JP2009117006A - 抵抗変化メモリ装置 - Google Patents
抵抗変化メモリ装置 Download PDFInfo
- Publication number
- JP2009117006A JP2009117006A JP2007292040A JP2007292040A JP2009117006A JP 2009117006 A JP2009117006 A JP 2009117006A JP 2007292040 A JP2007292040 A JP 2007292040A JP 2007292040 A JP2007292040 A JP 2007292040A JP 2009117006 A JP2009117006 A JP 2009117006A
- Authority
- JP
- Japan
- Prior art keywords
- cell
- memory
- resistance
- cell array
- memory cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/56—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/0023—Address circuits or decoders
- G11C13/0028—Word-line or row circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/004—Reading or sensing circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/06—Arrangements for interconnecting storage elements electrically, e.g. by wiring
- G11C5/063—Voltage and signal distribution in integrated semi-conductor memory access lines, e.g. word-line, bit-line, cross-over resistance, propagation delay
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C8/00—Arrangements for selecting an address in a digital store
- G11C8/14—Word line organisation; Word line lay-out
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
- G11C13/0002—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
- G11C13/0021—Auxiliary circuits
- G11C13/004—Reading or sensing circuits or methods
- G11C2013/0054—Read is performed on a reference element, e.g. cell, and the reference sensed value is used to compare the sensed value of the selected cell
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
- G11C2213/71—Three dimensional array
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2213/00—Indexing scheme relating to G11C13/00 for features not covered by this group
- G11C2213/70—Resistive array aspects
- G11C2213/72—Array wherein the access device being a diode
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Semiconductor Memories (AREA)
Abstract
【課題】トリミング可能な参照セルを持つ抵抗変化メモリ装置を提供する。
【解決手段】抵抗変化メモリ装置は、書き換え可能な抵抗値を記憶する可変抵抗素子を用いたメモリセルが配列されたメモリセルアレイと、前記メモリセルアレイの高抵抗状態にあるメモリセルと同じメモリセルが配列され、その並列接続数の選択により前記メモリセルアレイのデータを読み出すための参照電流値がトリミングされる参照セルと、前記メモリセルアレイの選択メモリセルのセル電流と前記参照セルの参照電流値とを比較するセンスアンプと、を有する。
【選択図】図3
【解決手段】抵抗変化メモリ装置は、書き換え可能な抵抗値を記憶する可変抵抗素子を用いたメモリセルが配列されたメモリセルアレイと、前記メモリセルアレイの高抵抗状態にあるメモリセルと同じメモリセルが配列され、その並列接続数の選択により前記メモリセルアレイのデータを読み出すための参照電流値がトリミングされる参照セルと、前記メモリセルアレイの選択メモリセルのセル電流と前記参照セルの参照電流値とを比較するセンスアンプと、を有する。
【選択図】図3
Description
この発明は、書き換え可能な抵抗値をデータとして不揮発に記憶する抵抗変化メモリ装置に係り、特に選択セル電流を検出するための参照セルの構成に関する。
電圧、電流や熱などで記録層の抵抗状態を変えてメモリセルとして利用する抵抗変化メモリ(Resistance RAM:ReRAM)がNANDフラッシュメモリの後継候補として注目されている。ReRAMは、メモリの微細化に向いていると同時にクロスポイントセルを構成することができ、更に三次元的にセルアレイを積層することも容易である。
特に、ユニポーラ型のReRAMは、印加電圧値とその印加時間の制御により、高抵抗状態と低抵抗状態の設定が可能である(例えば、非特許文献1参照)。
しかし、製造工程のゆらぎに依存して、メモリ記録層のわずかな組成変化などで製造されたメモリチップ毎にその抵抗状態の安定値は変化し、配線抵抗値も揺らぐ。更に、同一チップ内であっても特に三次元的に積層されるセルアレイでは、セルアレイ内の位置によってセンスアンプでの配線抵抗が大きく変わり、セルの抵抗状態の一定値をメモリチップ全体に渡って一定のデータ状態として判定することは困難となる。
そこで製造の場所、時間及びチップ内の位置によるセル状態の変動を考慮したセルへのデータ設定とデータ読み出しが必須となる。通常セルデータの読み出しは、選択セル電流と参照セルの参照電流とをセンスアンプにより比較検出する。これは、通常読み出しの場合も書き込みのベリファイ読み出しの場合も同様である。したがってセル状態の変動に対応するためには参照セルの抵抗状態を精密にトリミングして設定することが必要である。
Y. Hosoi et al, "High Speed Unipolar Switching Resistance RAM(RRAM) Technology" IEEE International Electron Devices Meeting 2006 Technical Digest p.793-796
Y. Hosoi et al, "High Speed Unipolar Switching Resistance RAM(RRAM) Technology" IEEE International Electron Devices Meeting 2006 Technical Digest p.793-796
この発明は、トリミング可能な参照セルを持つ抵抗変化メモリ装置を提供することを目的とする。
この発明の一態様による抵抗変化メモリ装置は、
書き換え可能な抵抗値を記憶する可変抵抗素子を用いたメモリセルが配列されたメモリセルアレイと、
前記メモリセルアレイの高抵抗状態にあるメモリセルと同じメモリセルが配列され、その並列接続数の選択により前記メモリセルアレイのデータを読み出すための参照電流値がトリミングされる参照セルと、
前記メモリセルアレイの選択メモリセルのセル電流と前記参照セルの参照電流値とを比較するセンスアンプと、を有することを特徴とする。
書き換え可能な抵抗値を記憶する可変抵抗素子を用いたメモリセルが配列されたメモリセルアレイと、
前記メモリセルアレイの高抵抗状態にあるメモリセルと同じメモリセルが配列され、その並列接続数の選択により前記メモリセルアレイのデータを読み出すための参照電流値がトリミングされる参照セルと、
前記メモリセルアレイの選択メモリセルのセル電流と前記参照セルの参照電流値とを比較するセンスアンプと、を有することを特徴とする。
この発明によれば、トリミング可能な参照セルを持つ抵抗変化メモリ装置を提供することができる。
実施の形態の説明に先立って、抵抗変化メモリ(ReRAM)のセルに微小電圧を印加して、流れるセル電流を参照電流と比較してデータセンスを行う場合に、参照セルの細かなトリミングが必須となる事情を説明する。
セル電流と参照電流を比べるのはセンスアンプであるが、センスアンプが見るセル状態は実際にはセルそのものではなく、アクセスしたセルまでのビット線等の経路の寄生抵抗を含む。この寄生抵抗はチップごとの製造ばらつきやセルのチップ内での位置による影響を受けて一定ではない。またセル自体も記録層の組成ばらつき等によってチップごと或いはチップ内領域ごとの抵抗値のばらつきが大きい。
図1は、メモリセルに多値レベルを設定する場合について、多値レベルのセル抵抗区分の境界値R0,R1,R2が、チップ(或いはチップ内セル位置)a,b,cに応じて異なる様子を示している。このような状況では、各データレベルのセンス基準となる参照レベルが取れない可能性がある。
この様な状況でセル状態を間違いなく読み出すには、データをセルに書き込む際のベリファイ基準及びセルデータ読み出しの際の基準となる参照セルの参照レベル(参照電流値、或いは境界抵抗値)をセルの状況に合わせてトリミングして調整することが必要になる。
以下、実施の形態を説明する。
図2は、メモリセルアレイMAと参照セルRCとの基本的な関係を示している。メモリセルアレイMAは、複数本ずつ互いに交差して配設されるワード線WLとビット線BLの各交差部に、可変抵抗素子VRとダイオードDiの直列接続回路からなるメモリセルMCを配置して構成される。
可変抵抗素子VRは、例えば遷移金属酸化物からなる記録層を持ち、熱的に安定なリセット状態が高抵抗状態であり、電圧印加により低抵抗状態にセットすることができる。低抵抗状態のセルは、電圧印加によりジュール熱を発生させて、熱過程により高抵抗状態にリセットすることができる。
読み出し時、ビット線に流れるセル電流を検出するセンスアンプS/Aは、電流検出型である。その一方の入力ノードINには、複数のビット線の一つが選択されて接続される。他方の入力ノードINBには参照セルRCが接続される。即ちセンスアンプSAは、選択されたビット線の選択セル電流と参照セルRCの参照電流とを比較して、セルデータを判定することになる。
参照セルRCは、基本的にメモリセルアレイMAと同様のセル構成を用い、その可変抵抗素子VRを高抵抗状態とし、かつそれらを複数個並列接続することにより、参照ビット線RBLに所定の参照電流が流れるようにする。例えば、図2の例では、4つのメモリセルを並列接続して、高抵抗状態のセル電流と低抵抗状態のセル電流とを、この参照セルRCの参照電流との比較で検出する。
この実施の形態では、上述の参照セルRCを、トリミング可能なミニセルアレイとして構成する。この点を次に説明する。
図3は、トリミング可能な一つの参照セルRCの構成を示している。ここで参照セルRCは、データ記憶を行うメモリセルアレイが三次元構造の場合に、それと同様の三次元構造として構成される例を示している。この参照セルRCがデータ記憶用のメモリセルアレイと異なる点は、すべてのセルを抵抗値が最も高い状態に設定しておくこと、及びワード線WLやビット線BLを複数本ずつ共有すること、である。
具体的にここでは、同じ層内で2本ずつのワード線WLが共通接続され、これらがスイッチSW1を介して一つの参照ワード線RWLに接続される。ビット線BLは同様に同じ層内で複数本ずつ共通接続され、更にこれらが層間で共通接続されて、スイッチSW2を介して一つの参照ビット線RBLに接続されるようになっている。
トリミングは、ビット線側では一つのスイッチSW2がオンの状態、即ち一つのビット線群のみが参照ビット線RBLに接続された状態で、ワード線側のスイッチSW1を順次オンするスキャンを伴って行われる。即ち、参照セル抵抗値がモニターセルのそれより小さくなるまで、スキャンAによりワード線の並列接続本数(従って並列接続セル数)を順次増加させる。更に別の層のワード線群に移るスキャンBを組み合わせることにより、ワード線の並列接続本数を増やすことができる。
即ちモニターセルのセル電流が大きい場合には、次のスイッチSW1をオンにするスキャンを行い、参照セル電流がモニターセルのセル電流より大きくなったことを検出したセンスサイクルでそれまでのスイッチSW1のオンオフ状態を固定する。これにより、参照セルの参照電流値、即ち境界抵抗値が決まる。
モニターセルは、予め高抵抗状態に書かれていて、セル抵抗値と寄生抵抗の和をセンスアンプが見るもっとも高い抵抗状態として、トリミングを行うことになる。寄生抵抗が大きく、その寄生抵抗を含めた高抵抗状態はきわめて高い抵抗値であるとすると、微小電流検出を行うセンスアンプには不感帯があることをも考慮して、上述のようなトリミングスキャンを行うことにより、確実に参照電流値がモニターセルのセル電流より小さい状態を設定することができる。
ビット線側にも、参照ビット線RBLにつながるビット線群を増やすためのスイッチSW2があるが、これはトリミングスキャンには利用しない。スイッチSW2は、その選択により多値データ読み出しの場合の複数の参照電流値設定が可能となっている。即ち、トリミングで設定された参照抵抗値を例えばR3として、多値データ読み出しではこれより小さい参照抵抗値R2,R1(R1<R2<R3)を用いることが必要になる。
セルデータ読み出し時は、選択ワード線に読み出し電圧を与えると同時に、対応する参照セルアレイブロックの参照ワード線RWLに同じ読み出し電圧を与え、選択ビット線と参照ビット線RBLとのセル電流比較を行い、データをセンスする。多値レベルの読み出しでは、スイッチSW2を選択して参照ビット線RBLにつながるビット線群を増やすことで参照電流値を切り換えて、多値レベルの判定を行う。
図4は、参照セルRCの詳細な構成例を示している。図4(a)はここで用いているメモリセルの簡略記号であり、図4(b)は、7層の積層セルの一列を示し、図4(c)は三次元的積層構造を示している。
メモリセルは、積層方向にダイオード極性を順次逆にして7層が積層され、上下に隣接する層のセルはワード線とビット線を共有する。従って、図4(b)の範囲で、4ビット線BL0−BL3、4ワード線WL0−WL3であり、積層方向で見ると4ワード線WL0−WL3は独立に引き出され、ビット線BL0−BL3は共通接続されて、参照信号線Ref(即ち参照ビット線RBL)となる。
層間でワード線を連結する選択移動がトリミングスキャンBに相当する。層内で見ると、図4(c)に示すように、ワード線は複数本ずつが共通化される。図の例では隣り合う2本ずつが共通化されている。
ワード線共通化の本数は参照セルの構成で決まり、トリミングの精度を決める。共通化本数を多くすれば参照セル電流値の変化量が大きくなりトリミングのスキャン回数は減るがトリミング精度は悪くなる。一方共通化本数を少なくすれば参照セル電流値の変化量は小さくなりトリミングの精度は増すがスキャン回数は増える。従って状況に合わせて最適な共通化本数を設定する。
図5は、参照セルRCのトリミング時のワード線スキャンを行うワード線デコーダ50を示している。ここでは、複数本ずつ束ねられたワード線群を、ワード線層数が4の場合について、第1層目のワード線群WL00〜WL30、第2層目のワード線群WL01〜WL31、第3層目のワード線群WL02〜WL32、第4層目のワード線群WL04〜WL34として示している。
一つのワード線群WLxyのyが層を表し、xが層内の位置を表しているので、トリミングスキャンAはxのスキャン、トリミングスキャンBはyのスキャンに対応する。
これらのワード線群に、最終的な一つの参照ワード線RWLから順次読み出し電圧Vreadを供給するための、図3のスイッチSW1に対応するPチャネルMOSトランジスタのアレイ51,52,53,54が、各層ワード線群に対して設けられている。各Pチャネルトランジスタの一端はそれぞれ対応するワード線群に接続され、他端は共通に参照ワード線RWLに接続されている。
これらのトランジスタアレイのゲートに、選択信号を順次に与える。ここで選択信号をn=0〜15で示しており、この選択信号番号順にレベルが“H”から“L”になる。即ち、選択信号の“L”になる順番0→1→2→3,4→5→6→7,8→9→10→11,12→13→14→15は、先に説明したトリミングスキャンAに相当する。また、3→4,7→8,11→12のレベル遷移がトリミングスキャンBに相当する。
Pチャネルトランジスタがオンしない場合、対応するワード線群を非選択状態Vssに設定するために、Pチャネルトランジスタと対をなして、同じ選択信号が入るNチャネルMOSトランジスタが付加されている。図5では便宜上、ワード線群WL00についてのみ、Nチャネルトランジスタを示したが、すべてのワード線群に同様にNチャネルMOSトランジスタが設けられる。
図6は、選択信号nの発生回路を示している。この信号発生回路は、状態保持回路を構成するフューズラッチ61と、このフューズラッチ61の状態に応じて制御信号/test_nを転送するためのゲート部62とからなる。この信号発生回路が選択信号nの数だけ、即ち図5の例では16個併置され、これらに制御信号/test_nが並列に入る。
制御信号/test_nはメモリチップ製造後のダイソート時にテスタによってチップ外部で発生した信号からチップ内部の信号に変換したものを用いても良いし、チップ内部にカウンタを設けて自動発生しても良い。
いずれにしても順次発生された制御信号/test_nをPチャネルトランジスタアレイの選択信号nとして供給する。トリミングがOKとなる信号nまでのすべての信号をフューズラッチ61によって“L”に固定する。
即ちフューズラッチ61は、Pチャネルトランジスタとこれに直列接続されたフューズとからなり、フューズが切断されない間は、“L”を出力して、ゲート部62のNANDゲートを活性に保つ。この状態では制御信号/test_nはそのまま選択信号nとして出力される。フューズがカットされると、ゲート部62は非活性になり、以後選択信号nは“L”固定になる。
図の例では状態を固定するためにフューズを用いているが、他の方法も可能である。例えばセルアレイの抵抗変化メモリセルと同様の不揮発性メモリを利用してフューズラッチに代わる働きをさせることも可能である。要は一度設定した状態を半永久的に記憶できる機能を有する素子を用いることが出来る。
この様に設定した選択信号nを用いることにより、トリミング対象となったセル領域に対してトリミングされた状態の参照セルを常に使用することが可能となる。
図7は、この実施の形態による三次元ReRAMの構成を平面的に示している。ここでは、二つのセルアレイ11a,11bと、これらの間に配置されてこれらに用いられる参照セルアレイ13とが示されている。これらはいずれも三次元(3D)セルアレイとして構成されている。実際にはこれら二つのセルアレイ11a,11bと参照セルアレイ13を単位バンクとして、更に複数バンクがレイアウトされる。
セルアレイ11a,11aは4つずつの分割領域MAi(MA1〜MA4,MA1’〜MA4’)に分けられていて、それぞれの領域に対応して参照セルアレイ13には8つの参照セルRCi(RC1〜RC4,RC1’〜RC4’)が用意されている。
セルアレイ11a,11bの各分割領域MAiには、参照セルアレイ13の各参照セルRCiのトリミングの際に利用されるモニターセル12が予め設定されている。即ち8個の参照セルRCiにそれぞれ対応して8個のモニターセル12が用意される。モニターセルは所定の抵抗値(例えば高抵抗状態)に書かれるものとし、このセル状態を参照セルの状態とセンスアンプで比較することにより、参照セルのトリミングを行う。
参照セルアレイ13の各参照セルRCiとセルアレイ11a,11bの各分割領域MAiとの位置関係は、トリミングによりその影響が吸収補正されるので基本的には問題とはならない。しかし、トリミングの容易さや配線領域の経済性の問題から、できるだけこれらが対称的な位置関係にあるようにすることが好ましい。図の例はこの点を考慮してセルアレイ11a,11bと参照セルアレイ13の配置と分割を行っている。
ここでは3Dセルアレイを平面的に示しているが、セルアレイの積層方向でのばらつき等に対応するためには、3Dセルアレイを更に上層と下層に分けて、これらに別々の代表セルを設けることはより好ましい。この場合には参照セルアレイ13は、図の倍の参照セルアレイブロックに分割されることになる。
セルアレイ11a,11bの下地半導体基板には、それぞれに対応して読み出し/書き込み回路14a,14bが形成される。読み出し/書き込み回路14a,14bは、それぞれ中央に配置されたデータバス16a,16bと、これを挟んで配置されたセンスアンプアレイ(15a1,15a2),(15b1,15b2)を有する。
センスアンプアレイ(15a1,15a2),(15b1,15b2)へのセルアレイ11a,11bからのビット線接続は、図では省略しているが、ビア配線によりマルチプレクサ(17a1,17a2),(17b1,17b2)を介して行われる。
参照セルアレイ13の参照ビット線も同様にビア配線により基板に接続され、その後図の配線18を介して、対応するマルチプレクサ部(17a1,17a2),(17b1,17b2)に振り分けられて、センスアンプアレイ(15a1,15a2),(15b1,15b2)の対応するセンスアンプに接続されることになる。
この配線接続は、各セルアレイ領域MA1−MA4,MA1’−MA4’に対応するセンスアンプで並列的に行われる。
次に、図8を参照して、多値データ記憶を行う場合の参照セルRCiの多値レベル設定法を説明する。図8は、参照セルRCiを、トリミング終了時の並列接続されたすべての活性ワード線群をトリマーワード線TWLとして、単層で示している。このトリマーワード線TWLが参照ワード線RWLとなる。ビット線側は、スイッチSW2の選択信号level_0,level_1,…,level_mを活性にすることで選択されるビット線数がそれぞれN0,N1,…,Nmであることを示している。選択されたビット線群が共通接続されるのが、参照ビット線RBLである。
トリミング時は選択信号level_0を“H”にして、一つのスイッチSW2をオンして、ビット線がN0本共通接続された部分を用いる。代表セル及び参照セルの抵抗状態は最高抵抗値であるので、トリミングが終了すると寄生抵抗込みでN0本のビット線共有部分のセルの並列抵抗値が代表セルのそれより低い状態になる。電流で見ると参照電流値は代表セル電流よりはわずかに小さい。この様にして決まった参照セルの抵抗値(境界抵抗値)をR0、電流(参照電流値)をI0とする。
なお、トリミングに利用するN0本のビット線群部分は、その後の読み出し時も常に利用するので、この部分のスイッチSW2は省くことができる。
次に、トリミングされた参照セルを用いて多値データレベルを読む場合の複数の参照レベル設定法は、次のようになる。多値データは、一つのメモリセルが3以上の抵抗値のいずれか一つを記憶する形になる。例えば4値データ記憶の場合であれば、3つの境界抵抗値R0,R1,R2(R0>R1>R2)により区分される4つの抵抗値状態のひとつを記憶する。
多値レベルの境界抵抗値として、R0より順に低い値R1,R2…を設定するには、スイッチSW2を順にオンにしていく。この設定はほぼ同一抵抗値となっている参照セル中のセルの抵抗値を、同時選択セル数に置き換えて設定することになる。
即ち、R0の次に低い境界抵抗値R1(<R0)を設定するには、選択信号level_1を“H”にして、同時選択される共通ビット線の本数をN1+N0とする。境界抵抗値R1に対応した電流をI1とすると、N1/N0=(I1−I0)/I0なる関係があるので、セル抵抗設定のばらつきを十分カバーできるように抵抗R1すなわち電流値I1を決めて数N1を決める。このとき参照セル中のセル抵抗のばらつきも考慮して十分マージンを持たせる。
以下同様にして、更に低い境界抵抗値Rmを選択する選択信号level_mに対応するビット線群の数Nmについてもより高抵抗側の隣の区分との電流差(Im−Im-1)とI0との比はNmとN0の比に等しく、Nmの選択によって多値レベルの区分を設計できる。
図9と図10は、境界抵抗値の二つの設計方法の例を示す。
図9は、境界抵抗値変化を一定とする多値レベル設定の場合である。即ち多値レベルの抵抗値区分での抵抗変化の差を、R1−R0=R2−R1=…=Rm−Rm-1のように一定とする。このときセル電流は多値レベルの抵抗が下がるにつれ逆比例して増加するのでビット線群の数の関係はN1<N2<…<Nmとなる。
図10は、参照電流値変化を一定とする多値レベル設定の場合である。即ち多値レベルの抵抗値区分での電流変化の差を、I1−I0=I2−I1=…=Im−Im-1のように一定とする。電流の増分は一定であるので、ビット線群の数の関係は、N1=N2=…=Nmとなり、このときセル抵抗は多値レベルの抵抗が下がるにつれ増加する電流に逆比例するので抵抗が下がるにつれて減少量が小さくなる。
この発明の技術的特徴を列記すれば、次の通りである。
(1)電圧、電流または熱によって抵抗状態を変える記録層を用いる抵抗変化メモリにおいて、データ記憶を行うメモリセルアレイと同じセル構造で少ないセル数を有する参照セルを備える。参照セルは、セルの並列接続数を選択することにより参照電流値がトリミング可能に構成される。
(2)具体的に参照セルは、2以上のワード線を共通化した複数のワード線群と、2以上のビット線を共通化した複数のビット線群と、同時選択するワード線群の数を順次変えて選択するスイッチ群とを有し、そのワード線選択数即ちセルの並列接続数の選択により、メモリセルアレイのデータを読み出すための参照電流値がトリミングされる。
トリミングされた参照電流値を固定的に使用するために、前記スイッチ群のオンオフ状態を固定するための状態保持回路を備える。
(3)多値データ記憶を行う場合は、参照セルは、ワード線を複数本ずつ共通化した複数のワード線群と、ビット線を複数本ずつ共通化した複数のビット線群と、複数のワード線群を参照ワード線に接続するための第1のスイッチ群と、複数のビット線群を参照ビット線に接続するための第2のスイッチ群と、第1のスイッチ群のオンオフ状態を固定するための状態保持回路とを備える。
参照電流値のトリミングは、複数のビット線群の一つを用いて第1のスイッチ群により前記ワード線群の選択数を順次増やし、各選択数でのセル電流を前記メモリセルアレイの代表セルのそれと比較することで行われて、トリミングされた参照電流値は、第1のスイッチ群の状態を状態保持回路で固定することにより保持される。
多値データ読み出しに必要な複数の参照電流値は、第2のスイッチ群を順にオンすることにより設定される。
11a,11b…メモリセルアレイ、12…代表セル、13…参照セルアレイ、RCi(RC1−RC4,RC1’−RC4’)…参照セル、MAi(MA1−MA4,MA1’−MA4’)…分割領域、14a,14b…読み出し/書き込み回路、15a1,15a2,15b1,15b2…センスアンプアレイ、16a,16b…データバス、17a1,17a2,17b1,17b2…マルチプレクサ、50…ワード線デコーダ、51〜54…トランジスタアレイ、61…フューズラッチ(状態保持回路)、62…ゲート回路、SW1…第1のスイッチ、SW2…第2のスイッチ、RWL…参照ワード線、RBL…参照ビット線。
Claims (6)
- 書き換え可能な抵抗値を記憶する可変抵抗素子を用いたメモリセルが配列されたメモリセルアレイと、
前記メモリセルアレイの高抵抗状態にあるメモリセルと同じメモリセルが配列され、その並列接続数の選択により前記メモリセルアレイのデータを読み出すための参照電流値がトリミングされる参照セルと、
前記メモリセルアレイの選択メモリセルのセル電流と前記参照セルの参照電流値とを比較するセンスアンプと、
を有することを特徴とする抵抗変化メモリ装置。 - 前記参照セルは、前記メモリセルアレイの複数の領域に対応して複数個配置される
ことを特徴とする請求項1記載の抵抗変化メモリ装置。 - 前記複数の参照セルは、それぞれ対応する前記メモリセルアレイの複数の領域内に定められたモニターセルとのセル電流比較を行うトリミングを行って、前記各領域対応の参照セルを構成する並列接続数が設定される
ことを特徴とする請求項2記載の抵抗変化メモリ装置。 - 前記参照セルは、
配列されたメモリセルの一端が接続されるワード線を複数本ずつ共通化した複数のワード線群と、
前記メモリセルの他端が接続されるビット線を複数本共通化して参照ビット線に接続されるビット線群と、
前記ワード線群を参照ワード線に接続するためのスイッチ群と、
前記スイッチ群のオンオフ状態を固定するための状態保持回路とを有し、
前記参照電流値のトリミングは、前記スイッチ群により前記ワード線群の選択数を順次増やして、各選択数でのセル電流を前記メモリセルアレイのモニターセルのセル電流と比較することにより行われて、トリミングされた前記参照電流値は、前記スイッチ群のオン状態を前記状態保持回路で固定することにより保持される
ことを特徴とする請求項1記載の抵抗変化メモリ装置。 - 前記メモリセルアレイは、一つのメモリセルが3以上の抵抗値状態の一つを記憶する多値データ記憶を行うものであり、
前記参照セルは、
配列されたメモリセルの一端が接続されるワード線を複数本ずつ共通化した複数のワード線群と、
前記メモリセルの他端が接続されるビット線を複数本ずつ共通化して複数のビット線群と、
前記複数のワード線群を参照ワード線に接続するための第1のスイッチ群と、
前記複数のビット線群を参照ビット線に接続するための第2のスイッチ群と、
前記第1のスイッチ群のオンオフ状態を固定するための状態保持回路とを有し、
前記参照電流値のトリミングは、前記複数のビット線群の一つを用いて前記第1のスイッチ群により前記ワード線群の選択数を順次増やし、各選択数でのセル電流を前記メモリセルアレイのモニターセルのそれと比較することで行われて、トリミングされた前記参照電流値は、前記第1のスイッチ群のオン状態を前記状態保持回路で固定することにより保持され、
多値データ読み出しに必要な複数の参照電流値は、前記第2のスイッチ群を順にオンすることにより設定される
ことを特徴とする請求項1記載の抵抗変化メモリ装置。 - 前記メモリセルアレイ及び参照セルは共に三次元的にメモリセルを配列して構成されている
ことを特徴とする請求項1記載の抵抗変化メモリ装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007292040A JP2009117006A (ja) | 2007-11-09 | 2007-11-09 | 抵抗変化メモリ装置 |
US12/266,879 US8031508B2 (en) | 2007-11-09 | 2008-11-07 | Resistance change memory device |
US13/237,500 US8400816B2 (en) | 2007-11-09 | 2011-09-20 | Resistance change memory device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007292040A JP2009117006A (ja) | 2007-11-09 | 2007-11-09 | 抵抗変化メモリ装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009117006A true JP2009117006A (ja) | 2009-05-28 |
Family
ID=40623562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007292040A Withdrawn JP2009117006A (ja) | 2007-11-09 | 2007-11-09 | 抵抗変化メモリ装置 |
Country Status (2)
Country | Link |
---|---|
US (2) | US8031508B2 (ja) |
JP (1) | JP2009117006A (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012128892A (ja) * | 2010-12-13 | 2012-07-05 | Sony Corp | 記憶装置 |
WO2012176452A1 (ja) * | 2011-06-24 | 2012-12-27 | パナソニック株式会社 | 半導体記憶装置 |
US8357992B2 (en) | 2009-10-14 | 2013-01-22 | Samsung Electronics Co., Ltd. | Non-volatile memory device and method of manufacturing the same |
JP2013045491A (ja) * | 2011-08-25 | 2013-03-04 | Sony Corp | 抵抗変化型メモリデバイスおよびその駆動方法 |
US8787070B2 (en) | 2011-04-13 | 2014-07-22 | Panasonic Corporation | Reference cell circuit and variable resistance nonvolatile memory device including the same |
US8902628B2 (en) | 2011-06-09 | 2014-12-02 | Samsung Electronics Co., Ltd. | Resistive memory device and sensing margin trimming method thereof |
JPWO2014129172A1 (ja) * | 2013-02-19 | 2017-02-02 | パナソニックIpマネジメント株式会社 | 不揮発性半導体記憶装置 |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130082232A1 (en) | 2011-09-30 | 2013-04-04 | Unity Semiconductor Corporation | Multi Layered Conductive Metal Oxide Structures And Methods For Facilitating Enhanced Performance Characteristics Of Two Terminal Memory Cells |
US8565003B2 (en) | 2011-06-28 | 2013-10-22 | Unity Semiconductor Corporation | Multilayer cross-point memory array having reduced disturb susceptibility |
JP5060191B2 (ja) | 2007-07-18 | 2012-10-31 | 株式会社東芝 | 抵抗変化メモリ装置のデータ書き込み方法 |
JP2010055719A (ja) * | 2008-08-29 | 2010-03-11 | Toshiba Corp | 抵抗変化メモリ装置 |
JP5127665B2 (ja) | 2008-10-23 | 2013-01-23 | 株式会社東芝 | 半導体記憶装置 |
JP4856202B2 (ja) * | 2009-03-12 | 2012-01-18 | 株式会社東芝 | 半導体記憶装置 |
JP4806046B2 (ja) | 2009-03-16 | 2011-11-02 | 株式会社東芝 | 半導体記憶装置 |
US8351236B2 (en) | 2009-04-08 | 2013-01-08 | Sandisk 3D Llc | Three-dimensional array of re-programmable non-volatile memory elements having vertical bit lines and a single-sided word line architecture |
JP5214566B2 (ja) | 2009-09-02 | 2013-06-19 | 株式会社東芝 | 抵抗変化メモリ装置 |
WO2011056281A1 (en) * | 2009-11-06 | 2011-05-12 | Rambus Inc. | Three-dimensional memory array stacking structure |
JP5300709B2 (ja) * | 2009-12-14 | 2013-09-25 | 株式会社東芝 | 半導体記憶装置 |
US20110297912A1 (en) | 2010-06-08 | 2011-12-08 | George Samachisa | Non-Volatile Memory Having 3d Array of Read/Write Elements with Vertical Bit Lines and Laterally Aligned Active Elements and Methods Thereof |
US8526237B2 (en) | 2010-06-08 | 2013-09-03 | Sandisk 3D Llc | Non-volatile memory having 3D array of read/write elements and read/write circuits and method thereof |
KR101772117B1 (ko) * | 2010-09-03 | 2017-08-28 | 삼성전자 주식회사 | 저항 스위치 기반의 로직 회로를 갖는 적층 구조의 반도체 메모리 장치 및 그 제조방법 |
JP5209013B2 (ja) * | 2010-09-22 | 2013-06-12 | 株式会社東芝 | 不揮発性半導体記憶装置 |
US9218867B2 (en) | 2013-08-23 | 2015-12-22 | Kabushiki Kaisha Toshiba | Memory device and memory system with sensor |
US20150055405A1 (en) | 2013-08-23 | 2015-02-26 | Kabushiki Kaisha Toshiba | Memory device and memory system with sensor |
US9123392B1 (en) | 2014-03-28 | 2015-09-01 | Sandisk 3D Llc | Non-volatile 3D memory with cell-selectable word line decoding |
KR102116879B1 (ko) * | 2014-05-19 | 2020-06-01 | 에스케이하이닉스 주식회사 | 전자 장치 |
JP6589873B2 (ja) * | 2014-09-18 | 2019-10-16 | 日本電気株式会社 | クロスバースイッチ、これを用いた論理集積回路および半導体装置 |
US11170863B2 (en) * | 2016-04-14 | 2021-11-09 | Southern University Of Science And Technology | Multi-bit-per-cell three-dimensional resistive random-access memory (3D-RRAM) |
US10430534B2 (en) * | 2016-11-30 | 2019-10-01 | Numem Inc. | Resistance-based memory compiler |
JP2018147532A (ja) * | 2017-03-03 | 2018-09-20 | ソニーセミコンダクタソリューションズ株式会社 | 半導体記憶装置及び情報処理装置 |
US10910061B2 (en) | 2018-03-14 | 2021-02-02 | Silicon Storage Technology, Inc. | Method and apparatus for programming analog neural memory in a deep learning artificial neural network |
US10833059B2 (en) * | 2018-12-07 | 2020-11-10 | Micron Technology, Inc. | Integrated assemblies comprising vertically-stacked decks of memory arrays |
KR102651232B1 (ko) | 2019-07-18 | 2024-03-25 | 삼성전자주식회사 | 자기접합 메모리 장치 및 자기접합 메모리 장치의 데이터 리드 방법 |
KR102651229B1 (ko) | 2019-07-22 | 2024-03-25 | 삼성전자주식회사 | 자기접합 메모리 장치 및 자기접합 메모리 장치의 데이터 라이트 방법 |
CN113903381A (zh) * | 2020-06-22 | 2022-01-07 | 华邦电子股份有限公司 | 电阻式内存装置以及其可靠度提升方法 |
JP2022142319A (ja) * | 2021-03-16 | 2022-09-30 | キオクシア株式会社 | 記憶装置 |
US20230009065A1 (en) * | 2021-07-06 | 2023-01-12 | Macronix International Co., Ltd. | High density memory with reference cell and corresponding operations |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3454520B2 (ja) * | 1990-11-30 | 2003-10-06 | インテル・コーポレーション | フラッシュ記憶装置の書込み状態を確認する回路及びその方法 |
US5444656A (en) * | 1994-06-02 | 1995-08-22 | Intel Corporation | Apparatus for fast internal reference cell trimming |
EP0805454A1 (en) * | 1996-04-30 | 1997-11-05 | STMicroelectronics S.r.l. | Sensing circuit for reading and verifying the content of a memory cell |
JP4434527B2 (ja) * | 2001-08-08 | 2010-03-17 | 株式会社東芝 | 半導体記憶装置 |
JP4218527B2 (ja) * | 2002-02-01 | 2009-02-04 | 株式会社日立製作所 | 記憶装置 |
JP2004022073A (ja) * | 2002-06-17 | 2004-01-22 | Elpida Memory Inc | 半導体記憶装置 |
US20060092689A1 (en) * | 2004-11-04 | 2006-05-04 | Daniel Braun | Reference current source for current sense amplifier and programmable resistor configured with magnetic tunnel junction cells |
JP4890016B2 (ja) * | 2005-03-16 | 2012-03-07 | ルネサスエレクトロニクス株式会社 | 不揮発性半導体記憶装置 |
-
2007
- 2007-11-09 JP JP2007292040A patent/JP2009117006A/ja not_active Withdrawn
-
2008
- 2008-11-07 US US12/266,879 patent/US8031508B2/en active Active
-
2011
- 2011-09-20 US US13/237,500 patent/US8400816B2/en active Active
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8357992B2 (en) | 2009-10-14 | 2013-01-22 | Samsung Electronics Co., Ltd. | Non-volatile memory device and method of manufacturing the same |
JP2012128892A (ja) * | 2010-12-13 | 2012-07-05 | Sony Corp | 記憶装置 |
CN102568565A (zh) * | 2010-12-13 | 2012-07-11 | 索尼公司 | 存储装置 |
US8787070B2 (en) | 2011-04-13 | 2014-07-22 | Panasonic Corporation | Reference cell circuit and variable resistance nonvolatile memory device including the same |
US8902628B2 (en) | 2011-06-09 | 2014-12-02 | Samsung Electronics Co., Ltd. | Resistive memory device and sensing margin trimming method thereof |
WO2012176452A1 (ja) * | 2011-06-24 | 2012-12-27 | パナソニック株式会社 | 半導体記憶装置 |
JP2013045491A (ja) * | 2011-08-25 | 2013-03-04 | Sony Corp | 抵抗変化型メモリデバイスおよびその駆動方法 |
JPWO2014129172A1 (ja) * | 2013-02-19 | 2017-02-02 | パナソニックIpマネジメント株式会社 | 不揮発性半導体記憶装置 |
Also Published As
Publication number | Publication date |
---|---|
US20090122598A1 (en) | 2009-05-14 |
US8031508B2 (en) | 2011-10-04 |
US8400816B2 (en) | 2013-03-19 |
US20120008372A1 (en) | 2012-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009117006A (ja) | 抵抗変化メモリ装置 | |
US10971224B2 (en) | High voltage switching circuitry for a cross-point array | |
JP4153901B2 (ja) | 半導体記憶装置 | |
JP4295680B2 (ja) | 半導体記憶装置 | |
US9312002B2 (en) | Methods for programming ReRAM devices | |
JP2009199695A (ja) | 抵抗変化メモリ装置 | |
US9153625B2 (en) | Non-volatile semiconductor memory device | |
US20130294153A1 (en) | Apparatuses and methods including supply current in memory | |
KR20130092860A (ko) | 저항성 메모리 장치 | |
US20150255154A1 (en) | Non-volatile memory including reference signal path | |
US20160336063A1 (en) | Resistive ratio-based memory cell | |
US20130135919A1 (en) | Semiconductor storage device | |
US10199099B2 (en) | Semiconductor memory device | |
US8576605B2 (en) | Nonvolatile semiconductor memory device | |
US10832743B2 (en) | Semiconductor storage device having a driver that applies voltage to memory cells based on location of memory cells and method for controlling the same | |
CN110033801B (zh) | 一种用于磁性随机存储器的冗余参照布局电路 | |
US7038944B2 (en) | Non-volatile memory device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20110201 |