JP2009128012A - 分析素子チップ及びこの分析素子チップを用いた表面プラズモン共鳴蛍光分析装置 - Google Patents

分析素子チップ及びこの分析素子チップを用いた表面プラズモン共鳴蛍光分析装置 Download PDF

Info

Publication number
JP2009128012A
JP2009128012A JP2007299677A JP2007299677A JP2009128012A JP 2009128012 A JP2009128012 A JP 2009128012A JP 2007299677 A JP2007299677 A JP 2007299677A JP 2007299677 A JP2007299677 A JP 2007299677A JP 2009128012 A JP2009128012 A JP 2009128012A
Authority
JP
Japan
Prior art keywords
light
element chip
optical waveguide
incident
waveguide plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007299677A
Other languages
English (en)
Inventor
Satoru Hirose
悟 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2007299677A priority Critical patent/JP2009128012A/ja
Publication of JP2009128012A publication Critical patent/JP2009128012A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】装置の小型化を図ることが可能な分析素子チップ、及びこの分析素子チップを用いることで装置の小型化を図った表面プラズモン共鳴蛍光分析装置を提供することを課題とする。
【解決手段】本発明に係る分析素子チップ10及びこの分析素子チップ10を用いた表面プラズモン蛍光分析装置は、分析素子チップ10が、一方の面12aに金属薄膜14が設けられ、内部に入射した光を金属薄膜14に案内する光導波路板12と、金属薄膜14の表面14aが内部に露出した状態で検体が流れる流路22を有する透明な流路部20と、を備え、光導波路板12における流路22を横断する方向の一方の側部には、外部から照射された光が内部に入射する入射面16aが設けられ、入射面16aと一方の面12aとのなす角が90°以上180°未満であることを特徴とする。
【選択図】図1

Description

本発明は、表面プラズモン共鳴(Surface Plasmon Resonance:SPR)によって生じたエバネッセント波を用い、検体に含まれる蛍光物質を発光させ、この蛍光を検出することで検体を測定する表面プラズモン共鳴蛍光分析装置に関する。
従来から、表面プラズモン共鳴蛍光分析装置としては、特許文献1に記載されたものが知られている。
この分析装置は、金属薄膜が形成された分析素子ブロックと、この分析素子ブロックに光を照射するための光源と、前記金属薄膜で生じたエバネッセント波によって励起された蛍光を検出するための蛍光検出手段と、を備える。
前記分析素子ブロックは三角プリズムで構成されており、頂角に対向する面上に前記金属薄膜が形成されている。この金属薄膜の表面(前記プリズムと接している面と反対側の面)上には検体(試料溶液)が当該金属薄膜の表面(おもて面)と接しつつ流れる流路が設けられている。前記光源は、照射した光が前記プリズムの一方の斜面(入射面)から前記プリズム内に入射し、この入射した光が前記金属薄膜の裏面(反射面)に表面プラズモン共鳴角で入射するように配置されている。前記蛍光検出手段は、前記金属薄膜に対して前記流路を挟んで対向する位置に配置されている。
このような装置では、前記流路に蛍光物質を含む検体が流され、前記光源から前記金属薄膜の反射面に光が照射されることで前記金属薄膜に表面プラズモン共鳴が生じ、前記金属薄膜の表面側、即ち、流路側の面にエバネッセント波が発生する。このエバネッセント波によって前記金属薄膜表面近傍にある前記検体中の蛍光物質が励起されて蛍光を発し、この蛍光を前記蛍光検出手段によって検出することにより前記検体の定量分析等が行われる。
特開2006−208069号公報
前記の装置では、金属薄膜の裏面に光を照射し、表面側で発生したエバネッセント波で励起される蛍光物質の蛍光を検出しなければならないため、前記分析素子ブロックを挟んでその両側、即ち、前記金属薄膜に対し反射面(裏面)側と流路(表面)側とにそれぞれ光学系(前記光源又は蛍光検出手段)が配置される。そのため、装置が大型化するといった問題が生じていた。
そこで、本発明は、上記問題点に鑑み、装置の小型化を図ることが可能な分析素子チップ、又はこの分析素子チップを用いることで装置の小型化を図った表面プラズモン共鳴蛍光分析装置を提供することを課題とする。
そこで、上記課題を解消すべく、本発明に係る分析素子チップは、検体に含まれる蛍光物質がエバネッセント波で励起されて発した蛍光を測定する表面プラズモン共鳴蛍光分析装置で用いられる分析素子チップであって、この分析素子チップは、透明な板状に形成されると共に一方の面に金属薄膜が設けられ、内部に入射した光を前記金属薄膜に案内する光導波路板と、前記光導波路板の一方の面側に設けられ、前記金属薄膜の表面が内部に露出した状態で前記検体が流れる流路を有する透明な流路部と、を備え、前記光導波路板における前記流路を横断する方向の一方の側部には、外部から照射された光が内部に入射する入射面が設けられ、前記入射面と一方の面とのなす角が90°以上180°未満であることを特徴とする。
かかる構成によれば、前記光導波路板の他方の面よりも流路側から入射面に対して光が照射されることで、内部に入射した光が前記光導波路板の他方の面で全反射をした後、前記金属薄膜の流路と反対側の面(反射面)に、又は前記光導波路板の一方の面と他方の面との間で全反射を繰り返しつつ前記金属薄膜の反射面に表面プラズモン共鳴角で入射するように案内される。
このように前記光導波路板内部に入射した光が案内されることで、前記流路内部に露出した金属薄膜の表面(ひょうめん)で表面プラズモン共鳴が生じ、当該金属薄膜の表面近傍にエバネッセント波が発生する。このエバネッセント波により前記金属薄膜の表面近傍の検体に含まれる蛍光物質が励起されて蛍光を発する。
この蛍光は、前記流路部が透明であるため前記金属薄膜に対して流路側、即ち、前記光導波路板の他方の面に対して流路側から検出可能である。そのため、前記構成の分析素子チップを用いることで、表面プラズモン共鳴蛍光分析装置においては、設置された当該分析素子チップの光導波路板の他方の面よりも流路側に前記入射面に光を照射する光源やエバネッセント波により励起された蛍光を検出する蛍光検出手段といった光学系を全て配置することが可能となる。
その結果、前記構成の分析素子チップを用いることで、分析素子チップを挟んで両側に光学系を配置していた従来の表面プラズモン共鳴蛍光分析装置よりも装置の小型化を図ることが可能となる。
本発明に係る分析素子チップにおいては、前記金属薄膜は、前記光導波路板において、前記一方の面の流路に対応する位置のみに形成される構成が好ましい。
このような構成にすることで、前記光導波路板において、前記入射面から内部に入射した光は、前記流路に対応する位置でのみ前記金属薄膜に表面プラズモン共鳴角で入射する。即ち、前記流路に対応する位置以外では表面プラズモン共鳴の励起による前記入射した光のエネルギーの強度低下がないため、前記入射した光は、前記流路に対応する位置まで効率よく前記光導波路板内部を案内される。
従って、入射した光のエネルギー強度に対して効率よく前記金属薄膜表面からエバネッセント波を生じさせることができ、蛍光物質を発光させることができる。
また、前記光導波路板における前記流路を横断する方向の他方の側部には、前記入射面から当該光導波路板内部に入射した光を外部に射出する射出面が設けられ、前記射出面と一方の面とのなす角が、前記光導波路板内部を案内された前記入射面から入射した光が内部側に再度全反射されることなく外部に射出されるような角度となるような構成であってもよい。
かかる構成によれば、内部に入射した光は、前記光導波路板内部を前記一方の面と他方の面との間で全反射を繰り返しながら前記金属薄膜に到達し、前記金属薄膜で全反射した後、再度前記一方の面と他方の面との間で全反射を繰り返しながら当該射出面に到達する。この射出面に到達した前記光が内部側に再度全反射されることなく射出面から外部に射出され、前記光導波路板内部で乱反射して再び前記金属薄膜に入射することが防止できる。その結果、エバネッセント波によって励起された蛍光の検出におけるノイズを抑制できる。
また、前記射出面と一方の面とのなす角が、90°以上180°未満であってもよい。
かかる構成によれば、前記入射面に対して光導波路板の他方の面よりも流路側から光を照射することで、内部に入射した光は、前記光導波路板の他方の面よりも流路側に向けて前記射出面から射出される。そのため、当該分析素子チップを用いることで、表面プラズモン共鳴蛍光分析装置においては、前記光導波路板の他方の面よりも流路側に前記射出光を検出する射出光検出手段も配置することができ、前記光源、蛍光検出手段及び射出光検出手段の3つの光学系を全て前記光導波路板の他方の面よりも流路側に配置することが可能となる。
その結果、当該分析素子チップを用いることで、前記3つの光学系を有する表面プラズモン共鳴蛍光分析装置であっても、従来のように分析素子チップを挟んで両側に光学系を配置する装置に比べて小型化を図ることが可能となる。
また、前記入射面と一方の面とのなす角及び前記射出面と一方の面とのなす角は、前記入射面に対して法線方向から光が入射した場合に、前記射出面に対して法線方向に前記光が射出されるような角度であることが好ましい。
このような構成にすることで、光が前記光導波路板に入射する又は前記光導波路板から射出される際に、前記光の強度低下が抑制される。そのため、当該分析素子チップを用いることで、表面プラズモン共鳴蛍光分析装置で検体を分析する際に、前記蛍光検出手段又は射出光検出手段において十分な検出光強度が得やすくなる。
また、上記課題を解消すべく、本発明に係る表面プラズモン共鳴蛍光分析装置は、前記のいずれかの分析素子チップと、前記分析素子チップの光導波路板の入射面と対向する位置に配置され、前記入射面に対して光を照射するための光源と、前記分析素子チップの金属薄膜に対して前記流路を挟んで対向する位置に配置され、前記金属薄膜で生じたエバネッセント波によって励起された蛍光を検出するための蛍光検出手段と、を備え、前記光源と蛍光検出手段とは、共に前記光導波路板の他方の面に対して前記流路側に配置されることを特徴とする。
かかる構成によれば、前記分析素子チップにおける光導波路板の他方の面よりも流路側に前記光源及び蛍光検出手段の2つの光学系を配置でき、分析素子チップを挟んで両側に光学系を配置する従来の装置に比べて小型化を図ることができる。
また、前記分析素子チップの光導波路板の他方の面側に光学系を配置する必要がないため、当該装置において前記光導波路板の他方の面側に空間が確保し易くなり、この空間を確保することで分析素子チップを交換する場合の交換作業が行い易くなる。
本発明に係る表面プラズモン共鳴蛍光分析装置において、前記の射出面を有する分析素子チップを用いる場合、さらに、前記分析素子チップの光導波路板の射出面と対向する位置に配置され、前記射出面から射出される光を検出するための射出光検出手段を備え、前記光源と蛍光検出手段と射出光検出手段とは、全て前記光導波路板の他方の面に対して前記流路側に配置される構成とすることができる。
かかる構成によれば、前記射出面から射出される光を検出することで、前記光源から照射されて前記光導波路板の内部に入射し、前記金属薄膜に案内された光が当該金属薄膜に対して表面プラズモン共鳴角で入射しているか否かの検出が容易になる。
また、前記光源、蛍光検出手段及び射出光検出手段の3つの光学系が全て前記光導波路板の他方の面に対して流路側に配置されているため、前記同様、従来の分析素子チップを挟んで両側に光学系が配置される表面プラズモン共鳴蛍光分析装置に比べて装置の小型化が図られる。
以上より、本発明によれば、装置の小型化を図ることが可能な分析素子チップ、及びこの分析素子チップを用いることで装置の小型化を図った表面プラズモン共鳴蛍光分析装置を提供する。
以下、本発明の一実施形態について、添付図面を参照しつつ説明する。
本実施形態に係る表面プラズモン共鳴蛍光分析装置(以下、単に「蛍光分析装置」とも称する。)は、図1に示されるように、分析素子チップ10と、分析素子チップ10に光を照射するための光源(第1の光学系)30と、エバネッセント波によって励起された蛍光を検出するための蛍光検出手段(第2の光学系)40と、分析素子チップ10から射出される光を検出するための射出光検出手段(第3の光学系)50と、を備える。蛍光検出手段40と射出光検出手段50とには、さらに各検出手段40又は50で検出した検出光を分析するための演算部60が接続され、この演算部60には当該演算部60が演算した結果を示すための表示手段70が接続されている。
分析素子チップ10は、図2乃至図3(b)にも示されるように、光導波路板12と流路部20とを備える。光導波路板12は、一対の平行な面(一方の面と他方の面)12a,12bを有する透明な板状に形成され、一方の面(図3(a)においては下側の面)12aに金属薄膜14が設けられている。この光導波路板12は、内部に入射した光を金属薄膜14に案内するためのものである。
具体的には、光導波路板12は、透明な矩形の板状に形成されている。本実施形態において、光導波路板12は、例えば、長さ(図2における上下方向の長さ)が12mm、幅(図2における左右方向の長さ)が5mm、厚さが2mmの板状に形成されている。また、光導波路板12は、透明な樹脂で形成されているがこれに限定されず光学系のガラス等であってもよい。この光導波路板12は、後述する流路22を横断する方向の一方の側部(図2及び図3(a)においては右側部)には、光源30によって外部から照射された光が内部に入射する入射面16aが設けられ、他方の側部(図2及び図3(a)においては左側部)には、入射面16aから内部に入射した光を外部に射出する射出面16bが設けられている。また、流路22に沿った方向の両端部には、他方の面12bから一方の面12aに向かって流路22に連通する貫通孔18がそれぞれ形成されている。
入射面16aは、一方の面12aとのなす角が直角又は鈍角、即ち、90°以上180°未満となるように構成され、本実施形態においては、121°である。しかし、この入射面16aと一方の面12aとのなす角は、この角度に限定される必要はなく、光源30から入射面16aに照射された光が光導波路板12の内部に入射し、他方の面(図3(a)においては上側の面)12bで全反射されるような角度であればよい。
詳細には、この角度は、入射面16aから光導波路板12内部入射した光が他方の面12bで全反射した後、一方の面12aにおける金属薄膜14が設けられた部位に対して全反射条件且つ金属薄膜14の反射面(図3(a)においては上側の面)14bに対して表面プラズモン共鳴角θで入射するように設定された角度である。
尚、表面プラズモン共鳴角θとは、一方の面12aの金属薄膜14が設けられた前記部位で光が全反射した際に生じるエバネッセント波が金属薄膜14で表面プラズモン共鳴を起こすような前記光の入射角である。この共鳴角のとき励起エネルギが強く効率的である。しかしながら角度の精度も要求される。従って、エネルギ効率は落ちるがプラズモン共鳴のピークを外す設定であってもエバネッセント波が出る角度であれば本件の目的は達成できる。また、本実施形態においては、入射面16aから入射した光が他方の面12bで全反射した後、一方の面12aの金属薄膜14の反射面14bに対応する位置に到達するように構成されているが、一方の面12aと他方の面12bの間で複数回(奇数回)全反射を繰り返した後、前記反射面14bに対応する位置に到達するように構成されてもよい(図4参照)。
この場合、光導波路板12の流路22を横断する方向の横断面視、金属薄膜14に入射する光の光軸の反射点から入射面16aの入射光の光軸通過点までの距離Lが、光導波路板12の厚み(一方の面12aと他方の面12bとの距離)をtとすると、他方の面12bでの全反射が1回の場合は、L=1.5t×tanθとなり、3回、5回、…の場合には、L=3.5t×tanθ、5.5t×tanθ、…となるように形成される。尚、θは、光導波路板12の屈折率をnとするとsinθ=1/nで規定される。
一方、射出面16bは、一方の面12aとのなす角が90°以上180°未満となるように構成され、本実施形態においては、128°である。しかし、この射出面16bと一方の面12aとのなす角も、この角度に限定される必要はなく、入射面16aから光導波路板12内部に入射した光が、一方の面12aと他方の面12bとの間で全反射を繰り返しながら当該射出面16bに到達した際、この射出面16bで全反射されることなく外部に射出されるような角度であればよい。
このように入射面16aと射出面16bとが構成されることで、前記横断面は、下底が上底よりも短い等脚台形となる(図3(a)参照)。本実施形態においては、この等脚台形の斜辺の角度が、入射面16aに対して法線方向から光が入射した場合に、この光は、一方の面12aと他方の面12bとの間で全反射を繰り返して射出面16bまで案内され、射出面16bから外部に向けて当該射出面16bに対して法線方向に射出されるように設定されている。そのため、光が光導波路板12に入射する又は光導波路板12から射出される際に前記光の強度低下が抑制され、後述する検体を分析する際に、蛍光検出手段40又は射出光検出手段50において十分な検出光強度が得やすくなる。
金属薄膜14は、本実施形態においては、例えば金で形成されているが、銀、銅、アルミ等の金属(合金を含む)で形成されてもよい。この金属薄膜14は、前記のように、光導波路板12の一方の面12aにおいて、当該光導波路板12に入射した光が表面プラズモン共鳴角で到達するような部位で、且つ流路22と対応する部位に設けられ(形成され)ている。
また、この金属薄膜14の流路側の面(露出面)14aには、特定の抗原を捕捉するための捕捉体が固定されている。この捕捉体は、金属薄膜の露出面14aに表面処理によって固定されている。
流路部20は、光導波路板12の一方の面12a側に設けられ、透明な樹脂で形成されており、検体が流れる流路22を有する。具体的には、流路部20は、矩形の板状に形成され、光導波路板12に取り付けられた際、金属薄膜14と対向する位置にこの金属薄膜14と共に流路22を形成する流路用溝22aが形成されている。この流路用溝22aは、光導波路板12側から反対側に向けて凹設された真っ直ぐな溝である。例えば、本実施形態においては、長さが10mm、幅が500μm、深さが300μmの溝である。
この流路用溝22aは、流路部20が光導波路板12に熱融着、接着剤、プラズマ接合等によって接合された際、当該溝22aの上端が金属薄膜14の露出面14aによって塞がれることで流路22が形成される。そのため、内部に金属薄膜14の露出面14aが露出した状態で流路22が形成される。この流路22は、前記のように、両端部が光導波路板12に形成された貫通孔18を介して外部と連通している。
光源(第1の光学系)30は、光導波路板12の入射面16aに対して光を照射するためのものであり、半導体レーザやLED等の発光素子32と偏光板34と光学系36とで構成されている。偏光板34は、P偏光の偏光面が光導波路板12の一方又は他方の面12a又は12bで反射するように発光素子32から照射された光を偏光する。但し、発光素子32として半導体レーザを用いた場合、当該半導体レーザを自身のP偏光の偏光面が光導波路板12内部で反射するように配置すれば偏光板34は設けなくてもよい。光学系36は、発光素子32から照射された光を平行射出又は金属薄膜14の反射面14b上で集光するように構成された1又は複数のレンズやミラー等で構成されている。
このように構成される光源30は、光導波路板12の入射面16aと対向し、且つ光導波路板12の他方の面12bよりも流路22側(図1において下側)に配置されている。詳細には、光源30は、分析素子チップ10の斜め下方から光導波路板12の入射面16aに対して法線方向から光を照射し、且つ光導波路板12内部に入射した前記光が内部で全反射し、斜め方向(表面プラズモン共鳴角θ)から金属薄膜14の反射面14bに入射するような位置及び照射角度で配置されている。
蛍光検出手段(第2の光学系)40は、金属薄膜14の露出面14a側で生じたエバネッセント波によって励起された蛍光を検出するためのものであり、レンズ等の光学系42とCCD等の受光素子44とで構成されている。このように構成される蛍光検出手段40は、分析素子チップ10の金属薄膜14に対して流路22を挟んで対向する位置、即ち、光導波路板12の他方の面12bに対して流路22側に配置される。
射出光検出手段(第3の光学系)50は、光導波路板12から射出される光を検出するためのものであり、CCDやフォトダイオード等の受光素子で構成されている。この射出光検出手段50は、射出された光を受光できるように光導波路板12の射出面16bと対向し、且つ光導波路板12の他方の面12bよりも流路22側に配置されている。
このように本実施形態に係る蛍光分析装置では、第1乃至第3の3つの光学系30,40,50は、全て分析素子チップ10における光導波路板12の他方の面12bに対して流路22側に配置されている。そのため分析素子チップを挟んで両側に光学系を配置する従来の装置に比べて小型化を図ることができる。
また、分析素子チップ10の光導波路板12の他方の面12b側(本実施形態においては上方)に光学系を配置する必要がないため、光導波路板12の他方の面12b側に空間が確保し易くなり、この空間を確保することで分析素子チップ10を交換する場合の作業空間が確保され、交換作業が行い易くなる。
演算部60は、蛍光検出手段40及び射出光検出手段50から送られてきた出力信号を演算して各検出手段40又は50で検出された検出光に関する分析を行うためのものである。具体的には、例えば、蛍光検出手段40で検出した単位面積あたりの蛍光の数のカウントや時間の経過に伴う蛍光の増加量を算出したり、射出光検出手段50で検出した射出光の強度や強度変化を算出したりする。このようにして演算部60で演算された結果は、この演算部60に接続された表示手段70に出力され、当該表示手段70が表示する。尚、演算部60は、本実施形態のように1つである必要はなく、蛍光検出手段40と射出光検出手段50とにそれぞれ設けられてもよい。また、表示手段70は、モニター等のように結果を画面に表示するものだけでなく、プリンター等のように結果をプリントアウトするもの等であってもよい。
本実施形態に係る蛍光分析装置は、以上の構成からなり、次に、この蛍光分析装置の動作及び作用について説明する。
蛍光分析装置に設置された分析素子チップ10に検体(試料溶液)が流される。この検体には抗原と蛍光標識とが含まれ、これら抗原と蛍光標識とは複合体を形成する。具体的には、分析素子チップ10は、光導波路板12の他方の面12bが上側を向いて水平となるよう蛍光分析装置に設置される。この分析素子チップ10は、検体毎に交換可能な交換チップとして使用される。
交換チップとして使用される場合には、複数の分析素子チップ10を積み重ねることが可能なため持ち運びが容易である。即ち、分析素子チップ10を構成する光導波路板12及び流路部20が共に板状に形成されているため、分析素子チップ10の上面及び下面に凹凸等がなく、複数の分析素子チップを容易に積み重ねることが可能となる。
次に、光導波路板12に形成された一対の貫通孔18,18の一方から検体が注入され、流路22を経て他方の貫通孔18から排出される。流路22の内部には、表面に捕捉体が固定された金属薄膜14の露出面14aが露出しているため、検体はこの露出面14aに接しつつ流路22を流れる。その際、蛍光標識と複合体を形成している抗原が露出面14aに固定された捕捉体に捉えられて金属薄膜14上に留まる。
一方、光源30から分析素子チップ10の光導波路板12の入射面16aに対して光が照射される。この光は、入射面16aに対して法線方向から光導波路板12の内部に入射し、他方の面12bで全反射をした後、金属薄膜14の反射面14bに表面プラズモン共鳴角θで入射するように案内される。
このように光導波路板12内部に入射した光が案内されることで、流路22内部に露出した金属薄膜14の露出面14aで表面プラズモン共鳴が生じ、当該金属薄膜14の表面14a近傍にエバネッセント波が発生する。このエバネッセント波により金属薄膜14の露出面14aに固定された捕捉体により捉えられた前記複合体の蛍光標識(蛍光物質)が励起されて蛍光を発する。即ち、金属薄膜14において、光源30からの光が入射した面(反射面14b)と反対の面(露出面14a)側で蛍光が励起される。この蛍光は、流路部20が透明であるため金属薄膜14に対して流路22を挟んで対向する位置に配置された蛍光検出手段40によって検出される。
この蛍光を検出する際、検体を流路22に流しながら光源30から光を照射し、時間の経過に伴う蛍光点の数の変化や、検体を流す前後での蛍光点の数の変化を測定してもよい。また、検体を流し終えた後、洗浄剤で流路22内を洗浄し、その後に光源30から光を照射して捕捉体に捉えられた複合体からの蛍光を検出するようにしてもよい。
金属薄膜14の反射面14bに表面プラズモン共鳴角で入射した光は、当該反射面14bで全反射されて光導波路板12の他方の面12bに向かい、この光が他方の面12bで全反射された後、射出面16bから外部に射出される。この射出される光は、本実施形態においては射出面16bに対して法線方向に射出される。このように、内部に入射した光は、金属薄膜14の反射面14bで全反射した後、射出面16bから外部に射出されるため、光導波路板12内部で乱反射して再び金属薄膜14に入射することがない。そのため、乱反射した光による蛍光物質の励起が抑制でき、前記蛍光の検出におけるノイズを抑制することができる。
射出面16bから光導波路板12の外部に射出された光は、射出光検出手段50で検出される。この検出された射出光を分析することで、入射面16aから入射した光が金属薄膜14の反射面14bに表面プラズモン共鳴角θで入射しているか否かが容易に判断される。この判断に基づいて、光源30の光軸や分析素子チップ10の設置角度を調整することで、金属薄膜14の反射面14bでの表面プラズモン共鳴状態を保つことができ、蛍光検出手段40において、検出に十分な蛍光の強度を保つことができる。若しくは、前記判断に基づき、演算部60において蛍光検出手段40からの検出光の情報に対して補正が行われ、検体の分析精度が向上する。
このようにして各検出手段40,50で検出された検出光の情報は、演算部60に送られ、各種演算が行われる。そして、その結果が表示手段70に送られ、当該表示手段70によって表示される。
尚、本発明の分析素子チップ及び蛍光分析装置は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
例えば、本実施形態においては、分析素子チップ10の光導波路板12は、入射面16aから入射した光が他方の面12bで1回全反射した後、金属薄膜14の反射面14bで全反射し、その後、他方の面12bで1回全反射した後、射出面16bから射出されるように構成されている。しかし、これに限定される必要はなく、図4に示されるように、入射面116aから入射した光が光導波路板112内部で複数回(奇数回)全反射した後、金属薄膜14の反射面14bで全反射し、その後、光導波路板112内部で複数回(奇数回)全反射した後、射出面16bから射出されるように構成されてもよい。入射面116aと射出面116bとがこのような間隔となるように光導波路板112が構成されることで、分析素子チップを取り扱い易い(作業者が把持し易い)大きさとすることができる。しかも、前記のように、光導波路板112及び流路部20は共に板状に構成されているため、分析素子チップ110の上面及び下面は平滑な面で構成され、複数の分析素子チップ110を安定して積み上げることができ、輸送が容易になる。
この場合、金属薄膜14は、光導波路板112において、流路22に対応する位置にのみ形成される。このような構成とすることで、光導波路板112において、入射面116aから内部に入射した光は、流路22に対応する位置のみで金属薄膜14で全反射する。即ち、流路22に対応する位置以外では表面プラズモン共鳴の励起による光のエネルギーの強度低下がないため、前記入射した光は、流路22に対応する位置まで効率よく光導波路板112内部を案内される。また、同様に、前記入射した光は、流路22に対応する位置で全反射した後、射出面116bまで表面プラズモン共鳴の励起による光のエネルギーの強度低下なしに効率よく案内される。その結果、入射した光のエネルギー強度に対して効率よく金属薄膜14からエバネッセント波を生じさせることができ、蛍光物質を発光させることができる。また、射出光も効率よく検出可能となる。
尚、入射面116aから金属薄膜14に到達するまでの全反射の回数及び金属薄膜14で全反射した後、射出面116bに到達するまでの前記全反射の回数がそれぞれ奇数回となることで、光源30、蛍光検出手段40及び射出光検出手段50の全ての光学系を他方の面112bに対して同一側(流路22側)に配置することができる。
また、本実施形態においては、射出光検出手段50が設けられているが、必ず設けられる必要はない。その場合、図5に示されるように、分析素子チップ210の光導波路板212では、射出面216bが斜め上方に内部の光を射出するように構成されてもよい。この場合であっても、入射面216aから案内された光が全反射することなく外部に射出されるような角度になるよう射出面216bと光波路板212の一方の面212aとが構成されることで、入射した光が内部で乱反射することを抑制でき、蛍光を検出する際のノイズが抑制される。
本実施形態に係る表面プラズモン共鳴蛍光分析装置の概略構成を示すブロック図である。 同実施形態に係る分析素子チップの平面図である。 同実施形態に係る分析素子チップの(a)は図2におけるA−A断面図(横断面図)であり、(b)は図2におけるB−B断面図である。 同実施形態に係る分析素子チップにおける光の経路を示す図である。 他実施形態に係る分析素子チップにおける光の経路を示す図である。
符号の説明
10 分析素子チップ
12 光導波路板
12a 一方の面
14 金属薄膜
14a 露出面(表面:ひょうめん)
16a 入射面
20 流路部
22 流路

Claims (7)

  1. 検体に含まれる蛍光物質がエバネッセント波で励起されて発した蛍光を測定する表面プラズモン共鳴蛍光分析装置で用いられる分析素子チップであって、
    この分析素子チップは、透明な板状に形成されると共に一方の面に金属薄膜が設けられ、内部に入射した光を前記金属薄膜に案内する光導波路板と、
    前記光導波路板の一方の面側に設けられ、前記金属薄膜の表面が内部に露出した状態で前記検体が流れる流路を有する透明な流路部と、を備え、
    前記光導波路板における前記流路を横断する方向の一方の側部には、外部から照射された光が内部に入射する入射面が設けられ、
    前記入射面と一方の面とのなす角が90°以上180°未満であることを特徴とする分析素子チップ。
  2. 前記金属薄膜は、前記光導波路板において、前記一方の面の流路に対応する位置のみに形成されることを特徴とする請求項1に記載の分析素子チップ。
  3. 前記光導波路板における前記流路を横断する方向の他方の側部には、前記入射面から当該光導波路板内部に入射した光を外部に射出する射出面が設けられ、
    前記射出面と一方の面とのなす角が、前記光導波路板内部を案内された前記入射面から入射した光が内部側に再度全反射されることなく外部に射出されるような角度であることを特徴とする請求項1又は2に記載の分析素子チップ。
  4. 前記射出面と一方の面とのなす角が、90°以上180°未満であることを特徴とする請求項3に記載の分析素子チップ。
  5. 前記入射面と一方の面とのなす角及び前記射出面と一方の面とのなす角は、前記入射面に対して法線方向から光が入射した場合に、前記射出面に対して法線方向に前記光が射出されるような角度であることを特徴とする請求項3又は4に記載の分析素子チップ。
  6. 請求項1乃至3のいずれか1項に記載の分析素子チップと、
    前記分析素子チップの光導波路板の入射面と対向する位置に配置され、前記入射面に対して光を照射するための光源と、
    前記分析素子チップの金属薄膜に対して前記流路を挟んで対向する位置に配置され、前記金属薄膜で生じたエバネッセント波によって励起された蛍光を検出するための蛍光検出手段と、を備え、
    前記光源と蛍光検出手段とは、共に前記光導波路板の他方の面に対して前記流路側に配置されることを特徴とする表面プラズモン共鳴蛍光分析装置。
  7. 請求項4又は5に記載の分析素子チップと、
    前記分析素子チップの光導波路板の入射面と対向する位置に配置され、前記入射面に対して光を照射するための光源と、
    前記分析素子チップの金属薄膜に対して前記流路を挟んで対向する位置に配置され、前記金属薄膜で生じたエバネッセント波によって励起された蛍光を検出するための蛍光検出手段と、
    前記分析素子チップの光導波路板の射出面と対向する位置に配置され、前記射出面から射出される光を検出するための射出光検出手段と、を備え、
    前記光源と蛍光検出手段と射出光検出手段とは、全て前記光導波路板の他方の面に対して前記流路側に配置されることを特徴とする表面プラズモン共鳴蛍光分析装置。
JP2007299677A 2007-11-19 2007-11-19 分析素子チップ及びこの分析素子チップを用いた表面プラズモン共鳴蛍光分析装置 Pending JP2009128012A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007299677A JP2009128012A (ja) 2007-11-19 2007-11-19 分析素子チップ及びこの分析素子チップを用いた表面プラズモン共鳴蛍光分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007299677A JP2009128012A (ja) 2007-11-19 2007-11-19 分析素子チップ及びこの分析素子チップを用いた表面プラズモン共鳴蛍光分析装置

Publications (1)

Publication Number Publication Date
JP2009128012A true JP2009128012A (ja) 2009-06-11

Family

ID=40819118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007299677A Pending JP2009128012A (ja) 2007-11-19 2007-11-19 分析素子チップ及びこの分析素子チップを用いた表面プラズモン共鳴蛍光分析装置

Country Status (1)

Country Link
JP (1) JP2009128012A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043202A1 (ja) * 2009-10-05 2011-04-14 コニカミノルタホールディングス株式会社 表面プラズモン増強蛍光測定装置
JP2012202742A (ja) * 2011-03-24 2012-10-22 Fujifilm Corp 検出方法および検出装置
CN114112947A (zh) * 2020-08-26 2022-03-01 横河电机株式会社 光谱分析设备、光学系统及方法
KR20230050909A (ko) * 2021-10-08 2023-04-17 한국과학기술연구원 고해상도 형광 이미징 장치 및 이의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344273A (ja) * 2002-05-23 2003-12-03 Japan Science & Technology Corp 表面プラズモン共鳴及び蛍光偏光測定用装置
JP2005077338A (ja) * 2003-09-02 2005-03-24 Sysmex Corp 光学的定量方法及び光学的定量装置
JP2006194730A (ja) * 2005-01-13 2006-07-27 Moritex Corp エバネッセント波励起蛍光検出方法
JP2006208069A (ja) * 2005-01-26 2006-08-10 National Institute Of Advanced Industrial & Technology プラズモン共鳴蛍光を用いた生体分子相互作用検出装置及び検出方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344273A (ja) * 2002-05-23 2003-12-03 Japan Science & Technology Corp 表面プラズモン共鳴及び蛍光偏光測定用装置
JP2005077338A (ja) * 2003-09-02 2005-03-24 Sysmex Corp 光学的定量方法及び光学的定量装置
JP2006194730A (ja) * 2005-01-13 2006-07-27 Moritex Corp エバネッセント波励起蛍光検出方法
JP2006208069A (ja) * 2005-01-26 2006-08-10 National Institute Of Advanced Industrial & Technology プラズモン共鳴蛍光を用いた生体分子相互作用検出装置及び検出方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043202A1 (ja) * 2009-10-05 2011-04-14 コニカミノルタホールディングス株式会社 表面プラズモン増強蛍光測定装置
US9255883B2 (en) 2009-10-05 2016-02-09 Konica Minolta, Inc. Surface plasmon-enhanced fluorescence measuring apparatus
JP2012202742A (ja) * 2011-03-24 2012-10-22 Fujifilm Corp 検出方法および検出装置
CN114112947A (zh) * 2020-08-26 2022-03-01 横河电机株式会社 光谱分析设备、光学系统及方法
US11940326B2 (en) 2020-08-26 2024-03-26 Yokogawa Electric Corporation Spectroscopic analysis device, optical system, and method
KR20230050909A (ko) * 2021-10-08 2023-04-17 한국과학기술연구원 고해상도 형광 이미징 장치 및 이의 제조방법
KR102624827B1 (ko) 2021-10-08 2024-01-15 한국과학기술연구원 고해상도 형광 이미징 장치 및 이의 제조방법

Similar Documents

Publication Publication Date Title
JP5825257B2 (ja) 表面プラズモン共鳴蛍光分析装置及び表面プラズモン共鳴蛍光分析方法
JP5094484B2 (ja) 蛍光検出方法および蛍光検出装置
US8102533B2 (en) Total reflection illuminated sensor chip
US10451555B2 (en) Surface plasmon resonance fluorescence analysis device and surface plasmon resonance fluorescence analysis method
JP6635168B2 (ja) 表面プラズモン共鳴蛍光分析方法
JP5067143B2 (ja) 表面プラズモン共鳴蛍光分析装置
JP6856074B2 (ja) 測定方法、測定装置および測定システム
JP2009128012A (ja) 分析素子チップ及びこの分析素子チップを用いた表面プラズモン共鳴蛍光分析装置
JP3934090B2 (ja) 蛍光分析用光合分波器、蛍光分析用光学モジュール、蛍光分析装置、及び蛍光・光熱変換分光分析装置
KR20120000070A (ko) 광조사장치 및 광측정장치
EP3159677A1 (en) Detection device
JP6766820B2 (ja) 光学式検体検出システム
JP2009133717A (ja) 分析素子チップ、及びこれを用いた分析装置
JP5447172B2 (ja) 表面プラズモン共鳴蛍光分析装置及び表面プラズモン共鳴蛍光分析方法
JP6644329B2 (ja) 導光路内蔵チップ、導光部材及び導光方法
JP5553014B2 (ja) 分析チップのプリズム部、このプリズム部を含む分析チップ、及び分析チップのプリズム部の製造方法
JP2005337940A (ja) 表面プラズモン共鳴装置
WO2012160923A1 (ja) 反応進行装置、交換製品及び交換製品の製造方法
JP6291278B2 (ja) 検出装置
JP6241163B2 (ja) 表面プラズモン共鳴蛍光分析装置および表面プラズモン共鳴蛍光分析方法
JP2005147891A (ja) 表面プラズモン共鳴センサ
CN101606054B (zh) 线栅监视设备
JP6213160B2 (ja) 分析チップ
JP6673336B2 (ja) 検出装置
US20130094019A1 (en) Sample carrier with light refracting structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120731