製造方法、並びに水性分散物及び透明導電体
JP5306760B2 (ja) 透明導電体、タッチパネル、及び太陽電池パネル
JP2009299162A (ja) 銀ナノワイヤー及びその製造方法、並びに水性分散物及び透明導電体
JP5111170B2 (ja) 金属ナノワイヤー及びその製造方法、並びに水性分散物及び透明導電体
KR101574320B1 (ko) 금속 나노구조체의 정제 및 이로부터 제조된 개선된 헤이즈의 투명 전도체
EP3115135B1 (en) Method for producing silver nanowires, silver nanowires and ink using same
KR101512220B1 (ko) 금속 나노 와이어 및 그 제조 방법, 그리고 투명 도전체 및 터치 패널
EP3187288A1 (en) Metallic copper particles, and production method therefor
JP5683256B2 (ja) 銀ナノワイヤの製造方法
JP2009129732A (ja) 金属ナノワイヤを用いた透明導電膜の製造方法及びそれを用いて製造された透明導電膜
WO2011078305A1 (ja) 導電膜及びその製造方法、並びにタッチパネル
JP2013084571A (ja) 透明導電性塗布膜、透明導電性インク、及びそれらを用いたタッチパネル
TWI675071B (zh) 銀奈米線印墨
JP2009215573A (ja) 棒状金属粒子及びその製造方法、並びに棒状金属粒子含有組成物、及び帯電防止材料
TWI709150B (zh) 銀奈米線印墨及銀奈米線印墨的製造方法
EP2045028A1 (en) Metal nanoparticles, method for producing the same, aqueous dispersion, method for manufacturing printed wiring or electrode, and printed wiring board or device
JP2011202265A (ja) 低温焼結性金属ナノ粒子組成物および該組成物を用いて形成された電子物品
JP2011108460A (ja) 導電性及び熱伝導性組成物
JP7300991B2 (ja) 導電フィルムの製造方法、導電フィルム及び金属ナノワイヤインク
Nishimoto et al. Effects of Additives on the Preparation of Ag Nanoparticles Using the Microwave‐Induced Plasma in Liquid Process
JP2004175832A (ja) 導電性記録物の形成方法および導電性記録物
JP5450863B2 (ja) 導電層形成用分散物及び透明導電体
TW202003726A (zh) 銀奈米線印墨及透明導電膜的製造方法以及透明導電膜
JP2011168804A (ja) 銀超微粒子の製造方法および銀超微粒子含有組成物
KR20170085530A (ko) 은 나노와이어-기반 투명 전도성 필름을 형성하기 위한 아이오다이드 첨가제를 갖는 단쇄 플루오로계면활성제

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130214

R150 Certificate of patent or registration of utility model

Ref document number: 5203769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250