JP2009094465A - 放射線撮像素子 - Google Patents

放射線撮像素子 Download PDF

Info

Publication number
JP2009094465A
JP2009094465A JP2008156640A JP2008156640A JP2009094465A JP 2009094465 A JP2009094465 A JP 2009094465A JP 2008156640 A JP2008156640 A JP 2008156640A JP 2008156640 A JP2008156640 A JP 2008156640A JP 2009094465 A JP2009094465 A JP 2009094465A
Authority
JP
Japan
Prior art keywords
active layer
photoelectric conversion
radiation imaging
layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008156640A
Other languages
English (en)
Other versions
JP5489423B2 (ja
Inventor
Hiroyuki Yaegashi
裕之 八重樫
Masaya Nakayama
昌哉 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008156640A priority Critical patent/JP5489423B2/ja
Priority to US12/204,582 priority patent/US8008627B2/en
Publication of JP2009094465A publication Critical patent/JP2009094465A/ja
Application granted granted Critical
Publication of JP5489423B2 publication Critical patent/JP5489423B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

【課題】ノイズを効果的に抑制するとともに、高い画質を得ることができる放射線撮像素子を提供する。
【解決手段】被写体を透過した放射線を吸収することにより発光する蛍光体膜と、上部電極、下部電極、及び該上下の電極間に配置された光電変換膜を有し、該光電変換膜が、光電変換部と、非晶質酸化物により形成された活性層を有する電界効果型薄膜トランジスタを有し、前記電界効果型トランジスタが、少なくともゲート電極、ゲート絶縁膜、活性層、ソース電極及びドレイン電極を有し、前記活性層と前記ソース電極及び前記ドレイン電極の少なくとも一方との間に抵抗層が電気的に接続して配されていることを特徴とする放射線撮像素子。
【選択図】なし

Description

本発明は、放射線撮像素子、具体的には、被写体を透過した放射線量に応じて撮像信号を出力する放射線撮像素子に関する。
医療分野では、X線等の放射線を人体に照射し、人体を透過した放射線の強度を検出することで人体内部の撮像を行う放射線撮像装置が用いられている。このような放射線撮像装置には、大きく分けて直接型撮像装置と間接型撮像装置が存在する。直接型撮像装置は、人体を透過した放射線を電気信号に直接変換して外部に取り出す方式であり、間接型撮像装置は、人体を透過した放射線を一旦蛍光体に入射させて可視光に変換し、この可視光を電気信号に変換して外部に取り出す方式である。
間接型撮像装置に用いる放射線撮像素子として、基板上に、光電変換素子、コンデンサ及びTFT(スイッチング素子)を同じ層構成で設けたX線撮像素子が開示されている(例えば、特許文献1参照)。この放射線撮像素子は、1画素毎に、一対の上下の電極と、この電極間に挟まれ、アモルファスシリコン等の無機光電変換材料で構成された光電変換膜を含む光電変換部と、光電変換膜で発生した電荷を蓄積するためのコンデンサと、コンデンサに蓄積された電荷を電圧信号に変換して出力するTFTスイッチとが基板上で並んで形成されており、さらに、これらの上に保護膜(SiN膜)を介してヨウ化セシウム(CsI)からなる蛍光体が設けられた構成となっている。
一方、素子のより一層の薄型化、軽量化、耐破損性の向上を求めて、ガラス基板の替わりに軽量で可撓性のある樹脂基板を用いる試みも行われている。
しかし、上述のシリコン薄膜を用いるトランジスタの製造は、比較的高温の熱工程を要し、一般的に耐熱性の低い樹脂基板上に直接形成することは困難である。
そこで、低温での成膜が可能なアモルファス酸化物、例えば、In−Ga−Zn−O系アモルファス酸化物を半導体薄膜を用いるTFTの開発が活発に行われている(例えば、特許文献2、非特許文献1参照)。
アモルファス酸化物半導体を用いたTFTは、室温成膜が可能であり、フイルム上に作製が可能であるので、フイルム(フレキシブル)TFTの活性層の材料として最近注目を浴びている。特に、東工大・細野らにより、a−IGZOを用いたTFTは、PEN基板上でも電界効果移動度が約10cm/Vsとガラス上のa−Si系TFTよりも高移動度が報告されて、特にフイルムTFTとして注目されるようになった(例えば、非特許文献2参照)。
このような観点から、可撓性基板上にアモルファス酸化物を用いたTFTを受光部とするX線センサも提案されている(例えば、特許文献3参照)。
しかし、このa−IGZOを用いたTFTを例えば表示装置の駆動回路として用いる場合、1cm/Vs〜10cm/Vsという移動度では、特性は不十分であり、またOFF電流が高く、ON/OFF比が低いという問題がある。特に有機EL素子を用いた表示装置に用いるためには、さらなる移動度の向上、ON/OFF比の向上が要求される。
特開平8−116044号公報 特開2006−165529号公報 特開2006−165530号公報 IDW/AD’05、845頁−846頁(6 December、2005) NATURE、Vol.432(25 November、2004)、488頁−492頁
放射線撮像素子の光電変換膜をシリコン等の無機光電変換材料で形成すると、ブロードな吸収スペクトルを有するため、蛍光体により発せられた光以外に、蛍光体を透過したX線の一部も吸収してしまう。その結果、吸収されたX線に応じた信号がノイズとなり、画質が劣化するという問題点がある。
また、光電変換部の層構成とスイッチング素子の層構成を共通化して光電変換部とスイッチング素子を並列させた場合、光電変換部と同様にスイッチング素子にもX線に応じた信号がノイズとなってしまう。
また、一般に放射線撮像素子は、その受光面積(光電変換膜の占める面積)を例えば人体の胸部の大きさと同等にする必要があり、受光面積の大面積化が求められる。しかし、前記の放射線撮像素子のように、光電変換部、コンデンサ、及びTFTスイッチを基板上で並列するように形成した場合、各画素部において、スイッチング素子及びコンデンサの形成領域が大きくなり、1画素の面積が大きい反面、光電変換部に相当する受光面積が小さくなり、全体として高画質が得られないという問題もある。また、光電変換部に対して、コンデンサ及びTFTスイッチを基板上で縦列に配列すると、光電変換部に相当する受光面積を広く得ることができるが、コンデンサ及びTFTスイッチの総計面積を光電変換部と同等以下にコンパクトにしなければならず、TFTスイッチの出力が低下し、必要なスイッチング機能を果たせなくなる問題が生じる。
本発明は、上記事情に鑑みてなされたものであり、ノイズを効果的に抑制するとともに、高い画質を得ることができる放射線撮像素子を提供することを目的とする。
上記目的を達成するため、本発明では以下の放射線撮像素子が提供される。
<1> 被写体を透過した放射線を受光して前記放射線量に応じた撮像信号を出力する放射線撮像素子であって、
基板上方に形成された下部電極、前記下部電極上方に形成された光電変換膜、及び前記光電変換膜上方に形成された上部電極を含む光電変換部と、前記上部電極上に形成された蛍光体膜と、前記光電変換部に対応して前記基板に設けられ、前記光電変換膜で発生した電荷に応じた信号を出力するための電界効果型トランジスタとを含む画素部を複数備え、
前記電界効果型トランジスタが、少なくともゲート電極、ゲート絶縁膜、活性層、ソース電極及びドレイン電極を有し、前記活性層と前記ソース電極及び前記ドレイン電極の少なくとも一方との間に抵抗層が電気的に接続して配されていることを特徴とする放射線撮像素子である。
<2> 前記基板上に少なくとも前記抵抗層と前記活性層を層状に有し、前記活性層が前記ゲート絶縁膜と接し、前記抵抗層が前記ソース電極及び前記ドレイン電極の少なくとも一方と接することを特徴とする<1>に記載の放射線撮像素子である。
<3> 前記抵抗層の膜厚が前記活性層の膜厚より厚いことを特徴とする<2>に記載の放射線撮像素子である。
<4> 前記抵抗層と前記活性層の間の電気伝導度が連続的に変化していることを特徴とする<1>又は<2>に記載の放射線撮像素子である。
<5> 前記抵抗層および前記活性層が酸化物半導体を含有することを特徴とする<1>〜<4>のいずれかに記載の放射線撮像素子である。
<6> 前記酸化物半導体が非晶質酸化物半導体であることを特徴とする<5>に記載の放射線撮像素子である。
<7> 前記活性層の酸素濃度が前記抵抗層の酸素濃度より低いことを特徴とする<5>又は<6>に記載の放射線撮像素子である。
<8> 前記酸化物半導体がIn、GaおよびZnからなる群より選ばれる少なくとも1種若しくはこれらの複合酸化物を含むことを特徴とする<5>〜<7>のいずれかに記載の放射線撮像素子である。
<9> 前記酸化物半導体が前記InおよびZnを含有し、前記抵抗層のZnとInの組成比(Inに対するZnの比率Zn/Inで表す)が前記活性層の組成比Zn/Inより大きいことを特徴とする<8>に記載の放射線撮像素子である。
<10> 前記活性層の電気伝導度が10−4Scm−1以上10Scm−1未満であることを特徴とする<1>〜<9>のいずれかに記載の放射線撮像素子である。
<11> 前記活性層の電気伝導度が10−1Scm−1以上10Scm−1未満であることを特徴とする<10>に記載の放射線撮像素子である。
<12> 前記抵抗層の電気伝導度に対する前記活性層の電気伝導度の比率(活性層の電気伝導度/抵抗層の電気伝導度)が、10以上1010以下であることを特徴とする<1>〜<11>のいずれかに記載の放射線撮像素子である。
<13> 前記抵抗層の電気伝導度に対する前記活性層の電気伝導度の比率(活性層の電気伝導度/抵抗層の電気伝導度)が、10以上10以下であることを特徴とする<12>に記載の放射線撮像素子である。
<14> 前記基板が可撓性樹脂基板であることを特徴とする<1>〜<13>のいずれかに記載の放射線撮像素子である。
本発明によれば、ノイズを効果的に抑制するともに、高い画質を得ることができる放射線撮像素子を提供することができる。
以下、本発明の実施形態について図面を参照して説明する。
図1は、本発明の一実施形態である放射線撮像素子の3画素部分の構成を概略的に示す断面模式図である。この放射線撮像素子12は、半導体基板、石英基板、及びガラス基板等の基板1上に、信号出力部14、光電変換部13、及び蛍光体膜8が順次積層しており、信号出力部14、光電変換部13、及び蛍光体膜8により画素部が構成されている。画素部は、基板1上に複数配列されており、各画素部における信号出力部14と光電変換部13とが重なりを有するように構成されている。
<蛍光体膜>
蛍光体膜8は、光電変換部13上に透明絶縁膜7を介して形成されており、上方(基板1と反対側)から入射してくる放射線を光に変換して発光する蛍光体を成膜したものである。このような蛍光体膜8を設けることで、被写体を透過した放射線を吸収して発光することになる。
蛍光体膜8が発する光の波長域は、可視光域(波長360nm〜830nm)であることが好ましく、この放射線撮像素子12によってモノクロ撮像を可能とするためには、緑色の波長域を含んでいることがより好ましい。
蛍光体膜8に用いる蛍光体としては、具体的には、放射線としてX線を用いて撮像する場合、ヨウ化セシウム(CsI)を含むものが好ましく、X線照射時の発光スペクトルが420nm〜600nmにあるCsI(Ti)(チタンが添加されたヨウ化セシウム)を用いることが特に好ましい。尚、CsI(Ti)の可視光域における発光ピーク波長は565nmである。
また、蛍光体膜8の厚みは、エネルギーにもよるが、600μm以下である。
<光電変換部>
本発明に於ける光電変換部に用いられる光電変換材料としては、特に限定されるものではないが、例として有機光電変換材料を用いた場合について説明する。
光電変換部13は、上部電極6、下部電極2、及び該上下の電極間に配置された光電変換膜4を有し、光電変換膜4は、蛍光体膜8が発する光を吸収する有機光電変換材料により構成されている。
上部電極6は、蛍光体膜8により生じた光を光電変換膜4に入射させる必要があるため、少なくとも蛍光体膜8の発光波長に対して透明な導電性材料で構成することが好ましく、具体的には、可視光に対する透過率が高く、抵抗値が小さい透明導電性酸化物(TCO;Transparent Conducting Oxide)を用いることが好ましい。
なお、上部電極6としてAuなどの金属薄膜を用いることもできるが、透過率を90%以上得ようとすると抵抗値が増大し易いため、TCOの方が好ましい。例えば、ITO、IZO、AZO、FTO、SnO、TiO、又はZnO等を好ましく用いることができ、プロセス簡易性、低抵抗性、透明性の観点からはITOが最も好ましい。尚、上部電極6は、全画素部で共通の一枚構成としてもよいし、画素部毎に分割してあっても良い。
また、上部電極6の厚みは、例えば、30nm以上300nm以下とすることができる。
光電変換膜4は、有機光電変換材料を含み、蛍光体膜8から発せられた光を吸収し、吸収した光に応じた電荷を発生する。このように有機光電変換材料を含む光電変換膜4であれば、可視域にシャープな吸収スペクトルを持ち、蛍光体膜8による発光以外の電磁波が光電変換膜4に吸収されることがほとんどなく、X線等の放射線が光電変換膜4で吸収されることによって発生するノイズを効果的に抑制することができる。
光電変換膜4を構成する有機光電変換材料は、蛍光体膜8で発光した光を最も効率良く吸収するために、その吸収ピーク波長が、蛍光体膜8の発光ピーク波長と近いほど好ましい。有機光電変換材料の吸収ピーク波長と蛍光体膜8の発光ピーク波長とが一致することが理想的であるが、双方の差が小さければ蛍光体膜8から発された光を十分に吸収することが可能である。具体的には、有機光電変換材料の吸収ピーク波長と、蛍光体膜8の放射線に対する発光ピーク波長との差が、10nm以内であることが好ましく、5nm以内であることがより好ましい。
このような条件を満たすことが可能な有機光電変換材料としては、例えばキナクリドン系有機化合物及びフタロシアニン系有機化合物が挙げられる。例えばキナクリドンの可視域における吸収ピーク波長は560nmであるため、有機光電変換材料としてキナクリドンを用い、蛍光体膜8の材料としてCsI(Ti)を用いれば、上記ピーク波長の差を5nm以内にすることが可能となり、光電変換膜4で発生する電荷量をほぼ最大にすることができる。
ここで、本発明に係る放射線撮像素子に適用可能な光電変換膜4についてより具体的に説明する。
本発明に係る放射線撮像素子における電磁波吸収/光電変換部位は、1対の電極2,6と、該電極2,6間に挟まれた有機光電変換膜4を含む有機層により構成することができる。この有機層は、より具体的には、電磁波を吸収する部位、光電変換部位、電子輸送部位、正孔輸送部位、電子ブロッキング部位、正孔ブロッキング部位、結晶化防止部位、電極、及び層間接触改良部位等の積み重ねもしくは混合により形成することができる。
上記有機層は、有機p型化合物または有機n型化合物を含有することが好ましい。
有機p型半導体(化合物)は、主に正孔輸送性有機化合物に代表されるドナー性有機半導体(化合物)であり、電子を供与しやすい性質がある有機化合物をいう。さらに詳しくは2つの有機材料を接触させて用いたときにイオン化ポテンシャルの小さい方の有機化合物をいう。したがって、ドナー性有機化合物としては、電子供与性のある有機化合物であればいずれの有機化合物も使用可能である。例えば、トリアリールアミン化合物、ベンジジン化合物、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、トリフェニルメタン化合物、カルバゾール化合物、ポリシラン化合物、チオフェン化合物、フタロシアニン化合物、シアニン化合物、メロシアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物、縮合芳香族炭素環化合物(ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体)、含窒素ヘテロ環化合物を配位子として有する金属錯体等を用いることができる。なお、これらに限らず、n型(アクセプター性)化合物として用いた有機化合物よりもイオン化ポテンシャルの小さい有機化合物であればドナー性有機半導体として用いることができる。
有機n型半導体(化合物)は、主に電子輸送性有機化合物に代表されるアクセプター性有機半導体(化合物)であり、電子を受容しやすい性質がある有機化合物をいう。さらに詳しくは2つの有機化合物を接触させて用いたときに電子親和力の大きい方の有機化合物をいう。したがって、アクセプター性有機化合物は、電子受容性のある有機化合物であればいずれの有機化合物も使用可能である。例えば、縮合芳香族炭素環化合物(ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体)、窒素原子、酸素原子、硫黄原子を含有する5員ないし7員のヘテロ環化合物(例えばピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、キノリン、キノキサリン、キナゾリン、フタラジン、シンノリン、イソキノリン、プテリジン、アクリジン、フェナジン、フェナントロリン、テトラゾール、ピラゾール、イミダゾール、チアゾール、オキサゾール、インダゾール、ベンズイミダゾール、ベンゾトリアゾール、ベンゾオキサゾール、ベンゾチアゾール、カルバゾール、プリン、トリアゾロピリダジン、トリアゾロピリミジン、テトラザインデン、オキサジアゾール、イミダゾピリジン、ピラリジン、ピロロピリジン、チアジアゾロピリジン、ジベンズアゼピン、トリベンズアゼピン等)、ポリアリーレン化合物、フルオレン化合物、シクロペンタジエン化合物、シリル化合物、含窒素ヘテロ環化合物を配位子として有する金属錯体などが挙げられる。なお、これらに限らず、ドナー性有機化合物として用いた有機化合物よりも電子親和力の大きな有機化合物であればアクセプター性有機半導体として用いることができる。
p型有機色素又はn型有機色素としては、公知のものを用いることができるが、好ましくは、シアニン色素、スチリル色素、ヘミシアニン色素、メロシアニン色素(ゼロメチンメロシアニン(シンプルメロシアニン)を含む)、3核メロシアニン色素、4核メロシアニン色素、ロダシアニン色素、コンプレックスシアニン色素、コンプレックスメロシアニン色素、アロポーラー色素、オキソノール色素、ヘミオキソノール色素、スクアリウム色素、クロコニウム色素、アザメチン色素、クマリン色素、アリーリデン色素、アントラキノン色素、トリフェニルメタン色素、アゾ色素、アゾメチン色素、スピロ化合物、メタロセン色素、フルオレノン色素、フルギド色素、ペリレン色素、フェナジン色素、フェノチアジン色素、キノン色素、インジゴ色素、ジフェニルメタン色素、ポリエン色素、アクリジン色素、アクリジノン色素、ジフェニルアミン色素、キナクリドン色素、キノフタロン色素、フェノキサジン色素、フタロペリレン色素、ポルフィリン色素、クロロフィル色素、フタロシアニン色素、金属錯体色素、縮合芳香族炭素環系色素(ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体)等が挙げられる。
次に金属錯体化合物について説明する。金属錯体化合物は金属に配位する少なくとも1つの窒素原子または酸素原子または硫黄原子を有する配位子をもつ金属錯体である。金属錯体中の金属イオンは特に限定されないが、好ましくはベリリウムイオン、マグネシウムイオン、アルミニウムイオン、ガリウムイオン、亜鉛イオン、インジウムイオン、または錫イオンであり、より好ましくはベリリウムイオン、アルミニウムイオン、ガリウムイオン、または亜鉛イオンであり、更に好ましくはアルミニウムイオン、または亜鉛イオンである。前記金属錯体中に含まれる配位子としては種々の公知の配位子が有るが、例えば、「Photochemistry and Photophysics of Coordination Compounds」 Springer−Verlag社 H.Yersin著1987年発行、「有機金属化学−基礎と応用−」裳華房社山本明夫著1982年発行等に記載の配位子が挙げられる。
前記配位子として、好ましくは含窒素ヘテロ環配位子(好ましくは炭素数1〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数3〜15であり、単座配位子であっても2座以上の配位子であっても良い。好ましくは2座配位子である。例えばピリジン配位子、ビピリジル配位子、キノリノール配位子、ヒドロキシフェニルアゾール配位子(ヒドロキシフェニルベンズイミダゾール、ヒドロキシフェニルベンズオキサゾール配位子、ヒドロキシフェニルイミダゾール配位子)などが挙げられる。)、アルコキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、および2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシ、2,4,6−トリメチルフェニルオキシ、および4−ビフェニルオキシなどが挙げられる。)、ヘテロアリールオキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、
アルキルチオ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環置換チオ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、および2−ベンズチアゾリルチオなどが挙げられる。)、またはシロキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数3〜25、特に好ましくは炭素数6〜20であり、例えば、トリフェニルシロキシ基、トリエトキシシロキシ基、およびトリイソプロピルシロキシ基などが挙げられる。)であり、より好ましくは含窒素ヘテロ環配位子、アリールオキシ配位子、ヘテロアリールオキシ基、またはシロキシ配位子であり、更に好ましくは含窒素ヘテロ環配位子、アリールオキシ配位子、またはシロキシ配位子が挙げられる。
本発明においては、1対の電極間に、p型半導体層とn型半導体層とを有し、該p型半導体とn型半導体の少なくともいずれかが有機半導体であり、かつ、それらの半導体層の間に、該p型半導体およびn型半導体を含むバルクヘテロ接合構造層を中間層として有する光電変換膜(感光層)を含むことが好ましい。このように、光電変換膜において、バルクへテロ接合構造層を含ませることにより有機層のキャリア拡散長が短いという欠点を補い、光電変換効率を向上させることができる。なお、上記バルクへテロ接合構造については、特開2005−303266号公報において詳細に説明されている。
また、本発明では、1対の電極間にp型半導体の層とn型半導体の層で形成されるpn接合層の繰り返し構造(タンデム構造)の数を2以上有する構造を持つ光電変換膜(感光層)を含む場合が好ましく、さらに好ましくは、前記繰り返し構造の間に、導電材料の薄層を挿入する場合である。pn接合層の繰り返し構造(タンデム構造)の数はいかなる数でもよいが、光電変換効率を高くするために好ましくは2〜50であり、さらに好ましくは2〜30であり、特に好ましくは2〜10である。導電材料としては銀または金が好ましく、銀が最も好ましい。なお、上記タンデム構造については、特開2005−303266号公報において詳細に説明されている。
また、本発明では、1対の電極間に、p型半導体の層及びn型半導体の層、より好ましくは、さらに混合・分散(バルクヘテロ接合構造)層を持つ光電変換膜において、p型半導体及びn型半導体のうちの少なくとも一方に配向制御された有機化合物を含む光電変換膜である場合が好ましく、さらに好ましくは、p型半導体及びn型半導体の両方に配向制御された、あるいは配向制御可能な有機化合物を含む場合である。光電変換膜の有機層に用いられる有機化合物としては、π共役電子を持つものが好ましく用いられるが、このπ電子平面が、基板(電極基板)に対して垂直ではなく、平行に近い角度で配向しているほど好ましい。基板に対する角度として好ましくは0°以上80°以下であり、より好ましくは0°以上60°以下であり、さらに好ましくは0°以上40°以下であり、さらに好ましくは0°以上20°以下であり、特に好ましくは0°以上10°以下であり、最も好ましくは0°(すなわち基板に対して平行)である。上記のように、配向の制御された有機化合物の層は、有機層全体に対して一部でも含めば良いが、好ましくは、有機層全体に対する配向の制御された部分の割合が10%以上の場合であり、さらに好ましくは30%以上、さらに好ましくは50%以上、さらに好ましくは70%以上、特に好ましくは90%以上、最も好ましくは100%である。このような状態は、光電変換膜において、有機層の有機化合物の配向を制御することにより有機層のキャリア拡散長が短いという欠点を補い、光電変換効率を向上させるものである。
有機化合物の配向が制御されている場合において、さらに好ましくはヘテロ接合面(例えばpn接合面)が基板に対して平行ではない場合である。ヘテロ接合面が、基板(電極基板)に対して平行ではなく、垂直に近い角度で配向しているほど好ましい。基板に対する角度として好ましくは10°以上90°以下であり、より好ましくは30°以上90°以下であり、さらに好ましくは50°以上90°以下であり、さらに好ましくは70°以上90°以下であり、特に好ましくは80°以上90°以下であり、最も好ましくは90°(すなわち基板に対して垂直)である。上記のような、ヘテロ接合面の制御された有機化合物の層は、有機層全体に対して一部でも含めば良い。好ましくは、有機層全体に対する配向の制御された部分の割合が10%以上の場合であり、より好ましくは30%以上、さらに好ましくは50%以上、さらに好ましくは70%以上、特に好ましくは90%以上、最も好ましくは100%である。このような場合、有機層におけるヘテロ接合面の面積が増大し、界面で生成する電子、正孔、電子正孔ペア等のキャリア量が増大し、光電変換効率の向上が可能となる。以上のような有機化合物のヘテロ接合面とπ電子平面の両方の配向が制御された光電変換膜において、特に光電変換効率の向上が可能である。これらの状態については、特開2006−086493号公報において詳細に説明されている。
光電変換膜4の厚みは、蛍光体膜8からの光を吸収する点では膜厚は大きいほど好ましいが、電荷分離に寄与しない割合を考慮すると、30nm以上300nm以下が好ましく、より好ましくは、50nm以上250nm以下、特に好ましくは80nm以上200nm以下である。
なお、図1に示す放射線撮像素子12では、光電変換膜4は、全画素部で共通の一枚構成であるが、画素部毎に分割してあっても良い。
下部電極2は、画素部毎に分割された薄膜とする。下部電極2は、透明又は不透明の導電性材料で構成することができ、アルミニウム、銀等を好適に用いることができる。
下部電極2の厚みは、例えば、30nm以上300nm以下とすることができる。
光電変換部13では、上部電極6と下部電極2の間に所定のバイアス電圧を印加することで、光電変換膜4で発生した電荷(正孔、電子)のうちの一方を上部電極6に移動させ、他方を下部電極2に移動させることができる。本実施形態の放射線撮像素子12では、上部電極6に配線が接続され、この配線を介してバイアス電圧が上部電極6に印加されるものとする。又、バイアス電圧は、光電変換膜4で発生した電子が上部電極6に移動し、正孔が下部電極2に移動するように極性が決められているものとするが、この極性は逆であっても良い。
各画素部を構成する光電変換部13は、少なくとも下部電極2、光電変換膜4、及び上部電極6を含んでいれば良いが、暗電流の増加を抑制するため、電子ブロッキング膜3及び正孔ブロッキング膜5の少なくともいずれかを設けることが好ましく、両方を設けることがより好ましい。
電子ブロッキング膜3は、下部電極2と光電変換膜4との間に設けることができ、下部電極2と上部電極6間にバイアス電圧を印加したときに、下部電極2から光電変換膜4に電子が注入されて暗電流が増加してしまうのを抑制することができる。
電子ブロッキング膜3には、電子供与性有機材料を用いることができる。具体的には、低分子材料では、N,N’−ビス(3−メチルフェニル)−(1,1’−ビフェニル)−4,4’−ジアミン(TPD)や4,4’−ビス[N−(ナフチル)−N−フェニル−アミノ]ビフェニル(α−NPD)等の芳香族ジアミン化合物、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、スチルベン誘導体、ピラゾリン誘導体、テトラヒドロイミダゾール、ポリアリールアルカン、ブタジエン、4,4’,4”−トリス(N−(3−メチルフェニル)N−フェニルアミノ)トリフェニルアミン(m−MTDATA)、ポルフィン、テトラフェニルポルフィン銅、フタロシアニン、銅フタロシアニン、チタニウムフタロシアニンオキサイド等のポリフィリン化合物、トリアゾール誘導体、オキサジザゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アニールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、又はシラザン誘導体などを用いることができ、高分子材料では、フェニレンビニレン、フルオレン、カルバゾール、インドール、ピレン、ピロール、ピコリン、チオフェン、アセチレン、ジアセチレン等の重合体や、その誘導体を用いることができる。
実際に電子ブロッキング膜3に用いる材料は、隣接する電極の材料および隣接する光電変換膜4の材料等に応じて選択すればよく、隣接する電極の材料の仕事関数(Wf)より1.3eV以上電子親和力(Ea)が大きく、かつ、隣接する光電変換膜4の材料のイオン化ポテンシャル(Ip)と同等のIpもしくはそれより小さいIpを持つものが好ましい。
電子ブロッキング膜3の厚みは、暗電流抑制効果を確実に発揮させるとともに、光電変換部13の光電変換効率の低下を防ぐため、10nm以上200nm以下が好ましく、さらに好ましくは30nm以上150nm以下、特に好ましくは50nm以上100nm以下である。
正孔ブロッキング膜5は、光電変換膜4と上部電極6との間に設けることができ、下部電極2と上部電極6間にバイアス電圧を印加したときに、上部電極6から光電変換膜4に正孔が注入されて暗電流が増加してしまうのを抑制することができる。
正孔ブロッキング膜5には、電子受容性有機材料を用いることができる。電子受容性材料としてはC60、C70をはじめとするフラーレンやカーボンナノチューブ、及びそれらの誘導体や、1,3−ビス(4−tert−ブチルフェニル−1,3,4−オキサジアゾリル)フェニレン(OXD−7)等のオキサジアゾール誘導体、アントラキノジメタン誘導体、ジフェニルキノン誘導体、バソクプロイン、バソフェナントロリン、及びこれらの誘導体、トリアゾール化合物、トリス(8−ヒドロキシキノリナート)アルミニウム錯体、ビス(4−メチル−8−キノリナート)アルミニウム錯体、ジスチリルアリーレン誘導体、シロール化合物などを用いることができる。
正孔ブロッキング膜5の厚みは、暗電流抑制効果を確実に発揮させるとともに、光電変換部13の光電変換効率の低下を防ぐため、10nm以上200nm以下が好ましく、さらに好ましくは30nm以上150nm以下、特に好ましくは50nm以上100nm以下である。
実際に正孔ブロッキング膜5に用いる材料は、隣接する電極の材料および隣接する光電変換膜4の材料等に応じて選択すればよく、隣接する電極の材料の仕事関数(Wf)より1.3eV以上イオン化ポテンシャル(Ip)が大きく、かつ、隣接する光電変換膜4の材料の電子親和力(Ea)と同等のEaもしくはそれより大きいEaを持つものが好ましい。
尚、光電変換膜4で発生した電荷のうち、正孔が上部電極6に移動し、電子が下部電極2に移動するようにバイアス電圧を設定する場合には、電子ブロッキング膜3と正孔ブロッキング膜5の位置を逆にすれば良い。又、電子ブロッキング膜3と正孔ブロッキング膜5は両方設けなくてもよく、いずれかを設けておけば、ある程度の暗電流抑制効果を得ることができる。
ここで、光電変換膜に用いられる光電変換材料は、本発明では有機材料に限定されるものではなく、例えばアモルファスSiやアモルファス酸化物等の無機材料も用いることができる。
<信号出力部>
各画素部の下部電極2下方の基板1の表面には信号出力部14が形成されている。図2は、信号出力部14の構成を概略的に示している。下部電極2に対応して、下部電極2に移動した電荷を蓄積するコンデンサ9と、コンデンサ9に蓄積された電荷を電圧信号に変換して出力する電界効果型薄膜トランジスタ(以下、単に薄膜トランジスタという場合がある。)10が形成されている。コンデンサ9及び薄膜トランジスタ10の形成された領域は、平面視において下部電極2と重なる部分を有しており、このような構成とすることで、各画素部における信号出力部14と光電変換部13とが厚さ方向で重なりを有することとなる。なお、放射線撮像素子12(画素部)の平面積を最小にするために、コンデンサ9及び薄膜トランジスタ10の形成された領域が下部電極2によって完全に覆われていることが望ましい。
コンデンサ9は、基板1と下部電極2との間に設けられた絶縁膜11を貫通して形成された導電性材料の配線を介して対応する下部電極2と電気的に接続されている。これにより、下部電極2で捕集された電荷をコンデンサ9に移動させることができる。
<薄膜トランジスタ部>
本発明に用いられる薄膜電界効果型トランジスタ(Thin Film Transistor、”TFT”と略記することがある)は、少なくとも、ゲート電極、ゲート絶縁膜、活性層、ソース電極及びドレイン電極を順次有し、ゲート電極に電圧を印加して、活性層に流れる電流を制御し、ソース電極とドレイン電極間の電流をスイッチングする機能を有するアクテイブ素子である。TFT構造として、スタガ構造(トップゲート型とも呼ばれる)及び逆スタガ構造(ボトムゲート型とも呼ばれる)のいずれをも形成することができる。
本発明に用いられるTFTは、少なくとも抵抗層と該抵抗層より電気伝導度が大きい活性層とを有し、該活性層とソース電極及びドレイン電極の少なくとも一方との間に該抵抗層が電気的に接続している。
好ましい態様の1つは、図1に概略断面図が示されるような基板上に少なくとも抵抗層と活性層を層状に有し、前記活性層がゲート絶縁膜と接し、前記抵抗層がソース電極及びドレイン電極と接する構造である。
また、動作安定性の観点から、活性層の膜厚が抵抗層の膜厚より厚いことが好ましい。好ましくは、抵抗層の膜厚/活性層の膜厚の比が、1を超え100以下、より好ましくは1を超え10以下である。
また、別の態様として、活性層において抵抗層と活性層の間の電気伝導度が連続的に変化している態様も好ましい。
好ましくは、活性層の酸素濃度が抵抗層の酸素濃度より低い。
好ましくは、抵抗層及び活性層が酸化物半導体を含有し、該酸化物半導体がIn、GaおよびZnからなる群より選ばれる少なくとも1種若しくはこれらの複合酸化物を含む非晶質酸化物半導体である。より好ましくは、前記酸化物半導体がInおよびZnを含有し、抵抗層のZnとInの組成比(Inに対するZnの比率Zn/Inで表す)が活性層の組成比Zn/Inより大きい。好ましくは、抵抗層のZn/In比が活性層のZn/In比より3%以上大きく、さらに好ましくは10%以上大きい。
好ましくは、抵抗層の電気伝導度に対する活性層の電気伝導度の比率(活性層の電気伝導度/抵抗層の電気伝導度)が、10以上1010以下であり、より好ましくは10以上10以下である。
好ましくは、活性層の電気伝導度が10−4Scm−1以上10Scm−1未満である。より好ましくは10−1Scm−1以上10Scm−1未満である。抵抗層の電気伝導度は、好ましくは10−2Scm−1以下、より好ましくは10−9Scm−1以上10−3Scm−1未満であり、活性層の電気伝導度より小さい。
活性層の電気伝導度が10−4Scm−1を下まわると電界効果移動度としては高移動度が得られず、10Scm−1以上ではOFF電流が増加し、良好なON/OFF比が得られないので、好ましくない。
1)構造
次に、図面を用いて、詳細に本発明における薄膜電界効果型トランジスタの構造を説明する。
図1は、本発明の薄膜電界効果型トランジスタであって、逆スタガ構造の一例を示す模式図である。基板100がプラスチックフィルムなどの可撓性基板の場合、基板100の一方の面に絶縁層106を配し、その上にゲート電極102、ゲート絶縁膜103、活性層104−1、抵抗層104−2を積層して有し、その表面にソース電極105−1とドレイン電極105−2が設置される。活性層104−1はゲート絶縁膜103に接し、抵抗層104−2はソース電極105−1およびドレイン電極105−2に接する。ゲート電極に電圧が印加されていない状態での活性層104−1の電気伝導度が抵抗層104−2の電気伝導度より大きくなるように、活性層104−1および抵抗層104−2の組成が決定される。
ここで、活性層および抵抗層には、特開2006−165530号公報に開示されている酸化物半導体、例えばIn−Ga−Zn−O系の酸化物半導体が用いられる。好ましくは非晶質酸化物半導体であって、例えば、In、Ga及びZnのうちの少なくとも1つを含む酸化物(例えばIn−O系)が好ましく、In、Ga及びZnのうちの少なくとも2つを含む酸化物(例えばIn−Zn−O系、In−Ga系、Ga−Zn−O系)がより好ましく、In、Ga及びZnを含む酸化物が特に好ましい。In−Ga−Zn−O系非晶質酸化物としては、結晶状態における組成がInGaO(ZnO)(mは6未満の自然数)で表される非晶質酸化物が好ましく、特に、InGaZnOがより好ましい。これらの酸化物半導体は、電子キャリア濃度が高いほど、電子移動度が高くなることが知られている。つまり、電気伝導度が大きいほど、電子移動度が高い。
本発明における構造によれば、薄膜電界効果型トランジスタがゲート電極に電圧が印加されたONの状態では、チャネルとなる活性層が大きい電気伝導度を有しているため、トランジスタの電界効果移動度は高くなり、高ON電流が得られる。OFFの状態では抵抗層の電気伝導度が小さい為に、抵抗層の抵抗が高いことから、OFF電流が低く保たれるために、ON/OFF比特性が極めて改良される。
図2は、従来の逆スタガ構造の薄膜電界効果型トランジスタの一例を示す模式図である。
活性層114はその厚み方向に特に電気伝導度の分布を有していない。従来の構成では、OFF電流を低減するために、活性層114の抵抗値を下げる必要がある為に、活性層114のキャリア濃度を下げる必要があった。特開2006−165530号公報によれば、良好なON/OFF比を得るには、活性層104のアモルファス酸化物半導体の伝導度を低減する為に、電子キャリア濃度を1018/cm未満、より好ましくは1016/cm未満にすることが開示されている。しかし、特開2006−165530号公報の図2に示されるように、In−Ga−Zn−O系の酸化物半導体では、電子キャリア濃度を下げると膜の電子移動度が減少しまう。その為に、TFTの電界効果移動度で10cm/Vs以上を得ることができず、充分なON電流を得ることができない。そのため、ON/OFF比も充分な特性が得られない。
また、膜の電子移動度を上げるために、活性層114の酸化物半導体の電子キャリア濃度を上げると、活性層114の電気伝導度が増し、OFF電流が増加し、ON/OFF比特性は悪くなる。
図には示してはいないが、本発明の趣旨は、ゲート絶縁膜とソース電極及びドレイン電極との間を活性層および抵抗層を含む半導体層が電気的に接続する構成において、該半導体層のゲート絶縁膜近傍における電気伝導度が、該半導体層のソース電極及びドレイン電極近傍における電気伝導度より大きくなるように該半導体層を設けることにあり、その状態が得られる限りその達成手段は図1に示すような活性層および抵抗層を含む複数の半導体層を設けることだけに留まるものではない。半導体層の電気伝導度が連続的に変化しても良い。
図3は、比較のトップゲート構造薄膜電界効果型トランジスタの一例を示す模式図である。特開2006−165530号公報に開示されている構造である。活性層として高酸素濃度層107と低酸素濃度層108の2層より形成される。高酸素濃度層107は電子キャリア濃度の低い層、つまり電気伝導度の小さい層であり、低酸素濃度層108は電子キャリア濃度の高い層、つまり電気伝導度の大きい層である。従って、この比較の構造では、チャネルとなるゲート絶縁膜123と接した活性層が電子キャリア濃度が低く、電子移動度も低い膜である為、電界効果移動度においても高移動度は達成できない。
<放射線撮像素子12の製造方法>
次に、本実施形態の放射線撮像素子12を製造する方法について説明する。
本発明では、薄膜トランジスタ10の活性層24を構成する非晶質酸化物や、光電変換膜4を構成する有機光電変換材料は、いずれも低温での成膜が可能である。従って、基板1としては、半導体基板、石英基板、及びガラス基板等の耐熱性の高い基板に限定されず、プラスチック等の可撓性基板を用いることもできる。具体的には、ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、ポリ(クロロトリフルオロエチレン)等の可撓性基板を用いることができる。このようなプラスチック製の可撓性基板を用いれば、軽量化を図ることもでき、例えば持ち運び等に有利となる。
また、基板1には、絶縁性を確保するための絶縁層、水分や酸素の透過を防止するためのガスバリア層、平坦性あるいは電極等との密着性を向上するためのアンダーコート層等を設けてもよい。
基板1上に、必要に応じて絶縁層を形成した後、信号出力部14を形成する。
信号出力部14を構成する薄膜トランジスタ10は、図5に示されるように、ゲート電極22、ゲート絶縁膜23、及び活性層(チャネル層)24が積層され、さらに、活性層24上にソース電極25とドレイン電極26が所定の間隔を開けて形成されている。そして、本発明に係る放射線撮像素子12では、活性層24が非晶質酸化物により形成されている。
薄膜トランジスタ10の活性層24を非晶質酸化物で形成したものとすれば、X線等の放射線を吸収せず、あるいは吸収したとしても極めて微量に留まるため、信号出力部14におけるノイズの発生を効果的に抑制することができる。
薄膜トランジスタ10及びコンデンサ9は、例えば、以下のような方法により形成することができる。
絶縁基板1上に、例えばMoを用いてスパッタリングにより成膜した後、フォトリソグラフィによってパターニングされたゲート電極22を形成する。このとき、コンデンサ9の下部電極31も同時にパターニングすることができる。
ゲート電極22を形成する材料としては、例えば、Al、Mo、Cr、Ta、Ti、Au、Ag等の金属、Al−Nd、APC等の合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン、ポリピロ−ルなどの有機導電性化合物、またはこれらの混合物を好適に挙げられる。
ゲート電極22の厚みは、10nm以上1000nm以下とすることが好ましい。
次いで、SiO等を用いてスパッタリングにより成膜してゲート絶縁膜23を形成する。ゲート絶縁膜23を構成する材料としては、SiO、SiN、SiON、Al、Y、Ta、HfO等の絶縁体、又はそれらの化合物を少なくとも二つ以上含む混晶化合物を用いることができる。また、ポリイミドのような高分子絶縁体もゲート絶縁膜23として用いることができる。
さらに、ゲート絶縁膜23の上に、例えばInGaZnOの組成を有する多結晶焼結体をターゲットとしてIZGO膜をスパッタリングにより半導体層を成膜する。アモルファス酸化物半導体(IZGO膜)は、低温で成膜可能である為に、プラスチックのような可撓性のある樹脂基板を用いても熱によって基板を変形させずに成膜することができる。
さらに、アモルファス酸化物半導体(IZGO膜)は、スパッタリングの際の酸素分圧を調整することにより形成される膜の電気抵抗を変化させることができる。従って、スパッタリング初期は酸素分圧を低く保ち、スパッタリング後半を酸素分圧を高く保つことによりゲート絶縁膜23に近接する領域を電気伝導度の高い活性層、ソース・ドレイン電極と近接する領域を電気伝導度の低い抵抗層とする構成を形成することができる。こうして活性層と抵抗層を成膜後、フォトリソグラフィによってパターニングされた半導体層24を形成する。
活性層24を形成した後、例えば酸化インジウム錫(ITO)をスパッタリングにより成膜し、ゲート電極22のパターニングと同様にしてソース・ドレイン電極25,26を形成する。このとき、コンデンサ9の上部電極32はドレイン電極26と接続するように同時にパターニングする。
ソース・ドレイン電極26を構成する材料としては、例えば、Al、Mo、Cr、Ta、Ti、Au、Ag等の金属、Al−Nd、APC等の合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン、ポリピロ−ルなどの有機導電性化合物、またはこれらの混合物を好適に挙げられる。
ソース電極25及びドレイン電極26の厚みは、10nm以上1000nm以下とすることが好ましい。
続いて、保護膜(絶縁膜)11として、スピンコータ等を用いて基板1上にアクリル系感光性樹脂を塗布し、所定の位置にコンタクトホールが形成されるように露光した後、現像する。これによりコンタクトホールが形成された保護膜(絶縁膜)11を形成することができる。
次いで、光電変換部13の下部電極2として、スパッタリングにより例えばMoで成膜する。続いて、ゲート電極22のパターニングと同様の方法によりパター二ングを行うことにより、画素部毎に分割された下部電極2を形成することができる。なお、下部電極2が画素部毎に分割されており、光電変換膜4、上部電極6、及び蛍光体膜8が基板1上に配列されている複数の画素部で共通化すれば、製造が容易となり、製造コストを低く抑えることができる。
下部電極2を形成した後、電子ブロッキング膜、光電変換膜4、正孔ブロッキング膜、上部電極6をそれぞれ前述した材料を用いて順次成膜する。成膜方法は特に限定されず、使用する材料との適性等を考慮して、印刷方式、コ−ティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレ−ティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式、などの中から適宜選択した方法に従って成膜することができる。
なお、光電変換膜4をアモルファスシリコンで形成する場合、通常、CVD装置を必要とし、製造コストが高くなるが、本発明では有機光電変換材料を用い、例えば真空蒸着法によって光電変換膜4を容易に形成することができるため、製造コストを低く抑えることができる。
上部電極6を形成した後、絶縁膜7を形成する。この絶縁膜7は、蛍光体膜8からの光を透過できるように透明絶縁膜7とし、SiO、SiN等により成膜することができる。
次いで、蛍光体膜8を形成する。蛍光体膜8は、放射線の種類、光電変換膜4の吸収ピーク波長等にもよるが、X線撮像装置に適用する場合は、前記したようにCsI、CsI(Ti)等により形成することができる。
次に、放射線撮像素子12の動作について説明する。
人体にX線が照射され、人体を透過したX線が蛍光体膜8に入射すると、蛍光体膜8からは例えば波長420nm〜600nmの光が発せられ、この光が光電変換膜4へと入射する。この入射光のうちの緑色の波長域の光が光電変換膜4で吸収されると、ここで電荷が発生し、発生した電荷のうちの正孔が下部電極2に移動してコンデンサ9に蓄積される。
コンデンサ9に蓄積された正孔は、薄膜トランジスタ10によって電圧信号に変換されて出力される。各画素部から得られた電圧信号により、人体内部を撮影したモノクロ画像が得られる。
そして、本実施形態の放射線撮像素子12によれば、光電変換膜4の材料として吸収ピーク波長をコントロールするのが容易な有機光電変換材料を用いているため、蛍光体膜8の発光ピーク波長と光電変換膜4の吸収ピーク波長をほぼ一致させることが可能となり、蛍光体膜8から発せられた光を無駄なく吸収するとともに、X線等の放射線を吸収してノイズが発生することを効果的に防ぐことができる。
光電変換材料が有機材料でない場合、例えばアモルファスシリコンの場合は、吸収スペクトルがブロードなので、光電変換部13によりX線ノイズが多く拾われてしまう。この場合、X線ノイズは信号出力部14にはほとんど到達しないこととなり、TFT活性層に非晶質酸化物を用いたとしてもノイズ低減効果はほとんど得られない。一方、光電変換材料として有機材料を用いた場合、吸収スペクトルがシャープなピークを有し、光電変換部13においてX線ノイズをほとんど拾わないようにすることができる反面、光電変換部13で拾われなかったX線ノイズが信号出力部14まで到達するので、TFT活性層がそのX線ノイズを拾い易い状態となる。このとき、TFT活性層を構成する材料が非晶質酸化物でない場合、例えばアモルファスシリコンの場合だと、光電変換部13で拾われなかったX線ノイズをTFT活性層が拾ってしまうため、有機光電変換材料を用いた効果が失われてしまう。しかし、TFT活性層を非晶質酸化物で構成すれば、X線ノイズが信号出力部14で吸収されることを効果的に防ぐことができる。すなわち、信号出力部14の薄膜トランジスタ10の活性層24が非晶質酸化物で構成されているため、光電変換部13を透過したX線等の放射線をほとんど吸収せず、信号出力部14におけるノイズの発生も効果的に防ぐことができる。
このように本発明では、光電変換膜4と、信号出力部14の活性層24にシリコンを使用せず、有機材料からなる光電変換膜4と、非晶質酸化物からなる活性層24との組み合わせにより、X線ノイズが光電変換部13でも信号出力部14でも吸収されない状態を達成することができ、その結果、光電変換部13及び信号出力部14におけるX線等の放射線によるノイズを大幅に低減させることができる。
また、各画素部における信号出力部14と光電変換部13とが、少なくとも一部において厚さ方向で重なるように形成されているため、光電変換部13と信号出力部14を同一平面上に形成した放射線撮像素子と比べて1画素の面積を小さくすることができるともに、光電変換部13による受光面積を大きくとることができる。従って、このような構成の放射線撮像素子12であれば、光電変換部13と信号出力部14において放射線等によるノイズが効果的に抑制されるとともに、高精細な画質を得ることができる。
また、本実施形態の放射線撮像素子12によれば、電子ブロッキング膜3と正孔ブロッキング膜5によって暗電流を抑制することができるため、より高画質な撮像が可能となる。この放射線撮像素子12を医療用に用いる場合には、画素部全体の面積がかなり大きくなるが、面積が大きいと、下部電極2や上部電極6から光電変換膜4に注入される電荷も多くなることが予想される。したがって、電子ブロッキング膜3と正孔ブロッキング膜5を設けて暗電流を積極的に抑制することが効果的となる。
また、本実施形態の放射線撮像素子12によれば、信号出力部14、及び下部電極2を形成後は、基板全面に各材料を順次成膜することで各構成要素を形成することができる。このため、放射線撮像素子12の面積の大型化を図る場合でも、微細化プロセスをあまり増やす必要がなくなるため、その製造を容易に行うことができる。
本発明の実施形態に用いられる電界効果型トランジスタの概略構成を示す断面模式図である。 従来の電界効果型トランジスタの構成の概略構成を示す断面模式図である。 従来の電界効果型トランジスタの別の構成の概略構成を示す断面模式図である。 本発明の実施形態である放射線撮像素子の3画素部分の概略構成を示す断面模式図である。 1画素部分の信号出力部の構成を概略的に示す断面図である。
符号の説明
1 基板
2 下部電極
3 電子ブロッキング膜
4 光電変換膜
5 正孔ブロッキング膜
6 上部電極
7 透明絶縁膜
8 蛍光体膜
9 コンデンサ
10 電界効果型薄膜トランジスタ
11 絶縁膜
12 放射線撮像素子
13 光電変換部
14 信号出力部
22 ゲート電極
23 ゲート絶縁膜
24 半導体層
25 ソース電極
26 ドレイン電極
31 コンデンサ下部電極
32 コンデンサ上部電極
100:TFT基板
102、122:ゲート電極
103、113、123:ゲート絶縁膜
104、114:活性層
104−1:活性層
104−2:抵抗層
105−1、105−21:ソース電極
105−2、105−22:ドレイン電極
106:絶縁層
107:高酸素濃度層
108:低酸素濃度層

Claims (14)

  1. 被写体を透過した放射線を受光して前記放射線量に応じた撮像信号を出力する放射線撮像素子であって、
    基板上方に形成された下部電極、前記下部電極上方に形成された光電変換膜、及び前記光電変換膜上方に形成された上部電極を含む光電変換部と、前記上部電極上に形成された蛍光体膜と、前記光電変換部に対応して前記基板に設けられ、前記光電変換膜で発生した電荷に応じた信号を出力するための電界効果型トランジスタとを含む画素部を複数備え、
    前記電界効果型トランジスタが、少なくともゲート電極、ゲート絶縁膜、活性層、ソース電極及びドレイン電極を有し、前記活性層と前記ソース電極及び前記ドレイン電極の少なくとも一方との間に抵抗層が電気的に接続して配されていることを特徴とする放射線撮像素子。
  2. 前記基板上に少なくとも前記抵抗層と前記活性層を層状に有し、前記活性層が前記ゲート絶縁膜と接し、前記抵抗層が前記ソース電極及び前記ドレイン電極の少なくとも一方と接することを特徴とする請求項1に記載の放射線撮像素子。
  3. 前記抵抗層の膜厚が前記活性層の膜厚より厚いことを特徴とする請求項2に記載の放射線撮像素子。
  4. 前記抵抗層と前記活性層の間の電気伝導度が連続的に変化していることを特徴とする請求項1又は請求項2に記載の放射線撮像素子。
  5. 前記抵抗層および前記活性層が酸化物半導体を含有することを特徴とする請求項1〜請求項4のいずれか1項に記載の放射線撮像素子。
  6. 前記酸化物半導体が非晶質酸化物半導体であることを特徴とする請求項5に記載の放射線撮像素子。
  7. 前記活性層の酸素濃度が前記抵抗層の酸素濃度より低いことを特徴とする請求項5又は請求項6に記載の放射線撮像素子。
  8. 前記酸化物半導体がIn、GaおよびZnからなる群より選ばれる少なくとも1種若しくはこれらの複合酸化物を含むことを特徴とする請求項5〜請求項7のいずれか1項に記載の放射線撮像素子。
  9. 前記酸化物半導体が前記InおよびZnを含有し、前記抵抗層のZnとInの組成比(Inに対するZnの比率Zn/Inで表す)が前記活性層の組成比Zn/Inより大きいことを特徴とする請求項8に記載の放射線撮像素子。
  10. 前記活性層の電気伝導度が10−4Scm−1以上10Scm−1未満であることを特徴とする請求項1〜請求項9のいずれか1項に記載の放射線撮像素子。
  11. 前記活性層の電気伝導度が10−1Scm−1以上10Scm−1未満であることを特徴とする請求項10に記載の放射線撮像素子。
  12. 前記抵抗層の電気伝導度に対する前記活性層の電気伝導度の比率(活性層の電気伝導度/抵抗層の電気伝導度)が、10以上1010以下であることを特徴とする請求項1〜請求項11のいずれか1項に記載の放射線撮像素子。
  13. 前記抵抗層の電気伝導度に対する前記活性層の電気伝導度の比率(活性層の電気伝導度/抵抗層の電気伝導度)が、10以上10以下であることを特徴とする請求項12に記載の放射線撮像素子。
  14. 前記基板が可撓性樹脂基板であることを特徴とする請求項1〜請求項13のいずれか1項に記載の放射線撮像素子。
JP2008156640A 2007-09-21 2008-06-16 放射線撮像素子 Expired - Fee Related JP5489423B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008156640A JP5489423B2 (ja) 2007-09-21 2008-06-16 放射線撮像素子
US12/204,582 US8008627B2 (en) 2007-09-21 2008-09-04 Radiation imaging element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007246052 2007-09-21
JP2007246052 2007-09-21
JP2008156640A JP5489423B2 (ja) 2007-09-21 2008-06-16 放射線撮像素子

Publications (2)

Publication Number Publication Date
JP2009094465A true JP2009094465A (ja) 2009-04-30
JP5489423B2 JP5489423B2 (ja) 2014-05-14

Family

ID=40666099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008156640A Expired - Fee Related JP5489423B2 (ja) 2007-09-21 2008-06-16 放射線撮像素子

Country Status (1)

Country Link
JP (1) JP5489423B2 (ja)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263207A (ja) * 2009-05-08 2010-11-18 Samsung Electronics Co Ltd Cmosイメージセンサー及びその製造方法
JP2011054869A (ja) * 2009-09-04 2011-03-17 Nippon Hoso Kyokai <Nhk> 有機光電変換素子、及び、これを含むイメージセンサ
JP2011059058A (ja) * 2009-09-14 2011-03-24 Fujifilm Corp 放射線画像撮影装置
JP2011077450A (ja) * 2009-10-01 2011-04-14 Fujifilm Corp 薄膜トランジスタ及び薄膜トランジスタの製造方法
JP2011095042A (ja) * 2009-10-28 2011-05-12 Fujifilm Corp 放射線撮像装置およびそれを用いた放射線撮影システム
JP2011146541A (ja) * 2010-01-14 2011-07-28 Canon Inc X線センサおよびその製造方法
JP2011146525A (ja) * 2010-01-14 2011-07-28 Fujifilm Corp 電界効果型トランジスタの製造方法、表示装置の製造方法、x線撮像装置の製造方法及び光センサの製造方法
JP2011166130A (ja) * 2010-01-15 2011-08-25 Semiconductor Energy Lab Co Ltd 半導体装置
WO2011104791A1 (ja) * 2010-02-25 2011-09-01 シャープ株式会社 薄膜トランジスタ基板及びその製造方法、表示装置
JP2011243631A (ja) * 2010-05-14 2011-12-01 Fujifilm Corp 電子デバイスの製造方法、薄膜トランジスタ、電気光学装置及びセンサー
JP2012045370A (ja) * 2010-07-26 2012-03-08 Fujifilm Corp 放射線検出パネル
JP2012229940A (ja) * 2011-04-25 2012-11-22 Fujifilm Corp 放射線撮影装置、放射線撮影システム及び放射線撮影方法
JP2012531046A (ja) * 2009-06-17 2012-12-06 ザ、リージェンツ、オブ、ザ、ユニバーシティー、オブ、ミシガン フラットパネルx線イメージャ内のフォトダイオード及び他のセンサ構造、並びに薄膜電子工学を利用したフラットパネルx線イメージャ内のフォトダイオード及び他のセンサ構造のトポロジー均一性の改善方法
JP2014032199A (ja) * 2013-09-02 2014-02-20 Fujifilm Corp 放射線撮像装置およびそれを用いた放射線撮影システム
WO2016002625A1 (ja) * 2014-06-30 2016-01-07 シャープ株式会社 撮像パネル、及びそれを備えたx線撮像装置
WO2016002627A1 (ja) * 2014-06-30 2016-01-07 シャープ株式会社 撮像パネル、及びそれを備えたx線撮像装置
JP2017199919A (ja) * 2009-12-11 2017-11-02 株式会社半導体エネルギー研究所 半導体装置
JP2018129542A (ja) * 2011-05-05 2018-08-16 株式会社半導体エネルギー研究所 半導体装置
JP2018146336A (ja) * 2017-03-03 2018-09-20 株式会社東芝 放射線検出器
JP2019050398A (ja) * 2014-04-25 2019-03-28 日本化薬株式会社 撮像素子用光電変換素子
CN109791872A (zh) * 2016-11-02 2019-05-21 索尼公司 成像元件、固态成像装置和电子设备
US10304897B2 (en) 2014-06-30 2019-05-28 Sharp Kabushiki Kaisha Imaging panel and X-ray imaging device provided therewith
JP2019091938A (ja) * 2009-07-31 2019-06-13 株式会社半導体エネルギー研究所 半導体装置
US10347687B2 (en) 2014-06-30 2019-07-09 Sharp Kabushiki Kaisha Imaging panel and X-ray imaging system provided with said imaging panel
US10353082B2 (en) 2014-06-30 2019-07-16 Sharp Kabushiki Kaisha Imaging panel and X-ray imaging device
US10381396B2 (en) 2014-06-30 2019-08-13 Sharp Kabushiki Kaisha Imaging panel and X-ray imaging device
US10411059B2 (en) 2014-06-30 2019-09-10 Sharp Kabushiki Kaisha Imaging panel and X-ray imaging system provided with said imaging panel
JP2020513684A (ja) * 2016-11-14 2020-05-14 アルマ マータ ストゥディオルム−ウニベルシータ ディ ボローニャAlma Mater Studiorum − Universita’ Di Bologna 感応性電界効果デバイス及びその製造方法
JP2021034447A (ja) * 2019-08-20 2021-03-01 株式会社東芝 放射線検出器
JP7422698B2 (ja) 2021-03-05 2024-01-26 株式会社東芝 放射線検出器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60160170A (ja) * 1984-01-31 1985-08-21 Seiko Instr & Electronics Ltd 薄膜トランジスタ
JPS615578A (ja) * 1984-06-19 1986-01-11 Nec Corp 薄膜トランジスタ
JPS6242564A (ja) * 1985-08-20 1987-02-24 Matsushita Electric Ind Co Ltd 薄膜トランジスタおよびその製造方法
JP2006080254A (ja) * 2004-09-09 2006-03-23 Nippon Hoso Kyokai <Nhk> カラー撮像素子及びカラー撮像装置
JP2006165530A (ja) * 2004-11-10 2006-06-22 Canon Inc センサ及び非平面撮像装置
JP2006165529A (ja) * 2004-11-10 2006-06-22 Canon Inc 非晶質酸化物、及び電界効果型トランジスタ
JP2007067075A (ja) * 2005-08-30 2007-03-15 Nippon Hoso Kyokai <Nhk> カラー撮像素子
JP2007170954A (ja) * 2005-12-21 2007-07-05 Fujifilm Corp 放射線検出器
JP2009231613A (ja) * 2008-03-24 2009-10-08 Fujifilm Corp 薄膜電界効果型トランジスタおよび表示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60160170A (ja) * 1984-01-31 1985-08-21 Seiko Instr & Electronics Ltd 薄膜トランジスタ
JPS615578A (ja) * 1984-06-19 1986-01-11 Nec Corp 薄膜トランジスタ
JPS6242564A (ja) * 1985-08-20 1987-02-24 Matsushita Electric Ind Co Ltd 薄膜トランジスタおよびその製造方法
JP2006080254A (ja) * 2004-09-09 2006-03-23 Nippon Hoso Kyokai <Nhk> カラー撮像素子及びカラー撮像装置
JP2006165530A (ja) * 2004-11-10 2006-06-22 Canon Inc センサ及び非平面撮像装置
JP2006165529A (ja) * 2004-11-10 2006-06-22 Canon Inc 非晶質酸化物、及び電界効果型トランジスタ
JP2007067075A (ja) * 2005-08-30 2007-03-15 Nippon Hoso Kyokai <Nhk> カラー撮像素子
JP2007170954A (ja) * 2005-12-21 2007-07-05 Fujifilm Corp 放射線検出器
JP2009231613A (ja) * 2008-03-24 2009-10-08 Fujifilm Corp 薄膜電界効果型トランジスタおよび表示装置

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263207A (ja) * 2009-05-08 2010-11-18 Samsung Electronics Co Ltd Cmosイメージセンサー及びその製造方法
JP2012531046A (ja) * 2009-06-17 2012-12-06 ザ、リージェンツ、オブ、ザ、ユニバーシティー、オブ、ミシガン フラットパネルx線イメージャ内のフォトダイオード及び他のセンサ構造、並びに薄膜電子工学を利用したフラットパネルx線イメージャ内のフォトダイオード及び他のセンサ構造のトポロジー均一性の改善方法
US9880296B2 (en) 2009-06-17 2018-01-30 Regents Of The University Of Michigan Photodiode and other sensor structures in flat-panel x-ray imagers and method for improving topological uniformity of the photodiode and other sensor structures in flat-panel x-ray imagers based on thin-film electronics
JP2019091938A (ja) * 2009-07-31 2019-06-13 株式会社半導体エネルギー研究所 半導体装置
JP2011054869A (ja) * 2009-09-04 2011-03-17 Nippon Hoso Kyokai <Nhk> 有機光電変換素子、及び、これを含むイメージセンサ
JP2011059058A (ja) * 2009-09-14 2011-03-24 Fujifilm Corp 放射線画像撮影装置
JP2011077450A (ja) * 2009-10-01 2011-04-14 Fujifilm Corp 薄膜トランジスタ及び薄膜トランジスタの製造方法
JP2011095042A (ja) * 2009-10-28 2011-05-12 Fujifilm Corp 放射線撮像装置およびそれを用いた放射線撮影システム
US10312267B2 (en) 2009-12-11 2019-06-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
JP2017199919A (ja) * 2009-12-11 2017-11-02 株式会社半導体エネルギー研究所 半導体装置
US10600818B2 (en) 2009-12-11 2020-03-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US10854641B2 (en) 2009-12-11 2020-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US11961843B2 (en) 2009-12-11 2024-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
JP2011146541A (ja) * 2010-01-14 2011-07-28 Canon Inc X線センサおよびその製造方法
JP2011146525A (ja) * 2010-01-14 2011-07-28 Fujifilm Corp 電界効果型トランジスタの製造方法、表示装置の製造方法、x線撮像装置の製造方法及び光センサの製造方法
US8866233B2 (en) 2010-01-15 2014-10-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2011166130A (ja) * 2010-01-15 2011-08-25 Semiconductor Energy Lab Co Ltd 半導体装置
WO2011104791A1 (ja) * 2010-02-25 2011-09-01 シャープ株式会社 薄膜トランジスタ基板及びその製造方法、表示装置
JP2011243631A (ja) * 2010-05-14 2011-12-01 Fujifilm Corp 電子デバイスの製造方法、薄膜トランジスタ、電気光学装置及びセンサー
JP2012045370A (ja) * 2010-07-26 2012-03-08 Fujifilm Corp 放射線検出パネル
JP2012229940A (ja) * 2011-04-25 2012-11-22 Fujifilm Corp 放射線撮影装置、放射線撮影システム及び放射線撮影方法
JP2018129542A (ja) * 2011-05-05 2018-08-16 株式会社半導体エネルギー研究所 半導体装置
US10283530B2 (en) 2011-05-05 2019-05-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11942483B2 (en) 2011-05-05 2024-03-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2014032199A (ja) * 2013-09-02 2014-02-20 Fujifilm Corp 放射線撮像装置およびそれを用いた放射線撮影システム
JP2019050398A (ja) * 2014-04-25 2019-03-28 日本化薬株式会社 撮像素子用光電変換素子
WO2016002627A1 (ja) * 2014-06-30 2016-01-07 シャープ株式会社 撮像パネル、及びそれを備えたx線撮像装置
WO2016002625A1 (ja) * 2014-06-30 2016-01-07 シャープ株式会社 撮像パネル、及びそれを備えたx線撮像装置
US10353082B2 (en) 2014-06-30 2019-07-16 Sharp Kabushiki Kaisha Imaging panel and X-ray imaging device
US10381396B2 (en) 2014-06-30 2019-08-13 Sharp Kabushiki Kaisha Imaging panel and X-ray imaging device
US10386500B2 (en) 2014-06-30 2019-08-20 Sharp Kabushiki Kaisha Imaging panel and x-ray imaging device provided therewith
US10411059B2 (en) 2014-06-30 2019-09-10 Sharp Kabushiki Kaisha Imaging panel and X-ray imaging system provided with said imaging panel
US10304897B2 (en) 2014-06-30 2019-05-28 Sharp Kabushiki Kaisha Imaging panel and X-ray imaging device provided therewith
US10347687B2 (en) 2014-06-30 2019-07-09 Sharp Kabushiki Kaisha Imaging panel and X-ray imaging system provided with said imaging panel
CN109791872B (zh) * 2016-11-02 2022-11-18 索尼公司 成像元件、固态成像装置和电子设备
CN109791872A (zh) * 2016-11-02 2019-05-21 索尼公司 成像元件、固态成像装置和电子设备
JP2020513684A (ja) * 2016-11-14 2020-05-14 アルマ マータ ストゥディオルム−ウニベルシータ ディ ボローニャAlma Mater Studiorum − Universita’ Di Bologna 感応性電界効果デバイス及びその製造方法
JP7082976B2 (ja) 2016-11-14 2022-06-09 アルマ マータ ストゥディオルム-ウニベルシータ ディ ボローニャ 感応性電界効果デバイス及びその製造方法
US11360044B2 (en) 2016-11-14 2022-06-14 Universidade Nova De Lisboa Sensitive field effect device and manufacturing method thereof
JP2018146336A (ja) * 2017-03-03 2018-09-20 株式会社東芝 放射線検出器
US10522773B2 (en) 2017-03-03 2019-12-31 Kabushiki Kaisha Toshiba Radiation detector
JP2021034447A (ja) * 2019-08-20 2021-03-01 株式会社東芝 放射線検出器
JP7218257B2 (ja) 2019-08-20 2023-02-06 株式会社東芝 放射線検出器
JP7422698B2 (ja) 2021-03-05 2024-01-26 株式会社東芝 放射線検出器
US11968849B2 (en) 2021-03-05 2024-04-23 Kabushiki Kaisha Toshiba Radiation detector

Also Published As

Publication number Publication date
JP5489423B2 (ja) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5489423B2 (ja) 放射線撮像素子
JP5235348B2 (ja) 放射線撮像素子
US8008627B2 (en) Radiation imaging element
US11228725B2 (en) Photosensor
JP5087304B2 (ja) 固体撮像素子の製造方法
JP4677314B2 (ja) センサーおよび有機光電変換素子の駆動方法
JP5108339B2 (ja) 固体撮像素子
JP4911446B2 (ja) エリアセンサ、画像入力装置、およびそれを組み込んだ電子写真装置等
TWI402981B (zh) 具有互逆載體激子阻擋層之有機雙異質結構光伏打電池
US20140239156A1 (en) Photoelectric conversion element and solid-state image pickup device
JP6025243B2 (ja) 光電変換素子及びそれを用いた撮像素子
US20090315136A1 (en) Photoelectric conversion element and solid-state imaging device
JP2007273894A (ja) 光電変換素子、固体撮像素子、及び固体撮像素子の製造方法
JP2009272528A (ja) 光電変換素子,光電変換素子の製造方法及び固体撮像素子
JP2012169676A (ja) 固体撮像素子
JP2012019235A (ja) 固体撮像素子
JP5525890B2 (ja) 光電変換素子及び撮像素子
JP2008258421A (ja) 有機光電変換素子及びその製造方法
JP2007059483A (ja) 光電変換素子、撮像素子、並びに、光電変換素子および撮像素子に電場を印加する方法
WO2014092001A1 (ja) 放射線検出装置
JP2009267169A (ja) 光電変換素子及び固体撮像素子
JP2007073742A (ja) 光電変換素子及び固体撮像素子
WO2015076058A1 (ja) 有機機能層付き基板およびその製造方法
JP2023018166A (ja) 撮像装置
JP2019016701A (ja) 光電変換素子及び固体撮像素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5489423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees