JP2009021329A - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP2009021329A
JP2009021329A JP2007181994A JP2007181994A JP2009021329A JP 2009021329 A JP2009021329 A JP 2009021329A JP 2007181994 A JP2007181994 A JP 2007181994A JP 2007181994 A JP2007181994 A JP 2007181994A JP 2009021329 A JP2009021329 A JP 2009021329A
Authority
JP
Japan
Prior art keywords
chip
solder
film
metal post
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007181994A
Other languages
English (en)
Other versions
JP5217043B2 (ja
Inventor
Akira Maeda
晃 前田
Yasumichi Hatanaka
康道 畑中
Toshihiro Iwasaki
俊寛 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2007181994A priority Critical patent/JP5217043B2/ja
Publication of JP2009021329A publication Critical patent/JP2009021329A/ja
Application granted granted Critical
Publication of JP5217043B2 publication Critical patent/JP5217043B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/1701Structure
    • H01L2224/1703Bump connectors having different sizes, e.g. different diameters, heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81009Pre-treatment of the bump connector or the bonding area
    • H01L2224/8101Cleaning the bump connector, e.g. oxide removal step, desmearing
    • H01L2224/81013Plasma cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Wire Bonding (AREA)

Abstract

【課題】隣接する電極間で電気的な短絡が抑制される半導体装置と、その製造方法を提供する。
【解決手段】マザーチップ10のメタルポスト26のピッチをPμmとすると、ドータチップ20のメタルポスト26の高さはP/6μm以上P/2μm以下に設定されている。ドータチップ20のメタルポスト26の少なくとも表面の全体は金が露出している。マザーチップ10のはんだ膜17の融点よりも高温に加熱した状態で、マザーチップ10のはんだ膜17とドータチップ20のメタルポスト26とを接触させて熱圧着することにより、マザーチップ10にドータチップ20が接続される。
【選択図】図20

Description

本発明は半導体装置およびその製造方法に関し、特に、フリップチップ接続による接続構造を有する半導体装置と、そのような半導体装置の製造方法とに関するものである。
従来、マザーチップの所定の電極にドータチップの所定の電極をフリップチップ接続させたCOC(Chip On Chip)構造を有する半導体装置がある。近年、ドータチップが接続されたマザーチップの所定の電極を、さらに回路基板にフリップチップ接続させた半導体装置が提案されている。マザーチップの所定の電極では、半導体基板の表面に形成されたアルミニウム電極の表面上に、バリアメタルを介在させてたとえばニッケル(Ni)膜のメタルポストが形成されている。一方、ドータチップの所定の電極では、半導体基板の表面に形成されたアルミニウム電極の表面上に、バリアメタルを介在させて、たとえば金(Au)膜のメタルポストが形成されている。
マザーチップとドータチップとのフリップチップ接続では、マザーチップのメタルポストとドータチップのメタルポストとがはんだ膜を介して熱圧着される。そのようなフリップチップ接続を開示した文献として、たとえば、特許文献1および特許文献2には、マザーチップおよびドータチップの双方のメタルポスト表面にはんだ膜を形成した半導体装置が提案されている。また、特許文献3および特許文献4では、一方のメタルポスト上に金(Au)膜を形成し、他方のメタルポスト上にはんだ膜を形成した半導体装置が提案されている。
特開2004−79685号公報 特開2004−146728号公報 特開2002−164498号公報 特開2003−133508号公報
しかしながら、従来の半導体装置では、半導体装置の小型化によるメタルポスト(電極)のピッチの微細化に伴って、互いに隣接するメタルポストの間で電気的な短絡が発生するという問題があった。すなわち、マザーチップのメタルポストの表面とドータチップのメタルポスト表面との双方にはんだ膜を形成すると、はんだ量が多すぎて隣接するメタルポストとメタルポストとの間で電気的な短絡が生じることがあった。
また、このような不具合を解消するために、はんだの量を減らそうとして一方のメタルポスト上に金(Au)膜を形成しようとすると、はんだフラックスを使用しない場合には、はんだ表面の酸化膜を破るために溶融状態のはんだが露出してしまい、特に、隣接するメタルポスト間のギャップを小さくした場合には、その隣接するメタルポストと電気的な短絡を起こしてしまうことがあった。
一方、はんだフラックスを使用すると、接合後にはんだ接合部の周辺に残ったはんだフラックスの残渣に起因して、湿度に対する絶縁耐性や接合部の強度が十分に得られず、信頼性が低下するという問題が生じた。そして、これを解消しようとして、洗浄によってはんだフラックスを除去しようとすると、隣接するメタルポスト間のギャップ(隙間)が小さい場合には、洗浄液がその隙間に確実に入り込むことができないために、はんだフラックスの残渣を完全に除去することができず、依然として不具合を解消することができないでいた。
本発明は上記問題点を解決するためになされたものであり、一つの目的は隣接する電極間で電気的な短絡が抑制される半導体装置を提供することであり、他の目的は、そのような半導体装置の製造方法を提供することである。
本発明に係る半導体装置は、複数の第1電極と複数の第2電極とを備えている。複数の第1電極は、第1半導体基板の主表面にピッチPをもって形成され、それぞれはんだ膜が表面に位置する。複数の第2電極は、第2半導体基板の主表面にピッチP、高さP/6以上P/2以下をもって形成され、ぞれぞれ金が表面の全体にわたり位置し、第1電極とはんだ膜を介して接続されている。
この構成によれば、複数の第1電極と複数の第2電極とが、第1電極のピッチPに基づいて、第2電極の高さが所定の高さに設定されているとともに、その第2電極の表面の全体に金が位置することで、はんだ膜が第2電極の表面からはみ出ることが抑えられて、隣接する第1電極等との電気的な短絡を抑制することができる。
本発明に係る半導体装置の製造方法は、以下の工程を備えている。第1半導体基板の主表面に、はんだ膜が表面に露出した複数の第1電極をピッチPをもって形成する。第2半導体基板の主表面に、金が表面の全体にわたり露出した複数の第2電極を、ピッチP、高さP/6以上P/2以下をもって形成する。第1電極を第1の温度に設定するとともに、第2電極を第1の温度よりも高い第2の温度に設定し、第1電極の表面のはんだ膜を溶融してはんだ膜と金とを接合することにより、第1電極と第2電極とを接合する。
この方法によれば、第1電極のピッチPに基づいて、第2電極の高さを所定の高さに形成し、そして、その第2電極の表面の全体に金を露出させることで、溶融したはんだ膜が第2電極の表面に沿って流れ、第2電極の表面からはんだ膜がはみ出ることが抑えられて、隣接する第1電極等との電気的な短絡を抑制することができる。
本発明に係る他の半導体装置の製造方法は、以下の工程を備えている。はんだ膜を表面に露出させた複数の第1電極がピッチPをもって形成された第1半導体チップと、金を表面の全体にわたり露出させた複数の第2電極がピッチP、高さP/6以上P/2以下をもって形成された第2半導体チップとを、はんだ膜を溶融してはんだ膜と金とを接合することにより、第1半導体チップと第2半導体チップとを接合する。
この方法によれば、表面に全体に金を露出させた第2電極を、第1電極のピッチPに基づいて所定の高さに形成することで、溶融したはんだ膜が第2電極の表面に沿って流れ、第2電極の表面からはんだ膜がはみ出ることが抑えられて、隣接する第1電極等との電気的な短絡を抑制することができる。
実施の形態1
本発明の実施の形態1に係る半導体装置の製造方法について説明する。はじめに、マザーチップの製造工程について、フローチャートおよび工程図に基づいて説明する。まず、図1のステップS1に示すように、所定の半導体素子および回路等が形成されたマザーチップとなるウェハに対して、プローブによる検査が行なわれる。
図4に示すように、そのマザーチップとなるウェハでは、シリコン基板11の所定の領域にアルミニウム電極12が形成されている。アルミニウム電極12以外の領域は、表面保護膜13によって覆われている。表面保護膜13は、たとえば窒化シリコン膜とポリイミド膜の積層膜からなる。プローブによる検査は、プローブ50をアルミニウム電極12に接触することによって行なわれる。この検査は、ウェハに形成された複数のマザーチップのそれぞれに対して行なわれて、マザーチップの合否を示すウェハマップが作成される。
次に、図5に示すように、アルミニウム電極12を覆うようにシリコン基板11の全面に、たとえば、スパッタ法によりバリアメタル14が形成される。バリアメタル14は、たとえば、膜厚約150nmのチタン(Ti)と膜厚約200nmの銅(Cu)との積層膜からなる。バリアメタルとしては、スパッタ法の他にめっきによって形成してもよく、また、たとえば、チタン(Ti)、銅(Cu)、ニッケル(Ni)、クロム(Cr)、タングステン(W)等の多層膜としてもよい。
次に、図1のステップS2に示すように、メタルポストおよびはんだ膜が形成される。図6に示すように、バリアメタル14が形成された後、アルミニウム電極12が位置する領域を露出するようにレジスト15が形成される。次に、レジスト15の開口の底に露出するバリアメタル14の表面に、膜厚TM約5μmのニッケル(Ni)16aからなるメタルポスト16が形成される。メタルポスト16は、たとえば、バリアメタル14を給電膜として利用した電解めっきにより形成される。
次に、そのメタルポスト16の表面に、スズ(Sn)に1.5重量%の銀(Ag)を含有した膜厚約5μmのはんだ膜17が形成される。はんだ膜としては、銀の他に、銅(Cu)、ニッケル(Ni)、アンチモン(Sb)、金(Au)、ゲルマニウム(Ge)、インジウム(In)およびビスマス(Bi)の少なくともいずれかの材料をスズに混合させたものでもよい。また、はんだ膜17としては、はんだ膜の融点がメタルポスト16の融点より低い金属であることが望ましい。なお、メタルポストが不要な場合には、バリアメタル16の表面にはんだ膜17を直接形成してもよい。その後、図7に示すように、レジスト15が除去される。メタルポスト16のピッチPは約30μmとされる。
次に、図1のステップS3に示すように、フラックスが塗布される。フラックスは、レジスト15が除去されたウェハの全面(図7)に塗布される。次に、図1のステップS4に示すように、はんだ膜のリフロー処理が施される。図8に示すように、はんだ膜17の表面酸化が抑制されるように、窒素(N2)雰囲気中または窒素(N2)と水素(H2)との混合雰囲気中において、所定の温度のもとではんだ膜17が溶融される。これにより、シリコン基板11の表面からはんだ膜17の表面までの高さばらつきが少なくなり、そして、はんだ膜17の表面酸化膜も薄くなって、後述するドータチップとの接合性が飛躍的に向上する。
その後、図1のステップS5に示すように、所定の洗浄をウェハに施すことによってフラックスが除去される。ここで、どういうフラックスを使用するかということと、そのフラックスをどういう条件で洗浄するかということについては注意が必要とされる。これは、フラックスの残渣がドータチップとの初期の接合性を低下させる成分に変質したり、酸化膜を異常成長させたりする可能性があるからである。特に、フラックスとして水溶性のフラックスを塗布してはんだ膜のリフロー(ステップS4)を行ない、そのフラックスを純水にて洗浄する場合には、温度、時間、ウェハの揺動の有無、液(純水)の交換の時期を含めて注意が必要とされる。
この観点から、リフロー工程のリフロー炉の条件として、窒素(N2)を流すことにより炉内の酸素濃度が約100ppm程度の一定の濃度となるように雰囲気を調整し、ウェハ(シリコン基板11)の搬送速度を約0.65m/min、温度の最大値(ピーク温度)を約250℃、温度約220℃以上の雰囲気にウェハが晒される時間を30±10秒程度となるように設定した。
次に、図9に示すように、はんだ膜17およびメタルポスト16をマスクとして、ウェハ(シリコン基板11)の全面に異方性エッチングを施すことにより、ウェハの表面に露出しているバリアメタル14が除去される。次に、図1のステップS6に示すように、ウェハの裏面研磨が行なわれる。図10に示すように、ウェハの厚みが、たとえば約200〜600μm程度になるまでウエハ(シリコン基板11)の裏面に研磨処理が施される(バックグラインディング)。ここでは、ウェハの厚みは約220μmとされる。
次に、図1のステップS7に示すように、はんだボールとなるはんだペーストが塗布される。図11に示すように、所定の開口18aaが形成されたメタルマスク18aがウェハ(シリコン基板11)に載置される。開口18aaは、はんだボールを形成すべき所定のメタルポスト16(はんだ膜17)を露出するように形成されている。そのメタルマスク18aの開口18aaにはんだペースト19aを充填することにより、マザーチップにはんだボールとなるはんだペースト19aが印刷される。ここでは、はんだペースト19aに含まれるはんだ粒子として、平均組成をスズ(Sn)−3重量%銀(Ag)−0.5重量%銅(Cu)とするはんだ粒子が適用される。
次に、図1のステップS8に示すように、リフローによりはんだボールが形成される。まず、はんだペースト19aが印刷された後に、メタルマスク18a(図11参照)が取外される。次に、図12に示すように、前述したリフロー条件と同様に条件のもとではんだペースト18aにリフロー処理を施すことにより、はんだボール19が形成される。隣接するはんだボール19の間隔(ピッチ)PPは約100μmとされる。なお、はんだボールとしては、市販品のはんだボールを適用して形成してもよい。この場合には、フラックスがあらかじめ塗布され、市販のはんだボールが所定のメタルポストに載置された後に、リフロー処理が施されることになる。
その後、図1のステップS9に示すように、ウェハ(シリコン基板11)に対して所定の洗浄処理が施される。そして、図1のステップS10に示すように、外観検査が行なわれる。こうして、マザーチップ10が形成される。
次に、ドータチップの製造工程について、フローチャートおよび工程図に基づいて説明する。まず、図2のステップS11に示すように、所定の半導体素子および回路等が形成されたドータチップとなるウェハに対して、プローブによる検査が行なわれる。
図13に示すように、そのドータチップとなるウェハでは、シリコン基板21の所定の領域にアルミニウム電極22が形成されている。アルミニウム電極22以外の領域は、表面保護膜23によって覆われている。表面保護膜23は、たとえば膜厚約3μmのポリイミド膜からなる。プローブ50による検査は、ウェハに形成された複数のドータチップのそれぞれについて行なわれて、ドータチップの合否を示すウェハマップが作成される。
次に、図14に示すように、アルミニウム電極12を覆うようにシリコン基板11の全面に、たとえばスパッタ法またはめっき等により、チタン(Ti)、銅(Cu)、ニッケル(Ni)、クロム(Cr)、タングステン(W)等の多層膜からなるバリアメタル24が形成される。
次に、図2のステップS12に示すように、メタルポストが形成される。図15に示すように、バリアメタル24が形成された後、アルミニウム電極22が位置する領域を露出するようにレジスト25が形成される。次に、レジスト25の開口の底に露出するバリアメタル24の表面に金(Au)膜26aからなるメタルポスト26が形成される。金膜26aは、バリアメタル24を給電膜として利用した電解めっきにより形成される。
メタルポスト26の厚みTDは約1〜15μmとされる。隣接するメタルポスト26間の距離(ピッチ)Pは、約20μm〜40μmとされる。ここでは、メタルポスト26の金膜の厚みは15μmとされ、ピッチは30μmとされる。なお、メタルポスト26としては、金(Au)膜そのもののから形成されるメタルポストの他に、ニッケル(Ni)膜や銅(Cu)膜を形成し、その表面に金膜を形成したメタルポストでもよい。その後、図16に示すように、レジスト25が除去される。こうして、上面と側面を有してシリコン基板11から突出するメタルポスト26が形成される。なお、メタルポストの上面とは、マザーチップ(またはドータチップ)のメタルポストと対向することになる面である。
次に、図17に示すように、メタルポスト26をマスクとして、ウェハ(シリコン基板21)の全面に異方性エッチングを施すことにより、ウェハの表面に露出しているバリアメタル24が除去される。次に、図2のステップS13に示すように、ウェハの裏面研磨が行なわれる。図18に示すように、ウェハの厚みが、たとえば約30〜50μm程度になるまでウエハ(シリコン基板21)の裏面に研磨処理が施される(バックグラインディング)。ここでは、ウェハの厚みは約50μmとされる。
次に、図2のステップS14に示すように、ドータチップのダイシングが行なわれる。図19に示すように、ウエハ上に形成された複数のドータチップ20がダイシングにより個々に分離される(点線参照)。その後、図2のステップS15に示すように、外観検査が行なわれる。こうして、ドータチップ20が形成される。なお、ドータチップ20として、メモリ等の能動素子や、チップコンデンサ等の受動素子をシリコン基板21に形成することができる。
次に、マザーチップの所定の領域(回路)にドータチップをフリップチップ接続し、さらに、そのマザーチップを回路基板にフリップチップ接続する工程について説明する。まず、図3のステップS16に示すように、マザーチップの回路にドータチップが接続される。図1に示すステップS1においてプローブ検査をクリアし、さらに、ステップS6において外観検査をクリアしたマザーチップ10(ウェハ)に対して、ステップS11においてプローブ検査をクリアし、さらに、ステップS15において外観検査をクリアしたドータチップ20がフリップチップ接続される。
具体的には、まず、図20に示すように、マザーチップ10がステージ31に載置される。一方、ドータチップ20はハンドル部32により保持される。このとき、マザーチップ10における回路が形成された面と、ドータチップ20における回路が形成された面とが互いに向かい合わせにされる。ステージ31にはヒータ31aが設けられ、ハンドル部32にはヒータ32aが設けられている。
そのハンドル部32に設けられたヒータ32aにより、ドータチップ20をはんだ膜17の融点よりも高い温度、たとえば300℃に加熱して、マザーチップ10のメタルポスト16とドータチップ20のメタルポスト26とがはんだ膜17を介して熱圧着される。なお、Sn−Ag系はんだの一般的な融点は210℃〜230℃とされる。また、この熱圧着の際に、はんだ膜17の表面に存在する表面酸化膜や析出元素を除去するため、あるいは、メタルポスト26の表面に存在する表面汚染物を除去するため、フリップチップ接続の前にアルゴンスパッタによるプラズマスクリーニングを行なうことが望ましい。
また、はんだ膜17の膜厚が薄すぎると、メタルポスト16,26の高さのばらつきや、ステージ31とハンドル部32との平行度のバラツキにより、はんだ膜17の表面に存在する表面酸化膜を破壊するのに十分な応力が発生せず、接合不良が発生する場合がある。そこで、はんだ膜17の膜厚は5μm以上とすることが望ましい。
一方、本実施の形態では、メタルポストのピッチは20〜40μmとされる。そのため、はんだ膜17が厚すぎると、隣り合うメタルポストと電気的に短絡してしまう。そこで、はんだ膜17の膜厚は20μm以下とすることが望ましい。このような厚さの関係を満たすのであれば、メタルポスト26の表面に必要高さのはんだ膜を形成してもよい。本実施の形態では、はんだ膜17の膜厚は5μmとされる。
さらに、この熱圧着では、ステージ31に設けたヒータ31aの温度を調整して、マザーチップ10の温度がはんだボール19の融点よりも低く、たとえば、温度約100〜150℃にしてはんだボール19を再溶融させないようにすることが望ましい。これにより、再溶融によってはんだボール19の表面に酸化膜が形成されるのを阻止したり、隣接するはんだボール19同士の電気的な短絡を防止することができる。
なお、フリップチップ接続は、ドータチップ20がはんだ膜17の融点よりも高い温度に保持された状態で行なわれるが、マザーチップ10は熱伝導性が比較的高く、また、ウエハを設置しているステージ31の熱容量が大きいことで、マザーチップ10が形成されたウエハ全面の温度の上昇を抑制することができる。
また、はんだ膜17およびはんだボール19の表面が酸化することを防止するために、ステージ31付近を窒素(N2)雰囲気、または、水素(H2)と窒素(N2)との混合雰囲気とすることが望ましい。さらに、本実施の形態では、後述するアンダーフィル樹脂の密着性を重視するため、フラックスを塗布しないでフリップチップ接続が行なわれる。
次に、図3のステップS17に示すように、アンダーフィル樹脂が形成される。図21に示すように、マザーチップ10の上面とドータチップ20の上面との隙間に、ペースト状のアンダーフィル樹脂が注入される。そのアンダーフィル樹脂を硬化させることにより、その隙間(チップ・オン・チップ間)にアンダーフィル樹脂30が形成される。次に、図3のステップS18に示すように、マザーチップのダイシングが行なわれる。すなわち、ウェハをダイシングすることによって、ウェハに形成された複数のマザーチップ10が、個々のマザーチップ10に分離される。
次に、図3のステップS19に示すように、回路基板上にマザーチップがフリップチップ接続される。図22に示すように、マザーチップ10のはんだボール19によって、マザーチップ10が回路基板33上にフリップチップ接続される。なお、回路基板33としては、多層有機基板、シリコンインターポーザ、チップ等を用いることができる。
次に、図3のステップS20に示すように、アンダーフィル樹脂が形成される。図22に示すように、マザーチップ10と回路基板33との隙間にアンダーフィル樹脂を注入することによってアンダーフィル樹脂34が形成される。また、回路基板33の下面には、外部との接続のためにアウターボール35が形成される。こうして、マザーチップ20が回路基板33にフリップチップ接続された半導体装置が製造される。
本実施の形態では、隣接するはんだボール19のピッチ(はんだボール19の中心間の距離)を200μm、隣接するメタルポスト16(またはメタルポスト26)のピッチ(メタルポスト16の中心間の距離)を20μm〜40μm、ドータチップ20の厚みを30μm〜50μm、ドータチップ20とマザーチップ10との間隔を10μm〜50μm、はんだボール19の直径を120μm、はんだボール19の高さを80μm、隣接するアウターボール35のピッチ(アウターボール35の中心間の距離)を0.6mm〜1.8mmとして半導体装置を試作したところ、問題なく製造できることが確認された。
上述した半導体装置では、図23に示すように、はんだボール19はドータチップ20を囲むように配置されている。これにより、回路基板33(図22参照)とマザーチップ10のグランドと電源のバンプ数を確保することができる。また、はんだボール19へ応力を分散させることができる。さらに、回路基板33側への放熱経路の確保等を図ることができる。
そして、上述した半導体装置では、隣接するメタルポスト間の電気的な短絡を抑制することができる。このことについて、評価方法を示しながら説明する。
まず、マザーチップのメタルポストとして、以下のようにして製造されたものを準備した。はじめに、電解めっきにより、ピッチ30μm、大きさφ15μm、厚み5μmのNiめっきからなるメタルポストを形成した。次に、電解めっきにより、大きさφ15μm、厚み5μmのはんだ膜(Sn−3重量%Ag)を形成した。その後、フラックスを塗布した。
次に、プリヒート温度を160℃〜180℃、プリヒート時間を60秒〜90秒、ピーク温度を260℃、温度220℃以上の雰囲気にマザーチップが晒される時間を5秒〜10秒となる温度プロファイルとして、窒素雰囲気により酸素濃度が500ppmに制御されたリフロー炉でマザーチップに熱処理を施すことによって、はんだ膜を溶解させた。その後、冷却されたはんだ膜等を洗浄することによって、マザーチップのメタルポストを形成した。
一方、ドータチップのメタルポストとして、電解めっきにより、ピッチ30μm、大きさφ15μmとし、厚みを5μm、15μm、30μmの3種類に振り分けた金(Au)めっきからなるメタルポストを形成したものを準備した。次に、準備したマザーチップの表面とドータチップの表面にそれぞれ存在する酸化膜を、アルゴンスパッタによって除去した。その後、約150℃に保持されたステージにマザーチップを載置し、300℃に保持されたハンドル部32にドータチップを搭載した。
次に、はんだ膜とメタルポストとを接触させて熱圧着することにより、マザーチップにドータチップを接続した。これは、次のように行なった。まず、図24に示すように、マザーチップ10に対するドータチップ20の位置合わせを行なった。次に、図25に示すように、はんだ膜17とメタルポスト26とを接触させて、酸素濃度500ppmに調整した窒素と水素との混合雰囲気のもとで荷重5gfを負荷することで、はんだ膜17を溶融させてはんだ膜17とメタルポスト26とを熱圧着した。そして、図26に示すように、押し付けを開始してから5秒後に荷重を0とし加熱を止めて、マザーチップ10とドータチップ20とを自然放冷させた。
この一連の接続工程では、図25および図26に示すように、溶融したはんだ40は、メタルポスト26の横方向にはみ出しながらメタルポスト26の表面(上面)および側面を濡らし、そして、最終的にはんだ41はメタルポスト26の側面を覆うような状態で凝固し、はんだ接合部41が形成される。
試料として、100個(10×10)のメタルポスト(バンプ)パターンについて接合を行なったところ、次のような結果を得た。まず、金(Au)めっきの厚みが15μmと30μmのメタルポストでは、X線画像による観察結果から、隣接するメタルポストとの電気的な短絡は全くないことが確認された。すなわち、図27に示すように、メタルポスト26の高さが高いほど、メタルポスト26の投影面からはみ出るはんだ量(面積S1)が減少する傾向を示すことが判明した。一方、金(Au)めっきの厚みが5μmのメタルポストでは、約20箇所で隣接するメタルポスト間で電気的な短絡が生じていることが判明した。
次に、マザーチップとドータチップとの接合部における抵抗値の評価について説明する。評価試料として、接合数(バンプ数)が抵抗値に反映されるようなDaisyチェーンパターンを有するTEG(Test Element Group)チップを用いて、厚み(高さ)5μm、15μm、30μmの金(Au)めっきからなるメタルポストを備えた試料を作製した。
その試料に対して、温度−55℃と125℃との間のヒートサイクルを3000サイクルまで行ない、その間に連続的に抵抗値をモニタして抵抗値が初期の抵抗値の1.1倍になるまでのサイクル数を比較した。
その結果、メタルポストの高さが30μmの試料については、他のメタルポストの高さが5μm、15μmの試料に比べて、短いサイクル数で抵抗値が上昇する傾向が認められた。これは、接合ギャップ(間隔)が大きいほど、アンダーフィルとメタルポストとの熱膨張係数の差、あるいは、アンダーフィルとはんだとの熱膨張係数の差に起因する熱応力によって、はんだ接合部に作用する応力負荷が大きくなるためであると考えられる。
さらに、マザーチップおよびドータチップのメタルポストのピッチの値として、40μmの場合と50μmの場合とについて、上述した一連の評価と同様の評価を行なったところ、30μmの場合と同様の効果が得られることが確認された。
以上の結果を総合すると、マザーチップのはんだの融点よりも高温に加熱した状態で、マザーチップのはんだとドータチップのメタルポストとを接合する場合には、まず、ドータチップのメタルポストのピッチをPμmとすると、ドータチップのメタルポストの高さをP/6μm以上にすることにより、初期の接合性、すなわち、電気的短絡の抑制効果が顕著に得られることが判明した。一方、ドータチップのメタルポストの高さをP/2μm以下にすることにより、接合部の抵抗値が長期にわたって安定であることが判明した。
したがって、上述した半導体装置によれば、マザーチップ10のメタルポスト16のピッチをPμmとすると、ドータチップ20のメタルポスト26のピッチをPμm、高さをP/6μm以上P/2μm以下に設定することで、電気的短絡が抑制されるとともに信頼性の高い接合部が得られることが実証された。また、後述するように、ドータチップ20のメタルポスト26の少なくとも表面の全体が金によって覆われていることで、溶融したはんだがメタルポストの側面に沿って流れ、メタルポストの側方に飛び出ることが抑えられて、隣接するメタルポスト26等との電気的な短絡を確実に抑制することができる。
そして、隣接するメタルポスト間の電気的短絡が確実に抑制されることで、従来、電極間ピッチの微細化とともに電極サイズが小さくなった場合に、ポリイミドで耐食性を確保する必要があるチップでは、工業的にその形状の制御が困難であり、また、その形状を制御するためにはポリイミドのパターニング精度の限界から耐食性が低下して、電子モジュール自体の信頼性が低下することが問題となっていたのを解消することができる。
なお、上述した評価試料では、マザーチップのメタルポストに形成するはんだの膜厚を5μmとしたが、実際には、接合の信頼性を向上するために、はんだの膜厚が設定膜厚よりも薄くならないように多少厚く形成する場合がある。その場合には、ドータチップのメタルポストの側面を濡らして覆うはんだの量が増加することになる。つまり、図27に示されるメタルポストの投影面積からはみ出るはんだ量が増えることになる。そうすると、隣接するメタルポストとの電気的な短絡をより確実に阻止するには、ドータチップのメタルポストの高さは、P/4μm以上とするのが好ましい。
実施の形態2
ここでは、半導体装置におけるドータチップのメタルポストに形成される金膜の形成の仕方と電気的短絡との関係について説明する。
まず、マザーチップのメタルポストとして、以下のようにして製造されたものを準備した。はじめに、電解めっきにより、ピッチ30μm、大きさφ15μm、厚み5μmのNiめっきからなるメタルポストを形成した。次に、電解めっきにより、大きさφ15μm、厚み5μmのはんだ膜(Sn−3重量%Ag)を形成した。その後、フラックスを塗布した。
次に、プリヒート温度を160℃〜180℃、プリヒート時間を60秒〜90秒、ピーク温度を260℃、温度220℃以上の雰囲気にマザーチップが晒される時間を5秒〜10秒となる温度プロファイルとして、窒素雰囲気により酸素濃度が500ppmに制御されたリフロー炉でマザーチップに熱処理を施すことによって、はんだ膜を溶解させた。その後、冷却されたはんだ膜等を洗浄することによって、マザーチップのメタルポストを形成した。
一方、ドータチップのメタルポストとして、以下のようにして製造されたものを準備した。まず、電解めっきにより、ピッチ30μm、大きさφ15μm、厚み5μmのニッケル(Ni)めっきを形成した。次に、そのニッケルめっきの上面および側面の双方に、電解めっきによって、厚みを0.05μm、0.10μm、0.30μm、0.50μmの4種類に振り分けて金(Au)膜を形成した。
次に、準備したマザーチップの表面とドータチップの表面にそれぞれ存在する酸化膜を、アルゴンスパッタによって除去した。その後、約150℃に保持されたステージにマザーチップを載置し、300℃に保持されたハンドル部にドータチップを搭載した。
次に、はんだ膜とメタルポストとを接触させて熱圧着することにより、マザーチップにドータチップを接合した。これは、次のように行なった。まず、図28に示すように、マザーチップ10に対するドータチップ20の位置合わせを行なった。次に、図29に示すように、はんだ膜17とメタルポスト26とを接触させて、酸素濃度500ppmに調整した窒素と水素との混合雰囲気のもとで荷重5gfを負荷することで、はんだ膜を溶融させてはんだ膜とメタルポストとを熱圧着させた。そして、図30に示すように、押し付けを開始してから5秒後に荷重を0とし、加熱を止めて、マザーチップとドータチップとを自然放冷させた。
この半導体装置におけるドータチップ20のメタルポスト26では、金膜26aはニッケルめっき26bの上面と側面の双方に形成されている。そのため、図30に示すように、溶融したはんだ41はメタルポスト26の側方へ飛び出すものの側面を濡らして覆うことになる。この場合、100個(10×10)のメタルポスト(バンプ)パターンについて接合を行ない、X線画像による評価を行なったところ、金膜の厚みが0.05μmの場合に、隣接するメタルポスト間ではんだとはんだが繋がるブリッジが20箇所程度認められた。一方、他の膜厚(0.10μm、0.30μm、0.50μm)では、電気的な短絡は全く認められないことが判明した。
次に比較例について説明する。まず、マザーチップのメタルポストは、上述したマザーチップのメタルポストと同様の条件によって製造したものを準備した。一方、ドータチップのメタルポストとして、以下のようにして製造されたものを準備した。まず、電解めっきにより、ピッチ30μm、大きさφ15μm、厚み5μmのニッケル(Ni)めっきを形成した。次に、そのニッケルめっきの上面および側面のうち、上面にだけ、電解めっきによって、厚みを0.05μm、0.10μm、0.30μm、0.50μmの4種類に振り分けて金膜を形成した。
次に、準備したマザーチップの表面とドータチップの表面にそれぞれ存在する酸化膜を、アルゴンスパッタによって除去した。その後、約150℃に保持されたステージにマザーチップを載置し、300℃に保持されたハンドル部にドータチップを搭載した。
次に、はんだ膜とメタルポストとを接触させて熱圧着することにより、マザーチップにドータチップを接合した。これは、次のように行なった。まず、図31に示すように、マザーチップ110に対するドータチップ120の位置合わせを行なった。次に、図32に示すように、はんだ膜117とメタルポスト126とを接触させて、酸素濃度500ppmに調整した窒素と水素との混合雰囲気のもとで荷重5gfを負荷することで、はんだ膜117を溶融させてはんだ膜117,140とメタルポスト126とを熱圧着させた。そして、図33に示すように、押し付けを開始してから5秒後に荷重を0とし、加熱を止めて、マザーチップ110とドータチップ120とを自然放冷させた。
この比較例に係る半導体装置におけるドータチップのメタルポストでは、金膜は上面にだけ形成されて、側面には形成されていない。そのため、図33に示すように、溶融したはんだ140がメタルポスト126の側方へ飛び出してしまうことになる。この場合、100個(10×10)のメタルポスト(バンプ)パターンについて接合を行ない、X線画像による評価を行なったところ、金膜の厚みに関わらず、50箇所(バンプ)以上で隣接するメタルポストとの電気的な短絡が発生していることが判明した。
以上の評価結果から、ドータチップ20のメタルポスト26に形成する金膜として、はんだ40がメタルポスト26から双方へ飛び出すのを抑えるには、メタルポスト26の上面に加えて側面にも形成することが望ましいことが判明した。すなわち、メタルポスト26の表面の全体が金によって覆われていることが望ましいことがわかった。
さらに、隣接するメタルポスト26間において電気的な短絡を抑制するには、金膜26aの厚みは、0.10μm以上にすることが望ましいことが判明した。金膜26aの膜厚は厚いほど、ニッケル(Ni)めっき26bが金(Au)膜26a中に拡散し、そして、金膜26aの表面では酸化物が形成されるのが抑えられて濡れ性が低下するのが抑制される。その結果、隣接するメタルポスト26間にはんだのブリッジが形成されるのを防止することができる。
実施の形態3
ここでは、ドータチップのメタルポストに形成する金膜(金めっき)の形成の仕方(めっき方法)と電気的短絡との関係について説明する。金めっきの工程を電解めっき法と無電解めっき法とに振り分け、金めっきの工程以外の工程については、実施の形態に2おいて説明した方法と同じ方法で製造したマザーチップとドータチップとを準備した。
ドータチップのメタルポストの上面と側面に、無電解めっき法によって形成される金膜の厚みを、0.05μm、0.10μm、0.30μmの3種類に振り分けた。そして、100個(10×10)のメタルポスト(バンプ)パターンについて接合を行ない、X線画像により、隣接するメタルポスト間の電気的短絡と接合不良数とを評価し、電解めっき法によって形成された試料との比較を行なった。
無電解めっき法によって金膜を形成した試料では、金膜の膜厚が0.05μmの場合に、40箇所(40バンプ)程度で電気的短絡(ショート)による不良が発生していることが判明した。また、金膜の膜厚が0.10μmの場合には、5箇所(5バンプ)程度で電気的短絡による不良が発生していることが判明した。一方、金膜の膜厚が0.30μmの場合には、電気的短絡は全く発生していないことが判明した。
一方、電解めっき法によって金膜を形成した試料では、実施の形態2において説明したように、金膜の厚みが0.05μmの場合に、隣接するメタルポスト間ではんだとはんだが繋がるブリッジが20箇所で認められたが、他の膜厚(0.10μm、0.30μm)では、電気的な短絡は全く認められないことが判明した。
この評価結果より、ドータチップのメタルポストに形成する金膜として、電解めっきによって形成される金膜の方が無電解めっきによって形成される金膜よりも、電気的短絡の抑制に効果があることが実証された。
これは、無電解めっきによって金膜を形成する場合には、メタルポストが90℃前後の比較的高温の雰囲気に比較的長い時間(金膜の膜厚が0.05μmの場合では20分前後)晒されることから、実施の形態2において説明したように、金(Au)膜中へNiが拡散するとともに、金膜の表面において酸化物が形成されやすくなっているためであると考えられる。また、無電解めっき法によって金膜を形成する場合には、メタルポストのニッケル(Ni)との置換反応であるため、金の析出量のバラツキが比較的大きく、そして、膜として欠陥が多い膜となりやすい。このことからも、金膜の形成には電解メッキ法の方が望ましいと考えられる。
実施の形態4
ここでは、ドータチップのメタルポストの形状と電気的短絡との関係について説明する。まず、マザーチップのメタルポストとして、以下のようにして製造されたものを準備した。はじめに、電解めっきにより、ピッチ30μm、大きさφ15μm、厚み5μmのニッケル(Ni)めっきからなるメタルポストを形成した。次に、電解めっきにより、大きさφ15μm、厚み5μmのはんだ膜(Sn−3重量%Ag)を形成した。その後、フラックスを塗布した。
次に、プリヒート温度を160℃〜180℃、プリヒート時間を60秒〜90秒、ピーク温度を260℃、温度220℃以上の雰囲気にマザーチップが晒される時間を5秒〜10秒となる温度プロファイルとして、窒素雰囲気により酸素濃度が500ppmに制御されたリフロー炉でマザーチップに熱処理を施すことによって、はんだ膜を溶解させた。その後、冷却されたはんだ膜等を洗浄することによって、マザーチップのメタルポストを形成した。
一方、ドータチップのメタルポストとして、以下のようにして製造されたものを準備した。まず、無電解めっきにより、ピッチ30μm、大きさφ15μm、厚み5μmのニッケル(Ni)めっきを形成した。次に、そのニッケルめっきの上面および側面の双方に、無電解めっきによって、厚みを0.05μm、0.10μm、0.30μmの3種類に振り分けて金膜を形成した。こうして形成されるメタルポストは、後述するように、マッシュルームのような形状を呈する。
次に、準備したマザーチップの表面とドータチップの表面にそれぞれ存在する酸化膜を、アルゴンスパッタによって除去した。その後、約150℃に保持されたステージにマザーチップを載置し、300℃に保持されたハンドル部32にドータチップを搭載した。
次に、はんだ膜とメタルポストとを接触させて熱圧着することにより、マザーチップにドータチップを接合した。これは、次のように行なった。まず、図34に示すように、マザーチップ110に対するドータチップ120の位置合わせを行なった。次に、図35に示すように、はんだ膜17とメタルポスト26とを接触させて、酸素濃度500ppmに調整した窒素と水素との混合雰囲気のもとで荷重5gfを負荷することで、はんだ膜117を溶融させてはんだ膜117、140とメタルポスト126とを熱圧着させた。そして、図35に示すように、押し付けを開始してから5秒後に荷重を0とし、加熱を止めて、マザーチップ110とドータチップ120とを自然放冷させた。
そして、100個(10×10)のメタルポスト(バンプ)パターンについて接合を行ない、X線画像により、隣接するメタルポスト間の電気的短絡と接合不良数とを評価し、電解めっき法によって形成された試料との比較を行なった。
無電解めっき法によってニッケルめっき126bと金膜120aを形成した試料では、いずれの試料についても、70箇所(70バンプ)程度で電気的短絡(ショート)による不良が発生していることが判明した。一方、電解めっき法によってニッケルめっきと金膜を形成した試料では、実施の形態2において説明したように、金膜の厚みが0.05μmの場合に、隣接するメタルポスト間ではんだとはんだが繋がるブリッジが20箇所で認められたが、他の膜厚(0.10μm、0.30μm)では、電気的な短絡は全く認められないことが判明した。
この評価結果より、ドータチップのメタルポストとして、電解めっきによって形成されるニッケルめっきと金膜の方が、無電解めっきによって形成されるニッケルめっきと金膜よりも電気的短絡の抑制に効果があることが実証された。
これは、次のように考えられる。一般に無電解めっき法では、マスクやめっきレジストは使用されない。そのため、ドータチップのメタルポストをなすニッケルめっきと金膜を無電解めっき法によって形成すると、図34に示すように、メタルポスト126は、マッシュルームのような形状に形成されることになる。マッシュルーム型のメタルポスト126に溶融したはんだ140を接触させて接合すると、その接合時のはんだ140が隣接するメタルポスト126へ導かれやすくなる。その結果、図36に示すように、隣接するメタルポスト126間で電気的短絡が生じると考えられる。
実施の形態5
ここでは、ドータチップとマザーチップとの接合部分におけるボイドの評価について説明する。まず、マザーチップのメタルポストとして、以下のようにして製造されたものを準備した。はじめに、電解めっきにより、厚み5μmのニッケル(Ni)めっきからなるメタルポストを形成した。次に、電解めっきにより、厚み5μmのはんだ膜(Sn−3重量%Ag)を形成した。その後、フラックスを塗布した。
次に、プリヒート温度を160℃〜180℃、プリヒート時間を60秒〜90秒、ピーク温度を260℃、温度220℃以上の雰囲気にマザーチップが晒される時間を5秒〜10秒となる温度プロファイルとして、窒素雰囲気により酸素濃度が500ppmに制御されたリフロー炉でマザーチップに熱処理を施すことによって、はんだ膜を溶解させた。その後、冷却されたはんだ膜等を洗浄することによって、マザーチップのメタルポストを形成した。
一方、ドータチップのメタルポストとして、以下のようにして製造されたものを準備した。まず、電解めっきにより、ピッチ30μm、大きさφ15μm、厚み15μmの金(Au)膜を100個(10×10)形成した。
次に、準備したマザーチップの表面とドータチップの表面にそれぞれ存在する酸化膜を、アルゴンスパッタによって除去した。その後、約150℃に保持されたステージにマザーチップを載置し、ハンドル部にドータチップを搭載した。このとき、ハンドル部の温度については、280℃、290℃、300℃の3種類に振り分けた。
次に、所定の雰囲気のもとではんだ膜とメタルポストとを接触させて、荷重5gfを負荷することにより、はんだ膜を溶融させてはんだ膜とメタルポストとを熱圧着させた。このとき、加熱時間を1秒、2秒、5秒の3種類に振り分けた。なお、温度と加熱時間の各振り分け条件に対して、3チップづつ割り当てて接合を行なった。
接合後、ドータチップの最外周に位置する10個のメタルポスト(バンプ)について、その中央部が露出するように断面研磨を行ない、電子顕微鏡およびEDX(Energy-Dispersive X-ray analysis)を用いて露出した断面の定性分析を行なった。
まず、図37に、メタルポスト20の成分がはんだ40内に拡散して合金化(はんだ接合部41)している面積(断面積)の、はんだ接合部41の面積(断面積)に対する割合を画像処理にて算出した平均の値を示す。図37に示すように、同じ温度では、加熱時間が長いほど合金化する割合が高くなることが確認された。また、同じ加熱時間では、温度が高いほど合金化する割合が高くなることが確認された。なお、合金化している割合が100%でない場合には、その合金化していない領域41aは、ドータチップ20のメタルポスト26の上面とマザーチップ10のメタルポスト16の上面との間に主として存在することが確認された。
次に、試料に温度150℃のもとで1000時間の高温処理を施した後に、ドータチップの最外周に位置する10個のメタルポスト(バンプ)について、その中央部が露出するように断面研磨を行ない、電子顕微鏡(倍率5000倍)によってボイドを観察した。図38に、そのボイド52(図39参照)の総面積(断面積)の、はんだ接合部41(図37参照)の面積(断面積)に対する割合を画像処理にて算出した平均の値を示す。
なお、図38に示すグラフの横軸(残存Sn量)は、便宜上、100%から図37に示す合金化している領域(拡散相)の面積の割合を差し引いた値(%)とされる。たとえば、残存Sn量が20%であるということは、合金化している領域の面積の割合が80%であることに対応し、残存Sn量が0%であるということは、合金化している領域の面積の割合が100%であることに対応する。
図38に示すように、残存Sn量の割合が10%以下の場合と10%以上の場合とでは、加熱によるボイド面積率の増加の割合が変化していることがわかった。すなわち、合金化している領域(拡散している領域)の割合を90%以上に制御することにより、ボイドの発生を抑制できることが判明した。
このボイドは、熱拡散により残存Snがメタルポスト材料である金(Au)やニッケル(Ni)と金属間化合物を生成し、そして、成長する際に生じる体積収縮に伴って形成される。そして、図39に示すように、このボイド52は、一連の接合により形成される、一方のメタルポスト26,16の金属と他方のメタルポスト16,26の金属との間に位置するはんだ17とメタルポスト26,16との合金の領域(合金層51a,51b)に生じる。そのボイド52はクラックの起点となったり、クラックの進展を促進したりすることになる。上述した半導体装置では、このようなボイド52の発生を抑制することによって、耐熱疲労性に優れた、高信頼な金属接合部が得られることが実証された。
実施の形態6
ここでは、ドータチップをマザーチップに接合したものを、さらに回路基板に接合した半導体装置について説明する。まず、実施の形態1において説明した方法と同様の方法によって、ドータチップ20のメタルポスト26とマザーチップ10のメタルポスト16とをそれぞれ形成した。次に、マザーチップ10のメタルポスト16と、ドータチップ20のメタルポスト26とをはんだ膜17を介して熱圧着し、その後、アンダーフィル34を注入した。
次に、マザーチップ10の裏面をダイボンド材42によって回路基板33に接着した。次に、マザーチップ10のアルミニウム(Al)電極12と回路基板33の表面に形成された金被覆された銅(Cu)電極43とを金ワイヤ44によってワイヤボンディングを行なった。その後、ドータチップ20、マザーチップ10および回路基板33をモールド樹脂45で封止した。こうして完成した半導体装置を図40に示す。
完成した半導体装置を動作させたところ、電気的に何ら問題のないことがわかった。また、この半導体装置に対して、温度−55℃から125℃までのヒートサイクルを1000サイクル行なったところ、正常に動作することを確認した。
なお、各実施の形態において説明した、チップの種類、チップの厚さ、電極材料、電極ピッチ、はんだ材料、はんだ膜の厚さ、接合条件等は一例であって、これらに限られるものではない。
今回開示された実施の形態は例示であってこれに制限されるものではない。本発明は上記で説明した範囲ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲でのすべての変更が含まれることが意図される。
本発明の実施の形態1に係る半導体装置の製造方法を説明するための第1のフローチャートである。 同実施の形態において、半導体装置の製造方法を説明するための第2のフローチャートである。 同実施の形態において、半導体装置の製造方法を説明するための第3のフローチャートである。 同実施の形態において、半導体装置におけるマザーチップの製造方法の一工程を示す断面図である。 同実施の形態において、図4に示す工程の後に行なわれる工程を示す断面図である。 同実施の形態において、図5に示す工程の後に行なわれる工程を示す断面図である。 同実施の形態において、図6に示す工程の後に行なわれる工程を示す断面図である。 同実施の形態において、図7に示す工程の後に行なわれる工程を示す断面図である。 同実施の形態において、図8に示す工程の後に行なわれる工程を示す断面図である。 同実施の形態において、図9に示す工程の後に行なわれる工程を示す断面図である。 同実施の形態において、図10に示す工程の後に行なわれる工程を示す断面図である。 同実施の形態において、図11に示す工程の後に行なわれる工程を示す断面図である。 同実施の形態において、半導体装置におけるドータチップの製造方法の一工程を示す断面図である。 同実施の形態において、図13に示す工程の後に行なわれる工程を示す断面図である。 同実施の形態において、図14に示す工程の後に行なわれる工程を示す断面図である。 同実施の形態において、図15に示す工程の後に行なわれる工程を示す断面図である。 同実施の形態において、図16に示す工程の後に行なわれる工程を示す断面図である。 同実施の形態において、図17に示す工程の後に行なわれる工程を示す断面図である。 同実施の形態において、図18に示す工程の後に行なわれる工程を示す断面図である。 同実施の形態において、マザーチップとドータチップが完成した後に行なわれる工程を示す断面図である。 同実施の形態において、図20に示す工程の後に行なわれる工程を示す断面図である。 同実施の形態において、図21に示す工程の後に行なわれる工程を示す断面図である。 同実施の形態において、マザーチップのメタルポスト側の構造を示す平面図である。 同実施の形態において、マザーチップのメタルポストにドータチップのメタルポストを接合する一工程を示す断面図である。 同実施の形態において、図24に示す工程の後に行なわれる工程を示す断面図である。 同実施の形態において、図25に示す工程の後に行なわれる工程を示す断面図である。 同実施の形態において、マザーチップのメタルポストにドータチップのメタルポストが接合された状態におけるはんだ膜の様子を示す図である。 本発明の実施の形態2に係る半導体装置の製造方法において、マザーチップのメタルポストにドータチップのメタルポストを接合する一工程を示す断面図である。 同実施の形態において、図28に示す工程の後に行なわれる工程を示す断面図である。 同実施の形態において、図29に示す工程の後に行なわれる工程を示す断面図である。 同実施の形態において、比較例に係るマザーチップのメタルポストにドータチップのメタルポストを接合する一工程を示す断面図である。 同実施の形態において、図31に示す工程の後に行なわれる工程を示す断面図である。 同実施の形態において、図32に示す工程の後に行なわれる工程を示す断面図である。 本発明の実施の形態4において、比較例に係るマザーチップのメタルポストにドータチップのメタルポストを接合する一工程を示す断面図である。 同実施の形態において、図34に示す工程の後に行なわれる工程を示す断面図である。 同実施の形態において、図35に示す工程の後に行なわれる工程を示す断面図である。 本発明の実施の形態5に係る半導体装置において、はんだ接合部における合金化している領域の面積の割合を示す図である。 同実施の形態ににおいて、ボイドの面積と残存Snの量との関係を示すグラフである。 同実施の形態において、ボイドの発生の仕方を示す断面模式図である。 本発明の実施の形態6に係る半導体装置の断面図である。
符号の説明
10 マザーチップ、11 シリコン基板、12 アルミニウム電極、13 表面保護膜、14 バリアメタル、15 レジスト、16 メタルポスト、16a ニッケルめっき、17 はんだ膜、18a メタルマスク、19a はんだペースト、19 はんだボール、20 ドータチップ、21 シリコン基板、22 アルミニウム電極、23 表面保護膜、24 バリアメタル、26a 金メッキ、26 メタルポスト、26b ニッケルめっき、27 レジスト、30 アンダーフィル、31 ステージ、31a ヒータ、32 ハンドル、32a ヒータ、33 回路基板、34 アンダーフィル樹脂、35 アウターボール、40 溶融はんだ、41 はんだ接合部、42 ダイボンド材、43 銅電極、44 金ワイヤ、45 モールド樹脂、50 プローブ、51a,51b 合金層、52 ボイド。

Claims (9)

  1. 第1半導体基板の主表面にピッチPをもって形成され、それぞれはんだ膜が表面に位置する複数の第1電極と、
    第2半導体基板の主表面にピッチP、高さP/6以上P/2以下をもって形成され、前記第1電極と前記はんだ膜を介して接続された、ぞれぞれ金が表面の全体にわたり位置する複数の第2電極と
    を備えた、半導体装置。
  2. 前記はんだ膜を介して接続された前記第1電極と前記第2電極との接合部では、前記第1電極または前記第2電極を構成する成分が拡散している領域の、前記接合部における割合が90%以上である、請求項1記載の半導体装置。
  3. 前記第2電極は、
    前記第1電極と対向することになる上面と、
    前記上面から前記第2半導体基板の表面に延在する側面と
    を有して、前記第2半導体基板の表面から突出するように形成された、請求項1または2に記載の半導体装置。
  4. 前記第2電極は、
    ニッケルまたは銅を含む第2電極本体と、
    前記第2電極本体の表面に形成された前記金となる金膜と
    を含む、請求項1〜3のいずれかに記載の半導体装置。
  5. 前記第2電極は前記金からなる、請求項1〜3のいずれかに記載の半導体装置。
  6. 第1半導体基板の主表面に、はんだ膜が表面に露出した複数の第1電極をピッチPをもって形成する工程と、
    第2半導体基板の主表面に、金が表面の全体にわたり露出した複数の第2電極を、ピッチP、高さP/6以上P/2以下をもって形成する工程と、
    前記第1電極を第1の温度に設定するとともに、前記第2電極を前記第1の温度よりも高い第2の温度に設定し、前記第1電極の表面の前記はんだ膜を溶融して前記はんだ膜と前記金とを接合することにより、前記第1電極と前記第2電極とを接合する工程と
    を備えた、半導体装置の製造方法。
  7. 前記第2電極を形成する工程は、前記金を電解めっき法によって形成する工程を含む、請求項6記載の半導体装置の製造方法。
  8. はんだ膜を表面に露出させた複数の第1電極が、ピッチPをもって形成された第1半導体チップと、金を表面の全体にわたり露出させた複数の第2電極が、ピッチP、高さP/6以上P/2以下をもって形成された第2半導体チップとを、前記はんだ膜を溶融して前記はんだ膜と前記金とを接合することにより、前記第1半導体チップと前記第2半導体チップとを接合する工程を備えた、半導体装置の製造方法。
  9. 前記第2電極の前記金は電解めっき法によって形成された、請求項8記載の半導体装置の製造方法。
JP2007181994A 2007-07-11 2007-07-11 半導体装置の製造方法 Expired - Fee Related JP5217043B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007181994A JP5217043B2 (ja) 2007-07-11 2007-07-11 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007181994A JP5217043B2 (ja) 2007-07-11 2007-07-11 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2009021329A true JP2009021329A (ja) 2009-01-29
JP5217043B2 JP5217043B2 (ja) 2013-06-19

Family

ID=40360735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007181994A Expired - Fee Related JP5217043B2 (ja) 2007-07-11 2007-07-11 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP5217043B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210913A (ja) * 2010-03-30 2011-10-20 Fujitsu Ltd 半導体装置及びその製造方法
JP2014096469A (ja) * 2012-11-09 2014-05-22 Ngk Spark Plug Co Ltd 配線基板
JP2014107371A (ja) * 2012-11-27 2014-06-09 Ngk Spark Plug Co Ltd 配線基板
US8981574B2 (en) 2012-12-20 2015-03-17 Samsung Electronics Co., Ltd. Semiconductor package
KR20150031592A (ko) * 2013-09-16 2015-03-25 엘지이노텍 주식회사 반도체 패키지
JP2015057827A (ja) * 2013-09-16 2015-03-26 エルジー イノテック カンパニー リミテッド 半導体パッケージ
CN109390325A (zh) * 2017-08-09 2019-02-26 日月光半导体制造股份有限公司 半导体封装装置及其制造方法
CN116953007A (zh) * 2023-09-19 2023-10-27 成都电科星拓科技有限公司 一种用于芯片框架开发新产品的成分分析方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08340000A (ja) * 1995-06-12 1996-12-24 Toshiba Corp 半導体装置及びその製造方法
JPH09283564A (ja) * 1996-04-16 1997-10-31 Hitachi Ltd 半導体接合構造
JP2002164498A (ja) * 2000-09-12 2002-06-07 Rohm Co Ltd 半導体装置およびその製法
JP2004273957A (ja) * 2003-03-11 2004-09-30 Seiko Epson Corp 半導体チップの回路基板への実装方法、半導体装置、電子デバイスおよび電子機器
JP2007165671A (ja) * 2005-12-15 2007-06-28 Renesas Technology Corp 半導体装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08340000A (ja) * 1995-06-12 1996-12-24 Toshiba Corp 半導体装置及びその製造方法
JPH09283564A (ja) * 1996-04-16 1997-10-31 Hitachi Ltd 半導体接合構造
JP2002164498A (ja) * 2000-09-12 2002-06-07 Rohm Co Ltd 半導体装置およびその製法
JP2004273957A (ja) * 2003-03-11 2004-09-30 Seiko Epson Corp 半導体チップの回路基板への実装方法、半導体装置、電子デバイスおよび電子機器
JP2007165671A (ja) * 2005-12-15 2007-06-28 Renesas Technology Corp 半導体装置の製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210913A (ja) * 2010-03-30 2011-10-20 Fujitsu Ltd 半導体装置及びその製造方法
JP2014096469A (ja) * 2012-11-09 2014-05-22 Ngk Spark Plug Co Ltd 配線基板
JP2014107371A (ja) * 2012-11-27 2014-06-09 Ngk Spark Plug Co Ltd 配線基板
US8981574B2 (en) 2012-12-20 2015-03-17 Samsung Electronics Co., Ltd. Semiconductor package
US9633973B2 (en) 2012-12-20 2017-04-25 Samsung Electronics Co., Ltd. Semiconductor package
KR20150031592A (ko) * 2013-09-16 2015-03-25 엘지이노텍 주식회사 반도체 패키지
JP2015057827A (ja) * 2013-09-16 2015-03-26 エルジー イノテック カンパニー リミテッド 半導体パッケージ
KR102109042B1 (ko) * 2013-09-16 2020-05-12 엘지이노텍 주식회사 반도체 패키지
CN109390325A (zh) * 2017-08-09 2019-02-26 日月光半导体制造股份有限公司 半导体封装装置及其制造方法
CN109390325B (zh) * 2017-08-09 2022-04-29 日月光半导体制造股份有限公司 半导体封装装置及其制造方法
CN116953007A (zh) * 2023-09-19 2023-10-27 成都电科星拓科技有限公司 一种用于芯片框架开发新产品的成分分析方法

Also Published As

Publication number Publication date
JP5217043B2 (ja) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5217043B2 (ja) 半導体装置の製造方法
JP3829325B2 (ja) 半導体素子およびその製造方法並びに半導体装置の製造方法
JP4998073B2 (ja) 半導体チップおよびその製造方法
JP4742844B2 (ja) 半導体装置の製造方法
JP5820991B2 (ja) 半導体装置製造方法および半導体装置
TW201115700A (en) Integrated circuit structure
TW201201289A (en) Semiconductor device and semiconductor device manufacturing method
JP2006279062A (ja) 半導体素子および半導体装置
KR20140043131A (ko) 실장 구조 및 그 제조 방법
JP2013115336A (ja) 半導体装置及びその製造方法
JP5562438B2 (ja) 電子部品実装体、電子部品、基板
JP3868766B2 (ja) 半導体装置
JP3356649B2 (ja) 半導体装置及びその製造方法
JP5113793B2 (ja) 半導体装置およびその製造方法
TW201411793A (zh) 半導體裝置及其製造方法
JP2006054311A (ja) 電子装置およびそれを用いた半導体装置、ならびに半導体装置の製造方法
TW533556B (en) Manufacturing process of bump
JP2004047537A (ja) 半導体装置及びその製造方法
JPH1140624A (ja) 半導体装置のリペア方法
JP2001094004A (ja) 半導体装置、外部接続端子構造体及び半導体装置の製造方法
JP4668608B2 (ja) 半導体チップおよびそれを用いた半導体装置、ならびに半導体チップの製造方法
JPH1167821A (ja) フリップチップ実装構造
JP2014110355A (ja) 半導体装置
JP2013089886A (ja) 半導体装置、半導体装置の実装構造体、半導体装置の製造方法、および半導体装置の実装構造体の製造方法
JP2021097103A (ja) 配線基板及び半導体装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees